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ABSTRACT

Advanced aneutronic fusion fuels such as proton-Boron11 tend to require much higher temperatures than conventional fuels like
deuterium–tritium. For electrons, the bulk plasma temperature can approach a substantial fraction of the rest mass. In a mirror confinement
system, where the electrons are confined by an ambipolar potential of at least five electron temperatures, the tail electrons which can escape
the potential are fully relativistic, which must be taken into account in calculating their confinement. In this paper, simple estimates are
employed to extend the scaling of the confinement time into the relativistic regime. By asymptotically matching this scaling to known
solutions in the non-relativistic limit, accurate forms for the confinement time (and thus, the ambipolar potential) are obtained. These forms
are verified using finite-element-based Fokker–Planck simulations over a wide range of parameters. Comparing relativistic and nonrelativistic
mirror-confined plasmas with the same ratio of confining potential je/j to electron temperature Te and the same mirror ratio R, the net result
is a decrease in the confinement time due to relativistic effects by a factor of S ! ð1þ 15Te=8mec2Þ=ð1þ 2je/j=mec2Þ.
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I. INTRODUCTION
Recently, there has been a revival in interest in the mirror

approach1,2 to fusion energy, which was largely abandoned with the
demise of the Lawrence Livermore mirror fusion program in the 1980s.
While this renewed interest has been driven by several factors, the most
important perhaps is the introduction of sheared-flow-stabilization,
allowing current mirror concepts to maintain axisymmetry while
avoiding the magnetohydrodynamic flute instabilities that plagued
early axisymmetric mirror devices.3,4 This shear stabilization has been
demonstrated to dramatically improve plasma confinment on
GAMMA-10,5 the Maryland Centrifugal Mirror eXperiment
(MCMX),6 and the gas dynamic trap (GDT).7,8 Furthermore, the asso-
ciated rapid rotation of the plasma helps to improve ion confinement
through centrifugal forces,9–11 which also reduces the phase space hole
that drives kinetic loss-cone instabilities. Combined with more efficient
methods of sustaining electron temperatures in tandem mirror end-
plugs,12 these experiments have paved the way for the next generation
of axisymmetric mirror experiments, including multiple mirror (MM)
traps,13–15 the Centrifugal Mirror Fusion eXperiment (CMFX),16 and
theWisconsin High-field Axisymmetric Mirror (WHAM).17

At the same time, as breakeven deuterium–tritium (DT) fusion
becomes a reality, it makes sense to look forward toward advanced
aneutronic fusion fuels, such as proton-Boron11 (p-B11), which—

while technologically much more challenging—embody fusion’s
promise as a clean, abundant, nonradiactive power source much more
fully than the fast-neutron producing, tritium-reliant DT reaction. The
p-B11 reaction, in particular, has been revisited by several groups,18–28

partly thanks to more optimistic fusion cross sections29 that improved
its outlook compared to earlier pessimistic predictions.30,31 While this
reaction produces some neutrons due to undesirable side reactions,
these neutrons have lower energy and much lower flux than those
from a DT fusion reaction.

In contrast to DT, p-B11 fusion takes place at much higher tem-
peratures: typically 300 keV for ions, and 160 keV for electrons. Thus,
relativistic effects which were ignored for DT become important, and
some of the fundamental results of the mirror physics literature have
to be revisited. Here, we revisit one of the most important of these
results: the relationship between the confining potential and the con-
finement time.

In a magnetic mirror, both ions and electrons are confined by the
mirror force that results from the conservation of the magnetic
moment, and are lost when they scatter into the loss cone via colli-
sions. However, due to their relatively low mass, the electrons collide
faster and (if the mirror plasma is rotating) are unaffected by centrifu-
gal forces. Thus, the electrons will leave the mirror more quickly than
the ions, causing the mirror plasma to charge positive. As was first
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pointed out by Kaufman,32 this charging will continue until the total
loss rate of charge from the system, due to both ion and electron losses,
goes to zero, i.e., when

X

s

Zsnss%1Cs ¼ 0; (1)

where for species s, Zs is the charge state, ns is the density, and sCs is
the confinement time. The resulting potential is thus known as the
ambipolar potential and is critical in understanding the overall mirror
equilibrium.

