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Improved ion heating in fast ignition by pulse shaping
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The fast ignition paradigm for inertial fusion offers increased gain and tolerance of asymmetry by compressing
fuel at low entropy and then quickly igniting a small region. Because this hot spot rapidly disassembles, the ions
must be heated to ignition temperature as quickly as possible, but most ignitor designs directly heat electrons. A
constant-power ignitor pulse, which is generally assumed, is suboptimal for coupling energy from electrons to
ions. Using a simple model of a hot spot in isochoric plasma, a pulse shape to maximize ion heating is presented
in analytical form. Bounds are derived on the maximum ion temperature attainable by electron heating only.
Moreover, arranging for faster ion heating allows a smaller hot spot, improving fusion gain. Under representative
conditions, the optimized pulse can reduce ignition energy by over 20%.
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I. INTRODUCTION

In conventional approaches to inertial confinement fusion
(ICF) [1,2], an external driver compresses the fuel through
a sequence of carefully timed shocks, which are usually
designed to approximate adiabatic compression [3]. The re-
sulting configuration is isobaric, meaning that pressure is
approximately uniform throughout the fuel interior. This
equilibrium takes the form of a central hot spot with high
temperature and low density surrounded by colder and denser
fuel. If the hot-spot temperature and areal density are high
enough, the hot spot ignites, initiating a thermonuclear burn
that propagates into the surrounding fuel [4,5]. While ICF has
seen major advancements [6,7], including reaching ignition
[8], outstanding challenges remain ahead of practical inertial
fusion energy. Instabilities during compression are a major
problem because they can induce an asymmetric implosion,
introduce impurities, and reduce burn efficiency [1,5].

Fast ignition (FI) schemes mitigate this problem. In FI,
compression is designed to be isochoric, meaning that den-
sity is roughly uniform, and formation of a hot spot is
avoided; ideally, temperature is uniform and well below igni-
tion temperatures [9]. Isochoric compression involves lower
acceleration during the implosion and so is more robust to
capsule and drive asymmetries. Additionally, the compressed
fuel can reach higher density for the same driver energy [4,10–
13]. However, the compressed fuel will not spontaneously
ignite; it requires a “spark” from some external energy source
to ignite a small hot-spot region.

This ignitor can deliver energy to the hot spot in various
ways, including electrons [9,13–15], protons [16], heavy ions
[16–18], and soft x rays [19,20]. A universal feature is that
the timescale tp of heating should be shorter than the hydro-
dynamic timescale tc of hot-spot disassembly [4,11]. Most
ignitor designs involve fast particle beams, which deposit
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energy primarily into electrons in the hot spot. The need to
transfer energy from electrons to ions leads to the requirement
that tp is longer than the timescale tν of interspecies collisional
energy transfer. Heating electrons too quickly is counterpro-
ductive because the collision rate becomes smaller for hotter
electrons and because excess electron pressure works to ac-
celerate hydrodynamic expansion.

The full requirement that tν < tp < tc has been noted for
example by [4], but in FI literature the lower bound on tp
is discussed less widely than the need to outpace hot-spot
disassembly. This is understandable because the upper bound
already places technically challenging demands on the ignitor
output power [9,21]. Nonetheless, by analogy to the careful
shaping of the driver pulse used for implosions, it is reason-
able to suppose that ignitor performance is sensitive to the
temporal shape of the pulse. We therefore ask: what ignitor
pulse shape is most effective at heating ions?

We address this problem using a simple model of an ex-
panding hot spot in isochoric plasma before ignition. Most
studies assume a flat pulse of width tp, but we show (Fig. 2)
that this leads to suboptimal ion heating. We calculate the
pulse shape [Eqs. (15) and (A6)] that maximizes the ion tem-
perature that can be reached at given areal density, a critical
ignition parameter. We also derive a bound [Eq. (26)] on the
ion temperature that can be reached before the plasma ignites.
We find that optimized pulse shaping can lead to a more
than 20% reduction in the energy requirement for the fast
ignitor pulse. Our results are independent of the ignitor design
except for the assumption that energy is deposited initially
into electrons. These findings could aid in designing efficient
FI heating schemes.

