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ABSTRACT

Very large DC and AC electric fields cannot be sustained between conducting electrodes because of volume gas breakdown and/or surface
field emission. However, very large potential fields are now routinely generated in plasma structures, such as laser generated wake in
unmagnetized plasmas. In magnetized plasmas, large DC fields can also be sustained and controlled perpendicular to the magnetic field, but
the metallic end plates limiting the plasma, terminating the magnetic field lines, and usually providing the voltage drop feed between the
field lines impose severe restrictions on the maximum field. However, it is shown that very large radial DC voltage drops can be sustained by
injecting waves of predetermined frequencies and wave vectors, traveling along the azimuthal direction of an axially magnetized plasma
cylinder, or by injecting fast neutral particles beams along this azimuthal direction. The large conductivity along the magnetic field lines and
the small conductivity between the field lines then distribute this voltage drop. The global power balance and control parameters of wave and
beam generated large DC electric fields in magnetized plasmas are identified, described, and analyzed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0142813

I. INTRODUCTION

The quest for very large electric fields is mainly driven by the
need for more compact particles accelerators, but it is also important
in other fields such as (i) mass separation envisioned for nuclear waste
cleanup,1 spent nuclear fuel reprocessing,2–7 and rare earth elements
recycling,8 (ii) advanced E cross B plasma configurations for the pur-
pose of ions acceleration,9–11 and (iii) thermonuclear fusion with rotat-
ing tokamak12,13 or rotating mirrors.14–18

Two field configurations can sustain a DC electric field in a mag-
netized plasma—(i) the Brillouin configuration with an axial magnetic
field and a radial electric field19 and (ii) the Hall configuration with a
radial magnetic field and an axial electric field. This last configuration
is the one at work in stationary plasmas thrusters where ions are
unmagnetized; the former one, where ions are magnetized, is used in
mass separator devices and advanced thermonuclear traps.

This study is devoted to the class of Brillouin configurations.
Brillouin type of rotating plasmas has been widely studied since the
early proposal of Lehnert to take advantage of the isopotential charac-
ter of magnetic field lines and surfaces to sustain a voltage drop

through external biasing at the edge of a plasma column with concen-
tric electrodes.20–24 These rotating configurations have since then been
explored both theoretically and experimentally for mass separa-
tion,25–38 thermonuclear confinement,14–18 and the study astrophysical
phenomena in laboratory experiments.39,40

In this new study, rather than focusing specifically on separation
or fusion applications, we will address the generic issues of the power
balance and the field structure of unconventional radial electric field
sustainment, with waves or neutral beams, in a cylindrical plasma shell
confined in a magnetized column. We will present new promising
results in terms of efficiency and control of these advanced wave and
beam schemes.

Three mains principles can be considered with respect to very
high electric field generation:

(i) Accelerator technologies,41 such as electrostatic, Van de
Graff type, accelerators, where metallic electrodes are
charged up to create a voltage drop of typically a few MV.
These DC types of devices are limited by electrons emission
at metallic surfaces under high electric fields and/or
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breakdown of the insulating gas. Modern RF and micro-
wave accelerators bypass this drawback of metallic surface
through the use of high frequency fields and can reach far
higher AC electric fields values, but even at high frequen-
cies, metallic structures display an unavoidable electric field
threshold above which massive electron emission takes
place.
To address breakdown and emission problems, the use of
fully ionized plasma has been put forward.

(ii) Laser–plasma accelerators bypass these problems through
the use of plasma rather than metals to sustain the electric
charges separation and have reached voltage gradients in
the GV per meter range. The basics of such schemes is the
generation of a traveling electrons–ions charge separation
with the ponderomotive force of an ultrashort laser pulse
acting on the electron population. Indeed, a short laser
pulse of length L, described by its vector potential A, will
push the electrons in the propagation direction and generate
a charge separation with amplitude q2A2L=2m2c2,42,43

where q and m are the electron charge and mass and c is the
velocity of light. Such a charge separation, of the order of
tens of lm in underdense plasmas, generates large
traveling fields which then will oscillate at the electron
plasma frequency xpe behind the pulse as a wake. A well-
phased, well-shaped charged particle bunch, following the
laser pulse, can gain energy in such a laser generated elec-
trostatic wave.

(iii) Besides these mature conventional and advanced accelerator
technologies, an overlooked physical principle can be put at
work to generate large DC electric field: using a magnetized
plasma in which we induce a steady state charge separation
perpendicular to the magnetic field through the continuous
absorption of a resonant wave or the continuous ionization
of a fast neutral beam.

That a magnetic field can inhibit the relaxation of the charges
separation sustaining a very large voltage drop across a magnetic field
is suggested by the energy associated with both electric and magnetic
fields: (i) e0E2V=2 for an electric field E in a volume V and (ii)
B2V=2l0 for a magnetic field B in a volume V. A large electric field of
say 10 MV/m is associated with a density of energy (pressure) of the
order of few kJ/m3, although a typical magnetic field of say 1 T is asso-
ciated with a density of energy (pressure) of the order of few MJ/m3.

This very strong ordering between magnetic and electric pressure sug-
gests why the free charges, which are attached to the magnetic field
through the cyclotron motion, can resist the tendency to relaxation
and (quasi-) neutralization driven by an electric field perpendicular to
the magnetic field.

The wave and beam schemes considered in this study to drive an
electric field in a magnetized plasma are to be compared with the
more classical scheme where a voltage drop between field lines is
imposed with external voltage generators connected to the field lines
edges, as illustrated in Fig. 1(a). As we will demonstrate, an important
conceptual difference is that in the classical scheme, the electric field
EðzÞ has to penetrate the plasma column from the edge and is decreas-
ing along the z axis from the left and right edges toward the center. On
the other hand, wave or beam power can in principle be deposited at
the center of a plasma column, as shown, respectively, in Figs. 1(b)
and 1(c). In these new schemes, the maximum voltage drop, thus,
occurs in the center while the minimum voltage drop is found the end-
plates, in contrast with the classical scheme. By allowing the electric
field to be localized more inside the plasma than at the edge, with a
weaker interaction with any solid material, the risk of breakdown and
emission near metallic endplates are reduced, and larger values can be
envisioned.

Practically, the upper limit for the amplitude of electric field gen-
erated by a laser pulse in underdense plasmas is known to be associ-
ated with the occurrence of cavitation behind the pulse. This
phenomenon has been observed numerically and experimentally. On
the other hand, the upper limit for the amplitude of the DC electric
field generated by wave or beam power absorption in magnetized plas-
mas has never been explored. Moreover, the possibility to isolate this
large DC electric field from the plasma facing end plate in order to
avoid breakdown or electron emission has never been considered.
Both of these issues are considered here. We will identify the con-
straint arising from the plasma (i) inherent anisotropic dissipation and
(ii) finite size and then translate it into realistic conditions for large
field generation, distribution, and dissipation, thus identifying upper
bounds on power consumption for DC high voltage generation across
magnetized plasmas. We will show that upper bounds in the GV/m
range can be envisioned from the proposed models of waves and
beam generation under optimal conditions, but that a few MV/m
already provides the necessary conditions for the very fast supersonic
rotations of a fully ionized hot plasma columns (required, for instance,
in thermonuclear trap) and is accessible with wave or beam power of
the order of few tens of MW.