To be able to calculate the ambipolar potential and the overall
performance of the mirror as a confinement device, it is necessary to
be able to calculate the confinement time as a function of the mirror
ratio and confining potential. Due to its importance, continued refine-
ments were made to Kaufman’s original estimate, leading to a series of
increasingly accurate approximations to the solution of the collisional
momentum-space diffusion equation by Pastukhov,33 Cohen
et al.,34,35 and Najmabadi et al.,36 in addition to related approaches by
other authors.37–39 Generally, these approaches relied on solving the
equation for a simple source and sink and then matching these solu-
tions as closely as possible to the shape of the loss cone.

In this paper, we extend the approximate solutions for the con-
finement time to relativistic plasmas. Rather than solving the colli-
sional diffusion equation directly, we derive the scaling of the loss rate
as a combination of the perpendicular momentum diffusion timescale
and the fraction of the particles with sufficient energy to escape the
potential. We then match this scaling to the nonrelativistic solution
from Ref. 36, providing an accurate estimate for the loss rate, as we
confirm with finite-element simulations of the full diffusion equation.

The outline of the paper is as follows. We start in Sec. II by pre-
senting the relativistic momentum-space diffusion equation and trans-
forming it to units recognizable from the earlier mirror literature. In
Sec. III, we do the same for the equation that determines the loss cone
boundary. Then, in Sec. IV, we use these equations and the existing
approximate solutions from the literature to derive analytical estimates
for the confinement time. We thus find that, comparing relativistic
and nonrelativistic mirror-confined plasmas with the same ratio of
confining potential to electron temperature je/j=Te and the same mir-
ror ratio, the net result of relativistic effects is a decrease in the confine-
ment time by a factor of S ! ð1þ 15Te=8mec2Þð1þ 2je/j=mec2Þ. In
Sec. V, we make use of finite-element simulations to verify the analyti-
cal estimates, finding good agreement between theory and simulation.
In Sec. VI, we discuss the effect of this loss of confinement on the
ambipolar potentials, before concluding in Sec. VII with a forward-
looking discussion on how other effects, such as radiation, might also
affect the results.

II. DIFFUSION EQUATION
We begin in this section with a derivation of the relativistic diffu-

sion equation in appropriate coordinates. The collisions of hot, relativ-
istic particles with a largely nonrelativistic bulk population can be
modeled as a momentum-space Fokker–Planck equation40–44
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Here, e is the elementary charge, c is the speed of light, Za, ma, and na
are the charge, mass, and density of species a, and kab is the Coulomb
logarithm. All quantities are in Gaussian units.

This equation can be transformed to more useful coordinates by
using the coordinate-invariant form of the diffusion equation
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where, using summation notation,
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It is common in the mirror literature to assume gyrotropy and
use the coordinates

!x ¼ v=vth;a; vth;a !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ta=ma

p
; (12)

!n ¼ vk=v: (13)

The natural relativistic generalization of these coordinates is

x ¼ p=pth;a; pth;a !
ffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
; (14)

n ¼ pk=p: (15)

Performing the coordinate transformation and dropping the sub-
scripts for species a, we find
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and the Lorentz factor is given by

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2vx2

p
; (19)

which depends on the critical new parameter,

v ¼ Ta=mac2: (20)

Often in the literature, the parameter v is referred to as hT; we use v to
avoid confusion with the angular coordinate h.

Finally, the collisional timescale s0 is given by

s%10 ¼ 4pe4
X

b

nbZ2
aZ

2
bkabm

2
a

mbp3th;a

Tb

Ta
: (21)

As typical examples, s0 ¼ 400 ls in a 20 keV DT fusion plasma at
ni ¼ 1014 cm%3, and s0 ¼ 5 ms in a 150 keV electron, 300 keV ion
pB11 fusion plasma at ni ¼ 1014 cm%3.

The error terms corrections in Eq. (16) are of the order of the
bulk relativistic parameter OðvsÞ, which will be negligible for the ions
but finite for the electrons. Thus, effects of a relativistic electron bulk v
only substantially impact the parallel diffusion, not the perpendicular
diffusion. Importantly, the finite-ve modifications also do not affect
the thermodynamic steady state of the parallel diffusion equation,
which is given by the Einstein relation. Thus, as we will see in Sec. IV,
the neglected error terms should have only an extremely mild impact
[less thanOðvsÞ] on the results.