This paper is organized as follows. In Sec. II we define
the hot-spot model and derive evolution equations for radius
and temperature. In Sec. III we find conditions for optimal
ion heating, first for an instructive example and then for an
expanding hot spot. In Sec. IV we assign numerical values
to the constants of the model. In Sec. V we compare the
optimized pulse to numerical solutions for other pulse shapes.
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In Sec. VI we demonstrate how changes in pulse shape affect
the ability of a hot spot to ignite. Finally, in Sec. VII we
discuss extensions to this model and their potential influence
on FI development.

II. MODEL SETUP

A. Assumptions

Here we define a reduced model of a fast ignition hot spot
that will allow us to derive analytical expressions for pulse
shape and temperature bounds. As background cold fuel, we
take isochoric plasma of average ion mass m̄i, ionization
state Z = 1, electron density n0, and mass density ρ0 = m̄in0.
We begin at a time t = 0 at which a small amount of hot-
spot heating has already occurred so that the thermal and
degeneracy pressures of the cold fuel can be taken to be much
smaller than the hot-spot pressure. The hot spot is modeled as
a sphere of plasma with ion and electron temperatures Ti and
Te respectively, radius R, and electron density n.

As initial conditions in the hot spot, we take starting tem-
peratures Ti = T0 and Te = 3T0,1 starting radius R = R0, and
starting density n = n0 that is the same as in the cold fuel.
Using these initial conditions, we define normalized variables

x = R/R0, θe = Te/T0, θi = Ti/T0, (1)

and note that n = x−3n0.
To expose the key effect, we model the hot spot as sim-

ply as possible. The hot spot is assumed to have uniform
temperature and density, and to be spherically symmetric.
Ignitor power is assumed to be deposited uniformly in the hot
spot, and we ignore changes to power deposition caused by
changing temperature, density, and radius. The actual spatial
distribution of ignitor power depends on ignitor design. Our
homogeneity assumption allows us to isolate temporal pulse-
shaping effects from spatial effects.

Hot-spot expansion is more deleterious in isochric FI than
in conventional isobaric ICF because of the larger pressure
differential [4,10,11]. The hot-spot edge is taken to expand
symmetrically and the speed is estimated as that of the ma-
terial behind a strong shock us =

√
3p/4ρ0 where p = nTe +

nTi is the hot-spot pressure. The strong shock assumption is
common in fast ignition studies because the hot-spot pressure
is much greater than the ambient pressure [4,11,22]. The
interior is taken to expand uniformly. We note that acoustic
waves and heat diffusion in the hot spot go some way toward

1The reasons for starting at slightly elevated electron temperature
are rather technical but not important for the main results. The
assumption that the hot spot expands at speed us requires that the
hot-spot pressure is much greater than the cold fuel pressure. If the
starting temperatures are too low, then loss terms, particularly for
the electrons, can cause the model to lose self-consistency; in the
extreme case, Te becomes negative. Additionally, starting near the
optimal electron temperature (cf. Sec. III A) makes direct compar-
ison easier between naive and optimized models. Except for cases
where the model breaks self-consistency, changes to this starting
temperature have a negligible impact because the final temperatures
are much higher than T0.

equilibrating the interior and extending the validity of the
uniformity assumption.

The rates νee and νii for electrons and ions each to become
Maxwellian are taken to be faster than all other processes of
interest, and the mean-free path L is assumed to be much less
than R even for suprathermal particles, so the hot spot can be
treated as a two-temperature fluid.

Under these assumptions, we proceed to quantify the dom-
inant power loss terms to due work, radiation, conduction, and
interspecies collisions. The neglect of alpha particle power
deposition at this stage is discussed further in Sec. VII.

B. Temperature evolution

The time evolution of hot-spot parameters is governed by

CV Ṫe = −We − Pie − Pr − Pc + P$,

CV Ṫi = −Wi + Pie,

Ṙ = us,

(2)

where CV is the isochoric heat capacity of ideal gas, which
is the same for each species. It will be helpful to work in
normalized variables, so we begin by defining an expansion
rate constant σ such that

us/r0 = 1
2σx−3/2

√
θe + θi. (3)

The rate of work Ws for species s is Ws = ps4πR2us where
ps is the partial pressure of species s. In normalized variables,
this takes the form

Ws/CV T0 = σx−5/2θs

√
θe + θi. (4)

The power Pie transferred from electrons to ions can be
written in terms of the rate ν as

Pie/CV T0 = νx−3 θe − θi

θ
3/2
e

(5)

when me/m̄i # Te/Ti, where me is the electron mass. The
Coulomb logarithm appearing in ν is taken to be constant.