FIG. 1. (a) The classical method to sus-
tain a perpendicular electric field in a mag-
netized plasma (P) column with biased
edge electrodes, (b) wave driven charge
separation in a magnetized plasma (P),
and (c) beam driven charge separation in
a magnetized plasma (P). EðzÞ is the
radial electric field between the axis and
the outer cylindrical shell.
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This paper is organized as follows. First, in Sec. II, we present a
heuristic view of the formation of a voltage drop using waves and
beams and address the issue of dissipation in a magnetized plasma.
Then, in Sec. III, we briefly review the principle of charge transport
driven by resonant waves in a magnetized plasma and identify from
these results an upper bound for DC electric field wave driven genera-
tion. Then, in Sec. IV, we describe the principle of charge separation
driven by fast neutral beam injection. The expression of the sustained
DC electric field is established through three different methods giving
the very same result. The order of magnitude of the maximum achiev-
able electric field through this method is also estimated. The steady
state balance between wave/beam driven charge separation/generation
and dissipative charge dispersion and (quasi-) neutralization is consid-
ered in Sec. V. Specifically, a steady state model is obtained by consid-
ering the balance between (i) wave/beam driven charge separation/
generation, (ii) fast distribution/spreading along the field lines, and
(iii) slow relaxation across the field lines. This model is then solved in
Sec. VI to identify both the plasma resistance R and the attenuation
length k, which describe the steady state of a wave, or beam, driven
magnetized and polarized plasma slab. The results are then used to
address in Sec. VII the issue of finite size plasmas in the case where the
attenuation length is too long to ensure a good confinement of the
electric field near the wave or beam active plasma zone and away from
the plasma edges. We show that a decrease in the voltage drop at the
edge of the plasma can be achieved at the cost of a certain loss of the
efficiency of the generating process. Finally, the last section, Sec. VIII,
summarizes our new findings and points toward the optimization of
these DC electric field generation and confinement schemes when
additional constraints are considered, either for thermonuclear control
in rotating mirrors or mass separation purposes.

II. FORMATION OF VOLTAGE DROP INSIDE
A MAGNETIZED PLASMA

This section provides a heuristic presentation of the problem of
electric field generation in a plasma.

Consider a magnetized plasma and a Cartesian set of coordinates
ðx; y; zÞ and a Cartesian basis ðex; ey; ezÞ. A wave propagating along
the y direction, perpendicular to the magnetic field Bez , with wave vec-
tor k?ey and frequency x, generates a charge separation of the reso-
nant population and pushes each resonant particle by an amount

dxG ¼
k?
qxB

dE; (1)

where dE is the amount of energy absorbed by the resonant
particle and xG is its guiding center position. This process is illustrated
in Fig. 2(b).

When the quantum of energy dE ¼ �hx is absorbed, the quantum
of perpendicular momentum �hk? along y is also absorbed and,
through a continuous absorption, this provides a secular force �hk?=dt,
which drives a drift along x: �hk?=dtqB. During a time dt, the shift in
position is, thus, equal to �hk?=qB, which eliminating �h ¼ dE/x gives
Eq. (1). This relation, Eq. (1), will be reviewed in Sec. III.

If, rather than dEðJÞ, we consider a stationary (density of) power
absorption PRFðW=m3Þ, then Eq. (1) shows that a continuous wave
drive will generate a continuous guiding center current density J?ex
perpendicular to the magnetic field

J?
A
m2

� �
¼ k?

xB
� PRF

W
m3

� �
; (2)

where PRF is the density of power absorbed by the resonant popula-
tion. This perpendicular drift current generation has been proposed to
confine toroidal plasmas12,13 and, for unstable waves, to provide a free
energy extraction mechanism from thermonuclear plasmas through
alpha channeling in both tokamaks and mirrors.16,44–47

Rather than a wave, we consider now a fast neutral beam as a
momentum source, with velocity vey , injected in a magnetized plasma
as illustrated in Fig. 2(a). When a fast neutral particle is ionized inside
the plasma, the electron and the ion rotate in the opposite direction
and the value of their Larmor radius is so different that these two
charges are separated on average by an amount

qi �
Mv

qB
� qe; (3)

creating an electric dipolar moment qqi, where qe=i is the electron/ion
Larmor radius andM and q are the ion mass and charge.

The balance between the ionization rate of the fast neutral
and the slowing down of the fast ions provides a steady state den-
sity of fast ions NF. The associated steady state charge separation
can be described by an electric polarization P?ex perpendicular to
the magnetic field

P?
C
m2

� �
¼ Mv

B
� NF

1
m3

� �
: (4)

This electric polarization P? is the source of a voltage drop between
magnetic field lines, which will be analyzed in Sec. IV.

In this study, we will identify, describe, and analyze schemes to
use this wave driven current J? Eq. (2) or this beam driven polariza-
tion P? Eq. (4) to generate a large voltage drop across the magnetic
field lines in the core of the plasma. Core generation provides a way to

FIG. 2. (a) Neutral beam driven perpendicular electric polarization and (b) wave
driven perpendicular electric current generation.
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mitigate breakdown and/or emission at the edge of the plasma when
both the plasma and the field lines encounter the end plates.

A picture of the build-up phase of a growing electric field in a
plasma slab can be described as follows. Note that in the following
model, we do not consider the interplay between the adiabatic and res-
onant response of the particles48–50 and consider the final global
momentum balance. A wave, or a neutral beam, moves some minority
charges across the magnetic field as shown in Eqs. (1) and (3) and,
thus, sets up a current J0ðtÞ such that J0ðt ¼ �1Þ¼ 0 and J0ðt ¼ 0Þ
¼ J0 (dissipation is switched off for t< 0). From an electrical point of
view, this phase corresponds to a capacitive electric field build up in a
non-dissipative dielectric media: the charging of a capacitor. The
plasma, which displays a low frequency permittivity e¼ 1þ x2

pi=x
2
ci

� x2
pi=x

2
ci, adjusts an electric field EðtÞ such that the electrostatic limit

of Maxwell–Ampère equation is fulfilled,

e0
x2

pi

x2
ci

@E
@t
þ J0 tð Þ ¼ 0: (5)

It must be stressed that J0ðtÞ is here a function of all the other plasma,
wave, or beam parameters and, in particular, of the DC electric field.
From a mechanical point of view, this build-up phase corresponds to a
momentum input through the J0ðtÞ � B force and this momentum
ends up in the plasma E cross B drift, guaranteeing momentum
conservation ð0

�1
J0 tð Þ � Bdt þ NpM

E0 � B
B2

¼ 0; (6)

where Eðt ¼ 0Þ ¼ E0, M is the ion mass, and Np is the ion density.
The physical interpretation of Eq. (6) is simply that the charge accu-
mulation described by the time integral of the current, in the first
term, is the source of the electric field multiplied by the dielectric con-
stant of the plasma, in the second term, i.e., Maxwell–Gauss’s equation
is fulfilled.

