
Magnetostatic ponderomotive potential
in rotating plasma

Cite as: Phys. Plasmas 30, 052501 (2023); doi: 10.1063/5.0145042
Submitted: 2 February 2023 . Accepted: 10 April 2023 .
Published Online: 1 May 2023

T. Rubin,1,a) J. M. Rax,2,3 and N. J. Fisch1

AFFILIATIONS
1Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540, USA
2Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08540, USA
3IJCLab, Universit!e de Paris-Saclay, Orsay 91405, France

a)Author to whom correspondence should be addressed: trubin@princeton.edu

ABSTRACT

A new end-plugging method for rotating plasmas is identified and analyzed. It uses the ponderomotive potential associated with an azi-
muthal magnetostatic wiggler. Studied both analytically and numerically, this process compares favorably to other end-plugging methods in
open field line magnetized plasma devices.
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I. INTRODUCTION
Magnetic confinement of plasma relies on the basic behavior of

charged particles in static homogeneous magnetic fields: The orbit is
the combination of (i) a rotation around the field lines and (ii) a trans-
lation along the field lines, with both rotation and translation uniform.
Given this basic behavior, to design a magnetic trap with an inhomo-
geneous static magnetic field, two types of configurations can be con-
sidered as follows:

(i) Open field lines configurations, where the magnetic field lines
are closed outside the plasma. The configuration must display a
minimum of a trapping potential along the open field lines to
restrict the parallel motion and to achieve confinement. For
nonneutral plasma in a Penning trap, this potential is electro-
static, and for thermonuclear quasineutral plasma, this poten-
tial is associated with the diamagnetic force leading to magnetic
mirror confinement.1,2

(ii) Closed field lines configurations, associated with a toroidal
topology, are also well suited for confinement. There is no need
to create a minimum of a potential along the field lines as par-
ticles explore the full length of the line. But the magnetic toroi-
dal vertical drift velocity across the field lines is to be
compensated. This compensation is achieved with the rota-
tional transform,3,4 which allows a short circuiting of the verti-
cal drift currents, thus providing steady state confinement.
Stellarators and tokamaks are the two main configurations
designed according to this principle.

These two magnetic confinement principles, (i) open field lines
together with the necessity of end-plugging field lines to avoid the par-
allel escape along the lines and (ii) closed field lines together with the
necessity of a rotational transform to compensate the vertical drift
escape, have been considered since the early times of thermonuclear
plasma physics.

In open traps of the mirror type, despite the occurrence of a min-
imum of the diamagnetic potential, some particles with large parallel
velocity escape the confined plasma and additional confining forces
are to be considered. Several schemes have been identified to provide
additional end-plugging of classical mirrors configurations. Two clas-
sic review papers5,6 summarize the principles and experimental
achievements related to end-plugging in mirror traps. Among the dif-
ferent principles identified to stop the escaping particles, the pondero-
motive force associated with radio frequency (RF) waves offers a
straightforward scheme. However, to maintain end plugging through
ponderomotive potentials at the reactor scale is power intensive.
Confinement in mirror traps can also be enhanced by the centrifugal
force.7–16 The centrifugal force, acting mainly on ions, results from a
rotation sustained by an electric field perpendicular to the magnetic
surfaces. Another loss-reduction scheme combining plasma rotation
and magnetostatic features has been explored, where the mirror throat
is twisted into a helix.17–19 This is an implementation of the moving20

multiple mirror21 concept, which relies on collisions to scatter particles
out of the loss cone. One can also use plasma rotation and electrostatic
perturbations22 rather than magnetostatic ones, which might be gener-
ated by external azimuthal structures to assist in plasma confinement.
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The end-plugging of a rotating plasma column has utility not
only for enhancing the mirror confinement of rotating hot plasmas for
the purpose of controlled nuclear fusion, but also has uses in other
applications, such as (i) mass separation with rotating plasmas envi-
sioned for nuclear waste cleanup and spent nuclear fuel reprocess-
ing;23–28 (ii) E! B plasma configurations for the purpose of ions
acceleration;29–31 and (iii) thermonuclear fusion based upon rotation
in toroidal confinement devices.32,33

What is identified here is a new mechanism for rotating mirror
end-plugging: the use of a simple annular static magnetic wiggler. By
means of a Hamiltonian analysis of single particle dynamics in a rotat-
ing plasma interacting with such an azimuthal wiggler, we show that
this interaction results in an axial ponderomotive force. The occur-
rence of this end-plugging process is, then, confirmed numerically.
This means of end plugging provides confinement that can be in addi-
tion to the centrifugal and simple mirror confinement.

