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Collisions between charged particles can be described and solved using Monte Carlo methods in the 
framework of stochastic differential equations (SDEs). In this paper, we start from an SDE including the 
extended Lorentz collision operator, which can recover the collisions between a sampling electron and 
background ions and electrons. On this basis, we construct a second order weakly convergent algorithm 
(WCA2) to simulate collisional effects of electrons in plasmas. Superseding the Weiner process by a 
three-point distribution, WCA2 possesses high weakly convergent accuracy as well as low computational 
costs. The definition and properties of weak convergence are discussed in detail. The weakly convergent 
order of WCA2 is verified both theoretically and numerically. Through two trial moment functions, 
we carefully analyze the numerical solutions of the SDE using rigorous statistical tests in the sense 
of weak convergence. The criteria and practical operations of finding the benchmark solution of SDEs 
are introduced at length. In order to illustrate the power of WCA2, we apply it to simulate the 
backward runaways in plasmas, which is a dramatic physical phenomenon. By comparison with the Euler-
Maruyama method and the Cadjan-Ivanov method, the advantage and efficiency of WCA2 is exhibited. 
The backward runaway probability and its dependence on initial conditions are accurately studied using 
WCA2.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Collisions among charged particles are essential processes in 
plasma physics. Collisional effects participate in many critical phys-
ical mechanisms in magnetic confinement fusion researches, such 
as the momentum scattering, the formation of runaway electrons, 
and the thermalization of fast alpha-particles. Many coefficients 
in non-ideal magneto-hydrodynamical equations are determined 
by collisional processes. The solution of the Fokker-Planck equa-
tion requires the accurate calculation of its collisional term. Be-
cause collisions in plasmas are microscopic many-body interac-
tions, which are extremely sensitive to the initial distribution in 
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the phase space of all species of particles, the direct calculation of 
particle trajectories under collisions is impractical.

Monte Carlo methods are widely applied to calculate the distri-
bution function and the expectations of physical quantities through 
random sampling and stochastic simulations. Collisions in plasmas 
are thus simulated by first solving the corresponding Newtonian 
equations with random forces for each sampling particle. Then the 
distribution function and macroscopic physical quantities can be 
statistically reconstructed. The random force was originally formu-
lated by Paul Langevin [1], and the equation is hereby named after 
him. It was proposed as an intuitive approach to explain the Brow-
nian motion following the diffusion theory developed by Einstein 
[2]. The rigorous mathematical framework for the Langevin equa-
tion had not been revealed until Wiener and Ito formulated the 
integral theory of the Wiener process and the stochastic differen-
tial equation (SDE) theory [3–7]. According to their theories, the 

https://doi.org/10.1016/j.cpc.2023.108758
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108758&domain=pdf
mailto:jliuphy@ustc.edu.cn
https://doi.org/10.1016/j.cpc.2023.108758


W. Wu, J. Liu, N.J. Fisch et al. Computer Physics Communications 289 (2023) 108758
effects of the random force should be interpreted using the Wiener 
process, i.e., the integral of a white noise Gaussian process, rather 
than a simple random variable plugged into the ordinary differ-
ential equation. Hence, the Langevin equation was reformed as 
an SDE. And its connection to the diffusion theory was explicitly 
revealed by the famous Feynman-Kac formula, which boosted in-
terests of research on SDEs. In most applications [8–16], SDEs have 
to be solved numerically. Various stochastic numerical algorithms, 
such as the Euler-Maruyama method [8,9,14,17] and the Milstein 
method [18], have been proposed.

When dealing with collisions in plasma physics, different kinds 
of SDEs have been engaged. Jones and Manheimer [14,17] inde-
pendently developed Coulomb collision models in particle-in-cell 
(PIC) simulations by applying the traditional Langevin approach. 
Cadjan and Ivanov [10,11] expressed the Lorentz collision oper-
ator in a modern SDE form for the first time. Subsequently, Al-
bright developed the quiet direct simulation Monte Carlo (QDSMC) 
[8,9] technique utilizing the Ito stochastic integral. These meth-
ods have been successfully applied to the study of wave-particle 
interactions [12] and runaway electrons [19,20]. Additionally, Cad-
jan and Ivanov proposed a numerical method to perform practical 
computations for SDEs [10,11], referred to as the Cadjan-Ivanov 
method. Recently, Zhang et al. presented a modern approach to 
simulate runaway electrons by solving backward SDEs using the 
Euler-Maruyama method [21].

Above all, the numerical errors in traditional methods of solv-
ing the Langevin equation have not been intensively discussed. 
Traditional schemes for numerically solving SDEs mainly focus on 
providing accurate solution trajectories in the phase space [22]. 
As a result, the measurement of the numerical accuracy is eval-
uated by its deviation from the exact theoretical trajectory for 
each sampling particle. The convergent criterion on sampling tra-
jectories is rigorously defined as the strong convergence condition. 
On the other hand, when talking about Monte Carlo simulations, 
it is more important to pursue an accurate distribution function 
or corresponding moments rather than the particle trajectory it-
self. In other words, although the strong convergence condition 
guarantees the correctness of the distribution function, it is not 
necessary. Alternatively, a numerical stochastic method for SDEs 
can be assessed by its statistical behaviors. Its numerical errors are 
analyzed based on the deviation of the distribution function and 
the moments of different orders, instead of a single trajectory. This 
convergent criterion on statistical quantities is defined to be the 
weak convergence condition. Sometimes, the strong convergence 
condition is too strict. There exist weak convergent algorithms for 
SDEs, which are not strong convergent.

According to the above definitions, the order of both the Euler-
Maruyama method and the Cadjan-Ivanov method is 0.5 in the 
sense of strong convergence. Numerical solutions of these two 
methods converge to exact solutions with numerical errors on the 
order of 

√
�, where � denotes the time stepsize of simulations. 

From the viewpoint of weak convergence, the distribution of nu-
merical solutions of the above two methods converge on the order 
of �. Then we can conclude that the Euler-Maruyama method and 
the Cadjan-Ivanov method are both 0.5-order strongly convergent 
and 1-order weakly convergent algorithms. As another example, 
the Milstein method [23,24] can improve the strongly convergent 
order to 1, but it is still first order weakly convergent. It indicates 
that the accuracy of the distribution function does not necessarily 
increase with the accuracy of sampling trajectories. Therefore, to 
increase the accuracy of a Monte Carlo simulation, it is more ef-
ficient and economic to improve its weakly convergent behaviors 
directly.

In this paper, we obtain a second order weakly convergent 
full three-dimensional Monte Carlo algorithm (WCA2) by discretiz-
ing the extended Lorentz collision operator in the modern SDE 
2

framework. The standard Lorentz operator represents the colli-
sion between an electron and background ions, while the extended 
Lorentz collision operator also includes the collisional effects from 
background electrons. Considering electrons in plasmas, their gov-
erning SDE can be derived from the Boltzmann equation with 
extended Lorentz collision terms using the Dynkin formula [4,6]. 
By further assuming the diffusion coefficient matrix to be sym-
metric, an analytical SDE form can be deduced using Cadjan and 
Ivanov’s decomposition method [11]. In the sense of weak conver-
gence, the Wiener process, which satisfies a normal distribution, in 
the stochastic integral of the SDE can be replaced by a three-point 
distribution process [23,25]. This simplification evidently relieves 
the computation burden when keeping the same weakly conver-
gent performance.