Then, for t> 0 that is in the steady state dissipative regime, the
charge separation associated with J0 is short circuited by the plasma con-
ductivity through the conduction current Jconduction in the magnetized
plasma, as well as the boundary condition at the edge of the magnetic
field lines. After this build-up phase, the steady state is reached when

r � J0 þ Jconductionð Þ ¼ 0: (7)

This steady state regime will be described within a framework
where the plasma is modeled as a slab of an anisotropic conductor,
and the end plates at the outer edges of the magnetic field lines will be
modeled by a resistive load RL.

Consider the magnetized plasma slab illustrated in Fig. 3, with the
following dimensions: a along x, b along y, and l along z. This plasma
slab is magnetized along z, B ¼ Bez , and we assume that a wave or
beam driven steady state electric current I0 flows along the face S1 from
the lower magnetic surface S2 up to the upper magnetic surface S3. The
two magnetic surfaces S2 and S3 are, thus, charged like a capacitor, but
the electric conductivity along the magnetic field line gk and across the
magnetic field line g? � gk complexifies this simple capacitor charging
model and relaxes the stored charges. This conductive charge redistribu-
tion and relaxation are the source of the voltage distribution and power
dissipation involved in the process of wave or beam DC electric sustain-
ment in a plasma identified and analyzed here.

The voltage drop along S1 between S2 and S3 is V0 so that the
power needed to sustain the steady state electric field (V0=a) ex near
S1 is simply I0V0. Two asymptotic cases can be considered in order to
set up an equivalent circuit model.

First, if S4 is a conductive short circuit between S2 and S3, the
power P needed to sustain the steady state will be approximately

Pshort cicuit ¼ I0V0 �
l

abgk
I20 ¼

ab
l

gkV
2
0 (8)

as it is the conductivity along the magnetic field, which will ensure
preferentially the charge relaxation at S4. Second, if S4 is non-
conductive, S2 and S3 are isolated and the power needed to sustain the
steady state will be approximately

Popen cicuit ¼ I0V0 �
a

blg?
I20 ¼

bl
a

g?V
2
0 ; (9)

as the charge relaxation takes place across the magnetic field in the
plasma volume rather than at the edge.

For a given voltage requirement V0, and because g? � gk;
Popen cicuit � Pshort cicuit. In between these two asymptotic limits, we
will calculate the equivalent resistance of the slab Re, Eq. (57), and the
power balance of the wave or beam generation process, Eq. (61). These
are the main new results presented in this article. The new expression
for Re involves both what we call the plasma resistance R and a pene-
tration length k describing the spatial decay of the voltage drop away
from the source region.

III. WAVE-DRIVEN RESONANT CHARGE SEPARATION

In this section, we derive the relations, Eqs. (1) and (2), and
briefly review the main relations describing the dynamics of wave
driven resonant charges separation in a plasma. This phenomenon has
been proposed to provide free energy extraction in thermonuclear
plasmas44–47 and to help toroidal confinement in tokamak.12,13

The Cartesian plasma slab considered in the following is mag-
netized along z, B ¼ Bez and polarized along x, E ¼ �Eex . A wave
with wave vector k¼ k?ey þ kkez and frequency x propagates in
this plasma along (z) and across ðyÞ the magnetic field. We restrict
the following argument to an unspecified components of this wave
oscillating with the phase (xt �k?y – kkz). In order to identify
the wave-particle resonances, we plug into the phase of this wave
the unperturbed motion of a charged particle characterized by the
invariants (xG; vk, vc),

FIG. 3. A magnetized plasma slab ða; b; lÞ with wave or beam current drive I0 local-
ized on the left side S1.
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x ¼ xG þ
vc
xc

cos xctð Þ; (10)

y ¼ E
B
t þ vc

xc
sin xctð Þ; (11)

z ¼ vkt: (12)

Here, xc is the cyclotron frequency, vc is the cyclotron velocity, vk is
the velocity along the field lines, and xG is the guiding center position
along x. The phase seen by a particle is, thus,

cos xt � k?y� kkz
� �

� cos xt � k?
E
B
t�k?

vc
xc

sinxct � kkvkt

� �
:

(13)

This result can be rearranged with the classical Euler Bessel expansion

cosðaþ b sin/Þ ¼
XN¼þ1

N¼�1
JNðbÞ sin ðaþ N/Þ; (14)

so that the field seen by the particle becomes a series of harmonics
with Bessel function amplitudes

cos xt � k?y � kkz
� �

�
XN¼þ1

N¼�1
JN k?

vc
xc

� �

� sin xt � k?
E
B
t � Nxct � kkvkt

� �
:

(15)

Thus, a resonance might occur with the N component of this spectral
expansion if this oscillating amplitude becomes stationary

x� k?E=B� Nxc � kkvk ¼ 0: (16)

When this condition is fulfilled, the topology of the particles
motion phase portrait changes and particles trapped in the wave expe-
rience a large variation of the invariants of the free motion ðxG; vk; vcÞ.
When this condition is not fulfilled, the particles oscillate and this
oscillation is associated with a reactive power so that no active power
is exchanged with non-resonant (adiabatic) particles.

For such resonances, if an amount dE of RF energy is absorbed
by a resonant particle, then the unperturbed motion invariants
ðxG; vk; vcÞ are no longer invariant. Because of the resonant interaction
with the wave they become ðxG þ dxG; vk þ dvk; vc þ dvcÞ where
ðdxG; dvk; dvcÞ are proportional to dE, a simple dynamical analysis
allows us to write the set of relations as follows:

dxG ¼
k?
qxB

dE; (17)

mdvk ¼
kk
x

dE; (18)

mvcdvc ¼ N
xc

x
dE: (19)

Equation (17) is associated with the conservation of the canonical
momentum along y. Equation (18) is associated with the conservation
of classical momentum along z. Finally, Eq. (19) describes harmonic
cyclotron heating. These relations can be rederived from an
Hamiltonian analysis51 or simply from the quantum photon picture
described in Sec. II.

Global (wave þ particle) energy conservation can be simply
checked as follows. The complete variation of a resonant particle
kineticmvkdvk þmvcdvc and potential qEdxG energy is

qEdxG þmvkdvk þmvcdvc ¼
dE
x

k?E
B
þ kkvk þ Nxc

� �
¼ dE; (20)

where we have used the resonance condition Eq. (16) to obtain the
final identity.

