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Both spin and orbital angular momentum can be exchanged between a rotating wave and a
rotating magnetized plasma. Through resonances the spin and orbital angular momentum
of the wave can be coupled to both the cyclotron rotation and the drift rotation of the
particles. It is, however, shown that the Landau and cyclotron resonance conditions which
classically describe resonant energy–momentum exchange between waves and particles
are no longer valid in a rotating magnetized plasma column. In this case a new resonance
condition which involves a resonant matching between the wave frequency, the cyclotron
frequency modified by inertial effects and the harmonics of the guiding centre rotation
is identified. A new quasilinear equation describing orbital and spin angular momentum
exchanges through these new Brillouin resonances is then derived, and used to expose the
wave-driven radial current responsible for angular momentum absorption.
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1. Introduction

Understanding how to sustain and control the angular momentum of a rotating
magnetized plasma column is a central issue, both for applied and basic plasma physics.
On the former, the first successful application of rotating non-neutral plasmas was the
magnetron microwave source theorized by Brillouin (1945). Since then, an important
motivation for rotating plasma configurations has been and continues to be thermonuclear
fusion (Lehnert 1971), both with rotating tokamaks (Ochs & Fisch 2017; Rax, Gueroult
& Fisch 2017) and rotating mirrors (Bekhtenev et al. 1980; Hassam 1997; Fetterman &
Fisch 2008, 2010; Teodorescu et al. 2010). Besides fusion, rotating plasmas have also
attracted attention for ion acceleration (Janes 1965; Janes, Levy & Petschek 1965; Janes
et al. 1966) and mass separation (Bonnevier 1966; Krishnan, Geva & Hirshfield 1981;
Prasad & Krishnan 1987) as envisioned for instance for nuclear waste cleanup (Gueroult,
Hobbs & Fisch 2015), spent nuclear fuel reprocessing (Gueroult & Fisch 2014; Timofeev
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FIGURE 1. Electric and magnetic fields configurations in a plasma rotating around the z axis, α
is the polar angle and r the polar radius.

2014; Vorona et al. 2015; Dolgolenko & Muromkin 2017) or rare earth element recycling
(Gueroult, Rax & Fisch 2018). On the latter, magnetized rotating plasma theory has been
shown to be important in understanding pulsar dynamics and radiative transfer (Gueroult
et al. 2019b), rotation augmented gyrotropy (Gueroult, Rax & Fisch 2020) or image
rotation (aka Faraday–Fresnel effect) in plasmas (Rax & Gueroult 2021). The adiabatic
theory of angular momentum perturbation in rotating magnetized plasmas also provides
an interesting realization of a geometrical Berry type phase (Rax & Gueroult 2019).

Two fields configurations can sustain the steady state rotation of a magnetized plasma.
One is the Hall configuration with a radial magnetic field and an axial electric field. This
is the configuration used notably in stationary plasmas thrusters. The other, illustrated in
figure 1, is the Brillouin configuration with an axial magnetic field and a radial electric
field. This is the configuration used notably in mass separators (Gueroult et al. 2019c) and
homopolar devices (Barber, Swift & Tozer 1972). In this study we will restrict our analysis
to this last configuration and study the quasilinear theory of angular momentum exchange
between waves and particles in a rotating Brillouin configuration.

Steady state angular momentum injection to compensate dissipation in a rotating
cylindrical magnetized plasma column is usually envisioned through the use of concentric
annular direct current (DC) biased end-electrodes, as illustrated in grey in figure 1. This
is the scheme originally proposed by Lehnert (Lehnert 1970, 1973), where electrodes are
assumed to drive a DC radial electric field perpendicular to the DC axial magnetic field.
It has, however, been recently shown that field penetration through the sheath and along
field lines imposes a number of constraints on the achievable electric field (Gueroult, Rax
& Fisch 2019a; Poulos 2019; Liziakin, Gavrikov & Smirnov 2020; Liziakin et al. 2021;
Trotabas & Gueroult 2022). Meanwhile, studies in the last decade on rotating mirrors
(Fetterman & Fisch 2008, 2010) and rotating tokamaks (Ochs & Fisch 2017; Rax et al.
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2017) have underlined the potential to use electromagnetic waves to drive plasma rotation
through resonant wave–particle angular momentum absorption, and to compensate for
dissipative relaxation. Although very promising, these studies relied on a simple photon
picture.

The standard tool to study resonant wave–particle interaction is the quasilinear theory.
For an infinite homogeneous magnetized plasma at rest the quasilinear equation is well
known (Rax 2011), and has proven particularly useful to evaluate energy absorption and
current generation in thermonuclear plasmas (Fisch 1978, 1987). The quasilinear equation
for a cylindrical unmagnetized plasma at rest has also been derived (Kaufman 1971),
whereas a generalized quasilinear theory for inhomogeneous plasma has recently been
laid out (Dodin 2022). However, and while as mentioned above it appears to be key to
important applications, the quasilinear theory for a rotating magnetized plasma has to
our knowledge not been derived yet. While quasilinear radial transport has been studied
within the framework of non-neutral plasmas confinement deploying a so-called ‘rotating
wall technique’ (Eggleston & O’Neil 1999; Kiwamoto, Soga & Aoki 2005), these studies
were restricted to electrostatic modes. Finite Larmor radius effects were also neglected
as an infinite magnetic field was assumed. Lastly, although inertial effects are central to
equilibria in Brillouin configurations, these studies neglected inertial effects so that the
resonance condition is limited to the axial Doppler-shifted resonance between the plasma
rotation and the wave frequency. These restrictions are removed in the present paper. Here
we derive the quasilinear equation for a rotating wave and a rotating magnetized plasma,
which describes angular momentum absorption/emission within a kinetic framework, and
use it to uncover the interplay between orbital angular momentum (OAM), spin angular
momentum (SAM) and finite Larmor radius (FLR) effects.

This paper is organized as follows. We begin by recalling in § 2 basic elements on
wave and particle angular momentum. We then proceed to derive in § 3 the Hamiltonian
description of a magnetized rotating plasma sustained by a radial electric field, and
to expose the physical and geometrical meaning of the angle–action variables used to
describe the particle dynamics. These canonical angle–action variables are after that used
to identify the relation between the canonical and the kinetic angular momentum in § 4,
and to model as a perturbed Hamiltonian the effect of a rotating wave perturbation on
the rotating particle dynamics in § 5. This formalism is then used to identify a new
resonance condition in § 6, and to derive the quasilinear kinetic equation describing the
time evolution of the distribution function in action space in § 7. This new kinetic equation
is finally used to study OAM and SAM absorption in § 8, and to derive the expression of
the wave-driven radial current in § 9. Lastly, § 10 concludes this study and summarizes the
main findings.

2. Wave and particle angular momentum

In the following we use (r, α, z), a set of cylindrical coordinates on a cylindrical basis
(er, eα, ez). The associated set of Cartesian coordinates is (x, y, z) on the Cartesian basis
(ex, ey, ez). The vertical axis along z is the direction of the background static magnetic
field B = Bez and the DC electric field E = Eer is along the radial direction. This is the
configuration illustrated in figure 1.

Electromagnetic waves can carry both SAM – associated with right-hand (R) and
left-hand (L) circular polarizations – and OAM (Gough 1986; Barnett & Allen 1994; van
Enk & Nienhuis 1994; Götte, Barnett & Padgett 2007; Barnett, Babiker & Padgett 2017).
The vector field of such a wave has a helical phase front structure and can in general be
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written as

Re
[

ex ± jey√
2

E±(r) exp j (nα + βz − ωt)
]
. (2.1)

Here (ex + jey)E+ is a R circularly polarized field while (ex − jey)E− is a L circularly
polarized field, the electric field E(r) is the solution of the radial part of Maxwell’s
equations, ω is the wave frequency, n ∈ Z is the azimuthal mode number and β ∈ R is the
axial wavevector. An observer located at a fixed point (r0, α0, z0) and probing azimuthally
the electric field amplitude |E±(r0)| of the wave described by (2.1) will measure a field
pattern |E±(r0)| rotating at the angular velocity dα/dt = ω/n. The formal identification of
SAM and OAM contents for the wavevector field given in (2.1), as well as the definition
of the associated SAM and OAM operators Ŝ and L̂, are discussed in Appendix A.
Plasma waves carrying OAM has been an active research topic in the last decade, both
in unmagnetized (Mendonça 2012; Chen, Qin & Liu 2017; Bliokh & Bliokh 2022) and
magnetized (Shukla 2012; Stenzel & Urrutia 2015; Stenzel 2016) plasmas.

