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ABSTRACT

Broad classes of plasma phenomena can be understood in terms of phase-space rearrangements. For example, the net effect of a wave–particle
interaction may consist of moving populations of particles from one region of phase space to another. Different phenomena drive rearrange-
ments that obey different rules. When those rules can be specified, it is possible to calculate bounds that limit the possible effects the rear-
rangement could have (such as limits on how much energy can be extracted from the particles). This leads to two problems. The first is to
understand the mapping between the allowed class of rearrangements and the possible outcomes that these rearrangements can have on the
overall distribution. The second is to understand which rules are appropriate for which physical systems. There has been recent progress on
both fronts, but a variety of interesting questions remain unanswered.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0202456

I. INTRODUCTION
Consider the interaction of a wave with a plasma. Depending on

the details of the interaction, there can be a transfer of energy between
the plasma and the wave, with the wave either being amplified or
damped. If the wave is amplified, the maximum amplification is set by
how much energy it can remove from the plasma. If, in particular, the
wave is fed by the kinetic energy of the plasma particles, this means
that the wave–particle interaction somehow rearranges those particles
in phase space so as to liberate some of their energy.

Given basic rules for how that phase-space rearrangement takes
place, it is possible to calculate bounds on what effects those rearrange-
ments can have. For example, this can lead to limits on how much
energy can be extracted from a given distribution of particles for very
general classes of wave–particle interactions. This allows us to formal-
ize and quantify the idea that some distributions have more accessible
energy than others (for example, a bump-on-tail distribution com-
pared with a Maxwellian).

There are different rules that we could pick for these rearrange-
ments, appropriate for different situations, and the ways in which dif-
ferent rules change the possible outcomes is often nontrivial. One
simple rule, sometimes called Gardner restacking, is to permit any
rearrangement of phase space that respects Liouville’s theorem.1

Another, sometimes called diffusive exchange, models phase-mixing
processes by instead averaging the contents of phase-space elements.2

Either basic rule can be modified by the imposition of further con-
straints such as conservation laws3–6 (for example, requiring that any
rearrangements must preserve one or more adiabatic invariants).
Different authors use different conventions, but the energy that can be
extracted is sometimes called the free or available energy. We will use
these terms interchangeably here. The energy that can be extracted
using Gardner’s restacking operations is sometimes called the Gardner
free or available energy; the energy that can be extracted using mixing
operations is sometimes called the diffusive free or available energy.

This leads to two essential problems. The first is to understand
the range of outcomes that a given class of rearrangement operations
can bring about.7–10 The second is to determine which class of rear-
rangement operations most appropriately captures the physics of a
given physical system.3,4,6,11–13

If we can solve these two problems, then we can construct robust
thermodynamic bounds on wave–particle interactions—indeed, on
any phase-space rearrangements—for a variety of applications. These
include efficiency limits for alpha channeling2,14–16 and models for tur-
bulent transport.11–13 In fact, these rearrangement problems are closely
connected with (and, in some cases, formally identical to) a variety of
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other problems both inside and outside plasma physics, in fields rang-
ing from physical chemistry to the quantification of income inequal-
ity.17–33

This paper is based on an invited talk at the 2023 APS-DPP meet-
ing, and very roughly follows the structure of that talk. Part of the
paper functions as an introduction to the subject, summarizing advan-
ces over the last few years in understanding and applying theories of
free energy in plasma systems. However, several parts of this paper
have not been presented elsewhere. In particular, the explicit free-
energy calculations in Sec. IV are new; the application of free-energy
theory to loss-cone modes was previously explored in Ref. 6, but that
document was focused only on the thresholds at which the free energy
vanishes. The proof of the maximum-energy ground state for the loss-
cone-truncated Maxwellian in the same section is also new.

This paper is structured as follows: Sec. II defines the different
free energies being considered. Section III discusses what is and is not
known about the spectrum of ground states that can be accessed using
diffusive exchange operations. Section IV discusses how these free-
energy theories play out in the context of loss-cone instabilities in a
centrifugal mirror trap and describes how to constrain the free energy
in order to take into account the “flute-like” nature of many of these
modes. Section V is a discussion of the results.

II. DEFINING THE PROBLEM
The key to quantifying the amount of energy that can be

extracted from a system is to define the rules governing the ways in
which that system may be rearranged. Different physical scenarios call
for different rules for these rearrangements.

