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ABSTRACT

When waves damp or amplify on resonant particles in a plasma, nonresonant particles experience a recoil force that conserves the total
momentum between particles and electromagnetic fields. This force is important to understand, as it can completely negate current drive
and rotation drive mechanisms that are predicted on the basis of only resonant particles. Here, the existing electrostatic theory of this recoil
force is extended to electromagnetic waves. While the result bears close similarity to historical fluid theories of laser–plasma interactions, it
now incorporates both resonant and nonresonant particles, allowing momentum conservation to be self-consistently proven. Furthermore,
the result is shown to be generally valid for kinetic plasmas, which is verified through single-particle hot-plasma simulations. The new form
of the force provides physical insight into the nature of the generalized Minkowski (plasmon) momentum of geometrical optics, which is
shown to correspond to the momentum gained by the field and nonresonant particles as the wave is self-consistently ramped up from van-
ishing amplitude.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138384

I. INTRODUCTION
When a wave in a plasma interacts resonantly with a charged

particle, the two can exchange substantial energy and momentum. If
the absorbed momentum is parallel to the background magnetic field,
the current can be driven,1 while if it is perpendicular to the field,
E!B rotation can be driven.2

However, the wave grows or damps due to the resonant interac-
tion, meaning that its amplitude must change in time or space. These
changing amplitudes introduce ponderomotive forces on the nonreso-
nant particles–forces, which can have an equally significant impact on
the current and rotation drive. For instance, an electrostatic wave can
grow as a result of interaction with a radial gradient of fusion-born
fast alpha particles in a process known as alpha channeling. In the pro-
cess, alpha particles diffuse radially outward across field lines via either
Landau3–7 or cyclotron8–23 resonances, and so one might expect a
radial potential to develop, driving rotation. In a steady state problem,
where a spatially structured wave neither grows nor decays, the rota-
tion effect survives.24,25 However, as was recently shown, the initial
value problem, where a plane wave grows in time, behaves very differ-
ently. There, a self-consistent treatment shows that the charge trans-
port from the outward diffusion of resonant alpha particles is
completely canceled by an inward ponderomotive drift in the nonreso-
nant bulk ions, completely eliminating the rotation drive effect.26

The ponderomotive response of the nonresonant particles is fun-
damentally related to momentum conservation. Resonant particles

absorb the generalized Minkowski momentum pM " kI in the wave,
where k is the wavevector and I is the wave action. However, the total
plasma can only absorb the electromagnetic momentum in the wave,
given by the Poynting flux pEM ¼ hE! Bi=4pc, which vanishes for
an electrostatic wave. Thus, the ponderomotive forces from a time-
amplifying wave can be thought of as a nonresonant “recoil,” analo-
gous to when a heavy cannon accelerates backward upon firing a
cannonball.

Previously, this momentum-conserving recoil has been derived
for the case of a general electrostatic wave.24–28 Here, we extend this
theory to the case of an electromagnetic wave. The end result is an
expression which closely matches the result of past fluid theories, how-
ever now incorporating the resonant particles and derived in kinetic
generality. Furthermore, the use of modern (Stix-like) wave formalism,
separating the susceptibility tensor into its Hermitian and anti-
Hermitian parts and Taylor expanding in small dissipation, allows
momentum conservation to be shown straightforwardly.

The electromagnetic approach used here also provides additional
insight into the nature of the generalized Minkowski momentum itself.
Typically, the Minkowski momentum is a property of a wave packet,
which in a homogeneous plasma corresponds to the amount of
momentum that must be taken from resonant particles in order to
grow the wave from zero amplitude. Here, we explicitly show that this
momentum is identical to the momentum that is added to the nonres-
onant particles and electromagnetic field (Poynting flux) as the wave
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grows. Thus, the Minkowski momentum, which is often treated
abstractly in terms of the wave action, has two very intuitive physical
meanings: it is simultaneously the amount of momentum (a) lost by
the resonant particles and (b) gained by the nonresonant particles and
electromagnetic field as the wave ramps up.