To compare with other methods of charged particle reflection,
consider that a static magnetic field can reflect particles as can be seen
in a classical magnetic mirror BmðzÞ, the adiabatic equation of motion
describing the lrB force is

dhvzi
dt

!!!!
lrB
¼ % q2

4m2 q2 dB
2
m

dz
; (1)

where q is the Larmor radius of the particle in Bm field.
We can also consider the standard RF plugging based on the

ponderomotive force of an inhomogeneous electromagnetic wave with
electric field amplitude EðzÞ, magnetic field amplitude BwðzÞ ¼ kwE=
xw, frequency xw, and wave vector kw,

5,34,35

dhvzi
dt

!!!!
wave
¼ % q2

4m2x2
w

dE2

dz
¼ % q2

4m2

1
k2w

dB2
w

dz
: (2)

However, the sustainment of a standing wave structure through the
matching between an antenna and the plasma dispersion relation is
far less simple than the use of a magnetic mirror.

The forces in Eqs. (1) and (2) are both of the ponderomotive type
and rely on timescale separation between a fast and a slow motion. In
the lrB case, conservation of the first adiabatic invariants relies on
vzdBm=dz & BXc, while in the wave case, vzdE=dz & Exw. The pon-
deromotive force we seek would rely on such adiabaticity condition.
The ponderomotive potentials, U, that relate to the ponderomotive
forces by Fz ¼ %dU=dz are independent of the length scales
L%1z ¼ d lnB=dz. In the case of non-adiabatic interaction, particles
would experience a phase-dependent attractive or repulsive force,
resulting in a quasilinear diffusion.

An annular wiggler around the edge plasma column also offers
the possibility of direct energy conversion of the high energy particles
that escape the mirror along the field lines,36–40 but to assess the possi-
bility, this combination of the magnetic, centrifugal, and azimuthal
wiggler forces requires a careful Hamiltonian analysis beyond the
scope of this work.

Note that the plasma rotation offers the possibility of achieving
what amounts to a conventional ponderomotive forces in the frame of
reference of the rotating plasma, where charged particle see rapidly
oscillating fields. Ponderomotive barriers can be set up in non-rotating
plasmas by imposing RF fields in a variety of physical contexts,41–50

including also one-way type walls for current drive applications.51–54

However, all of these applications require RF waves to be set up within
the plasma, which can be technologically demanding.

We now proceed to study the dynamics of particles in a
magnetized rotating plasma interacting with an azimuthal wiggler.
This paper is organized as follows: In Sec. II, we identify the pon-
deromotive force associated with an azimuthal wiggler within the
frameworks of Newtonian and Hamiltonian analysis. We confirm
this result through direct numerical simulations in Sec. III. In Sec.
V, we compare the ponderomotive wiggler potential with the clas-
sical diamagnetic potential associated with lrB force and the cen-
trifugal potential associated with the plasma rotation. The ordering
of these various confining potentials and their respective advan-
tages and drawbacks are discussed. Section VI summarizes our
new results.

II. INTERACTION BETWEEN A ROTATING MAGNETIZED
PLASMA AND AN AZIMUTHAL WIGGLER

In this section, we derive the leading order potential energy of a
particle performing a cycloid motion with a weak azimuthal wiggler.
We start with a Newtonian derivation of this average force using a
one-dimensional model, illustrating the ponderomotive effect of the
magnetostatic wiggler on a rotating particle. This derivation shows
how the ponderomotive potential is independent of the rotation fre-
quency, and that the Lorentz force generating the reflection is com-
posed of the azimuthal velocity corresponding to average plasma
rotation and the radial component of the wiggler. Later, we perform a
Hamiltonian analysis, from which an average potential energy term,
hH1i, naturally arises. The (average) force due to motion into such a
potential is hFzi ¼ %dhH1i=dz, as usual. In Subsection II B, particle
motion is solved for all three dimensions. In order to achieve a similar
azimuthal motion as in the Newtonian toy model, we use electromag-
netic fields that are much stronger than the fields of the wiggler. In
Hamiltonian language, the assumption is that the cycloid motion is
generated by a Hamiltonian H0 that is much larger than the
Hamiltonian describing the interaction with the wiggler field,H1.

To describe the fields configurations and the particles orbits, we
use both a Cartesian set of coordinates ðx; y; zÞ and a polar one
ðr; a; zÞ associated, respectively, with the basis ðex; ey; ezÞ and
ðer ; ea; ezÞ, such that x ¼ r cos a and y ¼ r sin a. These sets of

FIG. 1. Physical meaning of the angle ðu; hÞ and actions ðJ < DÞ variables in real
(x, y) space. Reproduced from Rax et al., Phys. Plasmas 25, 072503 (2018) with
the permission of AIP Publishing.
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coordinates are illustrated in Fig. 1, which displays a typical charged
particle orbit in a rotating plasma.