Meanwhile, magnetized charged particles in axisymmetric fields can also carry both
SAM and OAM. The former is associated with the cyclotron motion while the latter
is associated with the guiding centre motion around the z axis. Note that for classical
particles, the separation of angular momentum into cyclotron SAM and drift OAM does
not arise from a quantum analysis. It is a simple application of Koenig’s theorem which
states that the angular momentum of a system can be decomposed into an external orbital
part and an internal part. This internal part is nowadays called the spin part for waves
and magnetized charges, even within a classical framework. Note also that while the
quantum SAM of the charged particles ±�/2 should in principle be considered along
with the cyclotron SAM and the drift OAM, it will be neglected in this study as the plasma
temperature is assumed to be far larger than �ωc which is of the order of 10−7 eV for
protons and a magnetic field of 1 T. Consider now more specifically the plasma column
shown in figure 1 with a background axial magnetic field B = Bez and a radial electric
field E = Eer, which leads to a guiding centre E × B rotation around the z axis. An ion
with charge q and mass M is described by (i) its instantaneous position r = RG + ρL,
where RG is the guiding centre position and ρL(t) the Larmor radius, and (ii) its velocity
v = V G + vc, where V G ∼ (E/B)eα is the guiding centre drift velocity and vc(t) =
ωcez × ρL is the cyclotron velocity with ωc = qB/M the ion cyclotron frequency. The
instantaneous angular momentum is defined as Mr × v and its average 〈 〉 over the fast
cyclotron motion is

M〈(RG + ρL) × (V G + vc)〉 · ez = MR2
G� + Mρ2

Lωc = Lz + Sz, (2.2)

where � = (E/BRG) is the angular E × B drift velocity. The OAM part of (2.2) is Lz
= MG� with MG = MR2

G the guiding centre moment of inertia of the ion with respect
to the z axis. The cyclotron spin part Sz is defined as (2M/q)μ with μ = mω2

cρ
2
L/2B the

Larmor magnetic moment. One thus recovers the classical gyromagnetic factor q/2M.
Coupling between wave and particle angular momentum components introduced above

can be either adiabatic or resonant. At the fluid level, linear adiabatic coupling is described
by the Hermitian part of the dielectric tensor, while linear resonant coupling is described
by the anti-Hermitian part of the dielectric tensor and the quasilinear equation. Starting
with adiabatic coupling, coupling between wave SAM and particles SAM leads to the
classical Faraday rotation (Chen 1984; Rax 2005). Adiabatic coupling between wave
SAM and particles OAM leads to the mechanical Faraday – or polarization drag (Jones
1976) – effect whose properties in plasmas have recently been examined (Gueroult et al.
2019b, 2020). Lastly, adiabatic coupling between wave OAM and particles OAM leads
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to the Faraday–Fresnel rotation and splitting recently uncovered for Trievelpiece–Gould
and helicon modes (Rax & Gueroult 2021). Moving on to resonant coupling, coupling
between wave SAM and particles SAM is routinely used for electron and ion cyclotron
resonance heating (ECRH/ICRH) in tokamaks (Rax 2011), and has also been proposed for
mass separation or particle acceleration (Loeb & Friedland 1986; Pendergast et al. 1988;
Rax, Robiche & Fisch 2007; Rax & Robiche 2010). Meanwhile, as already mentioned
in the introduction, resonant coupling between wave OAM and particles OAM has been
proposed to control rotation in magnetic mirrors (Fetterman & Fisch 2008, 2010) and
tokamaks (Ochs & Fisch 2017; Rax et al. 2017).

In this study we will build on and extend these results by deriving the quasilinear kinetic
equation which will allow us to identify the exact resonance condition, and from there to
uncover couplings between waves and particles SAM and OAM, in a cylindrical rotating
magnetized plasma. This new resonance condition completes the already identified set
of resonant coupling in plasmas: (i) Landau in unmagnetized plasmas; (ii) cyclotron in
magnetized plasmas; and (iii) Compton in laser-driven plasmas (Rax 1992). Because our
motivation is primarily in rotating mirrors, straight tokamaks and mass filters where the
resonant population is the ion population, we will consider a non-relativistic framework.
Under this assumption, we will show that FLR effects are responsible for a mixing of OAM
and SAM couplings, underlining that rotating magnetized plasmas feature a more complex
angular momentum dynamics than unmagnetized plasmas or ordinary neutral matter.

3. Hamiltonian description of a rotating plasma

In this section we lay out the Hamiltonian description of an unperturbed rotation driven
by a DC radial electric field in an axially magnetized plasma column. The axial magnetic
field is assumed to be produced by a set of coils carrying azimuthal DC currents at the edge
of the plasma column. The radial electric field may be generated through DC polarized
concentric electrodes at ends of the plasma, provided that the criterion for electric field
penetration is fulfilled (Gueroult et al. 2019a; Poulos 2019; Liziakin et al. 2020, 2021;
Trotabas & Gueroult 2022). Alternatively, in a non-neutral plasma (Davidson 2001), the
electric field is simply the space charge field and there is no need for concentric electrodes.
We focus on the ion population in a quasineutral plasma but results can be easily extended
to the electron population in quasineutral and non-neutral plasmas.

3.1. Brillouin modes
An ion of mass M and charge q > 0, interacts with a static radial linear electric field E
and an axial uniform magnetic field B as shown in figure 1 and defined by

q
M

E =
(

qE
Mr

)
rer, (3.1)

q
M

B = ωcez. (3.2)

Ion orbits are then a combination of the slow and fast Brillouin rotations (Davidson &
Krall 1969; Davidson 2001). The fast Ω+ and slow Ω− angular velocities associated with
these fast and slow rotations are given by

Ω± = −ωc

2
∓
√

ω2
c

4
− qE

rM
≈| E

rB |	ωc

−ωc

2
∓ ωc

2
± E

rB
, (3.3)

where E is the DC radial electric field at a given radius r and 4qE < Mrω2
c is the classical

Brillouin condition (Davidson 2001). These two solutions are plotted as a function of
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FIGURE 2. The slow and fast angular velocity as a function of the electric field. A clear
separation between guiding centre and Larmor radius is relevant for weak electric field in the
grey zone.

the normalized electric field in figure 2. In the weak electric field regime |E/(rB)| 	 ωc
highlighted in grey in figure 2, the angular velocity of the guiding centre around the z
axis reduces to the classical E × B drift while the angular velocity of the cyclotron motion
around the guiding centre reduces to the usual cyclotron motion. This corresponds to the
asymptotic limit on the right-hand side of (3.3).

From (3.1) the Brillouin limit leads to the simple requirement Ω2 > 0 with

Ω =
√

q2B2

M2
− 4

qE
Mr

. (3.4)

Note that Ω , the gyrofrequency ωc and the wave frequency ω are all assumed positive
throughout this study. Another way to see the condition Ω > 0 is to realize that for a
given field configuration ((3.1) and (3.2)) the cutoff mass M∗ between radially unconfined
and radially confined ions is the solution of Ω2(M∗) = 0. Ions such that M < M∗ remain
confined around the axis of the configuration. On the other hand ions such that M > M∗

are expelled radially at an exponential rate. The assumption in this study of M < M∗ or
Ω > 0 is thus a requirement to study radially bounded trochoidal orbits.

With the definition of Ω in (3.4) the usual slow and fast Brillouin modes given by (3.3)
rewrite as

Ω± = −ωc ± Ω

2
. (3.5)

One verifies that Ω+ + Ω− = −ωc and Ω+ − Ω− = −Ω . Note also that Ω+ < 0 and
∇ · E = 2Ω+Ω−. The uniform charge density 2ε0MΩ+Ω−/q is the small deviation from
quasineutrality responsible for the radial electric field.

3.2. Hamiltonian description
Consider now a system of units such that q = 1 and M = 1. In this simple system of units,
the electric field and the magnetic field given in (3.1) and (3.2) derive, respectively, from
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the scalar potential

Φ = Ω2 − ω2
c

8
(x2 + y2) (3.6)

and the vector potential

A = ωc

2
(xey − yex). (3.7)

The unperturbed Hamiltonian H0 is classically the sum of the kinetic energy v2/2 plus the
potential energy Φ(r), that is

H0 (p, r) = 1
2v

2 + Φ = 1
2 [p − A(r)]2 + Φ (r), (3.8)

where v is the velocity and p = pxex + pyey + pzez is the canonical momentum conjugated
to the position r = xex + yey + zez of the ion. In Cartesian coordinates (3.8) rewrites as

H0 = 1
2
(p2

x + p2
y) + ωc

2
(ypx − xpy) + Ω2

8
(x2 + y2) + p2

z

2
. (3.9)

This is a quadratic form of the Cartesian momentum and positions variables, so that H0 is
integrable (Rax 2021).