In the nonrelativistic limit v! 0, Eq. (16) reduces almost to the
diffusion equation in Ref. 36. The difference comes from the fact that
Ref. 36 had Zk ! 1. When Zk ¼ 1, then, Eq. (16) says that species a
approaches a Maxwell–J€uttner distribution with temperature Ta. Thus,
Najmabadi’s equation assumes that the temperature of species a (as
used in the normalization for x) is consistent with the temperature it is
driven to by collisions with all species in the plasma. This is often a
safe assumption, especially when the losses due to deconfinement
occur far out on the tail, but it is good to state explicitly. For the rest of
the paper, we take Zk ¼ 1.

III. RELATIVISTIC TRAPPING CONDITION
In addition to the diffusion equation, the trapping condition

for particles inside a magnetic mirror is modified if one considers
the effects of relativity.40 In this section, we review this modified loss
cone boundary and transform it to the dimensionless mirror
coordinates.

Consider a particle in a mirror with a magnetic field B0 and (spe-
cies-dependent) potential energy Ua0 at the midplane and correspond-
ing quantities B1 and Ua1 at the mirror boundary. As the particle
traverses from the midplane to the boundary, there will be two con-
served invariants: the relativistic energy

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ac4 þ ðp2k þ p2?Þc2
q

þ Ua; (22)

and the relativistic magnetic moment45–47

l ¼ p2?
2maB

: (23)

The boundary between trapped and passing particles, known as
the loss cone, is the point at which pk ¼ 0 at the mirror boundary.

Using the definitions and invariance of ! and l, as well as the normal-
izations from Sec. II, this boundary can be written as

Rð1% n2Þ ¼ 1% u
x2

c% 1
2
vu

& '
; (24)

where we have defined the mirror ratio R ! B1=B0, and the normal-
ized potential u ¼ ðUa1 % Ua0Þ=Ta. Note that this reduces to the non-
relativistic expression [Eq. (9) of Ref. 36] when v! 0. The error
terms corrections in Eq. (16) are of the order of the bulk relativistic
parameter OðvÞ, which we will take to be small even when the tail
electrons are highly relativistic.

It is common to plot the loss cone in terms of the parallel and
perpendicular dimensionless momenta xk ¼ xn and x? ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1% n2

p
.

Such a plot is shown in Fig. 1 for R¼ 5 and u¼ 7. It is important to
note that, while it looks like the vertex of the loss cone is moving
“further out on the tail” of high x, the vertex is in fact equally energeti-
cally accessible in each case. This can be seen by noting that the
temperature-normalized escape energy (and thus, the Boltzmann fac-
tor) is the same in each case, equal to the normalized rest energy plus
the normalized confining potential energy, regardless of how relativis-
tic the plasma is.

IV. ANALYTICAL ESTIMATES
A crude estimate of the confinement time, first proposed in Ref.

32, can be made by assuming that the particles arrange themselves
close to a Maxwell–J€uttner distribution and that the fraction fL with
sufficient energy then scatter into the loss cone on the perpendicular
diffusion timescale s?. This gives a confinement time estimate of

sC (
s?
fL
; (25)

where

FIG. 1. Loss cone (solid lines) in normalized perpendicular and parallel energy
space for several values of the temperature-to-rest-mass ratio v for u¼ 7 and
R¼ 5. While it appears that the loss cone vertex moves further out on the high-
energy tail as the plasma becomes more relativistic, the energetic accessibility
remains the same in each case. This is shown in the figure by the three dotted
lines, which each represent the same Boltzmann factor ðc% 1Þ=v ¼ u at the dif-
ferent values of v.
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s? ¼
x3c

Z?cc
s0; (26)

fL !
ð1

xc
4px2fMJðxÞdx: (27)

Here, the Maxwell–J€uttner distribution is given in normalized coordi-
nates by

fMJðxÞ ¼
1ffiffiffi
2
p

p

v1=2

K2ð1=vÞ
e%c=v: (28)