The rotating plasma configuration is assumed to be a rigid body
rotation of the Brillouin type. The Larmor radius is assumed to be
smaller than the guiding center radius. In supersonic rotating mirrors,
the plasma is usually confined in a thin cylindrical shell where the
guiding center radius is larger than the Larmor radius, so the results
obtained for this Brillouin configuration remain valid for a sheared
rotation provided that the electric field and its radial derivative are
adjusted to match locally the value of an equivalent Brillouin configu-
ration. The potentials under which the particle is performing a cycloid
motion are

A ¼ 1
2
rBea ¼

1
2
ðxey % yexÞB; (3)

U ¼ xrAa ¼
1
2
r2Bx ¼ 1

2
Bxðx2 þ y2Þ: (4)

The axial magnetic field B and the E! B drift frequency x ¼ 1
r
E!B
jBj2

are constants.
The radial electric field and axial magnetic field, which are illus-

trated in Fig. 1, can be expressed as

E ¼ %rxBer ; (5)

B ¼ Bez: (6)

We define the following set of frequencies:

Xc ¼
qB
m
; XB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

c þ 4xXc

q
; X6 ¼ %

1
2
ðXc6XBÞ: (7)

Here, Xc is the cyclotron frequency, XB is the Brillouin frequency, and
X6 is the usual slow and fast Brillouin modes definitions,55,56 associ-
ated with the dynamics of a particle with mass m and charge q. We
constrain the electric field such that X2

B > 0, that is, 4x > %Xc. This
condition ensures that particles with charge q andmassm are confined
in this field configuration and not accelerated radially out.

This magnetic field can be generated by a current sheet,

jaxial B ¼
B
l0

dðr % RÞea; (8)

where l0 is the permeability of free space, and d is the Dirac distribu-
tion (Dirac delta).

We add another magnetic field, ~B, called “wiggler,” to the config-
uration described in Eqs. (5) and (6),

~B ¼
~BðzÞ r

R

# $n%1
sin nað Þer þ cos nað Þea½ ); r < R;

~BðzÞ R
r

# $nþ1

sin nað Þer % cos nað Þea½ ); r > R;

8
>>>><

>>>>:

(9)

where n 2N, and ~B is the field strength at r¼R, which may be a func-
tion of z. A vector potential for this magnetic field is

a ¼
%~BðzÞR

n
r
R

# $n

cos nað Þez; r < R;

%~BðzÞR
n

R
r

# $n

cos nað Þez; r > R:

8
>>>><

>>>>:

(10)

As a curl of a vector potential, this magnetic field is divergence-less,
and as such physical.

If ~B is a function of z, this is not a vacuum field, and must be sup-
ported by currents in the plasma, which scale as d~B=dz. In order to
perform the averaging procedure later, we shall require a large length
scale over which ~B is ramped-up, so the deviation from a vacuum field
is going to be small.

In the limit of no z dependence of the wiggler field, it can be gen-
erated by a surface current density,

jwiggler ¼ %
2~B
l0

cos nað Þd r % Rð Þez: (11)

Practically, this current density can be realized by a set of axial
(along z) wires arranged as an n multipolar configuration (squirrel
cage configuration or early Ioffe bar configuration also proposed to
rotate a plasma for the purpose of mass separation) around a cylinder
of radius R.57 It is to be noted that permanent magnet wiggler can also
be considered.58

If there is a z dependence to ~B, a “return” current must be
added to Eq. (11) so it remains divergence-less. One type of closure
might be

jwiggler ¼ %~BðzÞ cos nað Þez þ
r
n
d~B
dz
ðzÞ sin nað Þea

# $
2
l0

d r % Rð Þ:

(12)

These are clearly ideal smooth currents. A realistic implementa-
tion would likely be comprised of a finite number of wires, coils, or
permanent magnets. The effects reported in this work are not affected
by small scale oscillations in the wiggler, which are removed by the
averaging procedure we employ.

For the magnetic field in Eq. (6) alone, any surface tangential to
ez is a magnetic surface. Specifically, coaxial circular cylinders centered
at the origin are magnetic surfaces. The electrostatic potential in Eq.
(4) is constant on these surfaces. Adding the wiggler field ~B to the
magnetic field in Eq. (6) alters the topology of magnetic surfaces. Now,
ðr=RÞn cos ðnaÞ ¼ Const. are magnetic surfaces, and the electrostatic
potential in Eq. (4) is no longer constant on magnetic surfaces. As a
result, E * ðBþ ~BÞ ¼ E * ~B 6¼ 0.

A major caveat in this field configuration is our assumption
that the electric field, which is produced by a uniform charge distri-
bution in the plasma, remains as in Eq. (5), and is not affected by
the presence of the wiggler. The charge distribution in the plasma
may be rendered non-uniform due to reflection of ions, especially
at larger radius, where the reflecting force is most effective. The
electric field may also be modified by magnetohydrodynamical
effects, by which the plasma might rearrange itself to minimize the
total jE * Bj.

A. Newtonian derivation
Imagine a charged particle whose motion is constrained to lie on

a cylinder of radius RG. In addition to having no radial velocity, we
constrain the azimuthal component of its velocity to be a constant
va 6¼ 0. This particle now interacts with the magnetic field described
by Eq. (9), and we take RG < R. The equation of motion in the uncon-
strained z direction is
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m€z ¼ %qva~BðzÞ RG

R

# $n%1

sin ðnaÞ; (13)

with the argument of the sine satisfying

~x ¼ n _a ¼ nva

RG
: (14)

Under these assumptions, the time dependent equation of
motion becomes

€z ¼ v0 ~XðzÞ sin ð~xt þ a0Þ; (15)

where we encapsulated the constant pre-factor as v0 ¼ %~x RG
n ð

RG
R Þ

n%1;
~X ¼ q~B=m is the cyclotron frequency associated with the magnetic
field ~B, which is the strength of the wiggler field at r¼R, and a0 is
some initial angle.