This paper is organized as follows: In Sec. II, we derive the pon-
deromotive force on the plasma, first allowing for both spatial and
temporal variations before focusing on the initial value problem. In so
doing, we show that the force on the nonresonant particles of species s
can be written as a total time derivative of a simple nonresonant
momentum pNs. In Sec. III, we make use of the dispersion relation to
show that the resulting theory conserves momentum among resonant
particles, nonresonant particles, and electromagnetic fields. In Sec. IV,
we further show that the generalized Minkowski momentum of geo-
metrical optics represents the sum of the nonresonant momentum pNs
and electromagnetic momentum pEM .

In the remaining sections, we focus on validating our results and
comparing to the literature. In Sec. V, we compare our results to the
existing fluid theories of the time-dependent ponderomotive force,
showing agreement. To validate that these expressions truly work for
kinetic plasmas, in Sec. VI, we perform single-particle simulations of a
ramping electromagnetic wave interacting with hot particles in a mag-
netized plasma. We show that the resulting momentum can be derived
from the standard hot plasma susceptibility, confirming the validity of
the theory.

II. DERIVATION OF THE NONRESONANT RECOIL
MOMENTUM

In this section, we explicitly calculate the force on a plasma
species from the electromagnetic fields of a quasi-monochromatic
wave, in terms of the species contribution to the plasma susceptibil-
ity. For simplicity, we will assume the plasma is homogeneous and
stationary to allow us to robustly use Fourier methods rather than
Weyl methods.29

Our starting point is the Lorentz force on the local Eulerian
volume

Fs ¼ qsEþ
1
c
js ! B: (1)

Here, E and B are the electric and magnetic fields, respectively, and qs

and js are the charge and current densities of species s, respectively.
If we assume that all quantities A 2 fq; j;E;Bg vary as

A ¼ ~A0eik%x&ixt , then by averaging over a cycle, we find

hFsi ¼
1
2
Re ~qs0

~E'0 þ
1
c
~js0! ~B'0

! "
e&2j%xþ2xi t ; (2)

where j " ImðkÞ and xk " ImðxÞ. Defining ~A ¼ ~A0e&j%xþxi t to
encode the local wave amplitude, we can write this force as

hFsi ¼
1
2
Re ~qs

~E' þ 1
c
~js! ~B'

! "
: (3)

Now we can begin to write all these quantities in terms of the
electric field. The magnetic field is most straightforward; from
Faraday’s law

r! E ¼ & 1
c
@B
@t
: (4)

After Fourier transformation, this becomes

~B ¼ c
x
k ! ~E: (5)

To express the currents and charge densities, we must make use
of the plasma susceptibility. In a homogeneous stationary medium, the
current density can be written for some susceptibility vs as

30

~js ¼&
i
4p

xvs % ~E: (6)

From this current density, we can get the charge density via the
continuity equation

@qs

@t
¼ &r % js: (7)

After Fourier transforming, we find

~qs ¼ k %
~js
x
¼& i

4p
k % vs % ~E: (8)

From this point on, we drop the tildes on the electric and mag-
netic fields, since we work exclusively in Fourier space. Plugging Eqs.
(5), (6), and (8) into Eq. (3), we find

hFsi¼
1
2
Re & i

4p
k %vs %E

# $
E'þ1

c
& i
4p

xvs %E
# $

! c
x'

k' !E'
# $" #

(9)

¼ 1
8p

Im k % vs % Eð ÞE' þ
x
x'

vs % Eð Þ ! k' ! E'ð Þ
% &' (

: (10)

Thus far, our expressions have been true for arbitrary com-
plex x and k. However, our focus on quasi-monochromatic waves
allows us to proceed further by expanding in small xi=xr and
jjj=jkj. Working to first order, we can rewrite the first term in
brackets on the RHS

A " x
x'

vs % Eð Þ ! k' ! E'ð Þ
% &

(11)

* E' % vs % Eð Þk' & k' % vs % E
) *

E'
% &

þ 2i
xi

xr
vs % Eð Þ ! kr ! E'ð Þ; (12)

where in the first line we used the double cross product identity, and
in the second we ignored terms of order jxi=kxr . Now, the second
term in brackets in Eq. (12) combines with the first term in braces in
Eq. (10), together becoming 2iðj % vs % EÞE'. This leaves only the first
term in brackets left to simplify

Im E' % vs %Eð Þk'
% &

¼ Im E' % ðvsÞH %E
) *

ð&ijrÞþi E' % ðvsÞA %E
) *

ikr
% &

:

