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ABSTRACT

Self-focusing instability is a well-known phenomenon of nonlinear optics, which is of great importance in the field of laser–plasma interac-
tions. Self-focusing instability leads to beam focusing and, consequently, breakup into multiple laser filaments. The majority of applications
tend to avoid a laser filamentation regime due to its detrimental role on laser spot profile and peak intensity. In our work, using nonlinear
Schr€odinger equation solver and particle-in-cell simulations, we address the problem of interaction of multiple parallel beams in plasmas. We
consider both non-relativistic and moderately relativistic regimes and demonstrate how the physics of parallel beam interaction transitions
from the familiar self- and mutual-focusing instabilities in the non-relativistic regime to a moderately relativistic regime, where an analytical
description of filament interaction is not available.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0191094

I. INTRODUCTION
Self-focusing or self-modulational instabilities are well-known pro-

cesses in optical fibers1 and laser–plasma interaction.2 These instabilities
typically lead to the broadening of the pulse spectrum and may cause a
breakup of the incident pulse into multiple longitudinal and transverse
filaments.3 Such behavior is usually found detrimental to potential appli-
cations, and a multitude of approaches to avoid such instabilities are
proposed. For instance, in the works by Kalmykov et al.,4 it is shown
that the introduction of an auxiliary parallel laser pulse with a shorter
wavelength may help to control plasma wave beating and to balance out
the self-focusing effect to facilitate steady propagation of the laser beam
without significant changes in laser spot over multiple Rayleigh lengths,
potentially improving the laser wakefield acceleration of electrons. In
some applications, it is possible to use incoherent beams,5,6 thereby
effectively avoiding the power threshold for the self-focusing instability,
Pcr ¼ 17:3GW " ðne=ncrÞ%1 (ne is the plasma density and ncr ¼ mex2

0=
4pe2 is the critical density for the laser pulse of frequency x0) (see Refs.
1–3). Oblique crossing of multiple laser pulses for the self-focusing sup-
pression is also discussed theoretically.7 As the majority of potential
applications benefit from higher laser powers/intensities on target,
including laser ion acceleration, gamma ray and e% % eþ pair genera-
tion, inertial confinement fusion, and plasma-based laser amplification,
it is very instrumental to control the self-focusing instability.

Coming from a different perspective, it is well-known that one
may use a mutual-focusing-like instability to avoid catastrophic self-
focusing in air by redistributing the laser power into so-called parallel
beam arrays that merge in a controllable fashion (see Refs. 8 and 9,
and references therein). For instance, in Ref. 8, it was shown that such
beam combination is experimentally feasible for two subcritical laser
filaments (P1; P2 < Pcr) with total power P1 þ P2 exceeding Pcr, and,
thus, triggering mutual focusing and eventual beam merger. Such phe-
nomenon was explained theoretically using nonlinear Schr€odinger
equation (NSE) envelope model. In Refs. 10 and 11, a merger of collin-
ear beams via self-modulational instability was discussed for a Kerr-
like medium, while Ref. 12 addresses the question of an interaction of
the parallel beams with a transverse shift. One may expect that similar
physics will prevail in tenuous plasmas as well as long as a0 ' 1 (a0 is
the dimensionless laser field, a0 ( eE0=mex0c, subscript 0 denotes the
initial laser field value). When laser amplitude becomes a0 ) 1, the
approximation of the nonlinear Schr€odinger model with cubic nonlin-
earity breaks up, as the self-focusing term, jaj2, is assumed to be much
smaller than one. The theoretical description of the laser beam of high
intensity propagating in tenuous plasmas is, therefore, unavailable, and
kinetic simulations are usually utilized to consider such a regime.
Pioneering works by Askaryan et al.13,14 showed that an incident
beam of a0 ¼ 5 propagating in near-critical plasma density of
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ne=ncr ¼ 0:5625, while initially being separated into two via filamenta-
tion, later on combined two filaments into a single tightly focused
beam with negligible power losses. Similar behavior was observed in
3D PIC simulations with a0 * 1 (Ref. 15) and a0 + 1 (Ref. 16). Thus,
it may be possible to find a regime to reliably combine multiple parallel
beams in collisionless plasmas to achieve higher pulse powers and
avoid energy losses associated with the laser power transmission
through plasmas.

In this paper, we address the problem of parallel beam combina-
tion in the regime of a0 ! 1, i.e., in the regime where the NSE model
may be applied to an extent, but ultimately it fails as soon as field
amplitude reaches a0 , 1. First, we recall the criteria for parallel beam
merger in 2D (one transverse dimension) and 3D (two transverse
dimensions), reproducing or closely following Ref. 12. Then, by using
the NSE solver, we find a threshold of beam combination numerically,
while also analyzing the role of the ponderomotive effect on the beam
combination. Next, we run two- and three-dimensional fully kinetic
relativistic particle-in-cell (PIC) simulations and demonstrate the
mechanism of beam merger and show the scalability of the process to
higher laser powers (including overcritical) and relativistic intensities
(a0 > 1). The beneficial role of beam combination for the suppression
of the power propagation losses is also highlighted.

