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1. Introduction

In 1963, Taylor studied [1] the ideal MHD and anisotropic MHD 
solvability conditions for arbitrary magnetic configurations. In the 
ideal MHD case, Taylor found two conditions which the magnetic 
field and pressure profiles must satisfy in equilibrium:

b̂ · ∇p = 0 (1)∮ ∇B · (∇p × B)

B4
ds = 0. (2)

Here p is the (scalar) pressure, B is the magnetic field, B is the 
magnitude of B, b̂ .= B/B , and the integral in Eq. (2) is taken along 
some closed field line, with s being a field-aligned coordinate. This 
result does not require any assumptions on the size of β (that 
is, the ratio of the plasma pressure to the magnetic pressure). If 
a field line only contains plasma between some s0 and s1, then 
Eq. (2) can be rewritten as

s1∫
s0

∇B · (∇p × B)

B4
ds = 0 (3)
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so long as the parallel component of the current j vanishes at ei-
ther end of the plasma. The second condition is related to work 
done on the general theory of what are sometimes called “mag-
netic differential equations” [2,3].

Taylor also calculated a corresponding set of conditions for the 
case in which the pressure is anisotropic and β is small. If the 
pressure tensor P is given by

P = p⊥I + (p|| − p⊥)b̂b̂, (4)

where I is the unit tensor and p|| and p⊥ are the parallel and per-
pendicular pressures, respectively, then the two conditions become

b̂ · ∇p|| + p⊥ − p||
B

b̂ · ∇B = 0 (5)∮ ∇(p|| + p⊥)

B4
· (B × ∇B)ds = 0. (6)

The small-β assumption is used only in the derivation of Eq. (6).
Some years later, Hall and McNamara used a guiding-center 

fluid model to derive a finite-β analog to Eq. (6) [4]. In particu-
lar, if κ .= b̂ · ∇b̂, they found that Eq. (6) becomes∮ ∇(p|| + p⊥)

B3
· (B × κ)ds = 0. (7)

Eq. (7) has the same symmetry properties as Eqs. (2) and (6).
In the low-β limit, B can be fixed independently of P , and Tay-

lor showed that these solvability conditions – that is, Eqs. (1) and 
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(2) for the isotropic case and Eqs. (5) and (6) for the anisotropic 
case – are necessary and sufficient conditions for a given P to be 
a solution for a given nonvanishing B. At higher β , the situation is 
more complicated: the solvability conditions must still be satisfied, 
but B must also itself be consistent with the plasma currents.

These solvability conditions are interesting for three main rea-
sons. First: they provide general statements about the nature of 
all possible equilibria. Second: they can be used to generate spe-
cial families of equilibria. Third: these special families have often 
turned out to have very good stability properties, and are closely 
related to the origins of the theory of omnigeneity [4,5].

The original work on these solvability conditions considered 
only static equilibria. However, there are many systems of interest 
for equilibria that include flows. For example, centrifugal confine-
ment devices (rotating mirrors) rely on the centrifugal forces from 
rotation to achieve longitudinal confinement [6–15]. It is possible 
to design a toroidal confinement device in which poloidal flows 
provide the rotational transform, replacing the role of the poloidal 
field in a tokamak [16,17]. There are also a number of fusion de-
vices, including stellarators and tokamaks, for which flows are not 
an element of the basic design but which develop (or can be in-
duced to develop) equilibrium flow structures [18–24]. Moreover, 
rotation is centrally important for a number of mass filter concepts 
[6,25–31]. Despite all of this, the analytic theory for single-fluid 
equilibria with steady-state flows is comparatively underdeveloped.

There has been some discussion in the literature regarding the 
extension of the solvability conditions to more general systems. 
Tessarotto et al. discuss these solvability conditions for a flowing 
system, though their focus is not on the explicit evaluation of these 
expressions, and they leave the analog of Eq. (7) in terms of unde-
termined coefficients [32]. Kotelnikov and Romé derive an exten-
sion of Taylor’s isotropic result for a nonneutral plasma [33]; they 
considered the slow-rotation limit, so their extension includes an 
electrostatic potential but not the inertial effects of the flow itself. 
Their result has applications in the study of Penning-Malmberg 
trap equilibria [33–35].