A. Two basic operations
The earliest version of this theory for plasma physics was intro-

duced by Gardner in 1963.1 If the process underlying the rearrange-
ment is Hamiltonian, then it must conserve the volumes of elements in
phase space. Gardner’s theory (sometimes called Gardner restacking)
allows any rearrangement that conserves phase-space volumes. If the
phase-space elements are rearranged such that the highest-population
elements sit in the lowest-energy parts of phase space, then rearrange-
ments of this kind can remove no further energy from the system. The
energy that can be removed by transforming the initial state in this
way is the Gardner free energy. The unique final state that has zero
Gardner free energy is called the ground state.

For a simple example, consider a discrete phase space consisting
of three states, associated with energies e0 ¼ 0; e1 ¼ 1, and e2 ¼ 2,
respectively. If these states have initial populations f0 ¼ 0; f1 ¼ 1, and
f2 ¼ 2, then a Gardner restacking procedure that transforms the sys-
tem to its unique Gardner ground state is as follows:

This maps the system from a state with energy
P

i fiei ¼ 4 to one withP
i fiei ¼ 1, resulting in a release of 3 units of dimensionless energy.
However, particularly for applications involving wave–particle

interactions, the rearrangement of the distribution often involves phase
mixing, wherein very fine-scale structures in phase space can lead to
apparent smoothing effects. In other words, Liouville’s theorem may
still be respected on sufficiently microscopic scales, but on larger scales,
the dynamics can appear to be diffusive. This motivates an alternative

rule, first proposed by Fisch and Rax,2 in which phase-space elements’
contents are averaged rather than being exchanged. These two opera-
tions are illustrated in Fig. 1.

The maximum energy that can extracted from the same three-
box system considered earlier can be accessed as follows:

This releases 7/4 units of energy rather than the 3 units of energy that
the Gardner restacking operations were able to extract. Note, however,
that we could have averaged the boxes in a different order, leading to a
different ground state,

This final state is clearly also a ground state, but it sits at a higher
energy than the other, and corresponding to an energy release of only
1. Unlike Gardner restacking, diffusive mixing may lead a given initial
state to any of a spectrum of possible ground states. Even for a simple
three-box system like this one, there may be infinitely many such diffu-
sively accessible ground states. The maximum possible energy release
is called the diffusively accessible free energy.

For a discrete system—that is, a collection of N boxes with popu-
lations—the Gardner free energy is always greater than the diffusively
accessible free energy. Hay et al. showed7,8 that although an N-box sys-
tem may have an infinite number of diffusively accessible ground
states, only a finite number of these could possibly correspond to the
maximum energy release. In principle, then, one can simply write
down the list of possible candidates and check which is best. However,
the number of such candidates goes like OðNN2Þ. This makes a direct
search very difficult for larger values of N.

B. Discrete and continuous phase spaces
There are some systems for which small N is the case of greatest

interest: for example, transitions between discrete atomic states.2

However, for plasma physics applications, we are often interested in
systems for which phase space is continuous. If we think of the discrete
system as a coarse-grained approximation of a continuous system, this
pushes us to the large-N limit, where the approach of direct optimiza-
tion is least tractable.

FIG. 1. Above: Gardner’s restacking operation consists of exchanging the popula-
tions in two elements of phase space. Below: the diffusive exchange operation con-
sists of mixing the populations of two elements. Mixing of elements in phase space
is commonly interpreted as the result of phase mixing on some small scale.
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It is also possible to define the continuous Gardner and diffusive-
exchange problems directly in terms of a continuous system. The
Gardner restacking problem can be formulated directly in terms of
continuous curves,34 and can be posed formally in terms of the “sym-
metric decreasing rearrangement” of the initial state.35–39 One way of
doing this is to describe the Gardner ground state fG as the decreasing
function of energy alone that also satisfies

ð
H fGðeðxÞÞ $ k½ &dx ¼

ð
H f ðxÞ $ k½ &dx 8k 2 R (1)

for the initial distribution f. Here, x is the phase-space coordinate
(which generally includes position and velocity) and eðxÞ is the energy
of a particle at x.

The problem of maximum energy extraction under diffusive
exchange, as it was originally posed by Fisch and Rax,2 is to minimize

Wfinal ¼
: lim

t!1

ð
eðxÞf ðx; tÞdx; (2)

where f ðx; tÞ is the distribution at time t and phase-space coordinate
x, and where f evolves according to

@f
@t

¼
ð
Kðx; x0; tÞ½f ðx0; tÞ $ f ðx; tÞ&dx0; (3)

and the optimization is over all kernels Kðx; x0; tÞ that are non-negative
and symmetric with respect to exchange of x and x0. (Strictly speaking,
the original formulation was in terms of a one-dimensional phase space
in which x is a scalar velocity v, but the generalization is straightforward.)