For conditions of interest, the power Pr lost to radiation is
dominated by bremsstrahlung, given in terms of the rate β as

Pr/CV T0 = βx−3θ1/2
e (6)

and the hot spot is optically thin to bremsstrahlung.
The power Pc lost to thermal conduction is taken to be

dominated by electron losses [11,23]. In terms of the rate κ ,
the heat loss to conduction is

Pc/CV T0 = κxθ7/2
e . (7)

Finally, the normalized ignitor power )$ = P$/CV T0 is the
quantity that we are interested to control in order to maximize
θi. The total pulse energy is Ep, and we define the pulse
timescale tp such that max[P$(t )] = Ep/tp.

Formulas for σ, ν, β, and κ are derived in Sec. IV. Each
of these rates depends on the initial scales T0, r0, n0.

C. Radial dependence

The time evolution in Eq. (2) is a highly nonlinear system
of coupled differential equations in three variables. Noting
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that x(t ) is monotonic, we can reduce the system to two equa-
tions by defining θ ′

e = dθe/dx and θ ′
i = dθi/dx and changing

variables by the relation ẋ = us/r0. The resulting system of
equations is

θ ′
e = −2

θe

x
− 2ν

σ

(θe − θi )

x3/2θ
3/2
e (θe + θi )1/2

+ *(x), (8)

θ ′
i = −2

θi

x
+ 2ν

σ

(θe − θi )

x3/2θ
3/2
e (θe + θi )1/2

, (9)

where we have defined

*(x) .= 2x3/2

σ
√

θe + θi

(
)$ − βx−3θ1/2

e − κxθ7/2
e

)
(10)

to be the net nonmechanical energy into the hot spot per unit
increase in radius. Surprisingly, we will find these coupled dif-
ferential equations to be solvable for certain *(x), including
the one that drives optimal heating.

III. HEATING PROBLEM

A. Optimal electron temperature

The problem that we address here can be simply posed
as follows. What value of Te causes Ti to increase as rapidly
(in time or in radius) as possible? Given a desired profile of
Te, ignitor power P$ can readily be chosen to achieve it. It is
instructive to compare to a simpler problem. Given a fixed-
volume box, described by the same parameters as the hot spot
except holding us = 0, ion temperature evolution is given by

(fixed V) θ̇i = ν
θe − θi

θ
3/2
e

. (11)

To extremize θ̇i with respect to θe, we solve (d θ̇i/dθe) = 0,
finding θe = 3θi, which is a maximum. The numerator
(θe − θi ) means that heat flows more quickly when the tem-
perature separation is large, an expected property of heat
transport. The denominator θ3/2

e captures the peculiar feature
of plasmas that collisions become rarer at high temperature.
These competing effects create an optimal electron tempera-
ture at three times the ion temperature. Therefore, if electron
heating overshoots the optimal temperature, it will take more
time to heat the ions; by contrast, if the species collided as a
neutral gas, it would be advantageous to heat the electrons as
quickly as possible.

We proceed to the problem of ion heating in an expanding
sphere. The dynamics are now further complicated by energy
lost to mechanical work during expansion. Because expansion
rate increases with electron temperature, we can expect the
optimal θe to be lower for a given θi than in the fixed-volume
case. Finding θ̇i from Eq. (2) and maximizing it with respect to
θe yields an algebraic equation without a closed-form solution.
However, maximizing θ ′

i yields a tractable solution.
Beyond simplifying the analysis, θ ′

i is actually a more
important target for optimization. The constraint tp < tc ap-
peared because the ignitor must heat the hot spot before it
cools by doing mechanical work while expanding into the cold
fuel. Additionally, the areal density is an important parameter
for ignition and scales as ρR ∼ x−2. Thus it is of interest to
maximize the increase in ion temperature per increment of
radius.

Starting with Eq. (9) and evaluating (dθ ′
i /dθe) = 0 yields

a quadratic equation in θe with positive solution

θe = 3 +
√

33
4

θi. (12)

The negative branch is not only a minimum of θ ′
i but also

entails negative electron temperature, so we have discarded it.
We define a constant c0

.= (3 +
√

33)/4 ≈ 2.19, and observe
that the optimal electron temperature θe = c0θi is indeed less
than the 3θi optimum of the fixed volume case.