(13)

Here, ðvsÞH and ðvsÞA are the Hermitian and anti-Hermitian parts of
v, when evaluated at complex x and k. Denoting vHs and vAs as the
Hermitian and anti-Hermitian parts of vs at real x and k, and assum-
ing that jvHs j+ jvAs j, we can Taylor expand near the real frequencies
to find

ðvsÞH * vHs ; (14)

ðvsÞA * vAs þ xi
@vHs
@xr
þ j % @v

H
s

@kr
: (15)
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Putting this all together and plugging back in to Eq. (10), we find

hFsi ¼
1
4p

Re

(
E' j % vHs % E
) *

& 1
2
j E' % vHs % E
) *

þxi vHs % E
) *

! kr
xr
! E'

# $! "

þ 1
2
kr E' % vAs þ xi

@vHs
@xr
þ j % @

@kr

# $
vHs

 !

% E

 !)

: (16)

As shown in Appendix A, this force is the electromagnetic generaliza-
tion of the electrostatic force first derived by Kato31 for parallel forces
using the magnetized kinetic dispersion relation and later generalized
to any electrostatic wave.24,27

Additional insight can be gained by recasting the force in terms
of the temporal and spatial derivatives of the wave field. Recalling that
E;E' , e&j%xþxi t , we note that in Eq. (16) we can make the substitu-
tions 2xi ! @=@t and 2j! &@=@x. Thus, we can write the force as
the sum of (a) the divergence of a nonresonant stress PNs, (b) the time
derivative of a nonresonant momentum pNs (which we term the non-
resonant recoil24,26,27), and (c) a resonant dissipation term FRs,

hFsi ¼ &
@

@x
%PNs þ

@

@t
pNs þ FRs; (17)

where

PNs ¼
1
8p

Re vHs %E
) *

E' &1
2
I E' %vHs %E
) *

þ1
2

@

@kr
E' %vHs %E
) *# $

kr

! "
;

(18)

pNs ¼
1
8p

Re vHs % E
) *

! kr
xr
! E'

# $
þ kr

2
@

@xr
E' % vHs % E
) *! "

;

(19)

FRs ¼
1
8p

kr E' % vAs % E
) *

: (20)

In this paper, we will focus primarily on plane waves, which
evolve temporally, and so we will largely ignore the stress term.
However, there are a couple points to note. First, the stress term in this
form represents the electromagnetic force on the plasma volume, and
thus, the sum of stress on all species is consistent with the Maxwell
stress tensor (Appendix B). Second, this form of the stress is of limited
utility, since it must be combined with Reynolds and polarization
stress terms24,28,32–35 in order to yield a meaningful total ponderomo-
tive force.

Unlike the stress term, the resonant dissipation and nonresonant
recoil terms do not suffer from interpretive difficulty. As we show in
Sec. III, together, they conserve momentum among the resonant par-
ticles, nonresonant particles, and electromagnetic field.

Before moving on, however, we note that the nonresonant
momentum pNs can be rewritten in several ways, which are useful in
different contexts depending on the wave polarization and structure of
vs. Defining the refractive index n ¼ kc=x, we can write

pNs ¼
1
8pc

Re vHs % E
) *

! nr ! E'ð Þþnr
2

x
@

@xr
E' % vHs % E
) *! "

;

(21)

pNs¼
1
8pc

Re nr E' %vHs %E
) *

&E' nr %vHs %E
) *

þnr

2
x

@

@xr
E' %vHs %E
) *! "

;

(22)

pNs ¼
1

16pc
Re

nr
x

@

@xr
x2E' % vHs % E
) *

&2E' nr % vHs % E
) *! "

: (23)

III. MOMENTUM CONSERVATION
Having calculated the form of the forces on resonant and nonres-

onant particles, we show in this section that these forces respect
momentum conservation. We focus on the case of a plane wave, which
grows or damps only in time, neglecting the j-dependent terms in the
force.