This paper is organized as follows. Section 2 generalizes the 
solvability conditions to allow for cases with steady-state flows 
and arbitrary external forces. Along the way, it rederives Eq. (7)
without the need for any of the additional assumptions made by 
Hall and McNamara. Section 3 describes families of equilibria for 
certain special cases. Section 4 explores the relationship of these 
results with isodynamicity. Section 5 is a discussion of these re-
sults.

2. Generalization of solvability conditions

Consider a fluid model with

0 = j × B − ∇ · P + ζ , (8)

where ζ is an arbitrary vector and P is given by Eq. (4). The ζ
term could represent an external force term (gravity, for example); 
if ρ is the mass density and F is the force, this would be ζ = ρF. 
This term can also capture the effects of a steady-state velocity v
(for example, centrifugal forces) by setting ζ = −ρv · ∇v.

The divergence of P is

∇ · P = ∇p⊥ + [
b̂ · ∇(p|| − p⊥) + (p|| − p⊥)∇ · b̂

]
b̂

+ (p|| − p⊥)κ, (9)

where, as before, κ .= b̂ · ∇b̂. Then the b̂ component of Eq. (8) is

b̂ · ∇p|| − p|| − p⊥
B

b̂ · ∇B = b̂ · ζ . (10)

Eq. (10) is the generalization of Eq. (5).
2

The second solvability condition is somewhat more involved. 
Following Taylor, note that in steady state Maxwell’s equations re-
quire

∇ · j = 0. (11)

Let j||
.= b̂b̂ · j and j⊥

.= (I − b̂b̂)j. There must exist some scalar func-
tion λ(r) such that j|| = λB. Then

∇ · j = B · ∇λ + ∇ · j⊥, (12)

which implies that∮ ∇ · j⊥
B

ds = 0, (13)

where, as before, the integral is taken over a field line. This is how 
Taylor derived Eqs. (2) and (6). The difficulty lies in computing 
∇ · j⊥ . Taylor simplified the calculation in the anisotropic case by 
letting β → 0, but it is possible to compute ∇ · j⊥ without doing 
so.

With that in mind, note that Eq. (8) implies that

j⊥ = − (∇ · P − ζ ) × B

B2
. (14)

The divergence of j⊥ can be computed as follows:

∇ · j⊥ = −B · ∇ ×
(∇ · P − ζ

B2

)
+ ∇ · P − ζ

B2
· μ0j. (15)

Eq. (8) implies that the last term must vanish, so

∇ · j⊥ = B · ∇ × ζ

B2
+ 2(∇ · P − ζ )

B3
· (B × ∇B)

− B

B2
· ∇ × (∇ · P ). (16)

The second and third terms can be simplified individually. First,

2(∇ · P − ζ )

B3
· (B × ∇B)

= 2
[∇p⊥ + (p|| − p⊥)κ − ζ

]
B2

·
(

B × ∇B

B

)
. (17)

Note that

κ = μ0j × B

B2
+

(
I − b̂b̂

)
· ∇B

B
, (18)

and note that[∇p⊥ + (p|| − p⊥)κ − ζ
] · j⊥ = (∇ · P − ζ ) · j⊥

= 0, (19)

so

2(∇ · P − ζ )

B3
· (B × ∇B) = 2(∇p⊥ − ζ )

B2
· (B × κ). (20)

Meanwhile, the third term on the RHS of Eq. (16) can be simplified 
as follows:

− B

B2
· ∇ × (∇ · P )

= − B

B2
·
{[

b̂ · ∇(p|| − p⊥) + (p|| − p⊥)∇ · b̂
]∇ × b̂

+ ∇ × [
(p|| − p⊥)κ

]}

= −
[

B · ∇
(

p|| − p⊥
)]

B · μ0j
3
B B
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− B

B2
· [∇(p|| − p⊥) × κ

]
− p|| − p⊥

B

B

B
· ∇ × κ . (21)

Then the divergence of j⊥ can be written as

∇ · j⊥

= B · ∇ × ζ

B2
+ ∇(p|| + p⊥) − 2ζ

B2
· (B × κ)

− B · ∇
(

p|| − p⊥
B

)
μ0λ

B
− p|| − p⊥

B

B

B
· ∇ × κ . (22)