We assume that the oscillation frequency is much larger than the
change in the envelope of the oscillations,

~x +
_z
~X

d~X
dz

; (16)

and separate the motion into a slow z0 and a fast oscillating part z1,
such that z1 & z0. Taylor expanding Eq. (15) yields

€z0 þ €z1 , v0 ~Xðz0Þ þ z1
d~X
dz
ðz0Þ

% &
sin ð~xt þ a0Þ: (17)

The leading order solution for the fast motion is

z1 , %
v0 ~Xðz0Þ

~x2 sin ð~xt þ a0Þ: (18)

The slow motion becomes

€z0 , %
v20
4~x2

d~X
2

dz
ðz0Þ 1% cos ð2~xt þ 2a0Þ½ ): (19)

This equation is in the form of the traditional ponderomotive
force equations. Thus, averaging over the fast oscillations and multi-
plying by h _z0i yields

1
2
dh _z0i2

dt
¼ % v20

4~x2
d~X

2

dt
ðhz0iÞ: (20)

Substituting the constant v0 eliminates the ~x frequency from this
expression,

1
2
mh _z0i2 þ

1
4
m~X

2ðhz0iÞ
R2

n2
RG

R

# $2n

¼ Const: (21)

The first term in this expression is the kinetic energy of the slow
motion, while the second term is the ponderomotive potential we seek.
Particle reflection would occur if Eqs. (16) and (21) are satisfied. The
length scale over which the wiggler field is ramped up is a free parame-
ter and can be selected independently.

In Subsection II B, we derive the same potential using a
Hamiltonian approach. In this more complete derivation, the radial
and azimuthal constraints are approximately realized by the electro-
magnetic fields in Eqs. (5) and (6).

B. Hamiltonian analysis
The unperturbed Hamiltonian H0 of a rotating plasma in this

configuration is the usual sum of the kinetic energy mv2=2 of the ion
plus its potential energy qUðxÞ,

H0 p; xð Þ ¼
1
2
mv2 þ qU ¼ 1

2m
p% qA xð Þ½ )2 þ qU xð Þ; (22)

where v is the velocity, and p ¼ pxex þ pyey þ pzez is the canonical
momentum conjugate to the position x ¼ xex þ yey þ zez of the ion.
This unperturbed HamiltonianH0 Eq. (22), associated with the electric
and magnetic fields configuration described by Eqs. (5) and (6), is
expressed in Cartesian coordinates as

H0 ¼
p2x þ p2y þ p2z

2m
þ Xc

2
ypx % xpyð Þ þ

X2
B

8
x2 þ y2
' (

: (23)

This is a quadratic form of the Cartesian momentum and positions
variables; thus, H0 is integrable. We consider the following change of
variables adapted to the geometry of the problem,

x ¼
ffiffiffiffiffiffiffiffiffiffi
2

mXB

r ffiffiffiffi
D
p

cos h%
ffiffi
J
p

cosu
' (

; (24)

y ¼
ffiffiffiffiffiffiffiffiffiffi
2

mXB

r ffiffiffiffi
D
p

sin hþ
ffiffi
J
p

sinu
' (

; (25)

px ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
mXB

r
%

ffiffiffiffi
D
p

sin hþ
ffiffi
J
p

sinu
' (

; (26)

py ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
mXB

r
ffiffiffiffi
D
p

cos hþ
ffiffi
J
p

cosu
' (

: (27)

The actions variables J and D can be interpreted in terms of the guid-
ing center radius RG and Larmor radius q of the particle motion as

RG ¼
ffiffiffiffiffiffiffiffiffiffi
2D
mXB

r
; q ¼

ffiffiffiffiffiffiffiffiffiffi
2J

mXB

r
; (28)

where J - 0; D - 0, and the angle variables h 2 ½0; 2p) and
u 2 ½0; 2p). This canonical transform was already used in studies on
transport driven currents.59

Through a simple substitution of Eqs. (24)–(27) in Eq. (23), we
express the HamiltonianH0,

H0 ¼
1
2m

P2 þ X%D% XþJ; (29)

where we re-labeled P ¼ pz. This expression is independent of the
angles ðu; h; zÞ as expected. This particular canonical transform dis-
plays two advantages to set up the ion dynamics study (i) in the
dynamics generated by H0, the actions are independent of time
dðJ;D;PÞ=dt ¼ 0 and (ii) the actions ðJ;D;PÞ and angles ðu; h; zÞ
have a simple geometrical interpretation illustrated in Fig. 1.