From these results, we can identify a theoretical maximum elec-
tric field E	 that can be sustained in situ in a plasma with this type of
resonant charge separation process. The optimal wave such that all the
energy dE goes to the charge separation and ends up in the form of
potential, qEdxG, rather than kinetic, mvkdvk þmvcdvc, energy, is a
wave displaying no Landau and cyclotron absorptions such that
kk ¼N¼ 0 (we do not consider here anomalous Doppler resonances
where the wave transfers energy between degrees of freedom).
Equation (16), thus, becomes a simple drift resonance: x ¼ k?E	=B.
This last relation is confirmed by the energy balance restricted to
potential energy dE ¼ qE	dxG. Then, with the help of Eq. (17), we
eliminate dE to find the constraint on the DC electric field E	RF ,

E	RF
B
¼ x

k?
: (21)

Very large E	RF can, thus, in principle be reached for very large B
field values, though it is to be noted that the wave dispersion xðk?Þ is
also a function of B. Taking a moderate value of B of the order of few
tesla and a high frequency wave with a velocity of the order of the
velocity of light, which is the case in tenuous plasmas, we end up with
electric fields values of the order of 1GV/m. The relation Eq. (21),
however, only offers a partial view of the problem because if we want
to drive the plasma drift motion we need waves with a large momen-
tum k?, whereas Eq. (21) suggests that small k? are preferable for
large electric field. Equation (21) is an upper bound associated with an
optimal use of the wave power in term of efficiency. It is a kinematical
constraint associated with optimal resonance. This large value is only
achieved if dissipation (charges relaxation) is neglected. In the follow-
ing, we will assume that the wave driven charge separation takes place
in a narrow region around z¼ 0 and that this RF region is hot and col-
lisionless but the neighboring region is assumed collisional, and we
will analyze the impact of dissipative charge relaxation in a plasma
slab.

IV. NEUTRAL-BEAM-DRIVEN CHARGE SEPARATION

In this section, we derive the relations Eqs. (3) and (4) and set up
and solve a simple model describing beam driven charges separation
and electric field generation in a magnetized plasma. This phenomena
is illustrated in Fig. 2(a): a beam of fast neutral atoms with velocity vey
and density NB is directed toward a plasma magnetized with B ¼ Bez .
These fast atoms are ionized through collisions with the plasma elec-
trons and ions and also through charges exchange with slow ions.
Both processes provide fast ions generation from these fast neutral.

The rate of fast ion generation from fast neutral is �, and it takes
into account both ionization and charge exchange. As soon as a fast
ion is generated in the plasma, it starts to slow down with a typical
slowing down time s. If we consider fast hydrogen atom in a thermo-
nuclear pB11 plasma, s also accounts for fast proton pitch angle
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scattering on boron ions. A full model of momentum transfer with
neutral beam was introduced by Putvinskii in Ref. 52, addressing, in
particular, the saturation of the momentum exchange when the beam
velocity becomes of the order of the plasma velocity. Here, in order to
identify the basic scaling with respect to the beam power at low power,
we present a simple model valid in the limit that v� E=B. The den-
sity of fast ions in the plasma, NF, is, thus, given by the solution of the
particles balance,

dNF

dt
¼ �NB �

NF

s
: (22)

Considering a steady state injection, the relation between the density
of fast ions, i.e., ions with a large Larmor radius, and the density of
injected neutral is

NF ¼ NB�s: (23)

Three methods are considered below to calculate the DC electric
field sustained by steady state neutral beam injection.

First, the conservation of linear momentum in the y direction can
be used to calculate the electric field Eex generated by the beam. If we
neglect the electron mass m in front of the ion massM, the beam den-
sity of momentum NBMv, which is coupled to the plasma at a rate �,
provides a density of force NBMv�. This density of force acts during a
time s on the plasma. The corresponding density of momentum
NBMv�sey is absorbed in the form of plasma linear momentum along
y. If we write NP the plasma density, the linear momentum balance
can be written as

NBMv�sey ¼ NpM
Eex � Bez

B2
: (24)

The very same relation can be obtained from an electrical analysis
rather than from a mechanical point of view. If we neglect the electron
Larmor radius in front of the ion Larmor radius, the steady state den-
sity of fast ions NF is associated with an electric polarization Eq. (4)
NFqqiex ¼NFðMv=BÞex . In response to this electric polarization, the
plasma, which displays a low frequency permittivity e¼ 1þ x2

pi=x
2
ci

� x2
pi=x

2
ci, sets up a reverse polarization through an electric field gen-

eration Eex . The condition for this dielectric dipole screening is

NF
Mv

B
ex þ e0

x2
pi

x2
ci
Eex ¼ 0: (25)

Here, xpi is the ion plasma frequency and xci is the ion cyclotron fre-
quency. Taking the cross product of this last relation with B, we find
the condition

�NB�sMvey þMNp
Eex � Bez

B2
¼ 0; (26)

which is Eq. (24).
Finally, as a third demonstration of this result, we can consider

Maxwell–Ampère equation with (i) the polarization current dP?=dt
¼ðNBMv=BÞ�ex , describing the generation of fast ions and (ii) the
displacement current e0e@E=@t¼ e0eE=s associated with the decay of
the electric field due to these fast ions slowing down. In writing
Maxwell–Ampère equation, we neglect the diamagnetic effect of the
fast ions and consider Bfastions¼ 0 such that r� Bfastions¼ 0, which
implies @P?=@t þ e0e@E=@t¼ 0. In this case,

NB
Mv

B
�ex þ e0

x2
pi

x2
ci

E
s
ex ¼ 0; (27)

which is again identical to Eqs. (24) and (26).
Thus, no matter the point of view, (i) mechanical with the

momentum balance Eq. (24), (ii) electrostatic with the dielectric dipole
screening Eq. (26), and (iii) electrodynamic with Maxwell–Ampère
Eq. (27), we find that the continuous injection of a neutral beam along
y will sustain a DC electric field along x,

ENB
B
’ vmin 1;

NB

Np
�s

� �
: (28)

The introduction of the upper bound ENB ¼ vB in Eq. (28) comes
from the fact that we assumed here as indicated earlier that the beam
velocity v is much larger than the plasma drift velocity Eex � Bez=B2

in the three derivations above. Indeed, when the drift velocity
approaches the beam velocity the electric field drive saturates.52

Although this may seem restrictive, it is expected to hold in most cases
of interest here. To see this one must recall that the spontaneous rota-
tion of a plasma column with an axial magnetic field and a radial elec-
tric field is governed by the slow Brillouin mode,19,53 and the angular
rotation frequency is, thus, limited to fraction of the ion cyclotron fre-
quency. This separation between plasma angular rotation and ion
cyclotron should be even larger when considering that faster rotations,
meaning closer to the Brillouin limit, are likely to lead to instabil-
ities.54–56 The desirable operating regime, thus, corresponds to
x�1ci jE=ðBrÞj � 1. For magnetic fields of a few Teslas, the ion cyclo-
tron frequency of boron ions or alphas is about a few tens of MHz,
which for a device that is a few meters in radius then gives a maximum
drift velocity of about 106 m s�1. For a proton, this is at most a few
keV that is well below typical neutral beam energies. This ordering a
posteriori supports the hypothesis that we made to get Eqs. (24), (26),
and (27), and from there Eq. (28).