This paper is organized as follows. We start by recalling critical
relativistic self-focusing power, restating the criterion of beam combi-
nation in 3D, and deriving the same properties for 2D in Sec. II. Next,
Sec. III is devoted to the discussion of NSE simulations, which help to
find the critical beam separation and check the importance of the pon-
deromotive effect for beam combination. In Sec. IV, we discuss the
results of 2D/3D PIC modeling of parallel beam interactions in both
a0 < 1 and a0 > 1 regimes. We conclude by discussing the limitations
of the beam combination approach and the path toward the experi-
mental investigation of the aforementioned phenomena in Sec. V.

II. THEORETICAL BACKGROUND: NSE MODEL
AND THRESHOLD FOR BEAM COMBINATION

Let us start by recalling one of the basic properties of the nonlin-
ear Schr€odinger equation (NSE) model, namely, critical power for self-
focusing. We will consider the NSE in the following form:
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Here, a is the laser field envelope (electric field normalized to
mexc=e), x is the laser frequency, x2

pe ¼ 4pnee2=me is the squared
plasma frequency, vg and v̂g are the group velocity vector and unit vec-
tor along the laser group velocity, respectively. The first and the second
terms correspond to the envelope propagation, third—diffraction,
fourth—group velocity dispersion (GVD), and fifth—self- and mutual-
focusing term.

In what follows, we normalize spatial coordinates to c=x,
temporal—to x%1, and shift to the reference frame moving with vg.
We also consider both 1Dþ 1T (one transverse spatial dimension and
one temporal dimension) and 2Dþ 1T NSE models, i.e., we solve for
the evolution of the beam cross section, as well as for the coevolution
of the beam longitudinal and transverse profiles. In the case of the
1Dþ 1T model, it yields
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with the x axis being the laser axis and the y axis being the transverse
axis. This equation is further solved numerically in the current form
and in an extended model involving density perturbation. This model
effectively corresponds to 2D geometry, which will also be considered
in 2D PIC simulations.

The 2Dþ 1T model looks as follows:
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This model is relevant for the 3D geometry and will be addressed theo-
retically and numerically with the NSE solver.

Let us recall the method to derive the self-focusing threshold, as it
is also used to derive the beam combination threshold in 2D and 3D.
Following Ref. 17, we first write the Hamiltonian corresponding to Eq.
(3) (we further denote a ( x2

pe=8x
2):

H ¼ 1
2

ð
jraj2 % ajaj4
$ %

dx; (4)

where the integration is performed over one or two transverse dimen-
sions in the case of 1Dþ 1T and 2Dþ 1T models, respectively. Using
the variance identity, V, for the envelope a (see Chap. 2.4 in Ref. 17),
we could write down the self-focusing/combination criterion as
follows:

d2V
dt2

¼ 8H % 2aðd % 2Þ
ð
jaj4dx ¼ 0: (5)

Here, d is the number of transverse dimensions. For 2Dþ 1T, d¼ 2,
and, assuming the Gaussian profile of the laser electric field,
a ¼ a0 exp ½%r2=w2., it leads to the threshold for beam self-focusing:

a20w
2 ¼ 4=a; (6)

which could be written in terms of critical power in dimensional units
as a well-known result:

Pcr ¼
2mec3

re

ncr
ne

¼ 17:5GW " ncr
ne

: (7)

Here, re ¼ e2=mec2 is the classical electron radius.
Interestingly, a similar approach is applicable to find the combi-

nation threshold of two shifted envelopes.12 For two envelopes given
by a1;2 ¼ a0 exp ½%ðr7 rcÞ2=w2., with 6rc being the center of mass
of the particular envelope and jrcj ¼ d, one could get the following
implicit expression for the critical beam separation, d=w ( t:

P
Pcr

% 1 ¼ exp %2t2½ .ð1% 2t2Þ % 3
P
Pcr

exp %4t2½ . % 4
P
Pcr

exp %3t2½ .:

(8)

Here, P denotes the laser power of a single laser filament. This equa-
tion has real positive solutions only for P > Pcr=4, meaning that pulses
below that value do not combine and just diffract around their respec-
tive laser axes; at the same time, for P > Pcr; d=w ! 1, meaning that
two beams do not combine and experience independent self-focusing.
These results identically reproduce the results by Ref. 12.
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Similar results can be obtained for the 1Dþ 1T model. Taking
d¼ 1 in Eq. (5) and considering envelope a ¼ a0 exp ½%y2=w2., one
gets the following critical condition for self-focusing:

a20w
2 ¼ 2

ffiffiffi
2

p
=a: (9)

Now, applying Eq. (5) to the sum of two shifted envelopes in 1D
(a1 ¼ a0 exp ½%ðy % dÞ2=w2.; a2 ¼ a0 exp ½%ðy þ dÞ2=w2.; a ¼ a1
þa2), we get a very similar implicit expression for the threshold beam
separation in 2D:

P2D
Pcr;2D

% 1 ¼ exp %2t2½ .ð1% 4t2Þ % 3
P2D
Pcr;2D

exp %4t2½ .