Let us now introduce the canonical change of variables from the old Cartesian
momentum (px, py, pz = P) and positions (x, y, z) to the new actions (J, D, P) and angles
(ϕ, θ, z) variables defined by

x =
√

2D
Ω

cos θ −
√

2J
Ω

cos ϕ, y =
√

2D
Ω

sin θ +
√

2J
Ω

sin ϕ, (3.10a,b)

px = −
√

ΩD
2

sin θ +
√

ΩJ
2

sin ϕ, py =
√

ΩD
2

cos θ +
√

ΩJ
2

cos ϕ, (3.11a,b)

with J ≥ 0, D ≥ 0, ϕ ∈ [0, 2π] and θ ∈ [0, 2π]. By plugging (3.10a,b) and (3.11a,b) into
(3.9) one simply gets

H0 = −Ω+J + Ω−D + 1
2 P2. (3.12)

This result is independent of the angles (ϕ, θ, z) as expected. Note also from (3.5) that the
cyclotron (kinetic) part of the energy −Ω+J is always positive, but that the drift (potential)
part Ω−D can be either positive or negative. The particle velocity perpendicular to the
magnetic field v defined as pxex + pyey − A and the polar radius r defined as

√
x2 + y2

are then obtained from a simple substitution of (3.10a,b) and (3.11a,b) in the Cartesian
definitions, leading to

v =
(

−Ω+

√
2J
Ω

sin ϕ − Ω−

√
2D
Ω

sin θ

)
ex

+
(

−Ω+

√
2J
Ω

cos ϕ + Ω−

√
2D
Ω

cos θ

)
ey (3.13)

and

r2 = x2 + y2 = 2
J + D

Ω
− 4

√
JD
Ω

cos (θ + ϕ) . (3.14)

Having identified a set of canonical angles (ϕ, θ, z) and actions (J, D, P) variables
describing the ion interaction with the electric and magnetic field given in (3.6) and (3.7),
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FIGURE 3. Physical meaning of the angle (ϕ, θ) and actions (J < D) variables in real (x, y)
space.

we can now try to shed light onto the physical meaning of the new variables. Starting with
z and P, they are, respectively, the usual Cartesian coordinate and momentum P = Mvz,
and their physical interpretation is thus straightforward. The meaning of (J, ϕ) and (D, θ)
is on the other hand less obvious. To help our interpretation, figure 3 shows the ion motion
in the (x, y) plane when D > J. The instantaneous position of the ion is r = rer = OC
and it can be viewed as the sum of a rotating Larmor radius GC plus a rotating guiding
centre OG. From figure 3, θ is the anticlockwise angle between ex and OG, and ϕ is the
clockwise angle between −ex and GC . We then find from (3.10a,b) that the guiding centre
|OG| = √

2D/Ω , and that the Larmor radius |GC| = √
2J/Ω . Equation (3.14) is just the

law of cosines applied to the OGC triangle with respect to the grey angle in figure 3.
The geometrical interpretation proposed above for (J, ϕ) and (D, θ) based on figure 3

assumed D > J. If one now considers J > D, the canonical description ((3.10a,b)–(3.12))
is still valid, but the picture of the orbit is to be replaced by the one shown in figure 4.
As we will show in the next section these two regimes J ≶ D can be discriminated based
on the sign of the particle canonical angular momentum. In effect most of the physical
interpretations made in this study will be argued with the ordering D > J in mind as it is
the most intuitive, but one should keep in mind that all the relations are valid in both cases
J ≶ D.

Finally, one verifies that Hamilton’s equations

dθ

dt
= ∂H0

∂D
= Ω−,

dϕ

dt
= ∂H0

∂J
= −Ω+, (3.15a,b)

lead to the expected classical Brillouin results (Davidson 2001). The minus sign for the
fast (cyclotron) rotation is simply due to the choice of a clockwise angle for ϕ (the
anticlockwise choice for θ ). It must be stressed here though that the Larmor radius angle ϕ

does not rotate at the cyclotron frequency −Ω+ �= ωc. Similarly the θ angle of the guiding
centre does not rotate with the E × B velocity Ω− �= −Er/rB. This is the consequence of
inertial effects. The interpretation of the motion as a slow E × B drift Ω− ≈ −Er/rB plus
a fast cyclotron rotation Ω+ ≈ −ωc is thus only meaningful in the weak electric field limit
|Er/B| 	 rωc highlighted in grey in figure 2.
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FIGURE 4. Physical meaning of the angle (ϕ, θ) and actions (J > D) variables in real (x, y)
space.

3.3. Weak field limit
In order to develop a deeper physical understanding of the weak field regime, which is the
one of experimental interest for quasineutral plasmas applications, let us write the ion orbit
as a combination of an E × B slow rotation plus a fast cyclotron rotation. We introduce the
guiding centre radius RG and the Larmor radius ρL:

x = RG cos
(

− E
rB

t
)

− ρL cos(ωct), (3.16)

y = RG sin
(

− E
rB

t
)

+ ρL sin(ωct). (3.17)

Equations (3.16) and (3.17) are simply a rewriting of (3.10a,b) in the weak field limits
|Er/rB| 	 ωc. In this weak field limit Ω ≈ ωc, and the actions J and D can be,
respectively, related to the cyclotron orbit magnetic flux ΨL = πρ2

LB and the guiding centre
orbit magnetic flux ΨG = πR2

GB, with

D ≈ ωc

2
R2

G = ΨG

2π
, (3.18)

J ≈ ωc

2
ρ2

L = ΨL

2π
. (3.19)

Note that these two magnetic fluxes are the first and third adiabatic invariant of Alfven’s
theory. The usual link between action variables and adiabatic invariants is thus recovered.

Assuming further J 	 D, that is a small Larmor radius, and reintroducing momentarily
the ion mass and charge M and q for clarity, one gets in the weak field regime

−Ω+J ≈ M
2

v2
c , (3.20)

Ω−D ≈ qΦ (RG) + M
2

E2

B2
. (3.21)
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Plugging these results into (3.12) yields

H0 ≈
| E

rB |	ωc

M
2

v2
c + 1

2M
P2 + M

2
E2

B2
+ qΦ. (3.22)

The Hamiltonian thus reduces in this limit to the sum of four terms: the cyclotron kinetic
energy Mv2

c/2; the electrostatic potential energy qΦ(RG) of the guiding centre; the drift
energy ME2/2B2; and the parallel kinetic energy .

If one considers now a wave perturbation δH0 of the Hamiltonian H0, (3.22) shows that
in the weak field limit this perturbation is associated with an increase or a decrease of (i)
the kinetic cyclotron energy Mvcδvc, (ii) the potential energy qδΦ and (iii) the axial kinetic
energy Mvzδvz. The structure of the unperturbed Hamiltonian (3.12) indeed offers in this
case the possibility to transfer axial linear momentum, kinetic energy −Ω+δJ ≈ Mvcδvc
or/and potential energy Ω−δD ≈ qδΦ from rotating waves to rotating particles. When the
weak field approximation is no longer valid, inertia effects make this picture more intricate,
and the angle–action variables (ϕ, θ, z) and (J, D, P) then provide the right framework to
understand the dynamics. In order to simplify the algebra, we define J , θ and Ω such that

J = (J, D, P), (3.23)

θ = (ϕ, θ, z), (3.24)

Ω = dθ

dt
= ∂H0

∂J
= (−Ω+,Ω−, P). (3.25)

To conclude this section we note that as H0 is integrable there exists an infinite set of
canonical angle and action variables. The particular choice of θ and J is simply motivated
by their straightforward geometrical interpretation, as illustrated in figures 3 and 4, and
their clear physical meaning in the weak field regime.

4. Canonical and kinetic angular momentum

From (3.10a,b), (3.11a,b) and (3.13)), the z components of the canonical angular
momentum and of the kinetic angular momentum, respectively, write

LC = xpy − ypx = D − J (4.1)

and

LK = xvy − yvx = 2Ω−
Ω

D + 2Ω+
Ω

J + 2ωc

Ω

√
JD cos (θ + ϕ) . (4.2)

As noted in the previous section, the ordering of J and D depends on the sign of LC.
Specifically, LC > 0 leads to the orbit topology illustrated in figure 3 while LC < 0 leads
to the orbit topology illustrated in figure 4. Note also that LC is independent of time as a
consequence of the cylindrical symmetry, but that LK is a function of time since θ + ϕ =
(Ω− − Ω+)t.

A physical interpretation of (4.2) can be brought up by considering the moment of
inertia of a rotating ion with mass M = 1. Seeing again the rotating ion as the sum of a
rotating guiding centre and a rotating Larmor radius, the guiding centre moment of inertia
is MG = 2D/Ω , while the Larmor radius moment of inertia is ML = 2J/Ω . The associated
angular momenta are MG dθ/dt = MGΩ− (θ is anticlockwise) and −ML dϕ/dt = MLΩ+
(ϕ is clockwise). One verifies that the sum of these two angular momenta MGΩ− + MLΩ+
indeed matches 〈LK〉 computed from (4.2), where the average 〈〉 is over the angle θ + ϕ.
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Defining the magnetic flux

Ψ =
∮
C

A · d l = ωc

2

∮
(x dy − y dx) = πωcr2 (4.3)

with C a contour along a �α = 2π full turn of the orbit and r2 given by (3.14), then (3.14),
(4.1) and (4.2) can be further used to write

LC = LK + Ψ

2π
. (4.4)

We thus see that the criteria LC ≶ 0, which was identified as determining the type of
orbit topology (either that shown in figure 3 or that shown in figure 4), can be recast as
2πLK ≶ −qΨ . This last condition can be interpreted as an ordering between the kinetic
energy and the magnetic coupling.