It is now necessary to simplify the last term. To begin,

B · ∇ × κ

= ∇ · (κ × B) + κ · μ0j

= ∇ ·
[(

μ0j × B

B2
+ ∇B

B

)
× B

]
+ ∇B · μ0j⊥

B

= −∇ · (μ0j⊥) − ∇B · μ0j

B
+ ∇B · μ0j⊥

B
. (23)

Invoking the requirement that ∇ · j = 0, this is

B · ∇ × κ = μ0B · ∇λ − ∇B · μ0λB

B

= μ0 BB · ∇
(

λ

B

)
. (24)

Then

∇ · j⊥ = B · ∇ × ζ

B2
+ ∇(p|| + p⊥) − 2ζ

B2
· (B × κ)

− B · ∇
[

(p|| − p⊥)μ0λ

B2

]
. (25)

As a result, the solvability condition is

∮ [∇(p|| + p⊥) − 2ζ

B3
· (B × κ) + B · ∇ × ζ

B3

]
ds = 0. (26)

The above equation is the primary result of this section. The pre-
vious versions of the second solvability condition are all limits of 
Eq. (26).

Hall and McNamara’s finite-β condition – that is, Eq. (7) – fol-
lows immediately from Eq. (26) by setting ζ = 0. Taylor’s Eq. (6)
then follows by noting that

B × κ = B ×
(

μ0j × B

B2
+ ∇B

B

)

= B ×
(

μ0(∇ · P − ζ )

B2
+ ∇B

B

)
, (27)

so that the low-β (small plasma pressure) limit is

lim
β→0

B × κ = B ×
(∇B

B
− μ0ζ

B2

)
. (28)

When ζ = 0, this low-β limit yields Eq. (6). To retrieve the ideal 
MHD solvability condition, start by setting p|| = p⊥ = p:∮ [∇p − ζ

B3
· (B × κ) + B · ∇ × ζ

2B3

]
ds = 0. (29)

It follows from Eqs. (8) and (18) that this can be written equiva-
lently as
3

∮ [∇p − ζ

B4
· (B × ∇B) + B · ∇ × ζ

2B3

]
ds = 0, (30)

which reduces to Eq. (2) when ζ = 0, and is equivalent to the con-
dition found by Kotelnikov and Romé when ζ = −ne∇φ [33].

3. Special solutions

One special class of profiles that solve Eq. (26) are those for 
which the integrand itself vanishes at every point. Interestingly, 
the calculation in Section 2 suggests that there are two possible 
formulations of this condition, depending on whether the last term 
in Eq. (25) is retained in the integral. If the last term is not kept, 
then the condition is
∇(p|| + p⊥) − 2ζ

B3
· (B × κ) + B · ∇ × ζ

B3
= 0. (31)

If it is kept, the condition is instead

∇(p|| + p⊥) − 2ζ

B3
· (B × κ) + B · ∇ × ζ

B3

− B

B
· ∇

[
(p|| − p⊥)μ0λ

B2

]
= 0. (32)

As was true in the previous versions of this problem, there are two 
special cases of these profiles worth pointing out.

3.1. Symmetric systems

First, consider a system that is cylindrically symmetric, with 
radial, axial, and azimuthal coordinates r, z, and θ (with corre-
sponding unit vectors r̂, ẑ, and θ̂ ). If there are no gradients in the 
θ̂ direction, and if ζθ = 0, then

B · ∇ × ζ

B3
= Bθ

B3

(
∂ζr

∂z
− ∂ζz

∂r

)
. (33)

If Bθ = 0, this vanishes, as does the rest of both Eq. (31) and 
Eq. (32), since then all terms in the triple product lie in the r̂, ̂z
plane. In other words, the integrand vanishes everywhere for a sys-
tem with rotational symmetry, so long as Bθ and ζθ also vanish.