% 4
P2D
Pcr;2D

exp %3t2½ .: (10)

Here, P2D=Pcr;2D ( a20w
2= 2

ffiffiffi
2

p
=a

' (
. Solving for d=w as a function of

P2D=Pcr;2D, we get similar thresholds at P2D=Pcr;2D ¼ 1=4 and 1.

III. NSE SIMULATIONS OF BEAM MERGER
To illustrate the physics of the parallel beam merger, we conduct

NSE simulations using a symmetrized split-step Fourier approach1

implemented in a Python solver.18 We address three models: 2Dþ 1T
with no contribution from ponderomotive force by solving Eq. (3), 1D
þ 1T with no contribution from ponderomotive force by solving Eq.
(2), and 1Dþ 1T with the contribution from ponderomotive force,19

solving
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which is also coupled with the initial condition of two Gaussian beams
with a transverse shift. Here, we normalize time tox%1, spatial coordi-
nate to c=x, electric field is normalized to mexc=e, density perturba-
tion dn—to initial plasma density n0. For simplicity, we assume
k ¼ 0:8lm and use dimensional units, which should be directly com-
parable with PIC results presented later on in the manuscript.

To determine the threshold beam separation as a function of laser
power, we conduct a scan over dimensionless envelope amplitudes, a,
from 0.1 to 0.3, and beam half-separation, d, from 0.5 to 2 beam
widths. Pulse width is specified to be equal to 20lm and pulse
duration—5.396lm (30 fs). We initialize two pulses with some beam
separation and fixed total energy being equal to the energy of a single
pulse with the aforementioned parameters. Plasma density is chosen to
be ne ¼ 0:032ncr. We specify the grid of 256/ 256 grid nodes and
200/ 200 unit lengths, choose time step to be equal to
c " dt ¼ dx ¼ 0:78lm, apply periodic boundary conditions, and shift
to the simulation window moving with v ¼ vg .

Figure 1 presents evolution of two beam envelopes with
a0 ¼ 0:17, beam width w¼ 20lm, and beam half-separation d ¼ w,
shown in Eqs. (11) and (12). One may see how the envelopes collapse
into one under the effect of the nonlinear term. As is common in the
self-focusing and mutual focusing instabilities, the focusing effect may
be understood in terms of modulations of the refractive index. Square
of unperturbed plasma refractive index, N2

0 ¼ 1% ne0=ncr, where
ncr ¼ mex2=4pe2 and ne0 is the electron number density of

unperturbed electron plasma. A perturbed value of the refractive index
in the laser field may be written as N2 ¼ 1% ne=hceincr, which
includes both perturbations in density (ne ¼ ne0 þ dn) and mean elec-
tron gamma factor, which is connected to laser field by
hcei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20

p
. Figure 1(c) highlights the relative role of density and

gamma factor perturbations at t¼ 5 ps. One may see the importance
of the gamma factor contribution and a relatively minor role of density
perturbations. Also, one may see the positive density perturbation
between two pulses, which translates into negative refractive index per-
turbation, slightly impeding the pulse combination.

Fixing total laser power and scanning over the beam half-
separation d using three aforementioned models, we generate Fig. 2,
which aims to seeking the threshold beam separation to still merge
two laser beams into one. We find that the threshold half-separation is
around w. Density perturbations are seen to counteract beam merger,
leading to slightly smaller threshold beam separation than in the model
with dn ¼ 0. Considering the cross section of the two-pulse system,
we see that the threshold is slightly larger than w. Threshold beam sep-
aration obtained from NSE scans is in fair agreement with theoretical
estimates calculated from Eqs. (8) and (10) (shaded blue region in
Fig. 2).

To better represent the outcomes of the two-pulse interaction, we
conduct a 2D scan of the beam field and separation using the NSE

FIG. 1. NSE run with a0 ¼ 0:17 and beam separation d ¼ w. Gradual beam
merger is seen. (a) 2D envelopes, (b) 1D cuts of NSE envelopes, and (c) the rela-
tive role of density and gamma factor in refractive index perturbations are shown.
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model with density perturbations. Figure 3 represents the results of
such scan, with x axis being dimensionless laser field a0, y axis—initial
beam half-separation normalized to beam width, d=w, and color
depicts the value of a beam combination metric by estimating the
amount of total beam energy focused to the center of the simulation
box (denoted as Efoc). Colder colors here denote smaller energy at the
axis of symmetry, and, therefore, less efficient beam combination, hot-
ter colors—more efficient beam combination. One may see that there
is a transition between the regimes with individual beam self-focusing
(to the right from P2D ¼ Pcr;2D line), beam diffraction (d > dcrit), and
beam merger (d 0 dcrit; P2D < Pcr;2D), which are separated by white
dashed lines. These lines are given by P2D=Pcrit;2D ¼ 1 and Eq. (10). It
implies that by specifying laser pulses with P 0 Pcr with separation
d 0 dcrit, we may expect coalescence of these pulses in one. It should
be noted that here we talk about the individual pulse powers. We, thus,
would expect a pulse merger as soon as two pulses are close enough

(< 1:5w0) and possess total power of P * Pcr, with individual
pulses being undercritical. Auxiliary NSE scans with plasma densities
ne ¼ 0:01; 0:1ncr agree with the theoretical criterion for the beam
merger given by P < Pcr and Eqs. (8) and (10) and lead to similar con-
clusions as obtained from Fig. 3.