The cyclotron (kinetic) part of the energy %XþJ , 1
2mX2

cq
2 is

always positive although the drift (potential) part X%D , 1
2mxXcR2

G
can be either positive or negative, depending on the direction of the
electric field and the sign of the particle electric charge. Hamilton’s
equations lead to the expected classical Brillouin results describing the
uniform drift rotation of the guiding center around the axis of the con-
figuration and the uniform cyclotron rotation around the that mag-
netic field line,
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dh
dt
¼ X%; (30)

du
dt
¼ %Xþ: (31)

The minus sign for the fast (cyclotron) rotation is due to the choice of
a clockwise angle for u (the counterclockwise choice for h). We have,
thus, identified a convenient set of canonical angles u ¼ ðu; h; zÞ and
actions J ¼ ðJ;D;PÞ variables describing the ion interaction with the
electric and magnetic field given by Eqs. (5) and (6).

The Hamiltonian H describing the interaction of a particle with
the DC confining fields, Eqs. (5) and (6), and the wiggler field, Eq. (9),
is given by

H ¼ H0 þ H1; (32)

H1 ¼ %
Pqaz
m
þ q2a2z

2m
; (33)

where H1 is H1 ¼ ½ðp% qA% qaÞ2 % ðp% qAÞ2)=2m, the kinetic
energy term not already contained in H0. In our case, A * a ¼ 0 and
p * a ¼ pzaz .

Looking at particle motion confined within r<R in its entirety,

% Pqaz
m
¼ P~X

R
n

r
R

# $n

cos nað Þ; (34)

q2a2z
2m
¼ 1

4
m~X

2 R2

n2
r
R

# $2n

1þ cos 2nað Þ½ ): (35)

The procedure employed here is to substitute the change of varia-
bles ðr; aÞ! ðx; yÞ! ðh; u; D; JÞ using Eqs. (24) and (25) in Eqs.
(34) and (35). Because ðz; PÞ are unaffected by this change of varia-
bles, any z-dependence remains unchanged.

In order to identify secular effects of the ponderomotive type, we
average over the unperturbed cyclotron and drift rotations
(h . X%t; u . Xþt). This averaging will give hp * aih;u ¼ 0, and
ha2ih;u 6¼ 0. The dipolar coupling described by p * a can give a reso-
nant ponderomotive effect if we set up a second order perturbative
expansion, but this term is always far smaller than the ha2=2ih;u term
except very near resonances between the cyclotron and drift motion,
where the averaging methods become questionable.60 We will study
this minor contribution to the dynamics in a forthcoming paper and
evaluate its very specific properties associated with mass selection
and non-reciprocity. The dominant effect of the wiggler is, thus,
hq2a2=2mih;u and, as shown below and in Secs. III–V, it sets up an
axial ponderomotive potential providing end plugging in a rotating
plasma column.

In order to perform the averaging of the perturbationH1 over the
motion generated by H0, we assume H1=H0 . ! < 1. To leading
order, the change in energy,

dH1

dt
¼ @H1

@J
* dJ
dt
þ @H1

@u
* du
dt
; (36)

is due to the angular motion, as the evolution of the actions is slow,
dJ=dt ¼ %@H=@u ¼ %@H1=@u . Oð!Þ, whereas the evolution of
the angles is fast du=dt ¼ @H=@J , @H0=@J . Oð1Þ. We want to
average over the angles h and u, so we require timescale separation
such that

!!!!
@H1

@z
P
m

!!!!&
!!!!
@H1

@h
X%

!!!!; (37)
!!!!
@H1

@z
P
m

!!!!&
!!!!
@H1

@/
Xþ

!!!!: (38)

Neglecting fringing fields, we take the wiggler field to be a func-
tion of z, ~XðzÞ. The adiabaticity conditions [Eqs. (37) and (38)] are,
then,

!!!!
P
m
d ln ~X
dz

!!!!& jnX6j: (39)

Equivalently, using L%1z ¼ jd ln ~X=dzj as the ramp-up length scale,
which can be a function of z, the more stringent condition in the com-
mon limit of x& Xc is

vz & nX%Lz , nxLz: (40)

To leading order, the cosine terms in Eqs. (34) and (35) and in
the perturbed potential / average to zero. This is evident in the small
gyroradius limit RG + q, where a , h . X%t, but this is also true in
the general case.