B. Optimal pulse shape

Using the prescription for θe in Eq. (12), we can solve for
a net energy input per radius *(x) that achieves the needed
θe, which in turn yields the optimal ignitor power )$(t ).
We define the sum of temperatures ζ = θe + θi and obtain
its evolution equation by adding Eqs. (8) and (9) to find
ζ ′ = −2ζ/x + *. This equation can be separated to obtain

d
dx

(x2ζ ) = x2*. (13)

We note that d (x2ζ )/dx = (c0 + 1)d (x2θi )/dx. Now from
Eq. (9) along with Eq. (12), we find that θi evolves according
to

d
dx

(x2θi ) = 2νc1

σ

x1/2

θi
, (14)

where c1
.= (c0 − 1)/c3/2

0 (c0 + 1)1/2 ≈ 0.21. Thus, using
Eq. (13), the optimal ignitor power as a function of θi and
of x is

)opt = νc1
√

c0 + 1

x3θ
1/2
i

+
βc1/2

0 θ
1/2
i

x3
+ κxc7/2

0 θ
7/2
i (15)

when θe = c0θi. If ignitor power is limited by some )max >
)opt, then the delivered power should be )$ = )max until
)opt drops below )max. Similarly, if the initial conditions
have θe < c0θi, the ignitor should deliver power )max until
θe reaches c0θi, then continue at )opt. If initially θe > c0θi,
power should be held at )$ = 0 until θe = c0θi.

If ignitor power is unlimited, we can find a closed-form
expression for optimal )$(t ). Solving Eq. (14) for θi(x) gives

θi(x) = 1
x2

√
1 + 8νc1

7σ
(x7/2 − 1), (16)

allowing Eq. (15) to be written as a function of x only. At this
point )opt can be written explicitly as a function of time by
solving Eq. (3); the calculation is presented in Appendix A.

IV. PLASMA PARAMETERS

In this section we outline formulas for the rate coefficients
introduced in Sec. II B. Everywhere in this work, Boltzmann’s
constant kB is absorbed into the temperature so that Te and Ti
have units of energy (eV).

The expansion rate σ is defined to satisfy
R0(σ/2)x−3/2√θe + θi =

√
3(Te + Ti )n/4m̄in0. For fully

ionized equimolar DT plasma with Coulomb logarithm λ, the
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collision rate ν satisfies [24]

T0ν
θe − θi

x3θ
3/2
e

=
(

1
2mD

+ 1
2mT

)
m1/2

e e4nλ

3
√

2π3/2T 3/2
e

(Te − Ti ). (17)

We take CV to be the heat capacity of ideal gas with
γ = 5/3, so if the hot spot contains N electrons, then
CV = 3N/2 = 2πR3n. The bremsstrahlung rate β satisfies
[23]

CV T0βx−3θ1/2
e = 27/2π1/2e6

3c3hm3/2
e

n2 4πR3

3
T 1/2

e . (18)

Classical heat flux is nominally infinite across the hot-spot-
cold-fuel discontinuity, so a gradient length scale less than
the radius must be chosen. Heat flux is also suppressed in
regions with strong gradients [11]. We take the length scale
to be R but incorporate an unknown dimensionless constant
fc in calculating the thermal diffusivity. The rate κ satisfies
[10,25]

CV T0κxθ7/2
e = 4πR2 fc

Te

R0

0.957T 5/2
e

λe4m1/2
e

, (19)

and we will estimate fc = 0.1.
The coefficients are given by the following formulas:

σ [ps−1] = 1.52 × 10−6R0[cm]−1T0[eV]1/2, (20)

ν[ps−1] = 1.32 × 10−21λn0[cm−3]T0[eV]−3/2, (21)

β[ps−1] = 7.04 × 10−26n0[cm−3]T0[eV]−1/2, (22)

κ[ps−1] = 3.87 × 109λ−1n0[cm−3]−1R0[cm]−2T0[eV]5/2.