Let us finally estimate Eq. (28) for plasma parameters typical of
large tokamak plasmas experiments NB=Np � 10�4–10�5; �s
� 105–106 and v � 106–107 (m/s). In all these relations, both � and s
are averaged values as they are functions of the neutrals and fast ions
velocities. Since in this case �sNB=Np is comparable or larger than 1,
we find an upper bound of tens of MV/m for the DC electric field gen-
eration driven by a neutral beam in a magnetized plasma with a mag-
netic field of a few Teslas.

V. VOLTAGE DROP DISTRIBUTION IN A PLASMA

The results obtained in Secs. III and IV suggest that both
waves and neutral beams can drive perpendicular electric fields as
large as a few MV/m, and likely even larger for wave drive. Because
such fields are typical of advanced high energy supersonic rotating
plasmas applications, we consider now the full picture by address-
ing the complementary issues of voltage distribution and dissipa-
tion in the bulk of a finite size plasma slab, far from the wave or
beam active regions.

Consider for this a cylindrical plasma shell uniformly magnetized
along the z axis. In addition to the axial magnetic field B ¼ Bez , we
consider a radial electric field generated in a cylindrical shell of mag-
netic field lines, with width a and radius b=2p, depicted in gray in Fig.
4(a). The radial electric field is generated in this cylindrical shell to
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sustain a rotation around the z axis for the purpose of thermonuclear
confinement or mass separation.

In order to simplify the analysis, which can be also carried in cylin-
drical coordinates, we will neglect curvature effects (b> a) and describe
the gray plasma zone of Fig. 4(a) as a slab plasma depicted in Fig. 4(b).
This transformation is just an unfolding of the cylindrical shell and dis-
plays the advantage of simplifying the physical picture and results.
Following this unfolding, the Cartesian plasma slab considered in the
following is both magnetized along z, B ¼ Bez , and polarized along x,
E ¼ �Eex .The magnetized plasma slab is of finite size: (i) a along x, (ii)
b along y, and (iii) l along z, as illustrated in Fig. 5(b).

The electric field is described by an electrostatic potential V
such that E¼�ð@V=@xÞex � ð@V=@zÞez , where @V=@z < @V=@x
¼ V=a. The equivalent DC current generator (wave or beam), located

at z¼ 0, sustains a current between x¼ 0 and x¼ a. As a result of
charges depletion at x¼ 0 and charges accumulation at x ¼ a, a volt-
age drop V0¼Vðz ¼ 0Þ is sustained between the magnetic surfaces
x¼ 0 and x¼ a. This voltage drop will decay away for z> 0 because of
the finite conductivities along z and across x. These finite conductivi-
ties will provide a fast dispersion of the charges along z and a slow
relaxation across B along x.

We assume (i) that the amplitude of the wave is shaped such
that the wave equivalent current generator is driven from x¼ 0 up
to x¼ a near z ¼ 0 and (ii) that the density of the neutral beam is
shaped such that the beam equivalent voltage generator sets up a
voltage drop between x ¼ 0 and x¼ a near z¼ 0. In order to
describe dissipative processes in the slab z> 0, we consider an
infinitesimal slice of magnetized plasma: dz along z, a along x, and
b along y. This elementary slab, depicted in Fig. 5(b), displays two
properties: (i) a large conductivity along dz and (ii) a large resistiv-
ity along x. We assumed cylindrical symmetry of the original prob-
lem which translates into homogeneity along y of the unfolded
slab. In particular, as the wave and beam travel in the y direction,
we assume homogeneous wave or beam power deposition along y
near z¼ 0, which means homogeneous current generation and
electric field generation along y.

We describe the dissipative dynamics of the charges by the cur-
rent IðzÞ, which flow easily along z and the small short circuited cur-
rent resulting from the small conductivity along x. In a slice dz, this
short circuiting of the initial charges separation is described by dI/dz.
This model allows to describe the volume charges relaxation and the
steady state large voltage drop generation across the magnetic field. To
calculate the small conductivity Gdz along x (across B) and the small
resistivity Sdz along z (along B), we apply the classical formula describ-
ing the resistance/conductance of the elementary parallelepiped
depicted in Fig. 5(b),

Sdz ¼ dz
gkba

; (29)

Gdz ¼ g?bdz
a

; (30)

where we have introduced the classical conductivities gk and g?
along and across the field lines in a magnetized plasma.57–62 Note
that taking into account curvature effects would change the expres-
sion of G but not S, with for the cylindrical shell illustrated in
Fig. 4(a),

G ¼ 2pg?

�
ln

1þ ðpa=bÞ
1� ðpa=bÞ ; (31)

and we recover the previous expression if a� b. Then, we apply
Ohm’s law to the transmission line like model illustrated in Fig. 6(a) to
write the equations fulfilled by the voltage V across x and the current I
along z,

dV ¼ �SIdz; (32)

dI ¼ �GVdz: (33)

In order to obtain the various scalings and order of magnitude esti-
mates of the final results, we use the classical formula for the longitudi-
nal and transverse conductivities used in Eqs. (29) and (30).

FIG. 4. Geometrical characteristics of the Cartesian plasma slab (b) modeling the
cylindrical plasma shell (a).

FIG. 5. (a) A plasma slab magnetized along z and polarized along x through wave/
beam power absorption at z¼ 0. (b) An infinitesimal slice dz is fully characterized
by its transverse conductance Gdz and longitudinal resistance Rdz.
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Assuming first that the plasma is not fully ionized and that colli-
sions with neutrals at rest are the dominant dissipative process,

gk ¼
nmq2

m�m
; g? ¼

nMQ2�M
Mx2

c
: (34)

Here, n is the density of free charges with mass m (electrons) or M
(ions) and charges q or Q, gk is associated with the electron population
and g? with the ion one, and nMQ ¼ nmq. The collision frequency �
can be either the collision frequency with neutrals in a cold plasma or
the turbulent decorrelation frequency in a turbulent plasma.