In order to illustrate the power of the weakly convergent algo-
rithm derived here, we consider the backward runaway problem 
in plasma. Runaway electrons are intensively studied because they 
can be accelerated to extremely high energy and play key roles to 
the safe operation of large tokamaks [26,27]. The runaway prob-
lem is a perfect example because it sometimes requires a strongly 
convergent approach and sometimes can be solved using a weakly 
convergent approach. For example, to capture the important fea-
tures of the long term behavior of runaway electrons [28–30] or 
runaway positrons [31], it is important to use a strongly con-
vergent approach to capture details of the long term individual 
particle trajectories. However, the important features of so-called 
backward runaways [20] are inherently stochastic processes that 
lead to a distribution of runaway probability, which entails a sta-
tistical treatment. For a stochastic process, the weakly convergent 
approach suffices. The application of first principle simulations on 
runaway electrons based on particle sampling methods has ex-
plored new dynamical behaviors and complex physical natures 
in magnetized plasmas [32–35], including the collisionless pitch-
angle scattering phenomenon. Unlike normal runaway electrons, 
the backward runaway happens when a group of fast electrons 
run in the same direction along the external electric field. Because 
of extremely low collisional frequency of fast electrons and three-
dimensional nature of the collision process, most fast electrons can 
first be decelerated in the parallel direction and go through the 
zero parallel velocity with high perpendicular velocities. Then they 
are accelerated to runaways by the external electric field instead 
of being stopped. The backward runaway probability is defined as 
the chance that this kind of fast electrons finally achieves back-
ward runaways. Thus the runaway probability is, by definition, an 
integral of the final distribution function over certain phase-space 
region, which is calculated using WCA2 in this paper. The contour 
of the backward runaway probability in the initial v || − v⊥ velocity 
space is also exhibited.

For comparison, the Euler-Maruyama method and Cadjan-
Ivanov method are also applied to simulate the same backward 
runaway process. Their weakly convergent orders are analyzed 
using the ordinary least squares (OLS) regression between the log-
arithm of weakly convergent numerical errors and the logarithm 
of time steps [20]. The error analyses are performed on the mean 
parallel velocity and the total energy, respectively, by order eval-
uation. The high efficiency of WCA2 is verified at the same time. 
Given the same weakly convergent numerical error, say 10−9, the 
time cost of WCA2 is only about half of the Cadjan-Ivanov method 
and 5% of the Euler-Maruyama method.

The remainder of this paper is organized as follows. In Sec. 2, 
we introduce the nonrelativistic SDE governing the electron dy-
namics with collisional effects in plasmas, which is a nonrela-
tivistic version of the one used in Refs. [21,36]. In Sec. 3, the 
WCA2 algorithm is introduced. And it is compared with the Euler-
Maruyama method and the Cadjan-Ivanov method in the sense of 
weak convergence. In Sec. 4, the backward runaway phenomenon 
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is simulated and the backward runaway probability is calculated 
using WCA2. Section 5 finally summarizes this work.

2. Collision model of electrons

The distribution function f (x, v, t) of electrons in plasmas 
evolves according to the Boltzmann equation with a proper col-
lision operator, i.e.,

∂ f

∂t
+ v · ∂ f

∂x
+ q

m
(E + v × B) · ∂ f

∂ v
=
(

∂ f

∂t

)
c
. (1)

The collision operator on the right-hand side of Eq. (1) describes 
the collisional effects as a partial derivative of the distribution 
function 

(
∂ f
∂t

)
c
.

The collisional effects on electrons from background ions are 
described by the Lorentz collision operator [37](

∂ f

∂t

)
L
= Zi�

2v3

∂

∂μ

(
1 − μ2

) ∂ f

∂μ
, (2)

where μ = v ||/v represents the cosine of the angle between veloc-
ity and the external electric field, Zi is the charge number carried 
by the ith species of ions. The collisional intensity factor � is de-
fined as � = neq4ln�/4πε2

0m2
e , where ne and me are the density 

and mass of electrons, respectively, q is the charge carried by an 
electron, ln� is the Coulomb logarithm. In the Lorentz collision 
operator model, the ion-electron mass ratio is assumed to be in-
finitely large.

If we also consider the contribution of background electrons, 
the standard Lorentz collision operator should be amended. The 
electron-electron collision brings two consequences. One is the 
friction drag, and the other is the elastic pitch angle scattering. 
For electrons satisfying v > v T , which run much faster than ther-
mal electrons in the plasma, the additional friction term is written 
as [16,20](

∂ f

∂t

)
f
= �

v

v3
· ∂ f

∂ v
. (3)

The collision term corresponding to the electron-electron pitch an-
gle scattering is(

∂ f

∂t

)
se

= �

2v3

∂

∂μ

(
1 − μ2

) ∂ f

∂μ
. (4)

The complete extended Lorentz collision operator for electrons can 
be finally written as(

∂ f

∂t

)
c
=
(

∂ f

∂t

)
L
+
(

∂ f

∂t

)
f
+
(

∂ f

∂t

)
se

= �
v

v3
· ∂ f

∂ v
+ �(1 + Zi)

2v3

∂

∂μ

(
1 − μ2

) ∂ f

∂μ
. (5)

Then we can write down the corresponding Ito SDE according 
to the Boltzmann equation in Eq. (1) with the collision term in 
Eq. (5) as

dv (t) = μ (v)dt +
3∑

j=1

σ j (v)dW j, (6)

where μ and σ j are three-dimensional vector coefficients, v is the 
solution stochastic process, W j stands for standard Wiener pro-
cess. The SDE Eq. (6) is actually the characteristic line equation 
for Eq. (1). The initial conditions of Eq. (6) are determined by the 
sampling of the initial distribution function. And the solution of 
Eq. (1) can be reconstructed from a cluster of stochastic processes 
3

governed by Eq. (6), according to Dynkin formula. The coefficient 
of Eq. (6) should obey

σσ T = (Zi + 1)� · v2 I − v v

v3
, (7)

μ = qE

m
+ q

m
v × B − (2 + Zi)Γ

v

v3
, (8)

where σ is a 3 by 3 matrix composed of σ j , and σ j denotes the 
jth column vector of σ .