Here, xc is the minimum possible normalized momentum that
can escape into the loss cone through perpendicular scattering, with
cc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2vx2c

p
its associated Lorentz factor, and KnðzÞ is the modi-

fied Bessel function of the second kind. We can calculate xc either
from solving Eq. (24) for x at n¼ 1 or by equating the midplane parti-
cle energy with the energy needed to escape the potential at p? ¼ 0
(i.e., taking ! ¼ mac2 þ Ua1 % Ua0 at p? ¼ 0) and normalizing.
Either way, we find

xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ 1

2
vu2

r
; (29)

cc ¼ 1þ vu: (30)

A. Approximate forms of the integrals
The Maxwell–J€uttner integral, although not exactly expressible in

a closed form, can be approximated in both the nonrelativistic and
highly relativistic limits. If v ( vu) 1, i.e., if the energy of the confin-
ing potential is much less than the rest mass, then we can expand the
Bessel function in large argument as follows:

K2 1=vð Þ *
ffiffiffi
p
2

r
v1=2e%1=v; (31)

so that

fMJðxÞ *
1

p3=2
e%ðc%1Þ=v: (32)

We can also Taylor expand c in small vx2, yielding the
Maxwell–Boltzmann distribution,

fMJðxÞ *
1

p3=2
e%x

2
; vu) 1: (33)

In this limit, we can also replace the lower integral bound by xc *
ffiffiffi
u
p

.
In the limit u+ 1, the integral then evaluates to

fL *
2ffiffiffi
p
p u1=2e%u; vu) 1 and u+ 1: (34)

Alternatively, if vu+ 1, i.e., if the energy of the confining poten-
tial is much greater than the rest mass, then it makes sense to perform
the integral over c rather than v, from the lower bound at
cc ¼ 1þ vu,

fL ¼
ð1

cc

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 % 1

p
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c
v

vK2 1=vð Þ dc; (35)
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2
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1
v; (37)

* v2u2

K2ð1=vÞ
e%u%1=v: (38)

The approximate formulas from Eqs. (34) and (37) are plotted in
Fig. 2 for u¼ 7 as a function of vu. The agreement is quite good,
except at marginally relativistic values.

B. Refining the approximation using existing solutions
It is well known that in addition to the above factors, there is a

( logR dependence of the confinement time on the mirror ratio. To
get these factors, we can make use of existing solutions from the litera-
ture. Specifically, we make use of the solution in Ref. 36,

sC;v¼0
s0
¼ 1

Z?I

ffiffiffi
p
p

4
ueff eueff log

wþ 1
w% 1

& '
% 0:84

! "
; (39)

where

w2 ! 1þ 1

R Z? %
1

4ueff

& ' ; (40)

I ¼ % 1
4Z?
þ 1þ 1

4Z?

& '
eueffE1ðueff Þ; (41)

where E1ðyÞ ¼
Ð1
y

e%t
t dt is the exponential integral function, and

ueff ¼ uþ logw. Note that w is defined incorrectly the second time it
appears in Ref. 36, a typo which unfortunately made it into the stan-
dard review.1 Note also that we have defined I slightly differently here,
so that it is approximately 1 as ueff !1, to make the scaling with Z?
more explicit.

To extend from this solution, we can multiply by the ratio
between the relativistic and nonrelativistic formulas, i.e.,

FIG. 2. Fraction of particles above the loss energy for a Maxwell–J€uttner distribu-
tion for u¼ 7, as a function of relativistic parameter vu. Shown are the exact solu-
tion (black solid), the approximate nonrelativistic formula from Eq. (34) (green
dashed), and the approximate relativistic form from Eq. (37) (cyan dashed–dotted).
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sC
sC;v¼0

* fL;v¼0
fL

s?
s?;v¼0

: (42)

Obviously, as v! 0, this ratio goes to one. To find this ratio in
the relativistic-tail (vu+ 1), nonrelativitic-bulk (v) 1) limit, we can
plug in Eq. (38) and expand the Bessel function in small v, yielding

sC;vu+1

sC;vu¼0
( 1

2

1þ 15
8

v

vu
: (43)

This can be made into a formula that agrees with both the nonrelativ-
istic and ultrarelativistic limits via asymptotic matching

sC
sC;v¼0

* Sðv; uÞ !
1þ 15

8
v

1þ 2vu
: (44)

Importantly, for pB11 fusion, with Te * 150 keV and thus
v * 0:3, Eq. (44) shows that the change in confinement time due to
relativistic effects is large. For a normalized confining potential of
u¼ 5, the confinement time is reduced by a factor of 2.5 from the non-
relativistic results of Najmabadi et al.,36 whereas at u¼ 10, it is reduced
by a factor of 5.