IV. PIC SIMULATIONS OF BEAM MERGER
To consider the full complexity of parallel beam interaction, we

conduct particle-in-cell simulations using the code EPOCH.23 The
simulation setup is as follows. We shoot two parallel laser beams of
k ¼ 0:8lm; I ¼ 6 " 1016W=cm2 peak intensity each along the þx
axis. Pulse duration is s ¼ 30fs (FWHM), and beam waist (1=e) is
w ¼ 20lm. This corresponds to a0 ¼ 0:17 in vacuum and
P=Pcr;2D , 1. The beam separation is chosen to be equal to
d ¼ w ¼ 20lm. We also conduct analogous runs with a single beam
with the same beam width and duration and pulse energy matched to
the two-laser case (Iaux ¼ I1 þ I2) or matched to the energy of one of
those pulses (Iaux ¼ I1 ¼ I2). The target is the uniform semi-infinite
plasma slab with immobile ions, ne=ncr ¼ 0:032; auxiliary simulations
with two pulse merger setup with w ¼ d ¼ 20lm; a0 ¼ 0:1;
ne ¼ 0:1ncr and a0 ¼ 0:3; ne ¼ 0:01ncr are also conducted to probe
the generality of our results obtained in the primary 2D PIC run dis-
cussed in the manuscript. The physical parameters are similar for 2D
and 3D runs, and only numerical parameters are changed to ensure
the reasonable computational cost of a three-dimensional simulation.
In 2D, the grid resolution is 20 grid nodes per micrometer, box size is
100 lm/ 100 lm, and the number of particles per cell per species is
fixed to 2000. We also conducted a convergence study with higher grid
resolution (40 grid nodes per micrometer and 200 particles per cell)
and smaller particle resolution (20 grid nodes per micrometer and 20,
100, 200, and 1000 particles per cell) to verify the persistence of physics
of the observed refractive index perturbations. We verified the conver-
gence of our results (i.e., laser envelopes, density perturbations, and
electron energization) on the level of 200 particles per cell and 20 grid
cells per micrometer, which does not change with further increase in
these numerical parameters. For the figures below, we use 20 grid cells
per micrometer, 2000 particles per cell run due to its smoother density
perturbation profiles. In 3D, the longitudinal grid resolution is 12 per
micrometer and 6 per micrometer in each transverse direction.
Number of particles per cell is equal to 4. We adopt a moving window
setup, starting to move the simulation window with the group velocity
of the laser pulse, vg ¼ c "

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1% ne=ncr

p
, as soon as the laser pulse

reaches 2/3 of the simulation box length. Simulation time is 12 ps. The
particular choice of parameters is motivated by a few factors. First, as
we discussed in Secs. II and III, for the laser beams with P * Pcr, the
beam half-separation should be close to the beam width for the merger
to be possible, d * w. Next, we are interested in (and are capable of
simulating) short pulse (<1 ps) high-intensity (a0 > 0:1) laser–plasma
interaction for the parameters that are widely available for an experi-
ment. We, thus, limit our discussion to the TW-scale laser power and
101 % 102 fs pulse duration. Finally, the need to suppress the forward
Raman scattering (FRS) for a clear observation of beammerger, compu-
tational feasibility, and the interest to compare against the NSE models
(thus, jaj2 ' 1) leads to the particular choice of the beam width and
plasma density. The simulation considered below is, thus, treated as a
proof-of-principle demonstration of the feasibility of a beam merger in
a more realistic fully kinetic PIC model. Auxiliary 2D PIC simulations
with a0 ¼ 0:3; ne ¼ 0:01ncr and a0 ¼ 0:1; ne ¼ 0:1ncr demonstrate

FIG. 2. NSE scan on pulse separation for a0 ¼ 0:175 (1Dþ 1T) and a0 ¼ 0:209
(2Dþ 1T) for three types of NSE models. Final beam separation is shown for t¼ 6
ps. The transition from self-focusing to mutual focusing is seen around d , w. The
theoretical beam combination threshold (shaded blue region) calculated from Eqs.
(8) and (10) is specified.

FIG. 3. NSE scan on pulse separation, d=w, and laser field, a0. White dashed lines
draw a critical power threshold, P2D ¼ Pcrit;2D, and critical beam separation given
by Eq. (10), d ¼ dcrit . Regions with diffraction, self-focusing, and beam merger
being dominant are specified.
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the robustness of our results within a range of laser–plasma parameters
for non-relativistic pulses propagating in underdense plasma.