(23)

We take the Coulomb logarithm as constant λ = 8, a rep-
resentative value in the regimes of interest; corrections are
generally small. For hot-spot density ρ = m̄in, the areal den-
sity is ρR[g/cm2] = 4.18 × 10−24x−2n0[cm−3]R0[cm] and, as
defined in Eq. (25), A = 1.83 × 10−16λn0[cm−3]R0[cm]−1

T0[eV]−2

V. NUMERICAL SOLUTIONS

The system of Eqs. (8) and (9) is not generally solvable
analytically for arbitrary pulse shapes. We numerically inte-
grated the system for three trial pulse shapes other than the
optimized pulse (15). The pulse shapes are labeled as flat,
rising sawtooth, and falling sawtooth, defined in terms of tp
as

Pflat (t ; tp) = Ep/tp: 0 < t < tp,

Prise(t ; tp) = tEp/2t2
p : 0 < t < 2tp, (24)

Pfall (t ; tp) = Ep
(
1/tp − t/2t2

p

)
: 0 < t < 2tp,

where, for all pulses, power is zero outside of the speci-
fied time interval. Note that for each of the pulse shapes in
Eq. (24), the peak power is Pmax = Ep/tp. For the optimized
pulse, tp sets the power limit )max = Pmax/CV T0 for fixed Ep.
Because this limit forces the pulse shape to differ from the
analytical form in Eq. (A6), we numerically integrated the
optimized pulse as defined in Eq. (15).

It is worth noting that, for all pulse shapes, P$ represents
the power ultimately deposited in electrons by the ignitor. The

specific ignitor design, for example, using a short-pulse laser
to accelerate electrons from a foil into the hot spot, determines
how P$ is related to the actual laser power. In this work we
specify only P$ so that our results are independent of the
details of the ignitor.

As hot-spot parameters, we took R0 = 15 µm,
T0 = 1 keV,2 and ρ0 = 400 g/cm3. The pulse energy was
held constant at 50 kJ. Results are shown for a flat pulse and
optimized pulse in Fig. 1. The top panel of each figure shows
R, Te, and Ti as functions of time.

The bottom panel of each figure shows the contributions
of each term in Eq. (2). The pulse power P$ is shown by
the dashed yellow line for the flat pulse and for the opti-
mized pulse. For comparison Popt, the optimized pulse given
in Eq. (A6) if power were unlimited, is shown in gray.

We additionally scanned values of tp, holding Ep constant
but letting Pmax vary. The peak ion temperature attained by
each pulse shape as a function of tp is shown in Fig. 2. The
three nonoptimized pulse shapes exhibit maxima in peak Ti
with respect to tp because short, high-power pulses cause
Te to overshoot its optimum, as seen in Fig. 1. By contrast,
shortening tp for the optimized pulse never makes the perfor-
mance worse; Pmax is supplied only as long as advantageous,
and power is reduced before Te overshoots its optimum. The
performance does, however, saturate for small tp because
Pmax is no longer an important limitation. For long tp, the
peak ion temperatures of the optimized and flat pulses con-
verge because the optimized pulse becomes power-limited,
i.e., )opt > )max for most of the pulse.

VI. IGNITION CONDITIONS

A. Peak ion temperature

For an ignitor pulse of optimal shape, it is worthwhile to
ask how hot the ions are able to become. The existence of
a bound, which we show here, is a feature of the hot-spot
expansion combined with the temperature-dependent collision
rate. As θi increases, Wi also increases. Since the electrons
must be hotter than the ions to heat them, Pie meanwhile
decreases. Since Pie ∼ x−3 and Wi ∼ x−5/2, expansion cannot
reverse this trend. Eventually, ions will reach some critical θ̂i
at which θ ′

i is not positive for any electron temperature, and
so θ̂i represents the peak ion temperature that can be reached
from given initial conditions.

To find θ̂i, we observe that θ ′
i = 0 at the peak radius x̂,

where θi = θ̂i and θe = c0θ̂i, and where x̂ must also be found.
In Appendix B we derive θ̂i and the radius x̂ at which it is

2Although 1 keV is hotter than one would often want the initial
isochoric compressed fuel to be, this initial condition for the hot spot
helps to keep the model self-consistent by validating the assumptions
of a strong shock, weak coupling, and nondegeneracy. This initial
condition corresponds to starting electron temperature Te = 3 keV,
which is to be compared to the Fermi temperature TF ≈ 763 eV. If
the cold fuel starts at a few 100 eV, then our model can be taken
to start tracking hot-spot parameters after a very short period of
heating where the hot spot goes from the cold fuel temperature to
T0 = 1 keV; the results are not meaningfully affected.
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FIG. 1. Hot spot evolution for pulses with power Pflat (t ) and Popt (t ). The top panels show R, Te, and Ti as functions of time. The bottom
panels show power contributions to the temperature evolution as given in Eq. (2). P$ (dashed yellow line) represents the power deposition into
electrons. Popt (t ) (gray line) represents the optimal pulse without power limits, given analytically in Eq. (A6). T opt

i (dotted gray line) represents
the resulting ion temperature.