On the other hand, if the plasma is fully ionized, the conduc-
tivity along the field lines is given by the Spitzer conductivity. It is
independent of the density but scales as T�3=2 with the
temperature,

gk ¼ e0
x2

pe

�ei
: (35)

Across the field lines, no relative velocity between electrons and
ions is observed in the E� B rest frame. This means that we have
to consider an additional effect to find a dissipative channel.
Among these processes, (i) inertia, (ii) viscosity, and (iii) inhomo-
geneity are usually put forward.25,26,63 A clear discussion of the
various regimes of dissipation across magnetic field lines can be
found in Ref. 63. Here, we will consider the effect of inhomogene-
ity, which displays the same scaling as viscosity.63 In an inhomoge-
neous electric field, the expression of the electric drift velocity vE�B
is given by

vE�B ¼ 1þ q2

4
d2

dx2

� �
E� B
B2

; (36)

where q is the Larmor radius. We will assume d2E=dx2 � E=a2. This
velocity is along y and, because of the difference in Larmor radius
qe � qi, Coulomb collisions, at a rate �ie, provide a friction force F
between the electron and ion populations. As a result, the ion popula-
tion experiences an y directed force F,

F ¼ �ie
kBTi

4x2
ci

E
a2B

; (37)

where xci is the ion cyclotron frequency. This force F along y is the
source of a F� B=QB2 drift along x, and this drift gives the equivalent
conductivity g? associated with inhomogeneity

g? ¼ ni
�ie
xci

q2
i

a2
Q
4B
¼ e0

4
�ie

x2
pi

x2
ci

q2
i

a2
: (38)

The strong scaling with respect to the magnetic field q2
i =x

2
ci

� B�4 is to be noted. The effect of viscosity displays the same scaling,
and we will consider Eq. (38) as the approximate perpendicular con-
ductivity of a fully ionized plasma.63 In the following, to evaluate the
power dissipation with Eqs. (35) and (38), we will use the following
estimate for a fully ionized hydrogen plasma:

�ei ¼ lnK
mc2

3kBT

� �3
2 re
c

x2
pe �

mc2

3kBT

� �3
2 xpe

1011Rd=s

� �2
; (39)

where re ¼ 2:8� 10�15 m is the classical electron radius, mc2 ¼ 511
KeV is the electron rest energy, and c ¼ 2:9� 108 m/s is the velocity of
light. The ion–electron collision frequency is given by �ie¼m�ei=M.

VI. ATTENUATION LENGTH AND PLASMA RESISTANCE

In order to analyze Eqs. (32) and (33), it turns out to be more
convenient to introduce what we will call the plasma slab resistance R
defined as

Rb ¼ 1ffiffiffiffiffiffiffiffiffiffig?gk
p ; (40)

and the attenuation length k defined as

k
a
¼

ffiffiffiffiffiffi
gk
g?

r
: (41)

These two global characteristics, R and k, capture all the electrical
properties of the plasma slab needed to describe the charge relaxation
for z> 0 of the z¼ 0 wave or beam driven perpendicular current.

For a fully ionized plasma, the transverse conductivity is a second
order effect described in Eq. (38), and the plasma resistance and atten-
uation length are given by

k
a
¼ 2ffiffiffiffiffiffiffiffiffiffiffi

�ei�ie
p

xpexci

xpi

a
qi
� xci

�ie

a
qi
; (42)

1
Rb
¼ e0

2

xpexpi

xci

ffiffiffiffiffiffi
�ie
�ei

r
qi

a
� e0

x2
pe

xce

qi

a
: (43)

The attenuation length k is, thus, far larger than the size of the device
for a fully ionized plasma of the thermonuclear type. Note also that
while the definition of the attenuation length k, Eq. (41), already
appears in the literature in the few studies addressing the issue of field
penetration from the edge,59,60,62 the definition of

R ¼ xcea
be0qix2

pe

for a fully ionized plasma, Eq. (43), does not seem to have attracted
some previous specific attention despite its importance to understand
DC voltage distribution in a fully ionized magnetized plasma.

With these definitions, Eqs. (32) and (33) become simply

k
dV
dz
¼ �RI; (44)

k
dI
dz
¼ �V

R
: (45)

FIG. 6. (a) Equivalent circuit of a (a, b, dz) slice of the plasma. (b) Equivalent model
of power absorption and charge separation near z¼ 0 and charge distribution in
the plasma slab terminated with loaded endplates at z ¼ l.
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We further define the new variables s ¼ z=k and (u, v) such that

u

v

 !
¼

Vffiffiffi
R
p þ

ffiffiffi
R
p

I

Vffiffiffi
R
p �

ffiffiffi
R
p

I

0
BBB@

1
CCCA; (46)

so that

d
ds

u
v

� �
¼ �u
þv

� �
: (47)

The solutions of Eq. (47) are simply a forward decay u ¼ u0 exp
�s and a backward decay v ¼ v0 exp s.

Note for completeness that Eq. (47) was derived by assuming
that the plasma is homogeneous. A simple model taking into account
the z variation of kðzÞ and RðzÞ can be studied in a way similar to the
analysis of the previous homogeneous model but by considering this
time the change in variable,

s zð Þ ¼
ðz
0
du=k uð Þ: (48)

With this change in variables, Eq. (47) becomes

d
ds

u
v

� �
¼ �u
þv

� �
� d ln

ffiffiffi
R
p

=ds

 �

v
u

� �
; (49)

and the forward and backward solutions are coupled by the inhomo-
geneities. This inhomogeneities kðzÞ and RðzÞ play the role of an addi-
tional dissipative term, for example, when the magnetic field lines are
diverging. Although interesting generalizations, the tapering effect of
inhomogeneous plasma and magnetic field properties will not be
considered here, and we will restrict the analysis to the solutions of
Eq. (47).

The general solution of Eqs. (44) and (45) is a linear combination
of the forward and backward solutions exp þ z=k and exp � z=k. In
the following, we consider the general solution

I zð Þ ¼ I� exp � z
k

� �
þ Iþ exp þ z

k

� �
; (50)

V zð Þ ¼ RI� exp � z
k

� �
� RIþ exp þ z

k

� �
; (51)

where the amplitudes I6 are given by the two boundary conditions (i)
at z¼ 0 with the wave or beam driven generators, and (ii) at z¼ l with
a load RL describing how we choose to terminate the field lines and
the plasma. This is illustrated in Fig. 6(b). The exp þ z=k solution is
associated with the reflection on the load at z¼ l when there is an
impedance mismatch of this load RL with the plasma resistance R.

The boundary condition at z¼ 0 depends on whether wave or
neutral beam is considered. For the wave case, as the effect of the
wave is to move already existing charges, we consider an equivalent
perfect current generator I0jRF localized at z¼ 0. For the neutral
beam case, as the beam brings and separates charges with opposite
signs, we consider an equivalent perfect voltage generator V0jNB
localized at z¼ 0. We call I0 ¼ Iðz ¼ 0Þ the current of the genera-
tor equivalent to the wave, and V0 ¼ Vðz ¼ 0Þ the voltage drop in
the beam active region near z¼ 0. These current and voltage

generators can be, respectively, related to the injected RF power
and beam momentum as follows.