It can be directly observed that the right-hand side of Eq. (7)
is a positive definite matrix. The matrix σ is its square root and 
can be numerically solved via Cholesky decomposition. By further 
assuming that σ is symmetric, σ can be solved in a closed form 
using Cadjan and Ivanov’s decomposition method [10,11] to be

σ =
√

(Zi + 1)�

v

(
I − v v

v2

)
. (9)

Submitting Eqs. (8) and (9) into Eq. (6), we obtain the desired mas-
ter Ito SDE

dv =
[ q

m
E+ q

m
v × B − (2 + Zi)�

v

v3

]
dt

−
√

(Z i + 1)�

v5 v × v × dW . (10)

This SDE depicts the dynamics of a sampling electron in external 
electric and magnetic fields with the collisional effects from back-
ground ions and electrons. Its left-hand side is the infinitesimal 
increment of the velocity vector, while its right-hand side contains 
two terms. The first term comes from the deterministic force ex-
erted by external fields and the friction drag of electron-electron 
collisions. The second term denotes the pitch-angle scattering ef-
fect under random collisional forces. It corresponds to the random 
force in the Langevin equation. Here, it is written in a handy nota-
tion of an Ito integral in the Wiener process.

For the feasibility of numerically treatments, we rewrite the 
equation to a dimensionless form as

d ṽ =
(

Ẽ + ṽ × B̃ − (2 + Zi)
ṽ

ṽ3

)
dt̃ +√1 + Zi ṽ

−5/2
ṽ × ṽ ×dW̃ .

(11)

We use the critical velocity, also called the Dreicer velocity [26], 
vc as the characteristic velocity. Correspondingly the characteristic 
collision time is then defined as τ = v3

c /�. The critical force is de-
fined as Fc = �me/v2

c . The normalized variables become ṽ = v/vc , 
t̃ = t/τ , Ẽ = qE/Fc , B̃ = qBτ/me , and W̃ = W (τ t̃)/

√
τ , respec-

tively. W̃ is also a standard Wiener process similar to W (t).

3. Second-order weakly convergent algorithm

Under the strong convergence condition, traditional Monte 
Carlo algorithms aim to the accuracy of trajectories of SDEs. For-
mally speaking, let a stochastic process X t be a theoretical solution 
and X�(t) be its numerical solution. If there exist constants C and 
�0 independent of the time step �, for any � ∈ (0, �0), the ex-
pectation of the norm of the difference between the two solutions 
at time T satisfies

E
[∣∣X�(T ) − X T

∣∣]≤ C�γ , (12)

we can say that X� is strongly convergent [23,25] to XT with or-
der γ . Note that Xt is a stochastic process. At a given time point 
T , XT is a random variable, so is X�(T ). The expectation operator 
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E[·] is applied to the norm of their difference to compare these 
two random variables.

For random processes, the distribution function and its mo-
ments are physically significant. It is more reasonable to assess 
algorithms based on the numerical errors of the distribution func-
tion. Formally, the weak convergence condition can be expressed 
as

∣∣E [g(X�(T ))
]− E [g(X T )]

∣∣≤ C�β, (13)

where g is any 2 (β + 1) order continuous function g : Rd → R, 
where d is the dimension of X t . The numerical solution X� obey-
ing Eq. (13) is said to be weakly convergent [23] to X at time 
T with order β . Some simple examples of function g will make 
this definition more intuitive. For instance, the random process 
X(t) = v(t) denotes the evolution of stochastic velocity. If we 
choose g(v) = v , E[g(v)] is just the first moment of distribu-
tion function f (t, v). The weak convergence condition estimates 
the numerical error of the expectation of velocity, i.e., the error of 
the mean velocity. If choosing g(v) = (v − v̄)2, E[g(v)] is actually 
the second central moment of f (t, v). The weak convergence con-
dition checks the expected variance of velocity, which corresponds 
to the temperature. The convergence of nth moments of f (t, v)

can be guaranteed in simulations if a βth order weakly convergent 
algorithm is used with the β in Eq. (13) satisfying β ≥ n.

Strong convergence is a sufficient, but not a necessary condition 
for weak convergence [23]. Sometimes, the increase of the strongly 
convergent order does not result in higher weakly convergent or-
der. The Milstein method [23], for example, is first-order strongly 
convergent, compared to the Euler-Maruyama method with 1/2 
strongly convergent order. But they are both first order weakly 
convergent. In this case, extra computation costs for improving the 
accuracy of sampling trajectories are invalid for the improvement 
of physical results. It is more effective to employ algorithms with 
higher weakly convergent order directly.

We now introduce a second order weakly convergent algorithm, 
named as WCA2. In order to analyze a weak numerical solution 
g(X�) of an SDE with the general form

dX = μ (X) dt + σ (X) · dW , (14)

it should be properly expanded into a series. Using Wagner-Platen 
expansion [4,23], g(Xτ ) can be expressed as

g (Xτ ) =
∑
α∈A

Iα
[

gα

(
Xρ

)]
ρ,τ

+
∑

α∈B(A)

Iα[gα (X ·)]ρ,τ , (15)

where I[·]ρ,τ is the Ito integral operator over an interval [ρ, τ ). 
A is a hierarchical expansion set, and B(A) is the corresponding 
residual set [23]. The integrals in A are evaluated including the left 
boundary points of intervals while excluding their right boundary 
points according to Ito’s definition. The dot symbol stands for a 
certain value in [ρ, τ ), which makes the equality hold. The first 
term on the right-hand side of Eq. (15) includes terms of a se-
ries expanded to a certain order. The second term contains the 
remainder of the series. Equation (15) is a stochastic analog to 
the traditional Taylor expansion. If truncating the series by drop-
ping the remainder part, an approximation of the function g is 
obtained.

The n-tuple α = ( j1, j2, . . . , jl) in the expansion is an l-
dimensional multi-index, with each index ji ∈ {0,1,2,3} when 
Eq. (14) is a three-dimensional equation. ji = 0 corresponds to 
the time component, and ji = 1, 2, 3 corresponds to each spatial 
component, respectively. Ito integral with a given multi-index α is 
calculated recursively as
4

Iα[g]ρ,τ =

⎧⎪⎨
⎪⎩

fτ l = 0∫ τ
ρ Iα−[g]ρ,s ds l > 0 and jl = 0∫ τ
ρ Iα−[g]ρ,s dW jl

s l > 0 and jl 	= 0

, (16)

where α− = ( j1, j2, . . . , jl−1
)

is an (l-1)-dimensional multi-index. 
And W j is the jth component of W .