We can use Eqs. (24) and (25) to evaluate the reminder of Eq.
(35) by

r2 ¼ 2
mXB

Dþ Jð Þ % 2
ffiffiffiffiffiffi
DJ
p

cos hþ uð Þ
) *

: (41)

Employing the binomial theorem,

r2n ¼ 2
mXB

# $nXn

‘¼0
ð%1Þ‘Cn‘ Dþ Jð Þn%‘ DJð Þ‘=2

! 2 cos hþ uð Þ½ )‘; (42)

where Cn‘ ¼
n
‘

# $
¼ n!=‘!ðn% ‘Þ! are the binomial coefficients.

Expanding the cosine and keeping only the terms that do not depend
on the angles,

hr2ni ¼ 2
mXB

# $n Xn

‘¼0;2;4;…
Cn‘C

‘
‘=2 Dþ Jð Þn%‘ DJð Þ‘=2: (43)

The Hamiltonian describing the leading order effect of the wig-
gler on the particle motion isH¼ H0 þ hH1i, where

hH1i ¼
1
4
m~X

2 R2

n2
2
Dþ J
mXBR2

# $n Xn

‘¼0;2…
Cn‘C

‘
‘=2

ffiffiffiffiffiffi
DJ
p

Dþ J

# $‘
: (44)

Particles entering the wiggler region will be reflected if their axial
energy outside the wiggler is mv2z=2 ¼ P2=2m < hH1i, and the wig-
gler ramp up is adiabatic, as described in Eq. (40).

Hamilton’s equation along the z direction is then given by

dP
dt
¼ % @H

@z
¼ 2

d ln ~X
dz
hH1i: (45)

This relation describes an attractive or repulsive force along z, accord-
ing to the sign of d~X=dz. This analytical result is checked numerically
in Sec. III.
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III. NUMERICAL STUDY
In order to validate the prediction for the average behavior of the

particle as it enters the wiggler region, we use a Boris pusher61,62,65

implemented in the LOOPP code used in earlier studies of time-
dependent ponderomotive forces63,64 to time step a particle through
the Lorentz force,

m€x ¼ qðEþ _x ! BÞ; (46)

with the electromagnetic fields given in cylindrical coordinates as

E ¼ %rxBer ; (47)

B ¼ Bezþ
~B0

1þ exp ð%z=LzÞ
r
R

# $n%1
sin nað Þer þ cos nað Þea½ ): (48)

Here, B; x; ~B0; Lz;R; n are constants, given in Table I for the four
example trajectories, and m; q being the deuteron mass and elemen-
tary charge, respectively.

The second term in (48) is the magnetic field of an external
wiggler. The z dependence of the field satisfies 8z 2 R :
d ln ð~B0 * ð1þ exp ð%z=LzÞÞ%1ÞÞ=dz / L%1z . The parameter Lz sets
the ramp-up length scale in Eq. (40).

In the limits outlined above, the particle decelerates as it enters
the wiggler region. It suffices to satisfy the reflection conditions for
using the particle axial velocity value outside of the wiggler. The reflec-
tion conditions are adiabatic dynamics (49), and parallel energy being
lower than the potential (50),

vz0 & nxLz; (49)
1
2
mv2z0 < hH1i: (50)

The simulations for cases I and II are presented in Figs. 2 and 3.
In these cases, two deuterons of 20 keV axial energy are reflected from
the same electromagnetic field configuration. The rotation frequency,
x, wiggler periodicity, n, and axial ramp up length scale Lz are chosen
such that the motion is adiabatic, with vz0=nLzX% ¼ 0:26& 1. The
deuteron in case I has a nonzero Larmor radius, q ¼ 5 cm, and per-
forms a cycloid motion around the axis of the configuration. The ratio
of the fast and slow Brillouin frequencies is not an integer, and the
projection of the trajectory on the x–y plane does not trace the same
exact path. Case II is a cleaner picture of the same initial conditions,
with q ¼ 0m. In both cases, the reflected particle has the same axial
energy as it had before reflection. Cases I and II show that particles of
20 keV or less whose initial conditions are in the,90% area of the cyl-
inder would be reflected.

Cases III and IV, presented in Figs. 4 and 5, are examples of adia-
baticity near-breaking and breaking. In these cases, the plasma rota-
tion frequency is reduced to 280 krad=s, which is more easily
achievable in practice. In order to use a small Lz, which is 3m in case
III, the wiggler periodicity is increased to 4. This results in ,57% of
the cylinder area to have a sufficient potential height to reflect 20 keV

TABLE I. Parameters for single particle simulations.

Parameter Case I Case II Case III Case IV

B 10 T
x 28Mrad=s 280 krad=s
~B0 1 T
n 2 4
R 1m
Lz 0:1m 3m 1m
RG 0:3m 0:65m
q 5 cm 0m
vz0 1:38Mm=s
X%D 13:3MeV 591:8 keV
XþJ 7:0MeV 0 eV
1
2mv2z0 20 keV
1
2mv2z0=hH1i 0.74 0.82 0.84
vz0=nLzX% 0.26 0.41 1.23
Particle Deuteron

FIG. 2. Energies as a function of axial position and trajectory in the x–y plane, case I (parameters in Table I). Left: in blue—energy in the axial degree of freedom; in orange—
the initial energy in the axial direction; in green—the energy in the axial canonical momentum; in red—the analytic expression for the potential barrier. Right: in red—the projec-
tion of the particle trajectory on the x–y plane; in black—the device radius, where the current sheets generating the wiggler field are located; in green—the wiggler magnetic
field lines. Reflection occurs when the energy in the canonical momentum is zeroed out.
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FIG. 3. Energies as a function of axial position and trajectory in the x–y plane, case II (parameters in Table I). Compared to Fig. 2, no energy is in the J degree of freedom,
and all the energy in the perpendicular motion is in the D degree of freedom. For this configuration, the hH1i > 20 keV for more than 91% of the cylinder cross-sectional area.