Writing PRF½W
 the total power absorbed by the plasma from
the wave at z¼ 0 where the wave power deposition is localized, one
gets

PRF W=m3
� 

¼ PRFd zð Þ
ab

; (52)

where dðzÞ is the Dirac distribution. Then, from Eq. (2), we can define
the equivalent current generator I0jRF associated with the wave drive
at z¼ 0 through the relation J? ¼ I0jRFdðzÞ=b, so that

I0jRF ¼
k?
x

1
Ba
PRF : (53)

Similarly, we can define from Eq. (28) the equivalent voltage generator
V0jNB¼ ENBa associated with the beam drive at z¼ 0,

V0jNB ¼ aB�s
NB

Np
v: (54)

For the wave case, the power of the wave equivalent generators is
I0jRFV0. Under optimal conditions such as discussed in Sec. II, energy
conservation implies that the input RF power is equal to the dissipated
DC power: I0jRFV0¼PRF . Eliminating PRF between this last relation
and Eq. (53), we recover Eq. (21) as expected.

Because of dissipation, the current I0jRF and voltage V0jNB are
progressively shunted by the plasma, away from z¼ 0, as a result of
the high conductivity along z and the weak conductivity along x. This
decrease is described by the solution Eqs. (50) and (51) under the
appropriate boundary conditions Iðz ¼ 0Þ ¼ I0 or Vðz ¼ 0Þ ¼ V0

given in Eqs. (53) and (54) and Vðz ¼ lÞ¼RLIðz ¼ lÞ at the end of
the field lines for a plasma column of length l.

VII. POWER DISSIPATION IN A LOADED PLASMA SLAB
A. Power requirement

We consider Eqs. (50) and (51) with the wave or beam driven
generator Eq. (53) or Eq. (54) at z¼ 0, and with the plasma being ter-
minated at z¼ l by a resistive load RL as illustrated in Fig. 6(b). These
boundary conditions can be written as

I� þ Iþ ¼ I0; (55)

and

R I� exp �
l
k
� Iþ exp þ

l
k

� �
¼ RL I� exp �

l
k
þ Iþ exp þ

l
k

� �
:

(56)

After some elementary algebra, we solve Eqs. (55) and (56) for the
amplitudes I6 and express Vðz ¼ 0Þ as a function of Iðz ¼ 0Þ
through the definition of Re: V0 ¼ ReI0. This resistance Re is the equiv-
alent resistance of the plasma slab as seen from z¼ 0 and writes

Re

R
¼ RL þ Rtanhl=k

Rþ RLtanhl=k
: (57)

For the wave case, Eq. (53) relates the current I0jRF to the RF power
PRF . This power is used to sustain the steady state current and voltage
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pattern in the plasma slab (a, b, l) against relaxation. The maximum
voltage drop in the wave active region z¼ 0 is, thus,

V0jRF ¼ Re
k?
axB
PRF �

R
tanhl=k

k?
axB
PRF ; (58)

where the right hand side of the inequality, Re ¼ R=tanhl=k, is associ-
ated with the optimal choice for the load at z¼ l, that is RL !þ1.
As tanhl=k increases from zero up to one when l increases, a shorter
plasma column displays a larger voltage drop for the same power
because the charges are more concentrated on the field lines, in the
limit that l < k. With the expansion

RejRL!þ1 ¼
R

tanhl=k
� kR

l
¼ a

blg?
; (59)

the plasma slab behaves as an isotropic conductor with conductivity
g? and Eq. (58) becomes

V0jRF �
k?

blg?xB
PRF : (60)

Dissipation across the field lines is ultimately responsible for the limit
described in Eq. (60). For such a favorable limit, even if g? ! 0 or
PRF !þ1, the optimum voltage V0 is limited by the relation Eq.
(21), which is a constraint imposed by the wave-particle resonance if
we want to optimize the generation process and avoid to waste power
into Landau and cyclotron heating.

Using Eq. (38), the power requirement P � blg?V
2
0=a for a

given voltage drop and a given fully ionized plasma under optimal
conditions is

P
W

� �
� V0

MV

� �2 xpe

1011 rad:s�1

� �2 l
m

� �
b
a

� �
kBT
mc2

� ��3
2 qi

a

� �2 xpe

xce

� �2
;

(61)

where we assumed lnK ¼ 10. This result suggests that megavolt volt-
age drops are accessible for rather low driving power in thermonuclear
hydrogen plasmas where typically b � a; xpe � xce and a � 10qi.

Up to now we have only considered a current source (equivalent
to the wave or the beam) localized near z¼ 0. For wave drive, this is
true if the resonant particles are chosen with a zero parallel velocity,
and/or if the plasma column is very long, and/or if the quasilinear
wave diffusion from x¼ 0 to x¼ a is fast enough compared to the
other processes. This issue of the radial current deposition by a wave
must be addressed within the framework of a collisional/quasilinear
kinetic model. Similarly the issue of the neutral beam current deposi-
tion is to be addressed within a kinetic model. Rather than going this
route, we consider here for completeness the previous fluid model but
the complementary and more general problem of a broad current
deposition profile. Specifically, the wave or beam current deposition is
assumed to be broadly distributed all along the field lines, 0 < x < l,
and described by an infinitesimal current source, Idz¼ðI0=lÞdz, in
each infinitesimal section dz along z. We consider the equivalent cir-
cuit associated with an infinitesimal section dz as illustrated in Fig.
7(a). The electrical properties of a slice ða; b; dzÞ then take into
account a Idz current source.

The transmission line equations describing the slab ða; b; lÞ with
load RL at z¼ l as illustrated in Fig. 7(b) are

k
dV
dz
¼ �RI; (62)

k
dI
dz
¼ �V

R
þ kI : (63)

Note that Eqs. (62) and (63) will still hold true if considering plasma
conductivities and power deposition profiles that are inhomogeneous
along z. With the boundaries conditions Iðz ¼ 0Þ¼ 0 and
RLIðz ¼ lÞ ¼ Vðz ¼ 0Þ, the solutions are given by

I zð Þ ¼ Ik Rsinh z=kð Þ
Rcosh l=kð Þ þ RLsinh l=kð Þ ; (64)

V zð Þ ¼ RIk 1� Rcosh z=kð Þ
Rcosh l=kð Þ þ RLsinh l=kð Þ

� �
: (65)

With these solutions, we can now define two equivalent resistances.
The first one is simply the ratio of the voltage V0¼Vðz ¼ 0Þ to the
total wave or beam driven current I0¼

Ð l
0 Idz,

V0

I0
¼ R

k
l

1� R
Rcosh l=kð Þ þ RLsinh l=kð Þ

� �
�

RL!þ1
R

k
l
: (66)

The second resistance is more instructive and is associated with the
integrated global power balance

R0e ¼

ðl
0
V zð ÞIdz

ð l
0
Idz

 !2 : (67)

Indeed, similar to what was discussed for the localized source, the
resistance R0e determines the power balance of the wave or beam
driven rotation process for a broad power deposition profile. Using
Eq. (65), this resistance rewrites

R0e ¼ R
k
l

1� k
l

Rsinh l=kð Þ
Rcosh l=kð Þ þ RLsinh l=kð Þ

� �
: (68)

Interestingly, we find that

R0e �
RL!þ1

R
k
l
; (69)

so that the same result is obtained for distributed and localized drives
under optimal condition RL !þ1. In other words, the power
requirement is rather insensitive to the current deposition profile along
field lines 0 � x � l when RL !þ1 or l < k.