Define L as the Ito differential operator, which satisfies

L0 = ∂

∂t
+ μ · ∂

∂x
+ 1

2
σσ T : ∂2

∂x∂x
, (17)

L j = σ j · ∂

∂x j
, (18)

where σ j is jth column of matrix σ . Then the coefficient function 
of g(X) with multi-index α is recursively calculated as

gα =
{

g l = 0

L j1 g−α l 	= 0
, (19)

where the (l-1)-dimensional multi-index −α = ( j2, j3, . . . , jl).
When keeping up to second-order terms in hierarchical ex-

pansion set, A = {φ, ( j1), ( j1, j2)}, where φ stands for a 0-length 
list and j1, j2 iterate over {0, 1, 2, 3}. The residual set becomes 
B = {( j1, j2, j3), . . .}. The expansion with multi-indices in A is 
written as

X t = X0 + μI(0) + σ · [I(1), I(2), I(3)

]T (20)

+
(
μ · ∂μ

∂x
+ 1

2
σσ T : ∂2

∂x∂x
μ

)
I(0,0)

+
(
μ · ∂σ

∂x
+ 1

2
σσ T : ∂2

∂x∂x
σ

)
· [I(0,1), I(0,2), I(0,3)]T

+ σ · ∂μ

∂x
· [I(1,0), I(2,0), I(3,0)]T

+ σ · ∂σ

∂x
:
⎡
⎣ I(1,1) I(1,2) I(1,3)

I(2,1) I(2,2) I(2,3)

I(3,1) I(3,2) I(3,3)

⎤
⎦+ R,

where “:” denotes tensor contraction. The leading integral terms in 
A are explicitly written as

I[g]0,τ = g(Xτ ) (21)

I(0)[g]0,τ =
τ∫

0

g(X s)ds (22)

I(1)[g]0,τ =
τ∫

0

g(X s)dW 1
s (23)

I(2)[g]0,τ =
τ∫

0

g(X s)dW 2
s (24)

I(0,0)[g]0,τ =
τ∫

0

s2∫
0

g(X s1)ds1 ds2 (25)

I(0,1)[g]0,τ =
τ∫

0

s2∫
0

g(X s1)ds1 dW 1
s2

(26)

Assuming the time step � = τ − ρ is sufficiently small, each 
above integral can be numerically approximated by

Iα
[

gα(Xρ)
] ≈ gα

(
Xρ

)
Iα[1]ρ,τ . (27)
ρ,τ



W. Wu, J. Liu, N.J. Fisch et al. Computer Physics Communications 289 (2023) 108758
Meanwhile, dW j can be replaced by �W j = W j
τ − W j

ρ , which 
obeys Gaussian distribution N (0, �) according to the definition of 
Wiener process.

According to definition, a Gaussian random variable �W j

should be used to calculate all the integrals Iα . But in the sense of 
weak convergence, �W can be approximated using other random 
variables, say �Ŵ . The difference of moments caused by replacing 
�W with �Ŵ should be of β + 1 order to preserve the weak or-
der [23]. The weak approximation of the integrals on multi-indices 
has the following moment properties related to dW ,

E[I(1)[1]] = 0 , (28)

E[I(1,0)[1]] =
∫

E[W s]ds = 0 , (29)

E[I(0,1)[1]] = E

[∫
dW s

]
= 0 , (30)

E[I(1,1)[1]] = E

[∫ ∫
dW sdW s

]
=
∫

ds = � , (31)

E[I(1,1,1,1)[1]] = E

[∫
· · ·
∫

dW 4
s

]
= 3�2 . (32)

For second order weakly convergent algorithms, the general re-
quirement of �Ŵ can be specifically written to∣∣∣E[�Ŵ ] − 0

∣∣∣+ ∣∣∣E[�Ŵ
2] − �

∣∣∣+ ∣∣∣E[�Ŵ
3] − 0

∣∣∣
+
∣∣∣E[�Ŵ

4] − 3�2
∣∣∣+ ∣∣∣E[�Ŵ

5] − 0
∣∣∣≤ K�2+1. (33)

Any random variable satisfying Eq. (33) can support second order 
weakly convergent algorithms. There is a large freedom to choose 
�Ŵ in practical computations.

We then choose a simple three-point distribution of random 
variables as �Ŵ j . The probability distribution of �Ŵ j obeys

P
(
�Ŵ j = ±√

3�
)

= 1

6
, P

(
�Ŵ j = 0

)
= 2

3
. (34)

We can directly verify that the three-point distribution meets the 
requirement of the second order weak convergence condition by 
directly using Eq. (33). However, it is much easier and economic 
to generate the random variable �Ŵ and use it in computa-
tions practically. The choice of the three-point distribution simpli-
fies stochastic simulations evidently when maintaining the same 
weakly convergent order.

An explicit second-order weak convergence algorithm can thus 
be constructed [23]. For convenience we define two groups of sup-
porting vector variables

R
j
± = Xn + μ(Xn)� ± σ j(Xn)

√
�, (35)

U
j
± = Xn ± σ j (Xn)

√
�,

where μ and σ j are the same as in Eq. (14). Using these support-
ing variables, numerical multiple integrals of the first and second 
order are constructed as

ϒc1 = 1

4

3∑
j=1

[
σ j(R

j
+) + σ j(R

j
−) + 2σ j(Xn)

+
3∑

r=1
r 	= j

(
σ j(U

r
+) + σ j(U

r
−) − 2σ j(Xn)

)]
�Ŵ j, (36)
5

ϒc2 = �− 1
2

4

3∑
j=1

[(
σ j(R

j
+) − σ j(R

j
−)
)((

�Ŵ j
)2 − �

)

+
3∑

r=1
r 	= j

(
σ j(U

r
+) − σ j(U

r
−)
)

(�Ŵ j�Ŵ r + Vr, j)

]
, (37)

where

V = −�I + � =
⎛
⎝−� 0 0

0 −� 0
0 0 −�

⎞
⎠+

⎛
⎝ 0 ξ12 ξ13

−ξ12 0 ξ23
−ξ13 −ξ23 0

⎞
⎠
(38)

is a stochastic matrix, which is the sum of a diagonal matrix −�I
and an antisymmetric matrix �. The entries ξi j of � are random 
variables which take the value � or −� with the same probability.

Finally, the explicit form of WCA2 can be written out as

ϒ = Xn + μ(Xn)� +
3∑

j=1

σ j (Xn)�Ŵ j, (39)

Xn+1 = Xn + 1

2

(
μ
(
ϒ
)+ μ(Xn)

)
� + ϒc1 + ϒc2. (40)

The first two terms on the right-hand side of Eq. (40) are 
actually equivalent to the deterministic Euler method using a 
predictor-corrector scheme. The other two terms come from 
Wagner-Platen expansion with time step �. ϒc1 yields the first-
order integral term of the Ito expansion, and ϒc2 improves the 
weak accuracy of the final results to second order.