5. Hamiltonian description of a rotating wave

We now consider a wave perturbation associated with a rotating and propagating
potential

φ (r, t) = Re[φ(r) exp j(nα + βz − ωt)], (5.1)

and a R or L vector potential

a± (r, t) = Re
[

a (r) exp j (nα + βz − ωt)
ex ± jey√

2

]
, (5.2)

where n ∈ Z and β ∈ R. The function a(r) is the real amplitude solution of the radial
part of Maxwell–Ampère equation. The Maxwell–Faraday equation is fulfilled through
E = −∂a±/∂t and B = ∇ × a where E and B are the wave electric and magnetic fields.
The function φ(r) is the solution of Poisson equation. Such solutions of Maxwell–Ampère
and Poisson equations were recently identified for the whistler or helicon branch and the
Trievelpiece–Gould modes in a rotating plasma (Rax & Gueroult 2021). As shown in
Appendix A, the wave a±(r, t) is both an SAM and OAM eigenfunction since

(L̂z + Ŝz) · a± = (n ∓ 1) a±, (5.3)

and the scalar potential wave φ(r, t) is an OAM eigenfunction.
The perturbed Hamiltonian H describing the interaction of an ion with the DC confining

fields ((3.6) and (3.7)) and the rotating RF waves ((5.1) and (5.2)) then writes as

H = 1
2

(p − A)2 + Φ − (p − A) · a± + a2
±
2

+ φ. (5.4)

In the following we neglect the second-order ponderomotive part of the interaction

a2
±/2 	 v · a± (5.5)

but keep the first-order dipolar coupling v · a± + φ which is responsible for the quasilinear
resonant exchange of energy and momentum between waves and particles. This separation
between dipolar and ponderomotive perturbations is usual and we will not explore here
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12 J.-M. Rax, R. Gueroult and N.J. Fisch

the interplay between these two couplings (Ochs & Fisch 2021a,b, 2022, 2023) which is
associated with the transient build up of the wave. Defining

v · a± + φ = vxa±x + vya±y + φ, (5.6)

and assuming that Vn 	 H0, we then write

H = H0 (J ) + Vn (J , θ , t), (5.7)

that is that H is decomposed into an unperturbed part H0 given in (3.12) and the wave
perturbation. Using (3.13), (5.1) and (5.2), one gets for the wave perturbation

Vn = Re

[
∓ja (r)

[
Ω+

√
J
Ω

exp (∓jϕ) − Ω−

√
D
Ω

exp (±jθ)

]
exp j (nα + βz − ωt)

]
+ Re

[
φ (r) exp j (nα + βz − ωt)

]
. (5.8)

The last step is to write both a(r) and φ(r) in terms of (J, D) and (ϕ, θ) to write Vn
in a form suitable to carry out the quasilinear analysis. This requires finding a convenient
basis to express a(r) and φ(r). For quasilinear theory in an homogeneous plasma at rest,
this basis is a Fourier set of plane waves associated with translation invariance. Within the
framework of random phase approximation each Fourier component then acts separately
in the quasilinear diffusion operator which is a sum over the square of the amplitude of
these Fourier components.

In the case of interest the Fourier–Bessel expansion seems more natural given the
cylindrical symmetry of the problem. An added motivation for this choice is that recent
studies on the OAM Faraday–Fresnel effect (Rax & Gueroult 2021) have shown that the
eigenmodes of the whistler branch in a rotating plasma are of the type described by (5.2)
with in this case a(r) the ordinary Bessel function Jn(kr), and that the eigenmodes of
the Trievelpiece–Gould branch in a rotating plasma are of the type described by (5.1)
with in this case φ(r) proportional to Jn(kr), with k fulfilling in each case an appropriate
dispersion relation. Lastly, the Fourier–Bessel expansion theorem states that all the other
branches of the plasma waves spectrum in a rotating plasma can similarly be written with
waves of the type (5.1) and (5.2), and that a(r) can be represented by ã(k) as the sum
a(r) = ∫

kã(k)Jn(kr) dk with ã(k) = ∫
ra(r)Jn(kr) dr. Thus, without loss of generality, we

consider transverse and longitudinal rotating and propagating cylindrical waves of the type

a± (r, t) = Re
[E (ω)

jω
Jn (kr) exp j (nα + βz − ωt)

ex ± jey√
2

]
, (5.9)

φ (r, t) = Re
[
φ (ω) Jn (kr) exp j (nα + βz − ωt)

]
. (5.10)

Here E(ω) and φ(ω) are the spectral component of the transverse electric field and
potential of a given cylindrical wave packet. The final quasilinear operator, quadratic in
E and φ, will ultimately be summed over the full ω and k(ω) spectra. In this study though
we do not specify the ω spectra and the k(ω, β, n) dispersion. To provide a general result
we instead analyse the quasilinear dynamics under the influence of a single cylindrical
component ((5.9) and (5.10)). The quasilinear effect of a wave packet is simply the sum
over the effects of each Fourier–Bessel component as in the plane wave case.

In a homogeneous magnetized plasma at rest the Jacobi–Anger expansion is used to
identify the harmonic cyclotron resonances of a plane wave. For the cylindrical waves
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described by (5.9) and (5.10) we instead consider the triangle OGC in figures 3 and 4 and
apply Graf’s addition theorem

Jn (kr) exp (jnα) =
l=+∞∑
l=−∞

Jl+n

(
k

√
2D
Ω

)
Jl

(
k

√
2J
Ω

)
exp j [(l + n) θ + lϕ]. (5.11)

In the limit of zero Larmor radius the sum on the right-hand side reduces to the l = 0
term only, whereas l �= 0 terms capture FLR effects. One verifies that the larger k and the
larger J/D, the more terms are needed to approach the left-hand side in (5.11). Plugging
this result into (5.7) and (5.8), the Hamiltonian writes as

H = H0 (J ) + Re

[
l=+∞∑
l=−∞

Vnlσ (J, D) exp j [(l + σ) ϕ + (l + n) θ + βz − ωt]

]
, (5.12)

where we introduced σ ∈ [−1, 0,+1] the SAM index such that the L, R and scalar wave
perturbations Vnlσ are given by

Vn,l,σ=+1 = EΩ+
ω

√
J
Ω

Jl+n

(
k

√
2D
Ω

)
Jl

(
k

√
2J
Ω

)

− EΩ−
ω

√
D
Ω

Jl+1+n

(
k

√
2D
Ω

)
Jl+1

(
k

√
2J
Ω

)
, (5.13)

Vn,l,σ=−1 = EΩ−
ω

√
D
Ω

Jl−1+n

(
k

√
2D
Ω

)
Jl−1

(
k

√
2J
Ω

)

− EΩ+
ω

√
J
Ω

Jl+n

(
k

√
2D
Ω

)
Jl

(
k

√
2J
Ω

)
, (5.14)

Vn,l,σ=0 = φJl+n

(
k

√
2D
Ω

)
Jl

(
k

√
2J
Ω

)
. (5.15)

In order to simplify the notation we define the vector

N = [(l + σ) , (l + n) , β] (5.16)

and use it as an index to specify n, l and σ . The Hamiltonian H in (5.7) then writes in
compact form as

H (J , θ , t) = H0 (J ) +
∑

N

VN (J ) exp j (N · θ − ωt) , (5.17)

where we dropped the Re mention for readability and
∑

N = ∑l=+∞
l=−∞. This implies that

both the OAM azimuthal number n of the cylindrical waves ((5.9) and (5.10)) and the
SAM number σ remain fixed as we study separately L, R and potential waves.

For a purely rotating wave, characterized by n, σ and β = 0, the structure of the relation
(5.17) reveals a number of selection rules between the wave-induced small increments of
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14 J.-M. Rax, R. Gueroult and N.J. Fisch

actions and energy. These selection rules provide also the branching ratio between the
exchange of the actions. To see this consider Hamilton’s equations:

dH
dt

= ∂H
∂t

= −jω
∑

N

VN (J ) exp j (N · θ − ωt), (5.18)

dLC

dt
= ∂H

∂ϕ
− ∂H

∂θ
= j (σ − n)

∑
N

VN (J ) exp j (N · θ − ωt). (5.19)

A wave-induced small variation of the ion energy δH thus implies a small variation of the
angular momentum δLC through

δLC

δH
= n − σ

ω
. (5.20)

Using δH = Ω−δD − Ω+δJ we can express the branching ration between the cyclotron
kinetic energy channel and the potential energy channel as

δJ
δH

= l + σ

ω
, (5.21)

δD
δH

= l + n
ω

. (5.22)

These relations provide a first basic tool to optimize phase space engineering. For example
one may want to set up a radial current (δD �= 0) but avoid ICRH heating (δJ = 0). In this
case, (5.21) and (5.22) point to waves such that l + σ = 0 but l + n �= 0. However, the best
strategy to optimize power deposition among the various energy channels is to consider
the kinetic equation.