FIG. 4. Energies as a function of axial position and trajectory in the x–y plane, case III (parameters in Table I). Compared to Fig. 3, this motion is almost non-adiabatic.

FIG. 5. Energies as a function of axial position and trajectory in the x–y plane, case IV (parameters in Table I). Compared to Fig. 3, the particle interaction with the wiggler field
is non-adiabatic.
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deuterons. In the case of this not completely adiabatic interaction
vz0=nLzX% ¼ 0:41 < 1, the axial energy of the reflected particle is
somewhat different than the original.

If we use a smaller Lz, some initial angles would lead to particles
“tunneling” through the potential barrier, for example, Lz ¼ 1½m) in
case IV.

Reflection occurs when the energy in the axial canonical momen-
tum, P2=2m, reaches zero. The deviation of the reflection point from
the expected curve hH1i is as large as the amplitude of oscillation of
the energy in the axial canonical momentum, which hH1i averages
out. The axial instantaneous energy 0:5mv2z has a large spread around
its initial value due to interaction with the wiggler field. The instanta-
neous velocity of the particle becomes negative briefly several times
well before particle reflection.

IV. WEAK ELECTRIC FIELD AND SMALL GYRO RADIUS
LIMIT

We consider the weak electric field approximation, x < Xc, and
the small Larmor radius approximation, q < RG. Within the frame-
work of these orderings, we can expand X6 to express

X%D ,
1
2
mXcxR2

G þ
1
2
mx2R2

G; (51)

%XþJ ,
1
2
mX2

cq
2 þ 3

2
mXcxq2 % 1

2
mx2q2; (52)

where we have neglected higher orders inertial terms. Expressing
x ¼ % 1

B
dEr
dr , the energy

H0 ¼
P2

2m
% XþJ þ X%D

, 1
2
mv2k þ

1
2
mv2c þ

1
2
mv2E!B þ qU (53)

appears as a decomposition of the parallel energy, the energy of the
cyclotron motion, and the E! B drift energy, plus the electric poten-
tial energy qUðRGÞ. Notably, the energy does not depend on the angle
hþ u, due to the chosen electric field profile (Er ¼ r * Const:), so no
averaging is needed in order to separate the perpendicular energy into
the drift and cyclotron parts.

The charged particle dynamics associated with H0 is more easily
analyzed in a rotating frame where the plasma is at rest, that is, rotat-
ing with x frequency. In this frame, the electric field cancels but we
have to take into account the centrifugal potential and the Coriolis
gyroscopic coupling. The Coriolis coupling appears as an additional
effective magnetic field, which can be neglected compared to B in the
weak electric field approximation. Thus, if we introduce the magnetic
moment l ¼ mv2c=2B, the Hamiltonian H0 in the rotating frame
becomes H00, which is the sum of a kinetic term mv2k=2 plus the dia-
magnetic and centrifugal potentials,

H00 ¼
1
2
mv2k þ lB% 1

2
mx2R2

G: (54)

Now let us consider an axisymmetric magnetic field, illustrated in
Fig. 6, where we neglect the ambipolar potential along the field lines.
The magnetic surfaces are described by the relations r ¼ RðzÞ. We
define the mirror ratio between two sections z ¼ z0 and z ¼ z1 as
R ¼ B1=B0 where B0 ¼ Bðz0Þ; B1 ¼ Bðz1Þ. Between these two

sections z ¼ z0 and z ¼ z1, the conservation of the magnetic flux and
the isorotation law can be expressed as

B0R2
0 ¼ B1R2

1;
E0
B0R0

¼ E1
B1R1

:

The conservation of the energy H00 [Eq. (54)] within the adiabatic
approximation leads to the change of parallel velocity between the sec-
tions z ¼ z0 and z ¼ z1,

v2k0 % v2k1 ¼ v2c0 R% 1ð Þ þ E2
0

B2
0

1% 1
R

# $
: (55)

For a straight plasma column with radius R interacting with an adia-
batically tapered (external) wiggler with amplitude ~BðzÞ, the change of
parallel velocity between two sections z ¼ z0 and z ¼ z1 is given by

v2k0 % v2k1 ¼
q2

2m2

RG

R

# $2n R
n

# $2

~B
2
z0ð Þ % ~B

2
z1ð Þ

h i
: (56)

The relations [Eqs. (55) and (56)] allow to compare the confinement
properties of (i) classical mirrors, (ii) rotating mirrors, and (iii) end plug-
ging with an external azimuthal wiggler. This comparison is clearly illus-
trated in Fig. 7, where we draw the boundary between confined and
unconfined particles through the reflection requirement at z1: v2k1 ¼ 0.
In this figure,Wiii is given bym=2 times the right hand side of Eq. (56),
assuming the adiabaticity condition Eq. (49) is satisfied.