When using weakly convergent methods, samples of the dis-
tribution function f (x, t) are calculated. The statistical behavior of 
these samples is assumed to obey the original partial differential 
equation, i.e., Eq. (1). For a given function g(x, t), its expectation is 
evaluated by

E f [g(x, T )] = E[g(X(T ))] = lim
M→∞

1

M

M∑
i=1

g(Xi(T )), (41)

where Xi(T ) is the ith independent sample for the random vari-
able X(T ) at time T . Two kinds of errors arise in practical esti-
mation of the expectation, i.e., the systematic error and statistical 
error. The systematic error comes from the discretization of time. 
For finite time step �, the systematic error is

es = E[g(X�(T ))] − E[g(X(T ))], (42)

which is restricted by weak order condition �β for βth order weak 
order algorithms. The statistical error results from the finite dis-
crete sampling. For finite sample number N , the statistical error 
is

eN = 1

N

N∑
i=1

g(X�
i (T )) − E[g(X�(T ))], (43)

which is a random variable. As the sample number N approaches 
infinity, the distribution of eN asymptotically converges to a Gaus-
sian distribution with zero mean, and its variance obeys

var (en) = var

(
1

N

N∑
i=1

g(X�
i (T ))

)
= 1

N
var
(

g(X�(T ))
)
, (44)

according to the famous large number law. The noise level of g is 
actually the standard deviation, i.e., the square root of its variance, 
which decreases with 1/

√
N as N goes to infinity.



W. Wu, J. Liu, N.J. Fisch et al. Computer Physics Communications 289 (2023) 108758
4. Simulations of backward runaways

4.1. Benchmark solution

The exact theoretical solutions of the distribution function and 
moments of different orders cannot be obtained in most cases. 
Benchmark solutions are then required to evaluate the numeri-
cal errors of weakly convergent algorithms. A common way is to 
use a numerical solution with an extremely small time step as 
the benchmark solution in traditional numerical analysis. But it is 
not enough to the analysis of weak convergence for numerical al-
gorithms for SDE and statistical quantities. In this subsection, we 
introduce a more rigorous treatment of benchmark solutions. To 
make sure that the benchmark solution is accurate enough in the 
sense of weak convergence, we propose two general criteria for it. 
Firstly, the benchmark solution does not change with the decrease 
of time step. Secondly, the benchmark solution does not depend 
on the choice of numerical method.

Different from deterministic ODEs, numerical solutions of SDEs 
are random variables at given a time. For practical purpose, hy-
pothetical tests should be applied to verify whether a numerical 
solution meets the benchmark criteria. Because expectations of 
two normally distributed variables cannot be distinguished at a 
certain confidence level, the first criterion could be decomposed 
into two related tests. One is to detect whether the candidate 
benchmark solution is normally distributed, which can be real-
ized by performing the Shapiro test. The other is to check the 
identity of expectations of two numerical solutions with different 
given time steps. Variances of solutions may differ with different 
time steps. The Welch’s unequal variance t-test can undertake this 
task. If both null hypotheses cannot be rejected, we cannot tell the 
difference between two solutions, and the first criterion is guaran-
teed.

To satisfy the second criterion, at least two numerical SDE al-
gorithms should be performed to produce candidate benchmark 
solutions. To compare the solution of different numerical methods, 
the analysis of variance (ANOVA) technique is used. In addition, 
normality tests are still required as well. If all solutions are nor-
mally distributed and the F-test fails to reject the null hypotheses, 
the second criterion is satisfied.

4.2. Analysis of weak convergence

The weakly convergent order of a stochastic algorithm is for-
mally defined by Eq. (13). It can also be practically analyzed and 
confirmed via the regression between numerical errors of statis-
tical quantities and time steps in a particular simulation case. 
In this subsection we use WCA2, Euler-Maruyama method, and 
Cadjan-Ivanov method, respectively, to simulate a backward run-
away system for comparison. We look into two continuous trial 
functions, i.e., g(v) = vx and g(v) = |v|2, of the stochastic velocity 
v . The numerical solution of Eq. (11) with time step � at time T
is denoted by v�

T . The expectation E[g(v�
T )] is calculated by sta-

tistically averaging g(v�
T ) over all sampling processes. Simulations 

with the same physical setup can be repeated using different time 
steps. Corresponding numerical errors of E[g(v�

T )] are recorded by 
referring to the benchmark solution. Finally, by performing the or-
dinary least square (OLS) method, the weakly convergent order is 
calculated as the slope of the regression curve in the plot of the 
numerical errors versus time steps � (both with logarithmic scale).

Give a time step, the mean and variance of E[g(v�
T )] are cal-

culated in batches according to the following procedure, see Algo-
rithm 1.

In this case, we set the number of samples in each batch to 
N = 100,000 and the number of batches to M = 30. Here, we use a 
factor K to represent the time stepsize of the logarithm by defining 
6

Data: Divide N × M samples into M batches with N samples in each batch. 
Determine the continuous trial function g(v), end time T , and time 
step �.

Result: E[g(v�
T )] and its variance

for m ← 0 to M − 1 do
for n ← 0 to N − 1 do

Generate the nth sample of the stochastic process W in the 
mth batch;

Solve the SDE for the sample and obtain the numerical solution 
v�

T (n);
end

calculate the expectation in the mth batch by 
E[g(v�

T )](m) =∑n g[v�
T (n)]/N;

end
calculate the mean and variance of the m quantities E[g(v�

T )](m);

Algorithm 1: Procedure of calculating E[g(v�
T )] and correspond-

ing variance.

Fig. 1. The distribution evolution of sampling runaways in the velocity space. The 
time step is K = −log2(�) = 7, i.e., � = 2−7. The numerical results using WCA2 
at t̃ = �, 10�, 50� are plotted in the left column in subfigures (a), (b) and (c). The 
numerical results using the Euler-Maruyama method at ̃t = �, 10�, 50� are plotted 
in the right column in subfigures (d), (e) and (f).

K = −log2(�). The largest time step is set to � = 1.0. We carry 
out simulations by scanning K from 0 to 7, that is the time step 
from � = 20 to � = 2−6, with totally 8 different time steps. Other 
parameters are set as follows. The end time is set to t̃ = 1.0, the 
charge number of ions Zi = 1, the external electric field is along 
the x-axis as Ẽ = {1, 0, 0}, and the initial velocity of all sampling 
electrons is set to ṽ = {3, 0, 0}. The external magnetic field is set 
to be zero.

The simulated distributions of sampling electrons in the veloc-
ity space at different time, using WCA2 and the Euler-Maruyama 
method, are plotted in Fig. 1. The distributions in the velocity 
space using different numerical methods evolve differently at the 
beginning, see subfigures (a) and (d) in Fig. 1. Note that WCA2 only 
guarantees the accuracy of the expectations of stochastic functions. 
The numerical trajectories of sampling runaway electrons are gov-
erned by a much simpler three-point distribution in WCA2, instead 
of the smoother but much more complex Gaussian distribution. 
The simulated distribution using WCA2 splits into nine grids in 
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Fig. 2. The plots of distributions of trial functions using different numerical meth-
ods. (a) The plot of the distribution of the x-component of velocity v�

x (T ) using 
the Euler-Maruyama method (blue), the Cadjan-Ivanov method (orange), and WCA2 
(green) with K = 7, and WCA2 with K = 6 (dashed red). (b) The plot of the en-
ergy |v�|2(T ) using the Euler-Maruyama method (blue), the Cadjan-Ivanov method 
(orange), and WCA2 (green) with K = 7, and WCA2 with K = 6 (dashed red). The 
solution of the Euler-Maruyama method deviates from other distributions clearly. 
(For interpretation of the colors in the figures, the reader is referred to the web 
version of this article.)

the v y − vz plane at first. But WCA2 still accurately simulates all 
the moments of orders less than 2. As time goes on, numerical 
distributions using two different numerical methods converge, see 
subfigures (c) and (f) in Fig. 1.