reached. We define the dimensionless combination of con-
stants appearing in these expressions as

A .= νc1

σ
(25)

and note that A is proportional to the Knudsen number
Kn ∼ tc/tν . We are also led to define a critical temperature
T .= A1/2T0 at which the collision rate and expansion rate
become equal. The peak ion temperature T̂i = T0θ̂i is given

FIG. 2. Maximum Ti reached by ignitor pulse shapes as a func-
tion of tp.

from Eq. (B4) as

T̂i = T
81/14[1 − (7/8)(T0/T )2]1/14 . (26)

If the hot spot starts far below the critical temperature,
T0 # T , then an optimal pulse can raise Ti to about 86% of
T . If the hot spot starts at the critical temperature, T0 = T ,
then it begins at its peak, so even with an optimal pulse, Ti
will only decrease. Setting ion temperature Tign as a heuristic
condition for ignition, Eq. (26) determines whether Tign can be
reached by an optimal pulse from given initial conditions.

B. Areal density

A self-heating hot spot requires both sufficient ion tem-
perature and areal density ρR. As a simple heuristic for
ignition, we set the requirement ρR > (ρR)ign as well as
Ti > Tign where (ρR)ign = 0.4 g/cm2 and Tign = 10 keV [16].
Since ρR = ρ0R0/x2, expansion could bring the hot spot
below the needed areal density even as ions are heated
toward ignition temperature. Following from Sec. IV, for
a system-independent3 constant k, we have T = k

√
ρ0R0,

which suggests determining whether a hot-spot trajectory in
(ρR, Ti ) space will enter the ignition region by the following
procedure, which applies when the ignitor pulse is optimal.

First, if T̂i < Tign, the hot spot will never ignite within this
model. If A ( 1, which is often the case, then a necessary but

3More precisely, k ∼
√

λ, but we treat the Coulomb logarithm as a
constant.
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FIG. 3. Hot spot trajectories in (ρR, Ti ) space from t = 0 to t =
25 ps for optimized and flat pulses. The shaded region is where Ti >

Tign and ρR > (ρR)ign. For each areal density ρ0 and R0 as scaled so
that ρ0R3

0 is constant.

not sufficient condition is approximately

ρ0R0 > T 2
ign81/7/k2,

ρ0R0[g/cm2] > 3.08 × 10−9Tign[eV]2. (27)

If this condition is met, then define xc
.=

√
ρ0R0/(ρR)ign

as the normalized radius at which the hot spot becomes too
diffuse to ignite. Then using Eq. (16) (and Ti = T0θi), cal-
culate Ti(xc). If xc > x̂, ignition requires Ti(xc) > Tign; else
ignition requires Ti(x̂) > Tign. For general pulse shapes, this
condition requires numerical evaluation. Hot-spot evolution is
shown in Fig. 3 for several starting areal densities. The case
of ρR = 0.6 g/cm3 uses the same hot-spot conditions as in
Sec. V, and for the other curves ρ0 and R0 are scaled so that
CV is constant. In all cases, the optimized pulse satisfies the
ignition conditions better than the flat pulse.

C. Pulse energy

The analysis above is performed for fixed Ep, but it is clear
from Fig. 3 that the hot spot often reaches the ignition region
before the entire pulse energy is spent. To improve fusion
gain, it is valuable to reduce ignition energy. The pulse shape
derived in this work [Eq. (15)] is optimized for ion heating per
increase in R (equivalently, per decrease in ρR), and not per
unit pulse energy. Is Popt (t ) also energy efficient?

In Fig. 4 Ti(t ) is shown during a pulse as a function of E (t ),
the total pulse energy that has been delivered at time t . The
pulses had total energy Ep = 50 kJ and characteristic times
tp = 5 ps, 10 ps, 20 ps. The arrows show where each curve
crosses x = xc; ignition needs to happen before this point, as
discussed in Sec. VI B.

By the ignition criteria in Sec. VI B and for tp = 10 ps,
the optimized pulse requires 23% less energy to reach Tign
compared to the flat pulse. This margin varies significantly
for different hot-spot and ignitor parameters.