V. VERIFICATION OF CONFINEMENT TIMES
To verify the confinement time estimates from Sec. IV, we per-

form numerical Fokker–Planck simulations for the diffusion process
in Eq. (16), with the loss cone described by Eq. (24). Without loss of
generality, we take s0 ¼ 1. To maintain the resolution of the loss cone,
we work in the coordinates ðx; hÞ, where cos h ! n. In these coordi-
nates, the metric is given by

ffiffiffi
g
p ¼ 4px2 sin h. To avoid problems at

the boundaries, we modify the denominator of the diffusion and
advection operators so that they do not diverge as x! 0. Since we are
only interested in the steady-state process, we add a particle source
sðx; hÞ and then solve the steady-state diffusion equation, which (with
all the above modifications) is given by

0 ¼ @

@x
ffiffiffi
g
p c2x

x3 þ x30
f þ c3

2ðx3 þ x30Þ
@f
@x

 !" #
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@h
ffiffiffi
g
p c
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þ ffiffiffi
g
p

sðx; hÞ; (45)
ffiffiffi
g
p ¼ 4px2 sin h: (46)

The relevant boundary conditions are reflecting everywhere except at
the loss cone, where the solution must go to 0. Once the solution is
obtained subject to the boundary conditions, the confinement time is
then given by the ratio between the integrated density and integrated
source as follows:

!sC !
sC
s0
¼

ð
f
ffiffiffi
g
p

dxdh
ð
s
ffiffiffi
g
p

dxdh
: (47)

To actually solve Eq. (45) subject to the rather complex boundary
conditions, we use the DolfinX finite-element library48 with a mesh
created using the gmsh library.49 Since the domain is theoretically infi-
nite in x, we must choose a maximum value xmax to define the upper
edge of the domain. We choose this maximum to correspond to K e-
foldings of the Maxwell–J€uttner distribution, which means that for a
given u, xmax ¼ xcjðu!uþKÞ, i.e., we replace u with uþK in Eq. (29) to
determine the large-x edge of the domain.

We also must choose a specific source function. We choose a
form that smoothly goes to zero on the boundaries, i.e.,

s ¼ x2h2
p
2
% h

& '2

ex
2=x2s0 : (48)

For the simulations presented here, these nonphysical parameters are
K¼ 7, x0 ¼ xs0 ¼ 0:1, and c0 ¼ 0:2.

We use a mesh size of Dx ¼ Dh ¼ 0:1, with double resolution
near the loss cone and low-energy source boundary, and third-order
continuous Galerkin finite elements. Pseudo-convergence testing sug-
gests that this combination results in a relative error in the integrated
quantities of less than 1%, while initializing and running in less than a
second. An example mesh is shown in Fig. 3, for u¼ 7, R¼ 5, and

FIG. 3. Example gmsh-generated mesh for u¼ 7, R¼ 5, and v ¼ 0:3, with a
mesh size Dx ¼ Dh ¼ 0:1. The mesh is chosen to be slightly more refined near
the source at x¼ 0 and the loss cone. Dirichlet conditions (f¼ 0) are enforced at
the loss cone and zero-flux conditions at all other boundaries.

FIG. 4. Numerical solution to the relativistic Fokker–Planck diffusion equation [Eq.
(45)] on the mesh in Fig. 3 for u¼ 7, R¼ 5, v ¼ 0:3, and Z? ¼ 1. The solution is
plotted relative to the dimensionless Maxwell–J€uttner distribution from Eq. (28). We
can see that the solution is very close to fMJ except in the immediate region of the
loss cone, which is why the estimate in Eq. (42) is fairly accurate.
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v ¼ 0:3. The solution to Eq. (45) on this mesh for Z? ¼ 1 is shown in
Fig. 4. The solution is quite close to a Maxwell–J€uttner distribution,
except in the immediate vicinity of the loss cone, which justifies the
approximation method from Eq. (42).