To demonstrate momentum conservation, we will have to elimi-
nate the susceptibilities vs. To do this, we make use of the general dis-
persion relation for an electromagnetic wave30

n! n! Eð Þ þ Iþ
X

s

vs

# $
% E ¼ 0: (24)

From this dispersion relation, we can derive two useful identities.
First, to zeroth order in ! , jvAs j=jvHs j , jxij=jxr j, we have

X

s

vHs % E ¼ &E& nr ! nr ! Eð Þ þOð!Þ: (25)

Second, by dotting in E', we find to first order in !,

E' %
P

s ðvsÞA % E ¼ &E' % ni ! nr ! Eð Þ & E' % nr ! ni ! Eð Þ
(26)

¼ 2
xi

xr
E' % nr ! nr ! Eð Þ þOð!2Þ: (27)

In the last line, we used the fact that a! ða! EÞ is a Hermitian opera-
tor for real a, along with the Taylor expansion

ni ¼ Im
kc

ðxr þ ixiÞ

# $
* &xi

xr
nr : (28)

With these two identities, we are in a position to prove momen-
tum conservation to the relevant first order in !. Taking j ¼ 0 and
summing Eq. (16) over all species, we have

P
shFsi ¼

1
4p

Re
'

xi &E& nr ! nr ! Eð Þð Þ !
kr
xr
! E'

# $

þ 1
2
kr 2

xi

xr
E' % nr ! nr ! Eð Þ

# $( (29)

¼ & xi

4pc
Re E! B' þ Cð Þ; (30)

where

C " Ref nr ! nr ! Eð Þ½ . ! nr ! E'ð Þ
&nr E' % nr ! nr ! Eð Þ½ .g (31)

¼ Ref =

nr % nr ! E'ð Þ½ . nr ! Eð Þ

&nr nr ! Eð Þ % nr ! E'ð Þ
% &

þnr nr ! E'ð Þ % nr ! Eð Þ
% &

g (32)

¼ 0: (33)
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Thus, recalling that we can identify 2xi ! @=@t and recalling
that the time average of two oscillating quantities ReðE! B'Þ
! 2hE! Bi, we have

X

s

hFsi ¼ &
@

@t
hE! Bi
4pc

# $
¼ & @pEM

@t
; (34)

where pEM ¼ SEM=c2 is the electromagnetic momentum. Thus, the
momentum gained by the resonant and nonresonant particles is pre-
cisely the momentum lost by the electromagnetic fields.

IV. RELATIONSHIP TO GENERALIZED MINKOWSKI
MOMENTUM

Having demonstrated momentum conservation between waves
and particles, we can gain additional insight by looking at different
combinations of the momenta. To this end, one can begin by sum-
ming up the nonresonant momenta of each species [Eq. (21)] and
then plug in the zeroth-order dispersion relation from Eq. (25) and
the relationship between B and E fields from Eq. (5). After a few vector
manipulations, including that n % B ¼ n % ðn! EÞ ¼ 0, we find the
lowest order as

P
s pNs ¼

1
8pc

Re &E' !Bþn B' %Bð Þ þ n
2
E' % x

@!

@x

# $
% E

! "
: (35)

We can recognize the first term in brackets as the (negative)
Poynting momentum flux. Thus, the sum of electromagnetic and non-
resonant momentum takes the form

pEM þ
X

s

pNs ¼
n
8pc

B' % Bþ 1
2
E' % x

@!

@x

# $
% E

! "
: (36)

This combination of the momentum is useful not only because it
is compact but also because it is familiar. In the study of geometrical
optics, the wave can be identified with a “plasmon”36 or “generalized
Minkowski”37 momentum. Derived from Noether’s theorem for the
quasi-monochromatic wave Lagrangian, this momentum appears in
the conservation laws governing the evolution of the wave envelope in
the presence of dissipation or refraction and can be thought of as the
canonical momentum of the wave photons. It can be written as37

pM ¼ kI ; (37)

where I is the wave action, given for an electromagnetic wave in a dis-
persive dielectric by

I ¼ 1
16px

E' % @
@x
ð!xÞ % Eþ B' % B

! "
: (38)

This expression can be made more familiar by making use of
the zeroth-order dispersion relation [Eq. (25)] and the relationship
between B and E fields from Eq. (5), which together imply that
E' % ! % E ¼ B' % B to the lowest order. Application of the chain rule
then to Eq. (38) then quickly yields

pM ¼
n

16pc
E' % x

@!