Although the original formulation is in terms of this space of ker-
nels K, the space of possible kernels is large, and, in practice, a direct
search to find the optimal K is prohibitively difficult. When trying to
determine the optimal kernel K—whether to minimize the final energy,
or with respect to any other metric—it is typically advantageous to seek
an indirect approach. This will be discussed in greater detail in Sec. III.

C. Additional constraints
Of course, real systems often obey a variety of constraints beyond,

for example, phase-space volume conservation. For either of the two
rearrangement operations discussed here, it is possible to impose addi-
tional constraints—for example, by limiting which phase-space ele-
ments can be restacked or mixed with which. This idea was first
introduced in the context of Gardner restacking by Helander;3,4 it works
in essentially the same way for the diffusive exchange problem.5

Enforcing conservation of a given quantity for each particle means that
exchanges are only allowed between pairs of elements with the same
value of that quantity. This reduces the rearrangement problem to a set
of independent rearrangement problems, each performed on the hyper-
plane of phase space on which the given quantity is constant. The inclu-
sion of conservation laws for the appropriate adiabatic invariants turns
out to be important in the application of the Gardner free energy for cer-
tain applications involving turbulence in magnetic confinement sys-
tems.11–13 Constraints other than per-particle conservation laws are also
possible;6 this will be discussed in more detail in Sec. IV.

III. CHARACTERIZING THE SPECTRUM OF DIFFUSIVELY
ACCESSIBLE GROUND STATES

Originally, the diffusive-exchange problem was proposed in the
context of alpha channeling, where waves are injected in order to

remove energy from fusion products.2,14 For this reason, early work on
the subject largely focused on determining the upper bound on energy
extraction. This upper bound is what we mean when we refer to the
diffusively accessible free energy.

This upper-bound problem (corresponding to the lower bound for
the energy of the final ground state) was solved in Ref. 9 for continuous
systems. It turns out that in a continuous system, it is possible to construct
a series of mixing operations that approaches the Gardner ground state
arbitrarily closely. It is possible to show (and intuitively straightforward to
see) that it is not possible to reach a lower-energy state than the Gardner
ground state through mixing. Therefore, the Gardner free energy and the
diffusively accessible free energy are identical in the continuous case.

However, there is increasing interest in the application of free-
energy calculations to phenomena like turbulence. For these applica-
tions, it is desirable not only to understand the largest possible energy
release, but also to understand the full range of possible outcomes that
can be brought about by mixing operations. This motivates the identifi-
cation of the minimum stabilizing energy release, which is the lower
bound on the possible release of energy that maps the initial state to a
ground state. This can be posed equivalently in terms of the highest-
energy accessible ground state. Note that although the original formula-
tion of the problem allows mixing operations that can either increase or
decrease the energy of the system (and it can be shown the mixing oper-
ations that increase the system energy are never necessary in order to
reach the maximum possible release of energy7) this minimum-energy-
release problem is only interesting if “annealing operations” (those that
deposit energy into the system) are prohibited. Annealing operations do
not correspond to the expected behavior of natural modes, and if they
are permitted, it is typically possible to reach ground states with much
higher energy than the initial state (infinitely higher, for most continu-
ous systems, since one can simply mix the populated regions of phase
space with empty regions at arbitrarily high velocity).

The minimum stabilizing energy release is not known for arbi-
trary initial conditions, but it is known in certain particular cases. For
the case of a bump-on-tail distribution, the minimum stabilizing
energy release corresponds precisely to the classical quasilinear plateau
solution, in which the region of the distribution with the population
inversion is simply flattened.10 Similar plateau-like solutions can be
shown to be optimal for certain close relatives of the bump-on-tail dis-
tribution. The minimum stabilizing energy release for loss-cone distri-
butions will be discussed in Sec. IV. For a discrete system, it is possible
to enumerate the solutions to this problem when the system is small.
This was done explicitly for the three-box system in Ref. 10.

One corollary of the proof in Ref. 9 is that any state that can be
reached through Gardner restacking—not just the Gardner ground
state—is also accessible (or arbitrarily close to being accessible)
through diffusive exchange operations. It follows that any weighted
average of these restacked states is also diffusively accessible. The
Lynden–Bell equilibrium appears in statistical descriptions of astro-
physical systems40–42 and can be understood as an average over an
ensemble of systems that individually satisfy Liouville’s theorem for
some initial condition. Therefore, it also follows that the Lynden–Bell
equilibrium is itself diffusively accessible.