6. Brillouin resonances
6.1. Resonance condition

The Hamiltonian (5.17) makes it possible to identify the conditions for resonant coupling.
For this we simply substitute the unperturbed motion θ = Ωt + θ 0 into the oscillating
phase j(N · θ − ωt) of each VN exp j(N · θ − ωt) perturbation. We then obtain the phase
factor j(N · Ω − ω)t + jθ 0 which stops to rotate and becomes stationary when the
resonance condition

ω = N · Ω = − (l + σ)Ω+ + (l + n)Ω− + βP, (6.1)

is fulfilled. This resonance condition replaces the classical Landau-cyclotron condition

ω − βvz = mωc (6.2)

with m ∈ Z and where vz is the velocity along the magnetic field. Because this is the slow
and fast Brillouin modes that are involved in (6.1) rather than the cyclotron frequency we
call (6.1) the Brillouin resonance condition. One verifies as expected that (6.1) reduces to
(6.2) when the static electric field (3.1) cancels. Rewriting (6.1) as

ω − βP − (n + σ)Ω− = l(ωc + 2Ω−) + σωc, (6.3)

the left-hand side is simply the Doppler-shifted wave frequency considering both the axial
translation and the azimuthal rotation (Garetz 1981; Courtial et al. 1998). The first term on
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the right-hand side l(ωc + 2Ω−) can then be interpreted as normal (l > 0) or anomalous
(l < 0) Doppler effect modified by inertial effects. Indeed ωc + 2Ω− is the gyrofrequency
corrected by the Coriolis force for an ion rotating at the angular frequency Ω−. The
classical yet subtle picture of normal/anomalous Doppler effect can be extended to
the cases where the helical motion of the guiding centre (P,Ω−) is slower or faster than
the axial (ω/β) and azimuthal (ω/n) phase velocities (Nezlin 1976).

At resonance exp j(N · θ − ω)t = exp j(N · θ 0). Some particles gain energy/momentum
while others loose energy/momentum, with the sign of the variation determined by the
phase factor Re(exp j(N · θ 0)). This diffusive behaviour of the actions is described within
the framework of random phase approximation where we average over exp j(N · θ 0)
the square of the action variations to construct the quasilinear diffusion equation. The
construction of this kinetic description leading to the quasilinear equation can be done
either through a Lagrangian or a Eulerian point of view in phase space (Rax 2021). Here
we will use the latter, as reviewed in Appendix B.

Note finally that the resonance condition (6.1) can be recovered from a simple photon
picture. For this we recall that a photon associated with a wave described by (2.1) carries
an energy �ω and a linear momentum along the z axis �β. When this photon is absorbed
by a rotating ion the variation of the particle energy H0 and linear momentum P are given
by

δH0 = �ω, δP = �β. (6.4)

Besides energy and axial linear momentum, the photon associated with the wave (2.1)
also carries an OAM plus SAM angular momentum (n ∓ 1)� along the z axis (see
Appendix A). When this photon is absorbed by a rotating ion the change of the ion
canonical angular momentum LC is

δLC = (n ∓ 1) �. (6.5)

Equation (3.9) reveals the harmonic oscillators structure of the Hamiltonian H0. We can
thus draw an analogy with the Hamiltonian of the Landau levels of a magnetized quantum
particle to conclude that, at the quantum level, the changes of the action J and D can only
be an integer multiple of �, that is

δJ = nJ�, δD = nD� (6.6a,b)

with (nJ, nD) ∈ Z
2 a pair of integers. In fact we are considering the quasiclassical limit

with large quantum numbers: nJ + 1/2 ∼ nJ and nD + 1/2 ∼ nD. Then, from (3.12) and
(4.1), one finds

δLC = δD − δJ, (6.7)

δH0 = Ω−δD − Ω+δJ + δP2/2. (6.8)

These two relations together with the semiclassical expansion δP2 = 2�βP + O(�2) finally
lead to

ω − βP = −nJΩ+ + (nJ + n ∓ 1) Ω− + O (�). (6.9)

If � = 0, we recognize a relation similar to our resonance condition identified in (6.1) with
nJ = l ± 1, supporting the simple photon picture.
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6.2. Diffusion paths
Besides the resonance lines (6.1), we can also identify from the Hamiltonian the diffusion
paths along which resonant energy–momentum exchanges take place in actions space.
Restricting the study to a single VN(J ) resonant coupling in (5.17), Hamilton’s equations
near the resonance (6.1) write as

dJ
dt

∣∣∣∣
N·Ω=ω

= −jNVN exp jN · θ 0, (6.10)

dH
dt

∣∣∣∣
N·Ω=ω

= −jωVN exp jN · θ 0. (6.11)

Resonant actions variation (wave kicks) δJ associated with a resonant energy variation δH
are thus related by

ωδJ = NδH. (6.12)

Practically δH can be taken as δH0 within the two time scales quasilinear framework
reviewed in Appendix B. In fact, without invoking the ordering between the secular
quasilinear evolution and the fast ω oscillation, we can simply evaluate a variation of H0
in (3.12) and take into account (6.12) to obtain

δH0 = Ω · δJ = Ω · N
δH
ω

= δH (6.13)

since ω = N · Ω . Thus, the resonant wave kicks δJ associated with a resonant energy
exchange δH0 between the rotating wave and the rotating particle are given by

[δJ, δD, δP] = [(l + σ) , (l + n) , β]
δH0

ω
(6.14)

for a given VN coupling. In the weak field limit this reduces to

[ωcρLδρL, ωcRgδRg, δvz] = [(l + σ) , (l + n) , β]
δH0

Mω
, (6.15)

where we have temporarily reintroduced the ion mass M and the cyclotron frequency ωc.
The relation (6.12) implies that there exists a linear combination of the actions which is

invariant under the time evolution prescribed by the wave coupling VN exp j(N · θ − ωt),
namely

δ (N × J ) = 0. (6.16)

Focusing on Brillouin resonances rather than on Landau resonances, we restrict the
analysis to the case βP = 0. For a single VN ((6.12) and (6.16)) then identify a diffusion
path in action space (J, D). Specifically, the path passing through a resonant point (J0, D0)

writes as

(l + n) (J − J0) = (l + σ) (D − D0) . (6.17)

This is illustrated in figure 5. The diffusion paths (6.17) are invariant under the dynamics
driven by a single VN coupling. Quasilinear diffusion in action space takes place along
these diffusion paths provided that the resonant condition (6.1) is fulfilled and that
|Vnlσ (J0, D0)| is not too small. Figure 5 also represents the isoenergy lines, i.e. points in
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FIGURE 5. Isoenergy levels H0 and diffusion paths in (J, D) action space.

(J, D) space where H0 is constant. For Ω > ωc > 0 the electric field is confining and we
can consider a canonical equilibrium distribution function

F0 (J ) = Ω2 − ω2
c

4
√

2π (kBT)5/2
exp

(
−H0 (J )

kBT

)
, (6.18)

where T is the temperature and we have taken the normalization
∫

dJF0 = 1. The
corresponding density levels in (J, D) space are colour coded in grey in figure 5. For 0 <
Ω ≤ ωc the canonical distribution function (6.18) cannot be normalized as the potential
φ(r) is not confining but instead either flat (Ω = ωc) or hill shaped (Ω < ωc).

6.3. Small Larmor radius limit
When the Larmor radius

√
2J/Ω is small compared with the radial wavelength 2π/k, that

is

k

√
J

2Ω
< 1, (6.19)

the coupling coefficients Vn,l,σ in (5.13), (5.14) and (5.15) can be simplified by using the
small parameter expansion

Jl

(
k

√
J

2Ω

)
∼

(
k

√
J

2Ω

)l

l!
. (6.20)

We see that in this limit the l = 0 term is the most effective since it is associated with the
largest Vn,l,σ . The resonance condition (6.1) for l = 0 then gives ω − βP = −σΩ+ + nΩ−
and the fundamental l = 0 Doppler-shifted cyclotron resonance term σΩ+ is only due to
the SAM content of the wave.
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If one assumes further σ = 0, as in the scalar case (5.10), and βP = 0, cyclotron and
Landau terms are avoided and one gets get a pure OAM harmonic Brillouin–Landau
resonance

ω = nΩ− (6.21)

between the drift rotation Ω− and the wave OAM. This is the optimal choice for the
sustainment of a plasma column rotation. The physical interpretation of (6.21) is simple:
the wave angular velocity dα/dt = ω/n is equal to the particle guiding centre angular
velocity −dθ/dt = Ω−.