@x

# $
% Eþ E' % ! % Eþ B' % B

! "
; (39)

¼ n
16pc

E' % x
@!

@x

# $
% Eþ 2B' % B

! "
: (40)

We can see that this is the same quantity as in Eq. (36), so that

pM ¼ pEM þ
X

s

pNs: (41)

Thus, the Minkowski momentum, usually interpreted as the canon-
ical momentum of a photon which governs the wave packet evolu-
tion, also has a quite intuitive physical interpretation. Namely, it is
the combined momentum gained by the electromagnetic wave field
and the nonresonant particles as the wave grows from zero
amplitude.

V. RELATIONSHIP TO KLIMA–PETRILZKA FLUID
PONDEROMOTIVE FORCE

The form of the ponderomotive force has been the focus of study
for many years with much of the work focused on transfer laser-
driven implosions through Washimi-Karpan forces.38 As reviewed
extensively in Ref. 39, many closely related fluid theories were devel-
oped to study these forces.40–43 These papers largely found the same
expression for the time-dependent recoil force on nonresonant par-
ticles. This is Eq. (4.69) in Ref. 39 (though importantly, the last term
has a typo in the location of the parentheses, which should end before
the fields) and Eq. (30) in Ref. 43.

The fluid models were employed to simplify the calculation of
the forces in the presence of spatial gradients, which require compli-
cated evaluations of Reynolds stresses in the kinetic theory. However,
for the time-dependent recoil, nothing in our analysis above assumed
that the plasma was describable by a fluid model. Therefore, this
expression is in fact more general than previously thought. To verify
this generality, in Sec. VI, we perform single-particle simulations
showing that the recoil force matches the theoretical expression for the
ponderomotive force even for highly kinetic plasmas.

VI. KINETIC SIMULATIONS
In this section, we use single-particle simulations to verify that

the theory of the nonresonant recoil works for kinetic plasmas. For
simplicity, we consider a magnetized plasma with B0 k ẑ and a wave
with k k ẑ and E k x̂ . From Eq. (23), we see that this choice means
that we only need the vs;xx component of the susceptibility tensor to
calculate the force along the ẑ direction.

To find vs;xx , we can use the hot plasma susceptibility tensor
from Stix30 section 10.6, given (dropping species subscripts s) by

vxx ¼
x2

p

xX

ð1

0
2pv0?dv

0
?

ð1

&1
dv0k

!
X1

n¼&1

Xv0?
x& kkv0k & nX

n2JnðzÞ2

z2
: (42)

Here, xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnsq2s =ms

p
is the plasma frequency, X ¼ qsB=cms is

the gyro-frequency, qs, ms, and ns are the charge, mass, and density of
species s, JnðzÞ is the Bessel function of the first kind, and

U " 1&
kkv0k
x

# $
@f0
@v0?
þ
kkv0?
x

@f0
@v0k

; (43)

z " k?v0?
X

: (44)
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To check the kinetic ponderomotive recoil theory using single-
particle simulations, we will want to express this vxx for the distribu-
tion f0 ¼ dðv0? & v?Þdðv0k &vkÞ=2pv?. Note that once the form of the
force is verified for this distribution, it is verified for more general dis-
tributions with finite velocity spreads as well, since the total force can
be composed as an integral of the d-function force over the velocity
distribution. This choice of f0 yields, after integration by parts to elimi-
nate the derivatives of f contained in U,

vxx ¼ &
x2

p

x2

X

n

x& kkvk
) * 1

v?

@Yn

@v?
þ kk

@Yn

@vk

" #
; (45)

Yn "
v2?

x& kkvk & nX
n2JnðzÞ2

z2
: (46)

Plugging this into Eq. (23) for k? ¼ 0 yields

pNs;z ¼ kk
jExj2

8p

x2
p

x2

aX2

ða2 & X2Þ2
1þ 1

2

k2kv
2
?

X2
a2 þ 3X2

a2 & X2

" #

; (47)

where a ¼ x& kkvk is the Doppler-shifted frequency of the wave.
Now, we can divide pNs;z by the density to get the nonresonant

momentum of a single particle. If we additionally divide by the mass,
then we end up with the final velocity of a particle if we ramp up a
wave from zero amplitude. (Assuming that the force is small enough
that vk can be treated as constant.) If we additionally write the electric
field in terms of a vector potential

E ¼ &x
c
A; (48)

then we find

Dvz ¼
kkjAxj2q2

2m2c2
aX2

ða2 & X2Þ2
1þ 1

2

k2kv
2
?