Let us first consider a 2D simulation with beam half-separation
d ¼ 20lm ¼ w. Figure 4 illustrates the process of coalescence of two
parallel laser beams. Here, we see initial laser envelopes at t¼ 1 ps,
self-focusing stage at t¼ 5 ps, beam migration at t¼ 8 ps, and full coa-
lescence at t¼ 12 ps. The process and merging timescale are similar to
the one in the NSE case, as one may see in Fig. 1 and via solid-dotted
lines in Fig. 4(b). Still, the comparison is complicated by at least two
factors: (I) during the self-focusing stage, both laser pulses reach
dimensionless amplitudes of around 0.4, which formally violates the
NSE model assumption of jâj2 ' 1 and (II) the process of laser self-
focusing is inseparable from forward Raman scattering (FRS), which
leads to longitudinal modulations of the laser envelope. To suppress
the latter and demonstrate a cleaner picture of beam merging, we con-
sidered smaller wavelength (k ¼ 0:8lm) and shorter pulse duration
(s ¼ 30 fs) in comparison to our early simulations with k ¼ 1lm and
s ¼ 100 fs. Recalling the metric on the interplay between FRS and self-
focusing,24 C ( P=1 TW " s=1ps " ðne=1019cm%3Þ5=2 " ðk=1lmÞ4, we
may see that we are able to get from C , 5:3 toC , 0:65, i.e., we tran-
sition from FRS-dominated regime close to the self-focusing-dominant
regime.

To understand the reasons behind the beam migration toward
coalescence, we analyzed density, electron energy, and refractive index
perturbations around two laser beams. The refractive index is given by

N2 ¼ 1% ne
ncr;rel

¼ 1%
x2

pe

hceix2
0
¼ 1% ne

ncr

1

1þ hEkei
mec2

: (13)

Before laser pulses enter the simulation domain, N2 ( N2
0 ¼ N2ðne

¼ ne0; hcei , 1Þ ¼ 1% 0:032 ¼ 0:968. Refractive index perturbations
are calculated as dN2=N2

0 ¼ ½N2ðne; hceiÞ %N2
0 .=N2

0 . Figure 5 illus-
trates laser field (a), laser envelope [(b) and (c)], density perturbation
[(d) and (e)], electron energization [(f) and (g)], and refractive index
distributions [(h) and (i)] in 2D (left) and 1D as cuts at peak laser
amplitude along the y axis (right) at t¼ 8 ps. Figures 5(a) and 5(c)
depict laser field and envelope, respectively. Dashed vertical lines
denote the initial location of two beam envelopes; one may notice that
two beams are indeed moving away from their initial laser axes toward
amalgamation. It also may be seen from the 1D cut at the peak laser
intensity [Fig. 5(b)]. Figure 5(e) shows density perturbation around the
pulse envelope, with the density depression at the pulse peaks and
plasma wake structure behind the pulses, with the spatial period close
to kpe ¼ k=

ffiffiffiffiffiffiffiffiffiffiffiffi
ne=ncr

p
, 4:47lm. One may also notice density pertur-

bation with a spatial period of around k, corresponding to electron
oscillation in the laser field. The magnitude of perturbation is around
1%, strongly exceeding density perturbations in the NSE case
(< 0:1%). Figure 5(d) depicts a 1D density perturbation profile aver-
aged over laser wavelength k along the laser axis. The density dip
between laser pulses is notable here, while density depression regions
around the laser peaks do not survive the averaging—mainly due to
the dominant contribution of strong electron oscillations in the laser
field. Figure 5(g) demonstrates the mean electron kinetic energy pro-
file, and Fig. 5(f) provides a comparison of the electron energization
derived from PIC simulation with the theoretical prediction hcei , 1
þ ha20=2i [both were averaged over ðxpeak % k=2; xpeak þ k=2)].
Decent agreement is seen in all the snapshots from 4 to 9 ps, with
stronger deviations appearing once laser amplitude reaches a0 , 0:3.
Finally, Figs. 5(h) and 5(i) show total refractive index perturbation in
2D (i) and 1D cuts of total refractive index perturbation (h, blue
solid line), refractive index perturbation due to density perturbation
only (h, orange solid line), refractive index perturbation due to elec-
tron energization only (h, green solid line), and refractive index
perturbation from the theory [h, red dashed line, see Eq. (1) from
Ref. 25].

Overall, the structure of the refractive index perturbation and its
magnitude are similar to the NSE case, as may be seen by comparing
Figs. 1 and 5. In both PIC and NSE models, hcei contribution to the
refractive index modulations is the dominant one early on in the simu-
lation. However, electron density contribution is far more noticeable in
the PIC case than in NSE and even becomes comparable to hcei impact
at the time of beam amalgamation (t> 9 ps). Since we are using 2000
particles per cell, with each particle corresponding to 0.05% of the ini-
tial plasma density, we may be confident in the validity of the density
profile and its contributions to the refractive index. Throughout the
simulation, we observe good agreement between the longitudinally
averaged theory prediction for the refractive index perturbations and
the one observed in PIC (also longitudinally averaged), with a slight
increase in refractive index around y¼ 0 due to the difference in elec-
tron density dynamics. Individual (i.e., non-averaged) profiles may not
match, though, partially due to strong density perturbation in the laser
field and oscillatory structure of electron energization around the loca-
tion of the laser peaks. Auxiliary runs with a single pulse with either
Iaux ¼ I1 þ I2 or Iaux ¼ I1 ¼ I2 also helped to interpret the beam
merger mechanism. Simulation with Iaux ¼ I1 is in very good agree-
ment with theory, both in terms of electron heating and density