The weak convergence of WCA2 can also be verified. We ex-
amine the trial functions g(v) = vx , which is the electron velocity 
parallel to the external electric field, and g(v) = |v|2 = v2

x + v2
y +

v2
z , which represents the energy of runaway electrons. Because of 

the symmetry of the problem, the expectations of v y and vz are 
both 0.

The expectations of g(v�
T ) versus the time-step factor K , using 

WCA2, the Euler-Maruyama method, and Cadjan-Ivanov method, 
are plotted in Fig. 3. All three numerical methods converge to the 
same expectation with the decrease of time step, i.e., the increase 
of K . The first moment E[v�

x ] is plotted in Panel (a), and the sec-
ond moment E[|v�|2] is plotted in Panel (b).

To show the weakly convergent order of each algorithm, the 
benchmark solution is required. The solution of E[g(v�

T )] using 
WCA2 with K = 7 is chosen to be the potential candidate. The 
normal distribution of trail functions as stochastic quantities is 
verified, see Fig. 2. Fig. 2 exhibits the plots of distributions of 
trial functions using different numerical methods. The normality of 
these distributions is formally tested using Shapiro tests, and the 
statistical values are listed in Table 1. According to the listed data, 
all distributions in Fig. 2 are qualified to be normally distributed.

It can also be examined that the solution from WCA2 is al-
most the same when K = 6 and K = 7, see Fig. 3. Meanwhile, the 
solutions from all three numerical methods are the same when 
K = 7. We now quantitatively demonstrate that the two solutions 
7

Fig. 3. The plots of expectations of trail functions using different numerical meth-
ods with different time steps. (a) The plot of the averaged x-component of velocity 
E[v�

x (T ))] versus the time-step factor K = −log2(�) using the Euler-Maruyama 
method (blue), the Cadjan-Ivanov method (orange), and WCA2 (green). (b) The plot 
of averaged energy E[|v�|2(T )] versus the time-step factor K = −log2(�) using 
the Euler-Maruyama method (blue), the Cadjan-Ivanov method (orange), and WCA2 
(green). It is evident that with the decrease of time step, the expectations for three 
different methods converge.

using WCA2 with K = 6 and K = 7 are sufficiently close, by per-
forming Welch’s unequal variance t-tests. The statistical data and 
corresponding p-values are listed in Table 2. Solutions from the 
Euler-Maruyama method and the Cadjan-Ivanov method are listed 
as well, but the statistical results show that they cannot meet the 
criteria.

According to Table 2, when the time step decreases from K = 6
to K = 7, the p-value from WCA2 of two trial moment functions 
are all above 50%. In term of null-hypothetical test, we cannot re-
ject the null hypothesis that the two solutions are the same. In 
other words, the candidate benchmark solution is indeed close 
enough to the solution with K = 6.

Finally, we compare the solutions from three different numer-
ical methods with the time-step factor K = 7. The equality of 
the mean of solutions from different methods is tested using the 
ANOVA technique. ANOVA is a statistical tool to test whether given 
independent normally distributed datasets are identical. The ad-
vantage of ANOVA is that it can be applied to more than two 
datasets at once. Since the normality of the datasets has already 
been verified using Shapiro test, we perform ANOVA directly. The 
ANOVA analysis results are listed in Table 3.

According to Table 3, numerical solutions of E[v�
x (T )] and 

E[|v�|2(T )] from three different methods are not identical. In 
Fig. 2, the solution from the Euler-Maruyama method converges 
so slow that it produces an outlier solution when K = 7. So we 
change the test strategy and abandon the Euler-Maruyama method. 
We only focus on the Cadjan-Ivanov method and WCA2. Referring 
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Table 1
Shapiro normality tests of the trial moment functions E[v�

x (T ))] and E[|v�|2(T )] obtained from the Euler-
Maruyama method, the Cadjan-Ivanov method and WCA2 when K = 6 and K = 7.

Expectation Methods K = 6 K = 7

W-statistic p-value W-statistic p-value

E[g1(v�
T )] Euler-Maruyama 0.9288509488 0.0457747914 0.9448584914 0.1229689941

Cadjan-Ivanov 0.9723019600 0.6038923264 0.9418374896 0.1019422486
WCA2 0.9591118097 0.2939443886 0.9595355392 0.3014061153

E[g2(v�
T )] Euler-Maruyama 0.9620262384 0.3486383259 0.9357385635 0.0698712692

Cadjan-Ivanov 0.9853706956 0.9433261156 0.9483121037 0.1523194462
WCA2 0.9637868404 0.3855869174 0.9749118686 0.6801327467

Table 2
Welch’s unequal variance tests of the moment functions E[v�

x (T ))] and E[|v�|2(T )] using the Euler-Maruyama method, the Cadjan-Ivanov method and WCA2 when K = 6
and K = 7. The statistics t , degree of freedom ν , and the p-value are listed in the table. The p-values of WCA2 are all above 50%.

Expectation Methods K = 6 K = 7 t ν p-value 
(two-sided)M Mean Std M Mean Std

E[v�
x (T )] Euler-Maruyama 30 1.5181471154 0.0010572291 30 1.5167099144 0.0009388375 -5.4738626822 57.2007133978 0.0000010189

Cadjan-Ivanov 30 1.5161602266 0.0011350644 30 1.5155411902 0.0008255942 -2.3751147326 52.9744270096 0.0211956264
WCA2 30 1.5155835766 0.0011201136 30 1.5154497894 0.0011551838 -0.4477535215 57.9449611347 0.6560006370

E[|v�|2(T ))] Euler-Maruyama 30 3.6075405807 0.0011471987 30 3.6011830706 0.0007982998 -24.4960634146 51.7508692636 0.0000000000
Cadjan-Ivanov 30 3.5952511325 0.0005412185 30 3.5945317579 0.0007720412 -4.1554688610 52.4304111506 0.0001202918
WCA2 30 3.5944935081 0.0008078345 30 3.5943761437 0.0008143028 -0.5510099036 57.9963114240 0.5837434234

Table 3
ANOVA results of E[v�

x (T )] and E[|v�|2(T )] at K = 7 using the Cadjan-Ivanov method and WCA2, with and without the Euler-Maruyama method. 
According to Fig. 2 the solution of E[|v�|2(T )] using the Euler-Maruyama method is an outlier, this statistics confirms this result. By removing the 
Euler-Maruyama method from comparison, the test p-value can be largely increased.