To test the accuracy of the estimate for sC in Eq. (42), we per-
formed a parameter scan for all 1280 combinations of the parameters

u 2 f4; 6; 8; 10; 12; 14; 16; 18g; (49)

R 2 f5; 10; 15; 20g; (50)

v 2 f0:0001; 0:001; 0:01; 0:03; 0:1; 0:3; 0:5; 1g; (51)

Z? 2 f0:5; 1; 3; 5; 10g: (52)

In Fig. 5, we see that the ratio of sC=sC;v!0 closely matches the theo-
retical result both in terms of the full formula implied by Eqs. (42),
(26), and (27), and the asymptotic estimate from Eq. (44). In fact, the
asymptotic formula actually performs better, matching to within 10%
almost the entire dataset.

In Fig. 6, we see that combined with the existing nonrelativistic
formula [Eq. (39)] from Ref. 36, the relativistic theory estimates the
confinement time quite well, with an error usually substantially less
than 30%, whether using the full theory or asymptotic scaling for-
mula. It should be emphasized that this solution involved no fitted
parameters, but just an informed extension of existing analytical
formulas.

Finally, for a given value of u, R, and Z?, we can look at the con-
finement time as a function of vu. Such a scan is shown in Fig. 7 for
u¼ 10, R¼ 10, and Z? ¼ 1. We see that both the full theory and

asymptotic scaling formula accurately capture the effects of the
increasing relativistic parameter. Interestingly, the overperformance of
the asymptotic scaling relative to the full formula seems to occur near
v¼ 1, where its validity begins to break down. To understand why the
simple scaling seems so robust, one would have to perform a more
complex analysis, approximately solving the relativistic diffusion prob-
lem analytically using a Pastukhov-style matching to the relativistic
loss cone. Of course, at the point of interest, the nonrelativistic-bulk
approximation in the collision model also breaks down, so, while
intriguing, this quirk is likely of little physical significance. Instead,
what is important is that the very simple asymptotic formula of Eq.
(44) captures the relativistic effects on the confinement time quite
accurately.

VI. EFFECT ON AMBIPOLAR POTENTIALS
The ambipolar potential results from ensuring that, when the loss

rate of all species is taken into account, no net charge leaves the sys-
tem. In terms of the confinement time, this can be written

X

s

Zsnss%1Cs ¼ 0: (53)

Consider a plasma confined in a centrifugal mirror trap. Each
species s will feel a confining potential as follows:

Us ¼ Zse/þ UC;s; (54)

where / is the electrostatic potential and UC;s is the species-dependent
centrifugal potential. Thus, there will be a corresponding species-
dependent dimensionless potential

FIG. 5. Histogram comparing the ratio of simulated relativistic to nonrelativistic
(v ¼ 10%4) confinement time, as calculated from Eq. (47) to (a) the exact predic-
tion from Eq. (42), using Eqs. (26) and (27), and (b) the asymptotic scaling predic-
tion Sðv; uÞ from Eq. (44), for all simulations in the dataset. Surprisingly, the
asymptotic approximation outperforms the more accurate calculation, agreeing
within 10% in nearly all cases.

FIG. 6. Histogram of the ratio between the simulated confinement time [Eq. (47)] vs
the theoretical confinement time [Eqs. (39) and (42)], using (a) the full numerical
solution of the factor in Eq. (42) from Eqs. (26) and (27) and (b) the asymptotic
approximation from Eq. (44). The theoretical form almost always falls within a factor
of 30% of the simulated value.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 052508 (2023); doi: 10.1063/5.0147466 30, 052508-6

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0147466/17913722/052508_1_5.0147466.pdf

pubs.aip.org/aip/php


us ¼
Zse/
Ts
þ UC;s

Ts
: (55)

Consider a rapidly-rotating plasma, with protons p, electrons e, and
(optionally) a heavy species that is much better confined (due to the
rotation) than the other two. Such a plasma describes, for example, a
pB11 fusion plasma. Using Eq. (39) and the scaling relation Eq. (44) in
Eq. (53), we find an equation for the ambipolar potential of the follow-
ing form:

!/ ¼
Tp

Tp þ Te
uC;p þ log

ne
np

sDp
sDe

& '
% log S v; !/

* +!