3.2. Generalized p(B) equilibria

In the case without ζ , perhaps the better-known special equi-
libria are the p(B) solutions first described by Taylor [1,5]. The 
original form of these solutions assumed the low-β limit. If p||
and p⊥ are functions of B alone, then ∇(p|| + p⊥) is proportional 
to ∇B , and the integrand of Eq. (6) (the second solvability condi-
tion) vanishes and Eq. (5) (the first condition) becomes

B
dp||
dB

= p|| − p⊥. (34)

Taylor showed that one family of low-β p(B) solutions is

p|| =
{

C B(B0 − B)k B < B0

0 B ≥ B0
(35)

p⊥ =
{

kC B2(B0 − B)k−1 B < B0

0 B ≥ B0,
(36)

where k, B0, and C parameterize the family of solutions. They can 
be produced by distributions of the form

f (μ,ε) =
{

(μB0 − ε)k−3/2 g(μ) ε < μB0

0 ε ≥ μB0
(37)
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for arbitrary μ distributions g(μ). Here μ .= mv2⊥/2B is the mag-
netic moment and ε .= mv2/2 is the energy for particles with mass 
m.

It was later found [36,37] that there also exist p(B) solutions 
for finite β . Ref. [36] predates any calculation of finite-β solvability 
conditions. However, if p|| and p⊥ are functions of B alone, and if 
ζ = 0, then Eq. (31) becomes

d(p|| + p⊥)

dB
∇B · j⊥ = 0 (38)

and Eq. (32) becomes

d(p|| + p⊥)

dB
∇B · j⊥ − B2∇ ·

[
(p|| − p⊥)j||

B2

]
= 0. (39)

The equilibria described by Northrop and Whiteman satisfy both 
of these conditions, though they include boundary conditions that 
make them somewhat more restrictive.

The p(B) solutions are interesting because they provide simple 
examples of allowed equilibria in an arbitrary field, and because 
they turn out to have excellent stability properties [1,5,37]. A full 
generalization of these equilibria when ζ �= 0 is difficult in general. 
However, there are some cases which are relatively straightfor-
ward.

Consider the case in which ζ = −∇
 for some scalar function 

. Then the solvability conditions Eqs. (10) and (26) – and, in fact, 
even the more basic governing equation Eq. (8) – can be trans-
formed back to the ζ = 0 case with the substitution

p|| → p|| + 
 (40)

p⊥ → p⊥ + 
. (41)

This makes it possible to translate known equilibria (like the p(B)

solutions) with ζ = 0 to new solutions with ζ = −∇
. However, 
this leads to subtleties.

Consider, for example, the low-β solutions given in Eqs. (35)
and (36). To generalize these solutions, consider cases in which 
p|| + 
 and p⊥ + 
 are functions of B alone. This is compu-
tationally straightforward, but note that the analogous boundary 
condition is now to fix the values of p|| + 
 and p⊥ + 
 at some 
given B . This leads to

p|| =
{

C B(B0 − B)k − (
 − 
0) B < B0

0 B ≥ B0
(42)

p⊥ =
{

kC B2(B0 − B)k−1 − (
 − 
0) B < B0

0 B ≥ B0,
(43)

for some 
0. There are cases in which these may be physically 
reasonable boundary conditions (for example, if 
 − 
0 and the 
pressures all vanish on the same surface of constant B = B0, and 
if 
 exceeds 
0 wherever B < B0), but there is no guarantee that 
this will be the case.

The special case in which ζ is the gradient of a scalar potential 
is almost the case of greatest interest. However, ζ corresponds to 
the force density on the plasma (inertial or otherwise), not the 
force itself. Therefore, if the plasma is subject to some potential 
ϕ (for example, the centrifugal potential due to rotation) then we 
have instead

ζ = −n∇ϕ, (44)

where n .= ρ/m and m is the ion mass. In this case,

∇ × ζ = −∇n × ∇ϕ. (45)
4

In other words, if the gradient of n does not align with the gradi-
ent of ϕ , then ζ itself will not be a total gradient. Then Eq. (26)
becomes

∮ [∇(p|| + p⊥) + 2n∇ϕ

B3
· (B × κ)

−B · (∇n × ∇ϕ)

B3

]
ds = 0.

(46)

This can be written alternatively as∮ ∇(p|| + p⊥)

B3
· (B × κ)ds

=
∮ ∇ϕ

B3
· [B × (∇n − 2nκ)

]
ds. (47)

4. Isodynamicity

The original form of the solvability conditions is closely related 
to the early theory of omnigeneity and isodynamicity. Consider 
Clebsch coordinates (ψ, β, χ), where ψ labels flux surfaces,

B = ∇ψ × ∇β, (48)

and

B2 = (∇ψ × ∇β) · ∇χ. (49)

Let vd denote the cross-field drift velocity. Omnigeneity can be un-
derstood as the condition that

〈vd · ∇ψ〉 = 0, (50)

where 〈∗〉 denotes a bounce-averaging operation. A stricter version 
of this condition is to require instead that

vd · ∇ψ = 0 (51)

at every point. This leads to configurations that Catto and Hazel-
tine [38] call “locally omnigenous” configurations, but which are 
also called “isodynamic” [39,40].