Expectation Methods Set Sum Squares Degree of Freedom Mean Squares F-statistic p-value

E[v�
x (T )] Euler-Maruyama and Treatments 0.0000296219 2 0.0000148109 14.8238525409 0.0000028839

Cadjan-Ivanov and Error 0.0000869241 87 0.0000009991
WCA2 Total 0.0001165460 89

E[v�
x (T )] Cadjan-Ivanov and Treatments 0.0000001253 1 0.0000001253 0.1201698569 0.7301048951

WCA2 Error 0.0000604817 58 0.0000010428
Total 0.0000606070 59

E[|v�|2(T )] Euler-Maruyama and Treatments 0.0009059843 2 0.0004529922 700.0487590997 0.0000000000
Cadjan-Ivanov and Error 0.0000562965 87 0.0000006471
WCA2 Total 0.0009622808 89

E[|v�|2(T )] Cadjan-Ivanov and Treatments 0.0000003632 1 0.0000003632 0.5666709067 0.4546294465
WCA2 Error 0.0000371781 58 0.0000006410

Total 0.0000375413 59

Table 4
Ordinary Least Squares regression over logarithms of numerical errors and logarithms of time steps using 
the Euler-Maruyama method, the Cadjan-Ivanov and WCA2 on E[v�

x (T )] and E[|v�|2(T )], respectively. 
Slopes of the Euler-Maruyama method and the Cadjan-Ivanov method are about 1.0 and the slope of 
WCA2 is around 2.0.

Expectation Method slope mean slope std. slope t-statistics p-value R2

E[v�
x (T )] Euler-Maruyama -0.9833 0.011 -93.483 0.000 0.999

Cadjan-Ivanov -1.0038 0.018 -56.783 0.000 0.998
WCA2 -1.7603 0.087 -20.265 0.000 0.990

E[|v�|2(T )] Euler-Maruyama -0.9091 0.020 -45.462 0.000 0.997
Cadjan-Ivanov -1.1313 0.042 -27.137 0.000 0.993
WCA2 -2.0024 0.027 -75.199 0.000 0.999
to the data in Table 3, it is clear that solution from the Cadjan-
Ivanov method and WCA2 cannot be distinguished when K = 7.

Passing all the above tests, we confidently conclude that the 
candidate solution from WCA2 with K = 7 meets all the defined 
criteria and can be used as the benchmark solution.

With the help of the benchmark solution, the weakly conver-
gent error for all numerical methods with different time steps can 
be calculated. The exact weakly convergent order of algorithms is 
obtained by OLS regression. The order is just the negative slope of 
the regression line by the logarithms of errors versus K. The re-
8

gression lines using different methods are plotted in Fig. 4, while 
detailed statistical data are listed in Table 4.

The numerical error of expectation of the first-order continu-
ous function E[vx�(T )] and the second-order continuous function 
E[|v�|2(T )] are plotted in subplots Fig. 4a and Fig. 4b, respectively. 
It can be observed that the numerical errors decrease with time 
step. The weakly convergent order of each algorithm is carefully 
described using the slope values in Table 4. The Euler-Maruyama 
method and the Cadjan-Ivanov method have the slope value of 
0.98 and 1.00, respectively, for E[v�

x (T )], while WCA2 has a slope 
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Fig. 4. Plots of weakly convergent errors of E[v�
x (T )] (a) and E[|v�|2(T )] (b) with 

logarithmic scale versus K = −log2(�) from the Euler-Maruyama method (blue), 
the Cadjan-Ivanov method (orange) and WCA2 (green).

value of 1.76. For E[|v�|2(T )], the Euler-Maruyama method and 
the Cadjan-Ivanov method have the slope value of 0.92 and 1.21, 
respectively, while WCA2 has a slope valued of 2.00. As expected, 
the weakly convergent order of WCA2 is around 2.0. The weakly 
convergent order of the Euler-Maruyama method and the Cadjan-
Ivanov method is 1.0, which agrees with their theoretical order. 
When K > 3, WCA2 behaves much better than the other two 
methods.

To inspect and compare the variance of the three methods, 
Fig. 2 provides a qualitative analysis. Regardless of the heights 
and positions of peaks, the standard deviations (width) of all dis-
tributions are of the same level. Table 2 quantitatively reflects 
the statistical errors of different methods. In this table, when 
checking E[v�

x (T )] for K = 6, the three numerical methods pro-
vide similar standard deviations of approximately 0.0011. For K =
7, all standard deviations decrease to approximately 0.0010. For 
E[|v�|2(T )], disregarding the unreliable Euler-Maruyama result, 
Cadjan-Ivanov and WCA2 yield similar standard deviations of ap-
proximately 0.0008. In summary, the standard deviation measures 
the noise level. With the same sample number, three algorithms of 
different weakly convergent orders have similar statistical (noise) 
errors.

We also compare the time consumption and computation effi-
ciency of the three methods. We perform the benchmark compu-
tation on an Intel i7 cpu machine with 64G RAM on Linux system. 
When reducing the numerical error of E[v�

x (T )] to the level of 
10−9, the Euler-Maruyama method costs 26.374 s, and the Cadjan-
Ivanov method costs 3.411 s. By contrast WCA2 only uses 1.510 s. 
When reducing the numerical error of E[|v�|2(T )] to the same 
level, the Euler-Maruyama method cost 95.94 s, the Cadjan-Ivanov 
method costs 6.796 s, and the second-order method costs 5.780 s. 
As a second-order weakly convergent algorithm, WCA2 behaves 
9

better when requiring higher accuracy, compared with the Euler-
Maruyama method and the Cadjan-Ivanov method.

4.3. Runaway probability

The mechanism of backward runaways is similar to that of stan-
dard runaway electrons, but with their initial velocities opposite to 
the electric force. Because the electrons move with velocities larger 
than the critical velocity and opposite to the electric force initially, 
they are dragged to slow down at the beginning. If the velocity 
of electrons drops down to the thermal velocity v T , the extended 
Lorentz collision operator is no longer valid [19]. The collision fre-
quency is assumed to a constant [19] and the electron is assumed 
to be thermalized. The distribution of the velocity of background 
thermal electrons obeys normal distribution in the velocity space. 
When the parallel velocity is slowed down to zero, most backward 
runaways still have large perpendicular velocity to make sure they 
are not stopped. They are then accelerated by the external field 
in the parallel direction and reach runaway state. The collisional 
pitch-angle scattering may also provide sufficient perpendicular 
velocity for backward runaways [13,19] to avoid the stopping phe-
nomenon. On the other hand, if the external electric field is large 
enough, the electric force exerted on electrons can easily overcome 
the collisional friction. Large amount of electrons will be readily 
accelerated to runaways. In the formation of backward runaways, 
the friction drag and pitch-angle scattering compete with each 
other. They are both caused by collisions and belong to stochastic 
processes. There is a probability for each backward moving elec-
tron with a specific initial velocity to runaway. This probability is 
called runaway probability. Given the initial condition, it is defined 
as the number of samples, which are not thermalized and finally 
runaway, divided by the total sample number.