IV. CASE STUDY: FLUTE-LIKE LOSS-CONE MODES IN
ROTATING MIRRORS

The stabilization of flute-like loss-cone modes in rotating mirror
configurations provides an interesting case study for how the theory of
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free energy may be applied in practice. There are two reasons for this.
First, the intuition behind loss-cone modes revolves around rearrange-
ment operations. The existence of an empty loss region alongside pop-
ulated regions of phase space at higher energies means that it is
possible to release energy by dropping particles from higher-energy
trapped regions into lower-energy loss regions.

Second, this system illustrates the role of constraints in the free-
energy theory. By first computing the stabilization thresholds directly
from the dispersion relations, then calculating the dependences of the
free energy in these systems, it is possible to see whether or not the sup-
pression of the free energy closely corresponds to the stability thresholds.
In other words, it is possible to check how closely the suppression of the
free energy corresponds to the stabilization of the various modes. As we
will see, the basic form of the Gardner free energy does very poorly at
explaining the stabilization thresholds of these modes. However, the
inclusion of an additional constraint, taking into account the flute-like
nature of the modes, leads to a much better-performing theory.

A. Modeling the effects of rotation
To perform this calculation, it is necessary to write down a model

describing how the distribution function f ðvÞ depends on the mirror
parameters. Consider a mirror-type configuration in which the magnetic
field strength B is maximized at the midplane and minimized at the edge,
with the ratio of the maximum field strength to the minimum strength
given by the mirror ratio R. Suppose the mirror is rotating, that is, sup-
pose that a largely radial electric field combined with a largely axial mag-
netic field causes the plasma to undergo drift in the azimuthal direction.
Let DU denote the difference in the combined centrifugal and electro-
static potentials along a field line between the edge and the midplane.
Then, so long as the rotation frequency is small compared to the ion
cyclotron frequency (so that corrections to the adiabatic invariants can be
neglected),43,44 the condition for a particle to be trapped can be written as

ðR$ 1Þv2? $ v2jj þ
2DU
m

( 0; (4)

where vjj and v? are the velocity components parallel and perpendicu-
lar to the magnetic field, andm is the particle mass. There is no unique
mapping between ðR;DUÞ and f ðvÞ; the details of the distribution will
depend on the particle sources, heating terms, and so on. However, it
is sensible to expect f ðvÞ to vanish in regions of phase space where Eq.
(4) is not satisfied.

A few models have been used for this problem in the litera-
ture.6,43,45 One that is both reasonably simple and matches Fokker–
Planck simulations reasonably well for some choices of source6 is a
Maxwellian, truncated so as to vanish inside the loss region,

fTðvÞ ¼ Ae$mv2=2TH ðR$ 1Þv2? $ v2jj þ
2DU
m

" #
: (5)

Here, A is a normalization constant (which depends on R and DU),H
is the Heaviside step function, and T is the temperature. Spatial varia-
tions in f are neglected, and the magnetic field is taken to be a square
well, so that it does not vary in the interior of the mirror. For the sake
of simplicity, we will focus on this model in this paper. For further dis-
cussion of alternatives, advantages, disadvantages, and numerical vali-
dation of the model, see Ref. 6. Note that the choice of model for f is
an important part of this calculation and can have a significant impact

on the resulting stability thresholds. It can be understood as a kind of
initial condition for the analysis.

It is often convenient to work with dimensionless coordinates.
Let

u¼: v
ffiffiffiffiffiffi
m
2T

r
(6)

and

/¼: DU
T

: (7)

Then fT can be rewritten as

fTðuÞ ¼ Ae$u2H½ðR$ 1Þu2? $ u2jj þ /&: (8)

Let R> 1 and/ ( 0, as these are the cases of greatest practical interest.
Then, if fT is normalized to N,

A ¼ N
m
2pT

% &3=2

erf
ffiffiffiffi
/

p
$ 2

ffiffiffiffi
/
p

r
e$/

(

þ 2

ffiffiffiffiffiffiffiffiffiffiffi
R$ 1
pR

r
e/=ðR$1ÞC

3
2
;
R/

R$ 1

% &)$1

; (9)

where Cða; bÞ is the incomplete gamma function.