FIG. 4. 2D PIC simulation of the evolution of two laser envelopes from 1 to 12 ps
into the run superimposed on a single spatial domain. Self-focusing, beam migra-
tion, and beam combination is seen. Solid-dashed lines depict the result of a corre-
sponding NSE simulation.
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perturbations (and, consequently, refracting index perturbations). On
the contrary, Iaux ¼ I1 þ I2 ¼ 2I1 simulation is in fair agreement with
theory in the initial stages of beam self-focusing but quickly departs
due to stronger density perturbations in the PIC model. Our auxiliary
runs with the same setup geometry, but (I) a0 ¼ 0:3; ne ¼ 0:01ncr or
(II)a0 ¼ 0:1; ne ¼ 0:1ncr, further confirm our findings. Indeed, for
the case of a0 ¼ 0:3; ne ¼ 0:01ncr, we observe the situation similar to
our primary 2D PIC run: all theoretical metrics agree with PIC up to
the point where a0 becomes large enough, such that both density per-
turbation and electron heating become strongly nonlinear. On the
other hand, the 2D PIC run with a0 ¼ 0:1; ne ¼ 0:1ncr agrees very
well with the theoretical predictions for electron heating and refractive
index perturbation throughout the merger process, as the laser field
stays below 0.2 during the coalescence. Our choice of parameters for
the auxiliary runs is motivated by considering the same P=Pcr as in the
primary 2D PIC run, which, as one may see from Eq. (9), scales as
a20ne. We may, thus, conclude that theoretical calculations of average
electron energy and refractive index, NSE models, and 2D PIC agree
for the laser pulses below acrit , 0:2, with density perturbations grow-
ing significantly for stronger laser fields and, thus, departing from the-
oretical prediction. As we showed in the presented 2D PIC run, pulses
still manage to merge, even though they possessed enough power to
self-focus individually, as suggested by theory arguments from Sec. II.
In conclusion, different electron density behavior seems to be the rea-
son for the sustained beam merger efficiency for P=Pcrit;2D ) 1.

A similar pulse merger behavior is observed in 3D PIC simula-
tion, as one may see in Fig. 6(a). Here, we show the evolution of the
magnetic energy density of two laser pulses over time, from 1 ps (two
spots distant from each other and further away from the observer) to

FIG. 5. Physics of beam merger in 2D PIC simulations. Panels on the left show 2D distributions, right panels—1D cuts at the laser envelope peaks. (a) Normalized laser mag-
netic field, (b) 1D and (c) 2D normalized laser envelope, (d) 1D and (e) 2D normalized density perturbations, (f) 1D and (g) 2D electron energization distributions, (h) 1D and (i)
2D maps of refractive index perturbations. Theoretical predictions [orange solid line in (f) and red dashed line in (h)] are also shown to compare against the 2D PIC result.
Separate refractive index perturbations are also depicted in (h) to highlight the relative role of density and hcei perturbations.

FIG. 6. Evolution of magnetic energy density of a system of two/three laser pulses
over 10 ps in 3D PIC simulation. Beam propagation, self-focusing, beam migration,
and merger are observed.
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10 ps (single focused beam, appears closest to the observer). As the
pulses propagated for , 3 mm through the plasma, we do not plot the
whole box, but rather superimpose the output data from 3D PIC mov-
ing window simulations onto the same box of reduced size for clarity.
The timescale of the merger of the two-pulse system agrees with the
2D PIC results within a factor of 1.5, which suggests the qualitative
agreement between the 2D and 3D results, bearing in mind systematic
differences in noise levels and self-focusing dynamics in two and three
dimensions. Although we do not show the refractive index modula-
tions due to high noise in such diagnostics, we indeed see a similar
structure of average electron energization as we identified in the case
of 2D PIC (Fig. 5). At the same time, due to a small number of particles
per cell, the relative role of the density perturbations is indeed overesti-
mated; thus, the 3D run may only be used as an attempt to address the
effect of geometry, rather than to understand the details of the refrac-
tive index perturbations. As a result of the simulation, we observe the
formation of a single beam with the power estimated to be around 1.9
times the power of each input beam. Comparing with the case of a sin-
gle pulse with the power matching the total power of two pulses, it
leads to the stronger development of FRS, which leads to power losses,
resulting in the final power (i.e., after propagation through the plasma
slab of * 3 mm at 10 ps into the simulation) of 1.64 times the power
of each input beam in the two-pulse case. Thus, by spatially separating
two slightly overcritical pulses (P=Pcr;3D , 1:4), we can suppress both
FRS and filamentation instability, thus improving the resulting laser
pulse power. This is in a way similar to Ref. 26, where, by redistributing
the total laser power in the frequency domain, we were able to avoid
laser power losses due to FRS. Here, we redistribute laser power spatially
and combine it back at a given length to have a powerful beam with a
reduced amount of power losses. Such a method of avoiding laser power
losses was previously used in the works on laser arrays in air, see, e.g.,
Refs. 8 and 9; here, we demonstrated that we can utilize a similar
approach for high power lasers propagating in tenuous plasmas. The
considered approach may be of use for the inertial confinement fusion
experiments, where laser pulse instabilities are known to limit laser
power delivery to the target and cause unwanted asymmetries.27