þlog
uC;p %

Te

Tp

!/

!/

0

B@

1

CA

3

75
; (56)

where

!/ ! e/=Te; (57)

uC;p ! UC;p=Tp; (58)

sDs !
s0s
Z?;s

log
ws þ 1
ws % 1

& '
% 0:84

! "
: (59)

Equation (56) can be approximately solved in orders, by first
ignoring the !/-dependent logarithms on the right hand side, and then
adding in this logarithm as a correction based on the solution. Since
the equation typically can be solved in this way with good accuracy,
we see that the net effect of the relativistic corrections is to increase the
ambipolar potential by an amount

D!/ * Ti

Te þ Ti
log

1þ 2v!/

1þ 15
8

v

0

@

1

A: (60)

VII. DISCUSSION AND CONCLUSION
In this paper, we have generalized the nonrelativistic work of

Refs. 1 and 33–36 to incorporate relativistic corrections to the confine-
ment time of particles in mirror, assuming that the bulk plasma is

nonrelativistic. Both theory and simulations showed that the effect of
relativity is to decrease the electron confinement time, and thus
increase the ambipolar potential. Such effects are important to take
into account in extrapolating to the extreme high-temperature plasmas
(Te ( 160 keV, v ( 0:3) necessary for aneutronic fusion.20–23

However, as the plasma grows more relativistic, radiative effects
tend to become more important as well, with both bremsstrahlung
and synchrotron radiation50 becoming an important part of the energy
balance. These processes are often modeled in Fokker–Planck form in
the study of runaway electrons in tokamaks.51,52 Of the two of these,
synchrotron radiation is usually more powerful. While a detailed anal-
ysis of the impact of radiation is outside the scope of this paper, here,
we estimate when this term is likely to be important.

When the plasma is optically thin to synchrotron radiation
(which is often the case for high harmonics emitted by the hottest
parts of the distribution), the emitted radiation leads to a pure drag
term in the Fokker–Planck equation, with a characteristic timescale
given by52

sS ¼
sS0

cð1% n2Þ
; (61)

sS0 ¼
3
2
m3

e c
5

e4B2 : (62)

Meanwhile, the parallel collisional drag timescale is given from Eq.
(16) by

sck ¼ s0
x3

c2
: (63)

Using the definitions of x and s0, we, thus, find at the loss-cone-rele-
vant energy

sck
sS
¼ 2

3ke

X2
e

x2
pe

c2c % 1
* +3

2

cc
1% n2
* +

; (64)

¼ 25=2

3ke

X2
e

x2
pe
ðvuÞ3=2 1þ vu=2ð Þ

3
2

1þ vu
1% n2
* +

; (65)

where ke is the Coulomb logarithm, while Xe and xpe are the nonrela-
tivistic election cyclotron and plasma frequencies, respectively. Similar
expressions appeared in Refs. 53 and 54 (although there is a typo in
Ref. 54, where ke appears in the numerator instead of the denomina-
tor). Note the angular dependence of this condition; the synchrotron
radiation is maximized when most of the energy is in the perpendicu-
lar direction n ( 0, while the loss cone is located in the parallel direc-
tion n ( 1. Thus, even when synchrotron radiation becomes
important for the overall Fokker–Planck solution, its effects will first
be felt far from the loss cone. Note that a more general theory, which
takes into account both the drag term due to radiation reaction and
the diffusion term due to absorption of synchrotron radiation, is pre-
sented in Ref. 55.

There are other deconfining effects as well that we have not here
considered. For instance, our model assumes that the magnetic field
variation is sufficiently slow that loss of adiabaticity47,56 can be
neglected relative to collisions. In addition, we have neglected the
deconfining effects of cold particle flows from the mirror throat.57,58

It is partly because of the likely need to include these additional
effects in any physical system that our emphasis in this paper has been

FIG. 7. Dimensionless confinement time vs relativistic factor vu for u¼ 10, R¼ 10,
and Z? ¼ 1, comparing numerical simulations to the full theory [Eqs. (42) and
(39)], nonrelativistic limit [Eq. (39)], and asymptotic scaling formula [Eqs. (44) and
(39)]. The theory matches well.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 052508 (2023); doi: 10.1063/5.0147466 30, 052508-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0147466/17913722/052508_1_5.0147466.pdf

pubs.aip.org/aip/php


on physically motivated estimation methods, rather than calculation-
ally intensive approximate solutions to the diffusion equation.
Understanding the factors that underpin the confinement time scaling
should provide a good foundation on which to build more complex
theories involving other physical effects.
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