B. Unconstrained bounds
To begin, it is instructive to consider the Gardner free energy the-

ory without any further modification. Largely following the notation in
Ref. 3, define the level-set volume function

HðkÞ¼:
ð
H½f ðuÞ $ k&d3u: (10)

Within the trapped region, fTðukÞ ¼ k when

uk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

$log
k
A

% &s

: (11)

Then using spherical ðu; h;uÞ coordinates in velocity space, we can
calculate the level-set function for fT as follows:

HðkÞ ¼ 2p
ðuk

0
u2du

ðp

0
H R sin 2h$ 1þ /

u2

" #
sin hdh: (12)

Define

k) ¼
: Ae$/: (13)

Then

Hðk > k)Þ ¼
4p
3

$log
k
A

% &" #3=2
(14)

and

Hðk * k)Þ ¼
4p
3
/3=2 þ 4p

3
½$ðR$ 1Þ logðk=AÞ þ /&3=2 $ ðR/Þ3=2ffiffiffi

R
p

ðR$ 1Þ
:

(15)
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The Gardner ground state fG can be computed by setting

HðfGÞ ¼
4p
3
u3: (16)

This leads to

fGðuÞ ¼

Ae$u2 ; u <
ffiffiffiffi
/

p
;

A exp
'

1
R$ 1

½$½
ffiffiffi
R

p
ðR$ 1Þ u3 $ /3=2

( )

þðR/Þ3=2&2=3 þ /&
*
; u (

ffiffiffiffi
/

p
:

8
>>>>>><

>>>>>>:

(17)

In order to calculate the energy released when fT is transformed to fG,
it is necessary to find the kinetic energy in each distribution.

The energy WT in the initial distribution can be found
analytically,

WT ¼
: T

2T
m

% &3=2 ð
d3uu2fT : (18)

This can be evaluated to get

WT ¼ 3AT
2

2pT
m

% &3=2

+ erf
ffiffiffiffi
/

p
þ R$ 1$ ð2=3Þ/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðR$ 1Þ
p e/=ðR$1Þerfc

ffiffiffiffiffiffiffiffiffiffiffi
R/

R$ 1

r" #

; (19)

where erf is the error function erfc is the complementary error
function.

In the limit of / ! 0, this is

WT j/¼0 ¼
3NT
2

: (20)

In this same limit,

fG ¼ A exp $ R
R$ 1

% &1=3

u2

" #

; (21)

that is, the Gardner-restacked distribution is a Maxwellian with
temperature ½R=ðR$ 1Þ&1=3T , and the Gardner ground state has
energy

WGj/¼0 ¼
3NT
2

R
R$ 1

% &1=3

: (22)

The resulting energy fractional energy release is

WT $WG

WT

++++
/¼0

¼ 1$ R
R$ 1

% &1=3

: (23)

Increasing R reduces the available energy, as it narrows the loss cone
and reduces the volume of empty phase space into which particles can
be moved.

In the opposite limit of / ! 1, the loss cone vanishes, fT
becomes a Maxwellian with temperature T, A ! ðm=2pTÞ3=2N , and
WT ! 3NT=2. In this limit, fG also becomes a Maxwellian with tem-
perature T, so the Gardner free energy vanishes.

More generally, it is possible to calculate the kinetic energy in fG
from Eq. (17) numerically and compare the value with WT to get the
fraction of the initial energy released. This is shown in Fig. 2 for several
choices of R and /. The fraction of the initial energy that is released
when the system is transformed to its Gardner ground state is a mono-
tonically decreasing function of both R and /.

Recall from Sec. III that for a continuous system, the Gardner
free energy also constitutes the least upper bound on the energy that
can be released using diffusive mixing operations. However, we might
also wish to know the minimum stabilizing energy release: that is, the
least energy that can be released while still mapping fT to a ground
state (or, more formally, the infimum of the accessible range).
Interestingly, this bound is zero; it is possible to construct a sequence
of mixing operations that results in a ground state while releasing van-
ishingly little energy.

To see this, consider the part of the loss region with energy e.
Consider a series of mixing operations that mixes the contents of this
shell with the part of the trapped region with energy eþ de, where de
is taken to be very small. It is possible to use mixing operations to
equalize the density of f throughout the part of the loss region with

FIG. 2. The fraction of the total (initial) energy of the system that is extracted when the initial state is restacked to the Gardner ground state, as a function of the mirror ratio R
and the confining potential /, if no further constraints on the rearrangement are imposed. Larger R and / both suppress the free energy fraction.
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energy e and the part of the trapped region with energy eþ de, and to
do so while releasing energy at every step. If every part of the loss
region with energy e were homogenized with the part of the trapped
region with energy eþ de in this way, then in the limit where de ! 0,
we would map the initial state to a ground state at the same energy.