6.4. Special examples
Let us illustrate the physics behind Brillouin coupling through three selected examples.
Consider first a potential wave σ = 0, that is (5.10), with β = 0 and the small Larmor
radius approximation such that l = 0. In these conditions N = [0, n, 0] and (6.14) writes
as

δJ
δH0

= 0,
δD
δH0

= 1
Ω−

(6.22a,b)

since the Brillouin resonance (6.1) implies ω = nΩ−. This result can be interpreted as
follows. For absorption δH0 > 0, the wave energy is transferred to potential energy through
the wave-induced radial dynamics of the guiding centre in the electrostatic potential Φ(r).
For emission δH0 < 0, the potential energy of the particles is passed on to the wave energy.
This type of instability is used for microwave generation in magnetrons. We note also
that the simultaneous cooling (δH0 < 0) and ash removal (δD > 0) of alpha particles in
a rotating tokamak, through free energy extraction (Fisch & Rax 1992, 1993; Fisch &
Herrmann 1994, 1995; Herrmann & Fisch 1997), is optimal in these wave conditions. The
ratio of energy extraction to radial expulsion is then adjusted through Ω−.

Consider now a vectorial wave σ = ±1, that is (5.9), with β = 0, no OAM (n = 0) and
the small Larmor radius approximation such that l = 0. In these conditions N = [σ, 0, 0]
and (6.14 ) writes as

δD
δH0

= 0,
δJ
δH0

= − 1
Ω+

(6.23a,b)

since the Brillouin resonance (6.1) implies ω = −σΩ+ (remember that Ω+ < 0). In this
case the wave energy is simply passed into cyclotron energy −Ω+δJ. This is the case of
pure ICRH modified by inertial effects.

Consider finally a potential wave σ = 0, that is (5.10), with β = 0 and no OAM (n = 0),
but with FLR effects l �= 0. In these conditions N = [l, l, 0] and (6.12) writes as

δD
δH0

= 1
Ω

,
δJ
δH0

= 1
Ω

(6.24a,b)

since the Brillouin resonance (6.1) implies ω = −lΩ+ + lΩ− = lΩ . This result can be
interpreted as follows. For absorption δH0 > 0 the wave energy is transferred to both
kinetic energy −Ω+δJ and potential energy Ω−δD as shown by (3.12). The partitioning
between these two energy channels must, however, fulfil conservation of canonical angular
momentum δLC = 0, which from (4.1) implies δD = δJ. Conservation of LC is indeed the
consequence of the invariance through rotation of the Hamiltonian H0 + V , since here the
wave carries neither OAM (n = 0) nor SAM (σ = 0).
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7. Quasilinear theory in a rotating magnetized plasma

When a wave propagates in a plasma, two time scales are associated with the quasilinear
ordering. One is the fast linear response that is described at the kinetic level by Vlasov’s
equation, whose solution gives the refractive/dispersive part of the dielectric tensor. The
other is the slow, angle averaged, quasilinear evolution of the action distribution function
F(J , t) which is described at the kinetic level by the quasilinear equation. The standard
quasilinear equation (B10) is derived in Appendix B.

With the Hamiltonian (5.17), the evolution of the action distribution function F(J , t) in
a magnetized rotating plasma is given by

∂F
∂t

= π

2

∑
N

(
N · ∂

∂J

) [|VN |2 δ (N · Ω − ω)
] (

N · ∂

∂J

)
F (J , t), (7.1)

where the VN are those derived in (5.13), (5.14) and (5.15). The operator N · ∂J involved
in this slow (with respect to 1/ω) diffusion in action space writes as

N · ∂

∂J
= (l + σ)

∂

∂J
+ (l + n)

∂

∂D
+ β

∂

∂P
. (7.2)

We normalize F by taking
∫

dJF(J , t) = 1 and consider that F(J = +∞, t) = 0 and
F(J < 0, D < 0, P = −∞, t) = 0.

Introducing the resonant particles density ρ, the power per unit volume W lost or gained
by the wave (and gained or lost by the plasma) is

W
ρ

= d
dt

∫
dJH0 (J ) F (J , t) =

∫
dJH0

∂F
∂t

(7.3)

where the integral is to be taken over −∞ < J, D, P < +∞. Using (7.1) and integrating
by parts the operator (7.2) gives

W
ρ

= −π

2

∫
dJω

∑
N

[|VN |2 δ (N · Ω − ω)]N · ∂F
∂J

. (7.4)

We recognize in (7.4) the power balance given by the dissipative part of the collisionless
dielectric tensor. A second integration by parts then gives the density of power

W = π

2
ρ

∫
dJF (J , t) ω

∑
N

N · ∂

∂J
[|VN |2 δ (N · Ω − ω)]. (7.5)

Defining wN(J ) through

W = ρ
∑

N

∫
dJF (J ) wN (J ), (7.6)

equation (7.5) then gives

wN (J ) = π

2
ω
∑

N

N · ∂

∂J
[|VN |2 δ (N · Ω − ω)]. (7.7)

This quantity is thus interpreted, for a single component VN , as the power exchanged by a
particle at J with this VN component of the wave interaction. Equation (6.12) can hence
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be rewritten as
〈δJ 〉
δt

∣∣∣∣
N

= N
ω

δH0 (J )

δt
= N

ω
wN (J ), (7.8)

where 〈 〉 is an average over the fast phase of the wave and the N index restricts the wave
kick δJ to a single component VN . Plugging (7.7) into (7.8) and using the tensorial product
notation ⊗ yields

〈δJ 〉
δt

= π

2
∂

∂J
·
∑

N

N ⊗ N |VN |2 δ (N · Ω − ω). (7.9)

This relation (7.9) is just the usual Einstein’s relation (Fraiman & Kostyukov 1995)
between the wave-induced drift coefficient 〈δJ 〉/δt and the wave-induced diffusion
coefficient

〈δ J⊗ δJ 〉
2δt

= π

2

∑
N

N ⊗ N[|VN |2 δ (N · Ω − ω)] (7.10)

used to write the kinetic equation (7.1) in the classical Fokker–Planck form with a drift
and a diffusion coefficient

∂F
∂t

= − ∂

∂J
·
[ 〈δJ 〉

δt
F − ∂

∂J
· 〈δ J⊗ δJ 〉

2δt
F
]

(7.11)

rather than in the completely equivalent and more usual quasilinear form

∂F
∂t

= ∂

∂J
·
[ 〈δ J⊗ δJ 〉

2δt
· ∂F

∂J

]
(7.12)

used here in (7.1). Einstein’s relation

〈δJ 〉
δt

= ∂J · 〈δ J⊗ δJ 〉
2δt

(7.13)

is a consequence of microreversibility (Rax 2021).

8. Angular momentum absorption

Short of solving the quasilinear equation (7.1), a clear understanding of the mechanism
of angular momentum absorption (or emission) can be gained through the analysis of the
quasilinear guiding centre radial velocity 〈δD〉/dt and quasilinear ICRH 〈δJ〉/dt identified
in (7.8) and (7.9). In general the effect of the wave is indeed two-fold: it both drives a radial
drift current δD and provides ICRH δJ. Yet, this last channel should be avoided or at least
minimized for fluid rotation sustainment. This can in principle be done through the choice
of a suitable wave.

8.1. Absorption from global angular momentum conservation
For a single particle, the SAM (Sz) and OAM (Lz) lost by the wave during the resonant
wave–particle interaction are gained by the particle in the form of canonical angular
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momentum LC. From (4.1)

−〈δLC〉
δt

= 〈δJ〉
δt

− 〈δD〉
δt

(8.1)

which using (7.9) rewrites as

−〈δLC〉
δt

= (σ − n)
π

2

∑
N

N · ∂J [|VN |2 δ (N · Ω − ω)]. (8.2)

Under the simple photon picture developed at the end of § 6.1, global angular momentum
conservation for the full system wave plus particle and a single |VN | coupling coefficient
thus writes as

δ Lz|wave = −n
δH0

ω
, δ Sz|wave = σ

δH0

ω
. (8.3a,b)

Quasilinear theory brings additional insights in that it allows to relate the wave’s change
in angular momentum to the angular momentum absorption by a distribution function
F(J , t). Specifically, averaging (8.2) over the distribution of actions in the plasma and
integrating by parts gives

d (Lz + Sz)

dt

∣∣∣∣
wave

= (n − σ)
π

2

∫∫
dJ dD

∑
l

|VN |2 N · ∂J F|P=Pl
. (8.4)

Here Pl is the resonant axial momentum fulfilling the relation N · Ω = ω for given wave
field and DC field configurations, that is

βPl = ω + (l + σ)Ω+ − (l + n) Ω−. (8.5)

Note that since −∞ < P < ∞ there is always a solution Pl to (8.5) for a given (l, n) ∈ Z
2.

Note also that (8.4) can be equivalently derived from (8.3a,b) using (7.4).
The angular momentum absorption coefficient derived in (8.4) can be evaluated by

considering the kinetic evolution of F(J , t) given in (7.1) together with a relaxation term
associated with collisions. Assuming that the plasma equilibrium is only weakly perturbed
by the wave we can consider that F ∼ F0 as given in (6.18).