X2
a2 þ 3X2

a2 & X2

" #

: (49)

Because the hot plasma susceptibility involves gyro-averaging the
plasma response, this ponderomotive force corresponds to the force
on a ring of charge with fixed initial v?. Thus, to check for agreement,
Eq. (49) must be compared to the average change in the final velocity
of an ensemble of particles with different initial gyro-angles in the
presence of a wave that ramps up slowly compared to the wave- and
gyro-periods.

To perform this comparison to simulations, it helps to first non-
dimensionalize. We take

!t ¼ Xt !x ¼ kkx; (50)

!x ¼ x=X !v ¼ kkX
&1v; (51)

!A ¼ kkB
&1
0 A: (52)

In these units, the wave field is given by

!A ¼ &gð!tÞ!A0 cos !z & !x!tð Þx̂; (53)

gð!tÞ " min
!t
!sR
; 1

# $
; (54)

where !sR + 2p=minðx;XÞ is the ramp time of the wave. From
Eq. (49), the theoretical change in velocity after the wave rampup is
then

D!vz
j!Axj2

¼ 1
2

!a

ð!a2 & 1Þ2
1þ

!v2?
2

!a2 þ 3
!a2 & 1

! "
; (55)

where !a is the normalized Doppler-shifted frequency

!a " !x & !vk ¼
x& kkvk

X
: (56)

The dimensionless Lorentz force to be simulated is given by

d
!v
d!t
¼& @

!A
@!t
þ !v ! !r ! !A þ ẑð Þ: (57)

This equation of motion corresponds to a Boris-style push with
q=m ¼ 1; E ¼ &@ !A=@!t , and B ¼ !r ! !A þ ẑ . To retain accuracy
over very long timescales, we used a recently developed modification
to the Boris push algorithm,44 which reduces the phase errors of the
original algorithm while keeping its desirable phase space conservation
properties.45

To test the prediction in Eq. (55), we performed a parameter
sweep across

!A0 2 f10&4; 10&3; 10&2g; (58)

!x 2 f0:01; 0:03; 0:1; 0:3; 0:5; 0:7; 0:9;
0:95; 0:97; 1:03; 1:05; 1:1; 1:3; 1:5g;

(59)

!vz0 2 f&1;&0:5; 0; 0:5; 1g; (60)

!v?0 2 f0; 1g: (61)

For each parameter set, 13 simulations were carried out, correspond-
ing to different evenly spaced initial gyro-angles. In each simulation,
the wave field was ramped up over the course of !sR ¼ 10 000 inverse
gyro-frequencies and then held constant for further 1000. The
reported D!vz for each parameter set was then given by the average
final velocity over the last 1000 inverse gyro-periods, further averaging
over the 13 initial gyro-angles. Because these simulations were rela-
tively inexpensive on a modern laptop, we used a small time step
D!t ¼ 0:07!minð!a&1; 1Þ.

The results for !v?0 ¼ 0 are shown in Fig. 1(a), and for !v?0 ¼ 1
(i.e., kkq ¼ 1Þ in Fig. 1(b), where they are compared to the theoretical
prediction from Eq. (55). Two facts are immediately apparent. First,
the two cases are very different with the sign of the force actually
switching sign in the region &1 < a !< 1 depending on the value of
!v?. Second, in both cases, agreement with simulations is quite good,
except near the cyclotron resonances where the nonresonant approxi-
mation breaks down. Thus, it is clear that the equation holds not only
for the Doppler-shifted cold fluid (!v? ¼ 0) but also for the fully
kinetic plasma (!v? ¼ 1) as well.

VII. CONCLUSION
In this paper, we generalized the electrostatic theory of the

nonresonant ponderomotive recoil to electromagnetic waves, dem-
onstrating momentum conservation among resonant particles,
nonresonant particles, and the electromagnetic fields. Through
single particle simulations, we verified that this form of the force
holds even for general kinetic plasmas. By casting the recoil as the
time derivative of a nonresonant momentum, we showed that the
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generalized Minkowski momentum of geometrical optics could be
interpreted as the momentum gained by the nonresonant particles
and electromagnetic fields as the wave self-consistently ramps up
from vanishing amplitude.