C. Constraint for flute-like modes
With these results in hand, we can return to the question of how

to match the free-energy results with the behavior of the loss-cone
instabilities. Many of the most important of these modes are flute-like:
their wave-numbers vanish in the direction of the magnetic field
ðkjj ¼ 0Þ. Physically, this is related to the large mobility of the electrons
in the direction of the magnetic field.46 Flute-like loss-cone modes
include the high-frequency convective loss cone (HFCLC), drift-
cyclotron loss cone (DCLC), and Dory–Guest–Harris (DGH)
modes.46–50

In the limit of sufficiently large /, these instabilities must be sup-
pressed: at some point, the loss region has been lifted to such high ener-
gies that no particles are affected by it. The key question, for present
purposes, is whether the suppression of the instabilities correlates closely
with the suppression of the free energy. In other words: is the free energy
a good way of predicting the behavior of these modes? This is interesting
as a way of testing the free-energy theory. It is also interesting for the
purpose of understanding this class of modes. After all, there are many
different loss-cone modes, so it would be very convenient to evaluate sta-
bility thresholds using a single free-energy metric rather than needing to
check each mode’s dispersion relation separately.

Calculations of the HFCLC rotational stabilization criteria can be
found in Refs. 43 and 45. Calculations of the HFCLC, DCLC, and
DGH stabilization criteria can be found in Ref. 6. The details of the
behavior of these modes is not the focus of this paper, but we will out-
line the key results as relevant for the comparison with the free-energy
theory

1. All three modes become stable when / is sufficiently large and
positive.

2. For distributions modeled by fT, stabilizing values of / are typi-
cally / * 1.

3. For distributions modeled by fT, the HFCLC and DCLC stabiliz-
ing value of / is higher when R is higher. This behavior is not a
unique feature of fT, and also appears in other analytic and
numerical models. (The DGH is typically only unstable for fT
when / * 0.)

4. For any distribution f ðvjj; v?Þ, all three modes are stable if the pro-
jection

Ð
f dvjj is a monotonically decreasing function of v?. This is a

sufficient condition for stability, but not a necessary condition.

These points are discussed in greater detail in Ref. 6.
Point by point, are these characteristics successfully captured by

the unmodified free-energy theory discussed in Sec. IVB?

1. Yes. We can see from Fig. 2 that the available energy vanishes
when / is large.

2. No. When / ¼ 1, the available energy curves shown in Fig. 2
may only be reduced by a factor of ,1=4 relative to their values
at / ¼ 0. This suggests that the mode might saturate at a lower
level, but it does not suggest that the mode should vanish
altogether.

3. No. The unmodified free-energy theory predicts the opposite
trend, with lower free energy when R is larger.

4. No. The unmodified free-energy theory predicts that a system is
in a stable ground state when f is a monotonically decreasing
function of energy, not when its projection is monotonic.

The unmodified version of the free-energy theory does rather
poorly at predicting when these modes will be stable. This is because it
is missing a key constraint.6

A hint can be found in the appearance of the projected distribu-
tion in point (4). The quasilinear velocity-space diffusion operator can
be written as51

@f
@t

++++
QL

¼ @

@v
- D - @

@v
f ; (24)

where

D¼: D0

ð
xiEk

ðk - v $ xrÞ2 þ x2
i

kk
k2

dk: (25)

Here,D0 is a species-dependent constant, Ek is the spectral energy den-
sity, xr and xi are the real and imaginary parts of the wave frequency,
and k is the wave-number. Recall that the modes under consideration
are all flute-like. If kjj ¼ 0, then the quasilinear diffusion operator does
not drive velocity-space diffusion in the parallel direction, and the
operator does not distinguish between different values of vjj.

This motivates a constraint on the allowed rearrangement opera-
tions.6 If the mixing is driven by flute-like modes, then we should allow
only mixing in the perpendicular direction, and we should require that
any rearrangement acting on a point ðvjj; v?Þ must act identically on
all other points with the same v?. Intuitively, this means that flute-like
rearrangements act on the projection

Ð
f dvjj and cannot access any

free energy associated with population inversions in the parallel
direction.