When the velocity of an electron goes below the critical ve-
locity, it is labeled as stopped. For stopped electrons, Eq. (11) is 
no longer valid. The stopped electron is then treated as the ther-
malized background electrons. We did not consider the secondary 
electron emission problem here. Once an electron is stopped, we 
assume that it cannot become excited again.

At the end time T , the runaway probability Pr is formally de-
fined as

Pr = E [Ir(v T )] , (45)

where Ir(v) is an indicator function obeying

Ir(v) =
{

1 v ≥ vc,

0 otherwise.
(46)

The species of background ions is assumed to be only pro-
ton which has Zi = 1. The electric field is uniform in space as 
Ẽ = (1, 0, 0), and no magnetic field exists. The initial velocity of 
sampling electrons is set to ṽ || = 3 and ṽ⊥ = 0. For this setup, 
electrons can only gain their perpendicular velocities from stochas-
tic pitch-angle scattering. As a dramatic phenomenon, the pitch-
angle scattering resists the friction drag and the deceleration of 
external field at the same time, to save the electrons from being 
stopped. The time step is set to � = 0.01. The total simulation 
time is t̃ = 30.

We solve the SDE Eq. (11) using WCA2 and obtain 30 batches 
of solutions with 100,000 samples in each batch. The snapshots of 
samples in a typical batch are plotted in Fig. 5. The spread of sam-
ples in the velocity space are plotted at three different time points 
t̃ = 1, t̃ = 5, and t̃ = 20. The horizontal and vertical axes denote 
the parallel velocity ṽ‖ and the vertical velocity ṽ⊥ , respectively. 
Orange points denote those samples with velocities less than vc . 
We freeze the state of stopped electrons in the velocity plots at 
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Fig. 5. Snapshots of scattering plot of 100,000 samples at 3 different time points, (a) t̃ = 1, (b) t̃ = 5, and (c) t̃ = 20. For comparison, the left column is the result using 
WCA2, and the right column is the result using standard Euler-Maruyama algorithm. All samples start from ṽ || = 3 and ṽ⊥ = 0. Orange points denote the samples which are 
decelerated to be slower than normalized Deicer velocity ṽc = 1 and thus stopped. We freeze the state of stopped electrons in the velocity plots at the moment when they 
dropped below ṽc . So the distribution of orange points display how these electrons are stopped. Because of the collisional scattering, some samples achieve sufficiently high 
perpendicular velocity to runaway (see blue points), while others are stopped due to the collisional friction and the external electric force. We also zoom out part of the plot 
in subfigures (a) to show the detailed electron distribution near ṽ⊥ = 0. The result using Euler-Maruyama algorithm suffers a wider spread of ṽ || due to its larger numerical 
error.
Fig. 6. The evolution of probability of being stopped, i.e., one minus the probability 
of backward runaway, with respect to simulation time. For comparison, simula-
tions are carried out using WCA2 with K=5 (blue) and K=7 (black dashed), and 
the standard Euler-Maruyama algorithm (orange), respectively. Taking the curve 
calculated by WCA2 with K=7 as the benchmark solution, the poorer accuracy of 
Euler-Maruyama can be directly observed.

the moment when they dropped below ṽc . So the distribution of 
orange points display how these electrons are stopped. On the con-
trary, blue points are samples which eventually runaway.

The runaway probability at a given time can be calculated as 
the fraction of unstopped electrons and is a function of time, see 
Fig. 6. According to Fig. 6, the runaway probability has reached a 
steady value far before the end time t̃ = 20. The runaway proba-
bility defined in Eq. (45) as an expectation can be calculated using 
the average of the function Ir(v T ). Note that the indicator function 
takes the value of one only when the sample runs away, this def-
inition is equivalent to the fraction of runaways in total samples. 
By calculating the fraction of runaways, the runaway probability 
is obtained. The trick for weakly convergent methods here is that 
we no longer check whether a single trajectory is correctly cal-
10
culated, which is critical in strongly convergent approaches. Each 
single sampling trajectory is not required to be accurate enough to 
predict whether a single electron sample is exactly stopped or not. 
We only demand that the statistical results are accurate enough, 
which means the total count of stopped electrons is precise, al-
though the judgment for each single sample electron might be 
inaccurate.

Using WCA2 and Euler-Maruyama method with time step K =
5, the runaway probability of electrons starting from different ini-
tial velocities is simulated. We simulate one batch for each initial 
velocity with N = 100,000 samples in each batch. The criterion for 
runaway electrons is ṽ‖ < −2.0. Each round of simulation runs un-
til each sampling particle is either stopped or runaway. The parallel 
velocity ṽ‖ ranges from −2.0 to 8.0, and the perpendicular veloc-
ity ranges from 0.0 to 5.0. The contour of runaway probability in 
the initial velocity space is plotted in Fig. 7. It is evident that for a 
given value of v || , the runaway probability increases with v⊥ . And 
for a given value of v⊥ , the runaway probability increases with the
absolute value of v || . Almost all electrons having initial v‖ much 
larger than vc runaway successfully. The normal forward runaway 
situation is also included in Fig. 7.

5. Conclusion and discussion

Starting from the Boltzmann equation of electrons with the ex-
tended Lorentz collision operator, we introduce an SDE to simulate 
nonrelativistic electrons under collision effects. Instead of focusing 
on the accuracy of sampling trajectories, we emphasize the impor-
tance and efficiency of weak convergence. A second order weakly 
convergent algorithm WCA2 is proposed. We also provide detailed 
instructions of finding benchmark solutions for weakly convergent 
algorithms using sufficient statistical techniques. The weakly con-
vergent orders of different algorithms are confidently verified. The 
accuracy, efficiency, and economy of WCA2 are fully analyzed and 
revealed. The backward runaway process of electrons and back-
ward runaway probability are simulated.
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Fig. 7. The contour plots of backward runaway probability using WCA2 (solid curves) 
and Euler-Maruyama method (dashed curves) are simulated, respectively, with time 
step K = 5 and 100,000 samples for each initial value. The criterion for runaway 
electrons is ṽ‖ < −2.0, which is too high to be stopped. The direction of exter-
nal electric field is defined as the positive direction. Each round of simulation runs 
until each sampling particle is either stopped or runaway. It is obvious that the nu-
merical error of Euler-Maruyama method has brought significant inaccuracy to the 
simulation results.

The SDE handled in this work is nonrelativistic. In our future 
research, we will consider weak convergent algorithms for rela-
tivistic SDEs. Structure-preserving algorithms, such as symplectic 
algorithms [38] and volume-preserving algorithms [39], will be 
developed for SDEs in the scope of weak convergence. Noise re-
duction techniques, such as importance sampling, will be used 
to reduce statistical errors in weakly convergent algorithms. The 
advantage of weak convergence will be further explored. In addi-
tion, the electron system with a source will also be considered in 
the framework of SDEs and corresponding numerical methods. Nu-
merical SDE methods, including WCA2, will be further applied to 
study physical progress in fusion plasmas, geophysics, and space 
physics.
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