FIG. 4. Ion temperature as a function of total energy E (t ) deliv-
ered by the ignitor at time t for various pulse shapes. The arrows
show the point at which areal density drops below ρR = (ρR)ign due
to hot-spot expansion; by the ignition criteria used in this work, the
hot spot must reach ignition temperature Ti = Tign before this point.

The profiles for optimized and flat pulses initially have the
same shape because both pulses are power-limited. For the
longer tp (lower power) case, this continues until Ti ≈ 7 keV,
whereas for the shorter tp case, the profiles quickly diverge. In
contrast to Fig. 2 where shorter tp was strictly better for the
optimized pulse, we see here that the 10 ps pulse is slightly
more energy efficient than the 5 ps for E ! 20 kJ, and, for
E ! 7 kJ, even the 10 ps flat pulse is more energy efficient
than the 5 ps optimized pulse. With higher maximum power,
Popt is free to drive the electrons to Te = c0Ti, in which case
only ∼31% of hot-spot energy is in the ions. Although this
energy partition leads to the fastest ion heating (per radial
increment), it means that a larger share of pulse energy has
gone into electrons.

We note, however, that gains in energy efficiency by re-
ducing Te come at the cost of decreased ρR. This is visible in
Fig. 4 where the 20 ps pulse, albeit the most energy efficient
for E ! 14 kJ, is the first to fall below (ρR)ign. Addition-
ally, under more realistic ignition criteria, Tign should depend
inversely on ρR [4,11], as opposed to the independent inequal-
ities used here as a heuristic. The majority of the energy for FI
is spent by the initial drivers to compress fuel to required ρ0R0,
rather than by the ignitor. Therefore, it is likely that the full
process energy efficiency is generally higher for pulse shapes
that optimize Ti(ρR) as opposed to Ti(E ), but the details of
this tradeoff require further study.

VII. DISCUSSION

The reduced model presented in this work captures the
key features of ion heating in a uniformly expanding two-
temperature plasma. We have aimed to isolate the important
physics behind initial phases of hot-spot heating for FI, which
can aid in designing methods to improve heating efficiency.
Here we identify three directions in which the model could be
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expanded to make better quantitative prescriptions for ignitor
design.

First, the fidelity of the model could be increased. Several
possible extensions can be made while preserving the ability
to optimize analytically, but these are beyond the scope of the
present work. Burning plasma physics could be incorporated,
with alpha particles depositing energy in hot-spot electrons,
hot-spot ions, and surrounding cold fuel [8]. The expansion
model, while based on common estimates in existing work
[4,11,22], could be improved upon; ideally, the uniformity
assumption would be relaxed and the model would involve
solving the fluid equations in at least the radial dimension.
Power deposition could also be modeled in a more realistic,
nonuniform way, including a generally nonspherical distribu-
tion. Dependence of power deposition on the evolving density
and temperature of the hot spot can be important [22].

Second, the optimization criteria could be adjusted to max-
imize total gain (fusion power divided by combined driver
and ignitor energy). As discussed in Sec. VI C, peak Ti is a
reasonable proxy but does not tell the full story. The efficiency
of the ignitor, which may vary depending on the peak power
it is called upon to provide, could also be included.

Third, most ignitor designs use an ultrafast laser to produce
fast particles near the outer edge of the fuel capsule, which
propagate into the hot spot. In this work, we take P$ to be the
power that is ultimately deposited in hot-spot electrons. Using
a desired P$ profile to determine a profile for the original laser
will pose a difficult inverse problem, but its results could affect
calculations of the ignitor efficiency. For example, experimen-
tal studies of proton acceleration from foils using pulsed lasers
have shown that the properties of accelerated protons depend
on pulse duration as the foil plasma evolves during the pulse,
with longer pulses achieving higher efficiency and maximum
proton energy [26,27]. These works, as well as simulations
[28], have shown that the energy of accelerated protons rises
over the course of a multi-picosecond pulse. The correspond-
ing idealized “rising sawtooth” pulse shape [cf. Eq. (24) and
Fig. 2) is the least effective of the pulse shapes considered in
this work for heating ions. The goals of maximizing ion heat-
ing and ignitor efficiency appear therefore to be in conflict;
this adds an important dimension to the optimization, which
is beyond the scope of this work.