Continuing to take / ( 0 and R> 1,
ðþ1

$1
fTðuÞdujj ¼

ffiffiffi
p

p
Ae$u2?erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR$ 1Þu2? þ /

q
: (26)

The projection is a monotonically decreasing function of u? if and
only if

ffiffiffiffiffiffi
p/

p
e/erf

ffiffiffiffi
/

p
( R$ 1: (27)

The perpendicular energy that can be released by restacking operations
with this flute-like constraint is equivalent to the original Gardner
problem in two dimensions for the projected distribution

Ð
fTdujj. For

the purpose of tracking the fraction of the total energy that is available,
we also need to take into account the (entirely inaccessible) parallel
component of the kinetic energy. This parallel component is

WTjj ¼
: T

2T
m

% &3=2 ð
d3uu2jjfT (28)
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Taking this into account, Fig. 3 shows the fraction of the energy that is
available in fT under this new constraint. The constraint reduces the
fraction of the energy that is available, but more importantly, it qualita-
tively changes the dependence of the free energy on the mirror ratio R.
Before adding the constraint, the free energy was a monotonically
decreasing function of R. After adding the constraint, it is generally
non-monotonic, though it always becomes a decreasing function of R
when R becomes sufficiently large. This is shown most clearly in the
case highlighted in Fig. 4. The resulting stability condition was first
introduced in Ref. 6.

The non-monotonic dependence on R is a surprise, but it is
understandable. In fact, this non-monotonicity helps to resolve a dis-
crepancy between the usual intuitions about the role of the mirror ratio
and the actual behavior of the stabilization thresholds. If the free
energy exists due to the loss cone and larger R means a smaller loss
cone, then it would be reasonable to expect that larger R should trans-
late to less free energy. Indeed, this is what appears in Fig. 2 for the
unconstrained free energy. However, the / thresholds for stabilizing
flute-like loss-cone modes are higher when R is larger. The reason for
this is that when R decreases, there is more and more free energy, but

less and less of it is accessible to the kinds of rearrangements that flute-
like modes can produce. However, the original intuition is recovered
when we look at the large-R limit: the modes may not stabilize, but the
amount of free energy available to them eventually drops as R increases
(likely corresponding to modes that are unstable but saturate at a very
low level). This happens because as R increases, the loss-cone modes
can access greater and greater fractions of the free energy, but there is
less and less of it to begin with.

D. Modification to account for lost particles
The analysis thus far has treated loss-cone modes as being those

modes that are associated with loss-cone distributions. In other words,
the presence of a loss cone is associated with a particular class of
kinetic distributions (those which vanish inside the loss cone), and dis-
tributions with this structure generally have population inversions that
can drive instabilities. However, there is a meaningful distinction
between the free energy in a system with an actual loss region and the
free energy in a system for which the initial distribution simply hap-
pens to vanish in a given region. If a phase-space element is moved
into a loss region, it promptly exits the system, and the loss region
does not remain occupied. In the simplest case, it can be modeled as
leaving the system without any additional interaction, so that whatever
energy it has in its final phase-space position (inside the loss region) is
carried away and not counted as available. This idea was first explored
in Ref. 6, and is illustrated in Fig. 5.

In many cases, this can substantially increase the quantity of
energy that can be extracted. For example, in a non-rotating mirror,
the loss cone includes a region at vanishingly small energy, so in the

FIG. 3. The fraction of the total (initial) energy of the system that is extracted when the initial state is restacked to the Gardner ground state, subject to the additional “flute-like”
constraint that the rearrangements can only move phase-space elements in the perpendicular direction and can only perform rearrangements that affect all values of vjj for any
given v?. Larger / always reduces the available energy, but the available energy may not be a monotonic function of R.

FIG. 4. This is one of the particular cases shown in the left panel of Fig. 3, with a
magnified vertical axis and a logarithmic horizontal axis in order to highlight the
non-monotonicity of the behavior more clearly. For this choice of /, the free energy
entirely vanishes when R is below some threshold.

FIG. 5. In a system with a loss cone, there are regions in phase space which do
not “fill up” when phase-space elements move into them.
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absence of any additional constraints, Gardner restacking operations
can release the entire energy content of the system.

The effects of the loss-cone sink are perhaps most interesting in the
case of the free energy with the flute-like constraint discussed in Sec. IVC.
Without the loss region, the constraint prevents the system from perform-
ing rearrangements that distinguish between different values of vjj; entire
columns of phase-space elements with a given v? must be moved
together. With the loss region, it is possible to partially circumvent this
constraint by moving the column of elements so that only part of it falls
into the loss region. Then a segment of the column can be left behind
while the surviving phase-space elements can be moved elsewhere.