FIG. 7. (a) Equivalent circuit of a dz slice ða; b; dzÞ of the plasma. (b) Equivalent
model of wave absorption and charge separation and charge dissipation in the
plasma slab ða; b; lÞ terminated with loaded endplates at z¼ l.
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B. Voltage shaping

In addition to the power requirement, the model developed here
can also be used to study the voltage shaping issue. Indeed, while a
careful shaping of the radial power deposition profile can be used to
control the radial structure of the electric field, its axial structure is
determined by the plasma properties k, and strategies to control this
axial distribution are to be identified. An issue here is that while the
assumption gk ¼ g Spitzer is confirmed by experiments in fully ionized
plasmas, there exists no large experimental data basis for g? in fully
ionized, magnetized, (supersonic) rotating plasmas. As a result, we
cannot accurately calculate the attenuation length k and the resistance
Re in a fully ionized plasma column of length l. We can, however, as
we will do now, identify trends.

Consider first the limit k > l. In this limit, the plasma column is
not highly dissipative and the power needed to sustain a large radial
electric field is small if RL is large. The large voltage drop is, however,
to be handled at the left and right edge of the column with concentric
circular end plates, and the issue of the management of high voltage
between conductors must then to be solved. Consider now the oppo-
site limit k < l. In this limit, the plasma column is rather dissipative
and the power needed to sustain a large radial electric field will be
large. On the other hand, the insulation of the endplates terminating
the field lines will not be a problem. The former situation, that is lim-
ited dissipation k > l, is the one we will focus on in the remaining of
this section.

Consider a plasma column of length l as illustrated in Fig. 8. The
wave driven current generator I0 ¼ PRFk?=axB is assumed to be
localized around z¼ 0(w), and the transverse conductivity g? is
assumed to become very large near z ¼ 6l. This end zone (e) in Fig.
8 can be considered as a short circuit such that RL¼ 0. With these two
boundary conditions, Vðz ¼ lÞ ¼ 0 and Iðz ¼ 0Þ ¼ I0, and focusing
on the region z> 0, the solutions, Eqs. (50) and (51), give

I zð Þ ¼ I0cosh
l � z

k
cosh

l
k

� ��1
; (70)

V zð Þ ¼ RI0sinh
l � z

k
cosh

l
k

� ��1
: (71)

Symmetrical solutions are expected for z< 0, as illustrated in Fig. 8.
Note also that we should take 2I0 as the wave driven current flows on
both the left and right sides of the central region (w).

Although the important problem of how to implement the condi-
tion RL ¼ 0 at z ¼ 6l is left for a future study, we briefly discuss here

local ergodization of the magnetic field lines. The required magnetic
modulations can be achieved with external coils producing radial and
azimuthal components of the magnetic field. The magnetic field lines
then display the property of being an Hamiltonian system where the
time is replaced by the z coordinate so that the local modulations have
several resonances and enter the regime where the Chirikov criterion is
fulfilled. The field lines, which are basically the wire along which the free
charges flow, will then explore the full radial extent of the zone depicted
in gray (e) in Fig. 8, which will provide an almost perfect short circuit
between x¼ 0 and x¼ a in the slab model. Ergodization of magnetic
field lines is common in plasma physics and particularly in tokamak
plasma where the principle of magnetic island overlapping has been put
forward and tested successful with the concept of ergodic divertor. Yet,
the use of this strategy for the problem at hand raises two problems.
First, the short circuit at z¼ l implies that the power needed to sustain
the radial electric field to be very large. From Eq. (71), the power sus-
taining the generation and confinement of the electric field is

I0V0 �
RI20 l
k
¼ I20 l

abgk
: (72)

The plasma slab, thus, behaves as an isotropic conductor with conduc-
tivity gk. Second, it is not clear that an ergodic zone near the endplates
will really protect them from damages as the short circuit will be the
source of an intense Joule heating.

Beyond ergodization, alternative strategies to minimize the risk
of high voltage damages at the edges of the plasma and to lower the
power requirement will have to be established on the specific material
and power constraints of each configuration. Equation (57) provides
the basis for such analysis. For very large electric fields, and if we let
some part of the voltage drop reach the end plates, a preferential com-
bination of electrodes could possibly be used to set up a classical
energy recovery system outside the plasma. This part of tolerable volt-
age will again have to be analyzed with respect to the electrodes prop-
erties. Finally, we note that the occurrence of inhomogeneity described
in Eq. (49), such as the divergence of magnetic field lines, can in prin-
ciple be used to shape the axial voltage profile and reduce the electric
field on the conducting plates. The examination of these possibilities is
left for future studies.

VIII. DISCUSSION AND CONCLUSION

In this first study on wave and beam large electric field generation
and control in the core of a magnetized plasmas, we have derived and
solved the equation for the axial variation of the voltage drop. We
identified R and k as the control parameters of the problem. We then
used these results to address the issue of the power balance and of field
shaping in the asymptotic regime l < k.

To summarize our findings,

(i) We have identified, proposed, and analyzed two mechanisms
for large DC electric field generation inside a magnetized
plasma: waves and neutral beams, which are control tools that
are already routinely used on modern tokamaks at power levels
of the order of tens of Megawatts.61 The relations Eqs. (21) and
(28) provide upper bounds for the electric field theoretically
achievable with these wave and beam schemes. These upper
bounds are in the GV/m and tens of MV/m ranges for wave
and neutral beam drive, respectively.

FIG. 8. A magnetized plasma column with two ergodized zone (e) and a central
wave/beam driven zone (w).
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(ii) We have set up a model of the plasma stationary response
to wave and beam power absorption. This model predicts
both the electric field penetration from the edge in the clas-
sical scheme Fig. 1(a) and the electric field escape from the
core central part of a column in the wave or beam driven
scheme, Figs. 1(b) and 1(c).

(iii) We have derived the voltage drop equation for an axially
inhomogeneous plasma Eq. (49).

(iv) We have identified the three fundamental characteristics of
a plasma slab: R, Eq. (40), and k, Eq. (41), and then calcu-
lated the input impedance of the plasma slab Re, Eq. (57).

(v) We derived in Eq. (61) the minimal power required to sus-
tain a given voltage drop Pa � blg?V

2
0 and showed that

MV/m fields are within the power range of existing wave
and beam control devices in large tokamak.

To extend this set of new results, other schemes to localize the
voltage drop inside the plasma column, far from the edge, can be
explored on the basis of Eq. (49), which is to be completed by appro-
priate loading or biasing conditions at s ¼

Ð6l
0 dz=kðzÞ.
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