It is also instructive to discuss the laser power/intensity scaling of
the beam combining mechanism discussed above. We already showed
that the pulses with slightly overcritical power can be combined within
a range of laser and plasma parameters centered around
a0 * 0:2; ne * 0:03ncr, even though the theoretical analysis suggests
otherwise (P=Pcr * 1 from PIC simulations vs P=Pcr < 1 from analyt-
ical theory). Here, we seek the parameter regime where pulses merge
despite being strongly overcritical and a0 > 1. In such a regime, the
theory11 does not formally apply due to jaj2 ' 1 approximation used
in the derivation of NSE. At the same time, some early works13,14 sug-
gest that k ¼ 1lm; a0 ¼ 5; w ¼ 9lm laser pulse interacting with
ne=ncr , 0:5 uniform plasma slab (P + Pcr;2D) leads to pulse breakup
into multiple filaments, which eventually merge into a single tightly
focused filament with high energy conversion efficiency. Thus, there
might be a regime where P + Pcr;2D pulses may combine as well.

First, we reproduced results from Refs. 13 and 14, confirming the
feasibility of the laser pulse filaments to recombine into a single tightly
focused filament in a near-critical density plasma. As the next step,
we considered ne=ncr ¼ 0:015 plasma and two a0 ¼ 3; k ¼ 0:8lm;
w ¼ d ¼ 5lm; s ¼ 300fs pulses. Figure 7 depicts the states of
plasma profiles before and after beam merger. These pulses possess

P , 9Pcr;2D each, and tend to focus on their own early on in the run,
as one may see from the leading edges of the pulse envelope figure at
t¼ 300 fs [Fig. 7(a)]. Due to large laser fields (a ) 3), plasma perturba-
tions are strongly nonlinear, as one may see in density perturbation
panels [Figs. 7(c) and 7(d)], with plasma bubble structure observed at
the pulse leading edges. Electron heating is rapid and reaches ultrarela-
tivistic energies of cmax * 102 within the bubble structure and mean
box-averaged electron energy being hce % 1i , 1:7 and 5.0 at t¼ 300
and 700 fs, respectively [Figs. 7(e) and 7(f)]. Strong density cavitation
and hot electron structure around the y¼ 0 axis lead to pulse combina-
tion, in qualitative agreement with the simulation with a0 < 1 pre-
sented earlier in the paper, but with different electron energization
dynamics strongly deviating from the theoretical model used in Fig. 5.
The details behind strong electron energization exceeding mec2a0 esti-
mate of electron energization in the laser field of two parallel beams
are to be studied separately.

We, thus, conclude that the laser beam merger in tenuous plas-
mas is feasible for P * Pcr for laser beam separations given by Eq. (8)
and, in some cases, even for P + Pcr.

V. DISCUSSION
In this paper, we addressed the question of the merger of parallel

laser beams propagating in tenuous plasma. We reproduced the theo-
retical threshold of beam combination and verified it using 2D NSE
simulations. We highlighted the physics of the beam combination on
the basis of refractive index perturbations, and demonstrated the dif-
ference between NSE and full PIC physics, illustrating how the two
beam system with a0 * 1 leads to a more complex behavior than the
NSE model predicts. We showed that nonlinear density perturbations
are the main factor differentiating NSE and PIC behavior, with density

FIG. 7. Snapshot of a simulation with a0 ¼ 3; w ¼ d ¼ 5lm; s ¼ 300fs
(P=Pcr;2D , 9) at t¼ 300 and 700 fs. Laser envelopes, density perturbations, the
electron mean energization, and 1D cuts at x ¼ 50 and 178lm are shown. A beam
merger is observed, even though both pulses are strongly overcritical.
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perturbations in PIC acting to merge slightly overcritical pulses,
whereas density perturbations in NSE were small yet counteracting
beam amalgamation. Three-dimensional PIC simulations confirm the
possibility of generalizing our primarily two-dimensional results for
real-world applications.

Let us formulate the general criteria for the parallel laser beam
merger in plasma. From analytical theory, NSE simulations, and PIC sim-
ulations, we observe that beams of the beam half-separation around the
individual beam width, w * d, and individual laser pulse power being
around the critical power, P=Pcr * 1, are susceptible to coalescence.
These conditions give us enough freedom to choose different laser intensi-
ties and plasma densities for the beam merger, as long as a20ne is consis-
tent with P=Pcr * 1. One of the instabilities limiting the beam
combination is FRS, which leads to longitudinal modulations of the beam,
possibly drawing the beam parameters away from the optimal regime for
a merger.We, thus, should ensure that theC-criterion24 is satisfied, mean-
ing that P=1TW " s=1ps " ðne=1019cm%3Þ5=2 " ðk=1lmÞ4 ! 1. Finally,
from comparing our PIC results with the theoretical derivations and NSE
model assumptions, one may see that the analytical theory works very
well up to a0 , 0:2, and stronger deviations from analytical theory
appear for larger laser fields. At the same time, our PIC simulations clearly
demonstrate that the beam merger is feasible even in the regimes where,
when applied formally, the analytical beam merger criteria suggest that
the beams will self-focus individually and will never merge. We, therefore,
believe that probing the analytically inaccessible regime of a0 > 1 experi-
mentally will provide invaluable insight about the fate of the relativistic
laser beam interactions. TW-power fs-duration laser systems are widely
available at university-scale facilities these days; thus, the experimental
investigation of the beammerger process is accessible.