In other forms of the Gardner and diffusive-exchange theories, it is
never necessary to perform so-called “annealing” operations (that is, those
that raise the energy of the system) in order to reach the minimum-energy
ground state.7 However, when we include both a loss region and the flute-
like constraint, there are scenarios in which the minimum-energy state can
only be reached using sequences of rearrangements that include annealing
(because these operations are sometimes necessary in order to drop off
part of a column of phase-space elements in the loss region).

Interestingly, this implies that a configuration can be a ground
state if the loss region is treated as unoccupied space, but have nonzero
available energy if the loss region is instead treated as a sink. In other
words, it suggests the existence of instabilities, which rely on the loss of
particles that get into the loss region, and it suggests that these instabil-
ities would not be captured by an analysis that treated the loss region
only as an initially unoccupied part of phase space (as, indeed, analytic
treatments of loss-cone modes typically do).

The appearance of these annealing operations motivates a distinc-
tion between strong and weak ground states. In a strong ground state,
no sequence of rearrangements can possibly lead to a lower-energy
state. In a weak ground state, no single rearrangement operation can
reduce the energy of the state. A state that would be a ground state in
the absence of any loss-cone sink is always a weak ground state in the
presence of the sink, but may not be a strong ground state. The stabil-
ity conditions that appear in linear analyses of the HFCLC, DCLC, and
DGHmodes appear to more closely match the weak ground-state con-
dition.6 This makes sense, given that these linear analyses did not
include any particle sinks in the loss-cone region, instead treating the
loss-cone as simply a region of phase space which happens to be unoc-
cupied by the leading-order kinetic distribution.

V. DISCUSSION
Theories of free or available energy offer a way to calculate very

general bounds on the possible behavior of plasma systems without
the need to resolve (or even specify) all of the details of the dynamics
of those systems. This can be useful in cases where the bound is com-
putationally less expensive than the detailed calculation, as is often the
case for applications involving turbulence.11–13 It can also be intrinsi-
cally useful to be able to draw conclusions about entire classes of sys-
tems with a single calculation. For example, there are many flute-like
loss-cone modes,46 and the calculations discussed in Sec. IV should be
applicable to all of them. The approach elaborated upon here, namely,
considering phase-space rearrangements as a series of steps operating
on a finite set of phase-space volumes, has been shown to be particu-
larly powerful despite its apparent simplicity. In the limit of many vol-
umes, we were able to recover the surprising result that Gardner
restacking could be achieved through diffusive operations. We were
also able to recover theorems in a variety of constrained problems.

For processes described by the diffusive-exchange operator, one
major problem of interest is to characterize the spectrum of possible
states that can be reached from a given initial condition.2,5,7–10 When
phase space is continuous, the Gardner ground state is the lower
bound for the final energy, and it is proved that it is possible to get
arbitrarily close to that state diffusively.9 The highest-energy accessible
ground state (when only energy-releasing operations are allowed) is
known in certain cases but not others. Reference 10 shows that the
quasilinear plateau solution is the highest-energy accessible ground
state for the bump-on-tail distribution. This paper shows that the
highest-energy ground state for a loss-cone-truncated Maxwellian is
simply an isotropic Maxwellian at the same temperature.

Another major problem of interest—both for Gardner restack-
ing and for diffusive exchange—is to identify and understand the
appropriate additional constraints to impose. On its own, the
Gardner free energy is often a significant overestimate of how much
energy is realistically extractable from a given system. One reason for
this is that real systems often obey a variety of constraints in addition
to Liouville’s theorem. However, it is possible to formulate a con-
strained rearrangement problem in which other constraints are also
considered. This was first done for the case of constraints that take
the form of conservation laws applied to each phase-space ele-
ment.3,4 However, there are also systems for which the relevant con-
straints take other forms.

One example of this is the free energy associated with the loss
region of a mirror configuration (rotating or otherwise). Many of the
major loss-cone instabilities are flute-like, which means that they not
only do not rearrange phase-space elements in the velocity direction
parallel to the magnetic field but they also cannot separately rearrange
phase-space elements with different values of vjj. This leads to a more
restrictive additional constraint on the allowed rearrangements. It
turns out that this constraint greatly improves how well the Gardner
free energy tracks the actual stability thresholds of the modes.

Despite progress on these problems, there is work yet to be done.
There remain open questions regarding the characterization of the
spectrum of diffusively accessible states. In addition, there are many
systems for which the question of which constraints are necessary (and
how those constraints behave) has not yet been explored. As our
understanding of these rearrangement processes improves, there are
good reasons to hope that theories of free or available energy can be an
increasingly practical tool with which to understand the behavior of
plasma systems.
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