The presence or absence of the recoil effect has implications
both for magnetic field generation (magnetogenesis) and rotation
drive effects in plasmas. For laboratory magnetogenesis, the
effects of the recoil will be most pronounced for direct current
drive schemes such as LH current drive,46 where the wave pushes
resonant particles parallel to the background magnetic fields,
including situations in which these waves might be amplified
through the alpha channeling effect.4,6,7 However, they could also
lead to consequences for indirect current drive schemes that rely
on perpendicular electron heating such as electron cyclotron cur-
rent drive.47 In these systems, nonresonant effects are also likely
to be important for the study of flows both parallel and perpendic-
ular to the magnetic field, which often arise spontaneously48

and which can stabilize instabilities and suppress turbulence
across a variety of devices.49–59 In addition to laboratory systems,
the results could also be relevant in astrophysical settings,
affecting magnetogenesis processes that occur through Landau
damping,60 the radiative transfer dynamo effect,61 or the inverse
Bremstrahlung current drive effect.62 While in many of the above
cases, the application of interest is often steady state, in cases of
startup or transient situations, such as those driven by growing
instabilities, the nonresonant effects addressed here can often play
a large role.
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APPENDIX A: RELATIONSHIP TO THE ELECTROSTATIC
THEORY

In this Appendix, we verify that the electromagnetic force
from Eq. (16) agrees with the previously derived electrostatic force
from Refs. 24 and 26 given by

hFEsi¼
k2r/

'/
4p

j %krð Þkr
k2r

&j

2

 !
Drsþ

kr
2

Disþxi
@Drs

@xr
þj %@Drs

@kr

# $" #
:

(A1)

Here, / is the amplitude of the scalar potential field, and

Ds " &
4p
k2

qs

/
(A2)

is the contribution of species s to the (Poisson) dispersion relation.
Furthermore, Drs and Dis are the real and imaginary components
of Ds at real x and k, similarly to how vHs and vAs are the
Hermitian and anti-Hermitian components of vs at real x and k.

FIG. 1. Change in the normalized parallel velocity !vz ¼ vzX=kk as a function of the normalized Doppler-shifted initial frequency !a ¼ ðx& kkvkÞ=X for a gyro-averaged
ensemble of particles as a result of ramping up an x̂ -polarized wave with k k B from zero amplitude. The results are shown for (a) !v? ¼ 0 and (b) !v? ¼ 1 (i.e., kkq ¼ 1).
Theoretical predictions from Eq. (55) are shown as lines with solid blue lines for positive values and dashed red lines for negative values. Simulations are shown as markers
with blue circles for positive values and red triangles for negative values. Agreement is quite good, except near the gyro-resonances, where the nonresonant approximation
breaks down.
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By using Eqs. (8) and (6), we can rewrite Ds in terms of vs,

Ds ¼ &
4p
k2

1
/
& i
4p

k % vs % E
# $

(A3)

¼ & 1
k2

1
/
&ik % vs % ð&ik/Þ
) *

(A4)

¼ k % vs % k
k2

; (A5)

which implies for Drs and Dis,

Drs ¼
kr % vHs % kr

k2r
; (A6)

Dis ¼
kr % vAs % kr

k2r
: (A7)

Now we can just plug these substitutions into the electrostatic
force in Eq. (A1). The only complicated term is the last term in
parentheses, which is best tackled in summation notation

j % @Drs

@kr
¼ jk @

@kk
r

kirv
H
sijk

j
r

krlklr

 !

; (A8)

¼ 2
k4r

jkkkkirv
H
sijk

j
r þ

2
k2r

Re jkvHskjk
j
r

- .

þ 1
k2r

jkkir
@vHsij
@kr

kjr ; (A9)

¼ 2
k4r

j % krð Þkr % vHs % kr þ
2
k2r

Re j % vHs % kr
) *

þ 1
k2r

kr % j % @
@kr

# $
vHs

! "
% kr : (A10)

After a bit more algebra and recognizing E ¼ &ikr/, the elec-
trostatic force becomes

hFEsi ¼
1
4p

Re

(

E' j % vHs % E
) *

& 1
2
j E' % vHs % E
) *

þ 1
2
kr E' % vAs þ xi

@vHs
@xr
þ j % @

@kr

# $
vHs

 !