8.2. Physical picture
To develop a deeper physical understanding of quasilinear angular momentum exchange
we define the average kinetic angular momentum

〈LK〉 = 〈xvy − yvx〉θ+ϕ = 2Ω−
Ω

D + 2Ω+
Ω

J (8.6)

and the average magnetic flux through the orbit

〈Ψ 〉 = ωcπ〈x2 + y2〉θ+ϕ = 2π
ωc

Ω
D + 2π

ωc

Ω
J. (8.7)

According to the quasilinear prescription, the bracket 〈〉 indicates an angle average
of (3.14), (4.2) and (4.3). Meanwhile, (4.4) gives a relation for the canonical angular
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momentum variation

δLC = δ 〈LK〉 + δ 〈Ψ 〉/2π. (8.8)

From (8.6) and (8.7) the kinetic and magnetic components δ〈LK〉 and δ〈Ψ 〉 then write as

Ωδ 〈LK〉 = 2Ω−δD + 2Ω+δJ, (8.9)

Ωδ 〈Ψ 〉 = 2πωcδD + 2πωcδJ. (8.10)

A physical interpretation of these results can be obtained as follows, where we focus again
on the more intuitive ordering D > J.

Starting with the kinetic component (8.9), recall from § 4 that an ion with mass M = 1
displays a guiding centre moment of inertia MG = 2D/Ω with respect to the z axis, and
a moment of inertia of the cyclotron motion MC = 2J/Ω with respect to the guiding
centre. Recall also that the guiding centre of this ion rotates at dθ/dt = Ω− whereas
the cyclotron rotation takes place at the angular frequency Ω+ = −dϕ/dt. Now, because
these two angular velocities are set by the fields ((3.1) and (3.2)), the variation of the
kinetic angular momentum of the ion 〈LK〉 = MGΩ− + MCΩ+ (θ is anticlockwise and ϕ
is clockwise) must come from a variation of the moments of inertia and not of the angular
velocities, so that

δ 〈LK〉
δt

= δMG

δt
Ω− + δMC

δt
Ω+ = 2Ω−

Ω

δD
δt

+ 2Ω+
Ω

δJ
δt

, (8.11)

which is precisely (8.9).
The interpretation of the magnetic component

1
2π

δ 〈Ψ 〉
δt

= ωc

Ω

δD
δt

+ ωc

Ω

δJ
δt

, (8.12)

requires an analysis of both the δD and δJ terms. As we will now show, these two terms
can be interpreted in terms of two different torques exerted on an ion in the background
magnetic field. Starting with D, two pictures can be invoked. The first one is to consider
the axial torque due to the magnetic force exerted on a charge q = 1 moving radially. The
radial velocity of this charge is

d
dt

(√
2D
Ω

)
er, (8.13)

so that this torque writes as

√
2D
Ω

er ×
[

d
dt

(√
2D
Ω

)
er × ωcez

]
= −ωc

Ω

dD
dt

ez. (8.14)

The second is to consider an azimuthal electromotive force (emf) for a q = 1 charge
distributed along a rotating circle with radius

√
2D/Ω , associated with the variation of

the loop surface as a result of the radial motion. This electric inductive field Eemf is also
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the source of an axial torque√
2D
Ω

er × Eemfeα = − 1
2π

dΨG

dt
ez = −ωc

Ω

dD
dt

ez, (8.15)

where we have introduced the magnetic flux through the guiding centre orbit ΨG and
applied Faraday’s law

−dΨG

dt
=
∮

Eemfeα · dseα = 2π

√
2D
Ω

Eemf. (8.16)

One verifies that both analyses give the same axial torque experienced by an ion as a result
of the wave-driven radial motion, which is precisely the first term on the right-hand side
in (8.12). Moving on finally to the δJ term in (8.12), a similar current loop picture can
be brought up but by considering a q = 1 charge distributed this time along the Larmor
radius

√
2J/Ω . The magnetic flux through this varying Larmor radius in indeed ΨL =

2π(ωc/Ω)J, whose time derivative precisely gives back the second term on the right-hand
side in (8.12)

In summary, the first term on the right-hand side of (8.8) corresponds to a change of
the moment of inertia of the particle as a result of the quasilinear radial drift and Larmor
radius evolution. The second term on the right-hand side of (8.8) corresponds to torques
which result from a change in magnetic fluxes. Both of these terms, interpreted here in the
weak field limit, must be balanced by the transfer of a corresponding angular momentum
from the wave. Note, however, that the wave quasilinear primary effect is not a torque, it
is a wave-driven radial current.

9. Radial current generation

Two types of model can be constructed from the quasilinear kinetic equation derived in
(7.1). One option is to balance the quasilinear evolution of the distribution function with
a collisional evolution at the kinetic level and then to average the solution F(J ) to obtain
a steady state fluid picture. The other is to average the quasilinear dynamics to derive the
fluid quasilinear flows of mass, charge and momentum, and then to balance these fluid
flows with the dissipative terms involved in classical transport theory. The latter option is
used in the following, where we further assume for simplicity axial homogeneity along z.

Let us write

Γ (r) = Γrer + Γαeα + Γzez (9.1)

the wave-driven particle flux which results from the absorption of the wave power wN(r) at
radius r. The radial flow Γr is due to the wave-driven guiding centre radial velocity, which
we showed is proportional to 〈δD〉/δt. The azimuthal flow Γα is a small diamagnetic effect
associated with inhomogeneous wave-driven ICRH proportional to 〈δJ〉/δt. The axial flow
Γz is simply the wave-driven current from classical current generation (Fisch 1978, 1987)
due to 〈δP〉/δt. The amplitude of these fluxes is governed by the evolution equation (7.8).

An analytical expression for the radial flow Γr can be derived if focusing once again
on the familiar limit J < D. In this limit the average radial position of a resonant particle
is r2 = 2D/Ω , and the average Lagrangian radial velocity is hence rΩ dr/dt = dD/dt.
From (7.8) the phase averaged evolution of D is proportional to the absorbed power wN
associated with the l harmonic Brillouin resonance for a rotating wave with azimuthal
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number n, and one has

〈δD〉
δt

∣∣∣∣
N

= l + n
ω

wN |D=Ωr2/2. (9.2)

Introducing back the particle mass M, and using the power density absorbed by the plasma
WN (in W m−3) rather than wN (in Watt), the wave-driven resonant particle flux is

Γr = (l + n)

rMΩω
WN s−1 m−2. (9.3)

Consider now that the wave power density WN(t) is turned on adiabatically at t = −∞
with WN(−∞) = 0. The wave moves some resonant particles across the magnetic field,
which leads to a radial current JW(t) such that JW(t = −∞) = 0 and JW(t = 0) = qΓr. The
resulting time evolution of the radial electric field can be described as follows. From an
electrical point of view, the build-up corresponds to a capacitive electric field build-up in a
dielectric media, akin to the charging of a cylindrical capacitor. By considering the plasma
as a dielectric with low frequency permittivity

ε = 1 +
(ωpi

ω

)2
≈
(ωpi

ω

)2
(9.4)

with ωpi the ion plasma frequency, the electric field E(t) throughout this transient phase is
thus determined from Maxwell–Ampère equation

ε0
ω2

pi

ω2
ci

∂E
∂t

+ JW (t) er = 0. (9.5)

From a mechanical point of view this build-up phase corresponds to an angular momentum
input via the JW(t)er × B force, and this momentum is converted into plasma E × B drift.
Indeed, integrating (9.5) over the transient phase gives∫ 0

−∞
JW (t) er × B dt = −NpM

E0 × B
B2

(9.6)

with E0 = E(t = 0), M the ion mass and Np the ion density, which confirms this
momentum balance. Note that ion diamagnetic effects have been neglected in writing
(9.5). Note also that because the conductivity along magnetic field lines is generally far
larger than the conductivity across the field lines, charges rapidly move away from the
wave active regions along the field lines, which in turn become equipotential.

Finally, for t > 0, the charge separation induced by the wave is short circuited by
the plasma perpendicular conductivity (Helander & Sigmar 2005; Kolmes et al. 2019;
Rax et al. 2019). In this steady-state dissipative regime the wave-driven current qΓrer is
balanced by a weak discharging Ohmic current J conduction, with

∇ · [qΓrer + J conduction] = 0. (9.7)

Thus, as opposed to axial current generation, the steady-state is determined by the
geometry of the plasma. The examination of this problem is left for a future study.
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10. Conclusions

Although angular momentum exchange between a wave and a rotating plasma is of
importance both to astrophysics (Goldreich & Julian 1969; Julian 1973; Ferrière 2006)
and laboratory plasmas (Kostyukov et al. 2002; Shvets, Fisch & Rax 2002; Thaury et al.
2013), a kinetic model of this interaction had to our knowledge never been proposed. In
this study we addressed this issue and derived the quasilinear equation describing the
interaction between a rotating wave and a rotating magnetized plasma. We further used
this kinetic model to analyse angular momentum absorption/emission and to understand
the interplay between OAM, SAM and FLR effects.