Some ignitor designs do not only heat electrons. Heavy ion
beams, for example, [16–18] have the advantage of depositing
a significant fraction of their energy directly into ions. Our
demonstration that ion heating by electrons is severely limited
under certain relevant conditions may influence the desirabil-
ity of these alternative schemes.

VIII. CONCLUSIONS

The commonly assumed flat pulse shape for fast ignition
has been shown to drive suboptimal ion heating in an ex-
panding hot spot. An optimized pulse shape has been derived
analytically in terms of hot-spot parameters [Eq. (15)] and
presented as an explicit function of time [Eq. (A6)] in the case
where unlimited ignitor power is available. A bound has been
derived on the maximum ion temperature that can be reached
by electron heating only [Eq. (26)].

Nonoptimized pulse shapes become less effective at higher
power, but the optimized pulse can take advantage of greater
available power to increase the rate of ion heating with respect
to hot-spot expansion. The pulse performance is evaluated
against heuristic criteria for ignition, and it is shown that
optimizing pulse shape can push a hot spot’s trajectory into
the ignition region of (ρR, Ti ) space. Gains in efficiency in the
sense of ion temperature per unit ignitor power are modest for
long pulses but substantial for short pulses, reaching 23% in a
representative case.

Analysis has been done on a reduced model in which a
sphere of two-temperature plasma expands uniformly. This
captures the essential physics of the early stages of hot-spot
heating and arrives at interesting, nonintuitive results for the
dependence on pulse parameters. Formulating an analytical
description allowed us to reduce the complex task of design-
ing an ignitor pulse shape to a straightforward optimization
problem. These analytical results are useful in disentangling
the competing physical effects at work in hot-spot heating, and
for computational studies that further refine the optimal pulse
shape using higher-fidelity models, our results in Eq. (15)
offer a valuable starting point for reducing the size of the
parameter space to be explored.

Further work could extend our analysis into the burning
plasma regime, but the results here for nonfusing plasma may
have immediate relevance for downscaled FI experiments. A
wide variety of other experimental platforms involve heating
electrons in an expanding plasma [29–31] and could benefit
from these results.
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APPENDIX A: OPTIMAL PULSE IN TIME

Using Eq. (16) for θi(x) to solve for the evolution of x in
Eq. (3), we have

ẋ = σ

2
x−5/2

√
c0 + 1

(
1 + 8

7
A(x7/2 − 1)

)1/4

. (A1)

This equation is separable, and we can solve it, noting that
the initial conditions are t = 0, x = 1 by definition, to obtain

(
1 + 8

7A(x7/2 − 1)
)3/4 − 1 = 3

2Aσ
√

c0 + 1t . (A2)

We then solve for x and find

x(t ) =
[

1 + 7
8A

(w(t )4 − 1)
]2/7

(A3)

where

w(t ) .= 3
2νc1

√
c0 + 1t + 1 (A4)

and we note that

θi(t ) = w(t )2

x(t )2
. (A5)
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Finally, using the prescription in Eq. (15) and writing )opt (t )
in terms of w(t ) [Eq. (A4)] for brevity, we arrive at

)$(t ) = νc1
√

c0 + 1

w(t )
[
1 + 7

8A (w(t )4 − 1)
]4/7

+
βc1/2

0 w(t )
[
1 + 7

8A (w(t )4 − 1)
]8/7

+
κc7/2

0 w(t )7

[
1 + 7

8A (w(t )4 − 1)
]12/7 . (A6)

APPENDIX B: LOCATION OF TEMPERATURE PEAK

We are interested in the point (x̂, θ̂i ) beyond which ion
temperature can no longer increase. This means that θ ′

i (x̂) = 0
when electron temperature takes its optimal value θe = c0θi

(and θ ′
i < 0 for nonoptimal θe). From Eq. (9) we have

0 = −2
θ̂i

x̂
+ 2ν

σ

c0 − 1

c3/2
0 (c0 + c1)1/2x̂3/2θ̂i

(B1)

which simplifies to

θ̂2
i = Ax̂−1/2. (B2)

Now using Eq. (16), we have

θ̂i = θ̂8
i

A4

√
1 + 8

7
A

(
A7θ̂−14

i − 1
)
. (B3)

This simplifies to

A
7

A7θ̂−14
i = 8

7
A − 1 (B4)

from which one can readily obtain Eq. (26).
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