% E

 !)

:

(A11)

We can recognize this expression as the full electromagnetic force
in Eq. (16), except without the second line, which goes to zero for
an electrostatic wave (with r! E ¼ 0). Thus, the electromagnetic
ponderomotive force derived here is consistent with the simpler
form derived earlier for electrostatic waves.24,26

APPENDIX B: CONSISTENCY WITH MAXWELL STRESS
TENSOR

Here, we show that the ponderomotive force on the plasma in
Eq. (16) in the presence of spatial gradients is consistent with force
exerted by the electromagnetic fields on the plasma through the
Maxwell stress tensor. The (negative) Maxwell stress tensor is given
by

PEM ¼
1
4p
&EEþ 1

2
IE2 & BBþ 1

2
IB2

# $
; (B1)

from which the total force on the medium is

hFEMi¼&hr %PMi (B2)

¼ 1
4p

Re j %
#
&EE' þ 1

2
I E %E'ð Þ&BB' þ 1

2
IðB %B'Þ

$" #

: (B3)

Now, consider the ponderomotive force from Eq. (16) with
xi ¼ 0. Summing this force over all species in the plasma, we can
write this force as

X

s

hFsi ¼
1
4p

Re X þ Yþ Zf g; (B4)

where

X "
X

s

E' j % vHs % E
) *

; (B5)

Y "
X

s

& 1
2
j E' % vHs % E
) *

; (B6)

Z "
X

s

1
2
kr E' % vsð ÞA % E
) *

: (B7)

The latter two of these terms are straightforward to simplify.
We have

ReY ¼ & 1
2
jRe E' % &E& nr ! nr ! Eð Þð Þ½ . (B8)

¼ 1
2
jRe E' % E& nr ! E'ð Þ % nr ! Eð Þ

% &
(B9)

¼ 1
2
jRe E' % E& B' % B½ .; (B10)

and

ReZ ¼ & kr
2

c2

x2
r
Re E' % ðj! kr ! Eð Þþ kr ! jr ! Eð ÞÞ
% &

(B11)

¼ kr
2

c2

x2
r
Reððj! E'Þ % kr ! Eð Þ þ k ! E'ð Þ % j! EÞÞð (B12)

¼ nrRe j! Eð Þ % B'½ .: (B13)

In simplifying Z, we used the fact that a! ða! EÞ is Hermitian
when a is real, as well as the Taylor expansion

ni ¼ Im
ðkr þ ijÞc

xr

# $
¼ jc

xr
: (B14)

Now, define the quantity A as follows:

A " 4p hFEMi&
X

s

hFsi
# $

þ ReX (B15)

¼ Re &E' j % Eð Þ&B' j % Bð Þ þ j B' % Bð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C

&nr j! E % B'ð Þ
" #

:

(B16)

If we show that A ¼ ReX, then hFEMi ¼
P

shFsi.
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To show this, we begin by simplifying the quantity C in Eq.
(B16) as

C ¼ B! j! B'ð Þ (B17)

¼ nr ! Eð Þ ! j! B'ð Þ (B18)

¼ & j! B'ð Þ ! nr ! Eð Þ (B19)

¼ j! B' % nrð ÞE& j! B' % Eð Þnr (B20)

¼ & j % nr ! B'ð ÞEþ j! E % B'ð Þnr : (B21)

Plugging this back into Eq. (B16), several terms cancel, and we have

A ¼ Re &E' j % Eð Þ & E j % nr ! nr ! E'ð Þð Þ
% &

(B22)

¼ Re E' j % &E& nr ! nr ! Eð Þð Þð Þ½ .: (B23)

Now, we can plug in our 0th order dispersion relation [Eq. (25)],
yielding

A ¼ Re E' j %
X

s

vs % E
# $# $! "

: (B24)

Comparing to Eq. (B5), we see that the quantity in brackets is just
X. Thus, A ¼ ReX, and so hFMi ¼ hFi, meaning that the pondero-
motive force is consistent with the total force on the plasma from
the electromagnetic stress.
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