First, a canonical angle–action Hamiltonian description of the unperturbed Brillouin
rotation dynamics in a rotating plasma is derived. The identification of angle–action
variables allows to separate the fast part of the unperturbed motion (angles) from the
constant (integrable system) or slow (adiabatic system) part of the unperturbed motion
(actions). Through this process we identify three canonical actions D, J and P. The latter
is the classical momentum along B. The first two D and J are shown in the weak field limit,
that is, for a cross-field drift frequency E/(rB) small compared with the ion gyrofrequency,
to be related to the magnetic flux through the cyclotron orbit and the guiding centre orbit.

Then, the wave–particle coupling is expressed in terms of these angle–action variables
in the form of a perturbed Hamiltonian. This approach made it possible to identify a new
resonance condition, which generalizes the classical Landau-cyclotron resonance to the
case of a rotating plasma interacting with a rotating wave. This new condition, (6.1),
is referred to as Brillouin resonance. It notably expresses FLR effects through (5.13)
and (5.14), (5.15), which are found to be responsible for the occurrence of harmonic (l)
Brillouin resonances. Together with this resonance condition, diffusion paths in action
space were identified, and particular examples were exposed in the weak field limit.
Finally, the quasilinear equation (7.1) which describes energy–momentum exchange as
a time evolution of the actions distribution function was derived by averaging the kinetic
response of the plasma to the perturbation over the fast part of the motion (angles).

By analysing the variation in canonical actions D and J predicted by the quasilinear
equation, a physical picture for momentum absorption was finally proposed. Specifically,
angular momentum from the wave was shown to be transferred to the plasma either as
a change of the inertia tensor of the plasma, or as a magnetic flux variation ((8.11) and
(8.12)). This analysis also showed that the radial flux can be identified as the source of
angular momentum injection in the plasma. An interesting prospect is the generalization
of this work to magnetic field inhomogeneities. The use of action-angle coordinates for
the motion in a straight magnetic field with constant gradient (Brizard 2022) may for
instance enable to capture bounce resonances in a mirror geometry rather than the uniform
z translation Doppler shift considered here.

Finally, since the radial current is proportional to the absorbed power, sustaining
steady-state rotation with waves will require adjusting the wave power deposition profile
in a way that (9.7) is fulfilled. The optimization of power deposition will be the object of
future studies, but we note for example that for a resonance N in a rotating magnetized
plasma cylinder with large conductivity along the field lines η

�
and weak conductivity

across the field lines η⊥, (9.7) gives

WN (r) ≈ η⊥
M2

q2

Ωω

(l + n)

(
ω2

c − Ω2

4

)
r2. (10.1)

How this power density can be deposited in the plasma requires information on what the
normal modes of a rotating plasma column are, and in particular the dispersion relation
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characterizing these modes, beyond the simple case of an aligned rotator (Gueroult et al.
2019b, 2020; Gueroult, Rax & Fisch 2023). This important question will be addressed in
forthcoming studies.
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Appendix A. The SAM and OAM of a vector field

Consider a wave field A(r) exp jωt. The identification of (i) linear momentum, (ii) SAM
and (iii) OAM eigenstates can be guided by the analysis of the transformation properties
of the wave under translations and rotations.

For this consider first the change of this vector field A(r) under an active (change of
the object A), or a passive (change of the frame and coordinates used to describe A),
infinitesimal translation T̂ associated with the small vector δr:

T̂A (r) = A (r ± δr) = A (r) ± δr · ∇A (r) . (A1)

The minus or plus signs are associated with the passive or the active points of view.
Equation (A1) can be rewritten as a near identity transformation

T̂A (r) = [I ± jδr · P̂]A (r) , (A2)

where I is the identity operator. The linear momentum operator P̂ is defined in the
usual way as P̂ = −j∇. The eigenvectors of this linear momentum operator P̂ are the
plane waves, P̂z(exp jβz) = β(exp jβz), which are also solutions of Maxwell–Ampère
and Maxwell–Faraday equations in a homogeneous linear dispersive plasma provided that
β(ω) fulfils the dispersion relation.

Consider now the change of a vector field A(r) under an active, or a passive, infinitesimal
rotation R̂ associated with a small δα turn around an axis directed by a given unit vector n
(n2 = 1):

R̂A (r) = A (r ± δαn × r) ± δαn × A (r ± δαn × r)

= A (r) ± δα [n × + (n × r) · ∇] A (r) . (A3)

Equation (A3) can be rewritten as a near identity transformation displaying the separation
between OAM and SAM operators

R̂A (r) = [I ± jδαn · (L̂ + Ŝ)]A(r). (A4)
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The OAM operator L̂ and the SAM operator Ŝ are thus defined according to the usual
relations

L̂ = −jr × ∇, (A5)

Ŝ = −jn × . (A6)

Note that, since Ŝ2
x + Ŝ2

y + Ŝ2
z = 2I , we recover the usual angular momentum rule for a

vector: Ŝ
2 = s(s + 1)I with s = 1.

We now restrict the transformations to rotations around the magnetic field direction
in which case the angular momentum operator reduces to its z component L̂z + Ŝz. The
eigenvectors of the (i) OAM operator L̂z and of the (ii) SAM operator Ŝz are (i) exp ±jnα,
where α is the polar angle around the magnetic field, and (iii) the L and R circularly
polarized waves basis with eigenvalues ±1 and ez with zero eigenvalue

(L̂z + Ŝz)

(
ex ± jey√

2
exp jnα

)
= (n ∓ 1)

(
ex ± jey√

2
exp jnα

)
. (A7)

Solutions of Maxwell–Ampère and Maxwell–Faraday equations with a factor exp ±jnα
have a well-defined OAM in rotating magnetized plasma when the magnetic axis is also
the rotation axis. Solution of Maxwell–Ampère and Maxwell–Faraday equations with a
polarization ex ± jey have a well-defined SAM.

Appendix B. Canonical quasilinear equation

In this appendix we briefly review the derivation of the canonical quasilinear equation
(Rax 2021).

Consider an integrable Hamiltonian H0 (the adiabatic trap) and an oscillating
perturbation (the wave) such that V 	 H0. The kinetic description of wave particle
interaction can be performed through a two time scales separation: F(J , t) is the
distribution function in action space describing the slow evolution (∂tF(J , t) ∼ O(V2))
of a given population and f (J , θ , t) ∼ O(V) describes the fast-oscillating evolution
(∂tf (J , θ , t) ∼ O(V)) in phase space

H = H0 (J ) + V (J , θ , t), (B1)

F = F (J , t) + f (J , θ , t). (B2)

Here (J , θ) is a set of action-angle variables for the unperturbed dynamics, Ω = ∂H0/∂J ,
H is the perturbed Hamiltonian and F is the distribution function providing a kinetic
description of the perturbed dynamics. Liouville’s equation can be written with the help
of Poisson bracket as ∂tF = {H,F}

∂

∂t
(F + f ) = {(H0 + V) , (F + f )}. (B3)

Because {H0, F} = 0 we can split this relation into (i) an O(V) fast evolution – the Vlasov
equation (B4) – and (ii) an O(V2) slow secular evolution – the quasilinear equation (B5) – ,
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so that

∂f
∂t

= {V, F} + {H0, f } ∼ O (V), (B4)

∂F
∂t

= 〈{V, f }〉θ ∼ O
(
V2), (B5)

where we write 〈〉θ the average over the fast rotating angles θ .
The next step is to consider a Fourier decomposition of the O(V) oscillating Vlasov

terms. This decomposition is always possible as f and V are periodic functions of the
angle θ , through the derivation of the Fourier coefficient often requires some lengthy
calculations

V (J , θ , t) =
∑

N

VN (J ) exp j (N · θ − ωt) , (B6)

f (J , θ , t) =
∑

N

fN (J ) exp j (N · θ − ωt) , (B7)

where N ∈ Z
3. With this Fourier decomposition Vlasov’s equation Equation (B4) becomes

an algebraic equation whose solution is

f =
∑

N

VN (J )

N · Ω − ω
N · ∂F

∂J
+ jπ

∑
n

VN (J ) δ (N · Ω − ω) N · ∂F
∂J

. (B8)

We recognize the adiabatic part of the plasma response, which ultimately provides
the Hermitian part of the dielectric tensor, and the resonant part which provides the
description of collisionless dissipation. In order to average (B5)

∂F
∂t

=
〈
∂V
∂θ

· ∂f
∂J

− ∂f
∂θ

· ∂V
∂J

〉
θ

(B9)

we use the usual rule 〈Re[a(u)]Re[b(u)]〉u = Re[a(u)b∗(u)]/2 and finally obtain the
canonical form

∂F
∂t

= ∂J ·
∑

N

NRe
(

j
VN f ∗

N

2

)
= π

2
∂

∂J
·
[∑

N

N |VN |2 δ (N · Ω − ω) N · ∂F
∂J

]
, (B10)

used in (7.1).
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