V. COMPARISON OF THE PONDEROMOTIVE
POTENTIAL WITH THE DIAMAGNETIC AND
CENTRIFUGAL ONES

If we consider a rotating mirror configuration, there are two
methods to mitigate the end losses: (i) magnetic mirror point along
the axis or (ii) an azimuthal wiggler around the axis. In this section, we
will compare and discuss the three potential associated, respectively,
with the centrifugal force and these two end plugging schemes. The
Hamiltonian of the problem clearly display these three energies,

H % P2

2m
¼ %XþJ þ X%Dþ hH1i: (57)

FIG. 6. A rotating axisymmetric plasma column with two sections z0 and z1 along a
field line.
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The first term on the right hand side is (i) the diamagnetic energy, the
second term (ii), the centrifugal energy, and the third one (iii) the lead-
ing order ponderomotive energy. Under the hypothesis J & D, the
azimuthal wiggler ponderomotive potential is given by

hH1i ¼
+
q2a2

2m

,
, q2

4m
RG

R

# $2n R
n

# $2

~B
2
zð Þ: (58)

For a classical magnetic mirror, the lB (dia)magnetic energy
%XþJ ¼ hlBi is given by

hlBi , 1
2
q2

m
q2B2 zð Þ: (59)

The obvious advantage of wiggler end-plugging [Eq. (58)] is the
fact that it acts on the particles independently of their pitch angle
although Eq. (59) displays the usual drawback associated with the loss
cone.

The ratio of these two energies is

hH1i
hlBi

, 1
2

RG

R2

# $2n R
nq

# $2 ~B
B

# $2

(60)

and can be of the order one if R1~B1=qB . n and RG . R1 or
R2~B2=qB . n and RG . R2. As R1 þ q / RG / R2 % q, bringing R1
and R2 close to one another increases this ratio favorably.

Finally, the averaged potential energy hq2a2=2mi is to be com-
pared with the centrifugal energy X%D ¼ mX%XBR2

G=2,

hH1i
mX%XBR2

G=2
,

~X
2

2xXc

RG

R

# $2n R
nRG

# $2

: (61)

We can also compare the potentials produced by increasing jBj
to the same value. The added potential for jBj ¼ jBþ DBkj is lDBk.
Increasing the magnetic field to the same strength for a gyrocenter
position RG,

jBj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þ ~B
2 RG

R

# $2n%2
s

¼ Bþ DBk; (62)

hH1i
lDBk

, RG

nq

# $2

1þ
DBk
2B

# $
; (63)

where q is the Larmor radius before the interaction with the increased
magnetic field Bþ DBk.

Each drift surface would experience a different increase in jBj,
owing to the radial dependence of the wiggler field.

VI. CONCLUSION
We offer a magnetostatic end-plugging concept, using an azi-

muthal wiggler field, added to a strong axial field, such that the energy
of the parallel motion is converted mostly to axial oscillations, result-
ing in reflection. The ponderomotive reflection is made possible
because of the plasma rotation through static magnetic perturbations,
as opposed to conventional ponderomotive barriers, which involve
reflection by imposed RF fields oscillating in time. The main assump-
tion here is that surfaces of constant potential are not affected by the
perturbation to the magnetic field. The plasma rotation provides for
an oscillating field seen in the rotating particle reference frame.

This new type of reflection can be compared to magnetic mirror
reflection, in which the parallel energy is converted into perpendicular
motion. Magnetic mirrors fail to reflect charged particles with small
perpendicular speeds; in contrast, the magnetostatic wiggler reflects
such particles too.

As an adiabatic ponderomotive effect, it relies on slow changes in
the envelope of the wiggler. This is a limitation of all effects of the pon-
deromotive type. Reflecting high energy particles, besides requiring a
high ponderomotive potential barrier, would require construction of
long devices with large rotation speeds.

Of course, any small transverse magnetic field can reflect par-
ticles by arcing them over half a gyro-orbit. However, for weak
transverse fields, that gyro-radius becomes large. In contrast, in the
rotating plasma configuration, charged particles are reflected over
transverse distances not comparable to the gyroradii in the weak
wiggler field, but rather the comparable to the gyroradii in the axial
guide field.

Thus, the ponderomotive barrier here offers the advantages of:
(i) reflection of particles without relying on large perpendicular
energies; (ii) reflection over small transverse distances; and, most
importantly, (iii) reflection without the need of RF fields, whose
maintenance dissipates power and whose injection is technologically
more complex.

However, the magnetostatic end-plug does have the drawback
that the fields may not penetrate far into the rotating plasma, limiting
the reflection to peripheral particles. The lowest azimuthal wavenum-
bers will penetrate furthest, but the averaging procedure employed
here breaks down for very low mode numbers, and very low rotation
frequencies. However, to the extent that the reflection succeeds, the
magnetostatic wiggler offered here can simply be used in addition to
other reflection mechanisms.
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