Catto and Hazeltine showed that, so long as j · ∇ψ vanishes, 
this local omnigeneity condition is equivalent to the condition that

∇ · j|| = 0. (52)

Their result holds both for the scalar and the anisotropic forms 
of the pressure tensor considered in this paper (though their force 
balance included no inertial or other additional force ζ ). Eq. (52) is 
equivalent to the condition that the integrand in the second solv-
ability condition – Eq. (2) for the scalar case and Eq. (7) for the 
anisotropic case – must vanish. This helps to explain the nice prop-
erties of the special equilibria obtained by forcing the solvability 
integrand to vanish at every point.

One might have hoped that the generalized form of the solv-
ability integrals (with ζ �= 0) would also lead to a generalization 
of Catto and Hazeltine’s result, yielding a simple condition for iso-
dynamicity in the presence of an arbitrary additional term in the 
momentum equation. Unfortunately, things are not so simple.

To see why, note that the ∇B and curvature drifts can be writ-
ten (in combined form) as

vm = b̂

qB
× (

μ∇B + mv2||κ
)
, (53)

where μ = mv2⊥/2B is the first adiabatic invariant, q is the charge, 
and v || is the parallel velocity. In (ψ, β, χ) coordinates, using the 
assumption that j · ∇ψ = 0,
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vm · ∇ψ = −μB + mv2||
qB

∂ B

∂β
. (54)

Catto and Hazeltine’s argument consists essentially of demonstrat-
ing in the scalar case that ∇ · j|| ∝ ∂ B/∂β and in the anisotropic 
case that ∂ B/∂β = 0 requires ∇ · j|| = 0.

If for some arbitrary force F we write

F = Fψ∇ψ + Fβ∇β + Fχ∇χ, (55)

and if vF is the F × B drift due to force F, then

vF · ∇ψ = Fβ

q
. (56)

It might be possible to get cancellation between nonzero vm · ∇ψ

and vF ·∇ψ for a particle with some particular v2|| and v2⊥ , but this 
is not sufficient. In order for the configuration to be isodynamic, 
the drifts in the ∇ψ direction must vanish for all particles. In order 
for a single condition on the fields to guarantee that (vm + vF ) ·
∇ψ = 0, vF would have to have a particular form – for example, 
either Fβ ∝ ∂ B/∂β or Fβ ∝ μB + mv2|| . In general, then, no single 
solvability condition can be equivalent to the condition that (vm +
vF ) · ∇ψ vanish.

5. Conclusion

This calculation has described the generalization of the MHD 
solvability conditions for systems with additional forces or steady-
state flows at arbitrary β . Solvability conditions are interesting in 
and of themselves because they provide a general description of 
the space of possible solutions for a single-fluid model. More prac-
tically, they can also be used to generate families in equilibria 
in certain special cases. The original, zero-flow solvability condi-
tions also led to unexpected insights related to omnigeneity and 
isodynamicity [38]. For this reason, it is interesting to see their 
generalization, even though the solvability conditions do not ap-
pear to correspond as closely to the conditions for isodynamicity 
in the case with flows or other additional forces.

Along the way, this calculation fills in a technical gap in the 
literature on anisotropic MHD, unrelated to any issues regarding 
flows or external forces. Taylor’s derivation of the anisotropic-
single-fluid solvability conditions relied only on the single-fluid 
momentum equation and Maxwell’s equations, but Taylor’s calcu-
lation was only valid in the low-β case [1]. Hall and McNamara 
calculated the finite-β generalization of Taylor’s result, but they did 
so using a different formalism which brings in assumptions about 
the dependences of the particle distributions [4]. Their assump-
tions are well-motivated, but it is still of interest to know whether 
the finite-β generalization could have been calculated more mini-
mally, without requiring anything outside of the single-fluid model. 
Here we have shown that it is indeed possible, albeit at the cost 
of some relatively lengthy calculations.
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