While the results in the manuscript were obtained for the short
pulses of subpicosecond duration, the main conclusion about the pos-
sibility of the parallel beam combination in plasmas may be extended
to long pulses as well. Indeed, even though the mechanism of trans-
verse beam profile modulations could differ, be it relativistic, pondero-
motive, or thermal focusing (see, e.g., Ref. 28), transverse dynamics of
the beams would still be controlled by an equation similar to Eq. (11)
[see Eq. (21a) in Ref. 28], and one could in principle conduct a calcula-
tion similar to ours, finding the balance between diffraction and self-
focusing to create a self-merging system of long beams. Thus, we
believe our results are of possible interest for multi-beam facilities like
NIF and OMEGA, where beam combining experiments utilizing mul-
tiple crossing beams were successfully conducted.29,30 For such sys-
tems, the aforementioned feature of the suppressed pulse power losses
due to the effective decrease in the peak laser field up to the moment
of beam combination would be especially beneficial.

Although the phase shift between the laser beams does not explic-
itly appear anywhere in the manuscript, it is an important parameter
for the actual implementation of the beam combiner. Indeed, as it was
shown for Kerr medium in Ref. 22, once the absolute value of a phase
shift exceeds p=4, laser beams no longer merge and may even repel.
One may think about the phase shift appearing in the ja1 þ a2j2 term
and once it is chosen in a way to reduce the magnitude of ja1 þ a2j2
term, the refractive index in between the two beams becomes smaller,
impeding beam merger. We reproduced such results with our auxiliary
NSE simulations and with a low-resolution 2D PIC scan (20 grid cells/
micron, 20 particles per cell), although PIC simulations suggest a
smaller phase shift threshold for beam merger, jD/j 0 p=12. Thus,

the discussed beam merger mechanism may be thought of as a mode
selector mechanism, combining pulses of identical phases and repelling
pulses with a significant phase shift. In previous experiments on beam
combination in air, optical delay lines8,22 were utilized to control the
phase shift between the two beams, at least on a level of the 0.1k. In
attosecond physics, there are methods to modify the optical delay lines
to compensate for the instability in the optical paths caused by fluctua-
tions, achieving the phase shift control on a level of less than 0:01k.31

Therefore, it may be possible to adjust the phase of the beams to miti-
gate beam repelling effect.

From the experimental perspective, it is of interest to address the
question of the beam combination of oblique pulses via the mutual-
focusing-like instability. For the obliquely overlapping beams, the cross-
ing time may be estimated as tcross ¼ w=c sin h (w being the beam width
and h being the crossing angle), which yields the ratio of combination

time sMF * sSF * 2wa= ca0
ffiffiffiffiffiffiffiffiffiffiffiffi
ne=ncr

p) *
(Refs. 20 and 21) to crossing

time for small h: sMF=tcross * hx=
ffiffiffi
2

p
a0xpe; which stays around 1 for

h ¼ 11 % 51; a0 * 0:1, and xpe=x * 0:2. Since the actual merger
takes a few sMF’s, beam combination requires sMF=tcross ' 1, imposing
a severe restriction on crossing angle for beam combination. This could
be potentially overcome by using a plasma channel with concave density
distribution, acting as a defocusing lens. For the density distribution of
ne ¼ ne0ð1þ y2=l2Þ, with l being the channel width, one may estimate
the length of the structure scattering laser rays from 6h to 01 as
Lstruct , l=ðne=ncrÞ1=2. Auxiliary NSE simulations of beam dynamics in
the transverse plane (2Dþ 1T) reveal that for small inclination angle
(h! 21) between the beams and for the beam pair’s parameters speci-
fied above, we observe beam collapse at the center of symmetry during
the beam crossing time. For larger angles, h > 101, the overlap is not
long enough for the beam merger. Thus, the limitation of the small
inclination angle may be overcome by crossing beams at h * 11 and/or
using a defocusing lens-like structure.

It is natural to check whether we could apply the beam combina-
tion mechanism to N> 2 beams. 3D PIC simulation showed that we
do see a combination of three pulses separated by 2w each. Figure 6(b)
demonstrated how three pulses of the total power of 1.5 TW were com-
bined into a single beam with similar energy losses as in the two-pulse
case. Auxiliary NSE simulations of beam dynamics in the transverse
plane show that hexagonal structures of six beams with beam separa-
tion of 2w, a0 ¼ 0:17, and ne=ncr ¼ 0:032 combine into one around
the hexagon center. If we consider a laser pulse array with uniformly
distributed pulses, we may expect that beams on the edges will combine
first—beams within the center will experience net zero mutual focusing,
which could lead to the beam collapsing further away from the center
of mass of the laser array. A more detailed analysis of the parallel laser
beam array dynamics is needed to optimize beam array combination,
which is beyond the scope of the present manuscript.

The results obtained in this paper may be of interest to a broad
laser–plasma interaction community, including plasma-based laser
amplification, plasma optics, and inertial fusion energy.
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