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By injecting radio-frequency traveling waves into a tokamak, continuous toroidal electron currents may be
generated. This process is studied by numerically solving the two-dimensional Fokker-Planck equation
with an added quasi-linear term. The results are compared with the one-dimensional analytic treatment of
Fisch, which predicted a reduced plasma resistivity when high-phase-velocity waves are employed. It is
shown that two-dimensional velocity space effects, while retaining the predicted scaling, further reduce the
ratio of power dissipated to current generated by about 40%. These effects enhance the attractiveness of
steady-state tokamak reactors utilizing this method of current generation.

I. INTRODUCTION

In order to allow tokamaks to run in the steady state,
some means of continuously driving the toroidal plasma
current must be found. An essential requirement for
reactor applications is that the power required to drive
the current be only a small fraction of the fusion power
output.

Recently,' the damping of high-phase-velocity radio-
frequency traveling waves has been proposed as a way
of driving the toroidal current. The damping of the
waves causes the wave momentum to be given to the
electrons, resulting in the formation of a velocity-space
plateau on the electron distribution function which car-
ries the current. Since the current-carrying electrons
are mostly traveling at several times the electron ther-
mal velocity, they collide relatively infrequently and so
retain their current for an appreciable time. It follows
that the power required to sustain the current is rela-
tively small. The feasibility of the steady-state reac-
tor driven by this means rests crucially on the argu-
ments of Ref. 1 concerning the question of resistivity.
In essence, a new resistivity law was advanced in which
the power dissipated is proportional to the current ra-
ther than the current squared, as in the familiar Ohmic
resistivity law. In Ref. 1 it is estimated, on the basis
of the new law, that the ratio of radio-frequency (rf)
power dissipated to fusion power output is on the order
of a few percent for typical reactors.

The analysis of Ref. 1 made use of a one-dimensional
Fokker—Planck equation to describe the electrons. Ax-
ial symmetry about the magnetic field allows the reduc-
tion in the complexity of the problem from three to two
velocity dimensions. The reduction from two to one
velocity dimension is made under the assumption that
the dependence of the electron distribution function on
the perpendicular velocity is that of a Maxwellian with
the bulk electron temperature. Within the framework
of the one-dimensional equations, there is no easy way
to check this assumption. In this paper we wish to as-
sess the validity of this assumption by numerically
solving for the full two-dimensional effects. In parti-
cular, we wish to verify the resistivity law given in Ref.
1. We note that this work is also relevant to the pro-
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blem of wave heating of a magnetized plasma (e.g..
heating a tokamak plasma with lower hybrid waves),
although in the instance of heating the objective is to
maximize the power dissipation, rather than to mini-
mize the resistivity.

The outline of the paper is as follows: In Sec. II we
write the two-dimensional Fokker-Flanck equation with
an additional quasi-linear diffusion term with which we
describe the interaction of the waves with the plasma.
We identify «, and w,, the minimum and maximum para-
llel phase velocities of the rf waves normalized to the
electron thermal velocity, as the most important para-
meters in the problem. In Sec. IIl we compare the one-
and two-dimensional modeling of the problem. The me-
thod for numerically solving the two-dimensional Fok-
ker—-Planck equation is briefly discussed in Sec. IV.
Section V examines, in detail, the solution to the prob-
lem for one choice of ;, and w,. In Sec. VI we use the
results of many runs with different values of w; and
to determine the dependence on these parameters of the
current, the turn-on time for the current, and the power
dissipated. We compare these results with the predic-
tions of the one-dimensional analysis. In particular,
we find that while the one-dimensional theory of Ref. 1
correctly predicts the scaling of the ratio of current to
power dissipated, this ratio is larger than that given by
Ref. 1 by a factor of about 1.7.

Il. STATEMENT OF THE PROBLEM

The evolution of the electron distribution function, £,
in the presence of rf waves, is given by

f 8 8 (3
3 ov, Derlwa) 35 f+< )C’ (1)

" at

where v, is the velocity parallel to the magnetic field,
D_(v,) is the quasi-linear diffusion coefficient, and
(8f/81), is the Fokker—Planck collision term. Following
Ref. 1, the quasi-linear diffusion tensor has been re-
duced to only the v,v, term, because current drive mech-
anisms utilize only the resonance at w/k,, the parallel
wave phase velocity. This is accomplished by choosing
the driving frequency, w, small compared with the elec-
tron gyrofrequency, 2,. This inequality is always sat-
isfied, for example, by lower hybrid waves. The other
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wave-particle resonances?® then fall in regions of velo-
city space void of particles. (Note that we have omitted
the possible dependency of D on v,, the velocity per-
pendicular to the magnetic field. This omission will be
discussed later.)

When computing (8f/8/),, we will assume that the back-
ground distributions of both ions and electrons are non-
drifting, nonevolving Maxwellian distributions, in which
case (af/a[)c is given, e.g., by Trubnikov.? This assump-
tion regarding the collision term has two important im-
plications. Firstly, under this assumption (1) is a lin-
ear equation since self-collisions among the non-Max-
wellian components of the electron distribution are ne-
glected., This linearization introduces negligible error
when the number of non-Maxwellian particles remains
small. Secondly, the background electrons represent
an efficient energy sink. The evolving test electrons,
being in contact with these background electrons of con-
stant temperature, are able to lose the energy imparted
to them by the rf waves. Thus, a steady-state distribu-
tion of test electrons eventually results. In an experi-
mentally realistic situation, where heat losses eventu-
ally balance the heating by rf waves, a similar steady
state will result. Of course, in the absence of a heat
sink, the electron temperature would increase, leading
to more particles resonant with the wave, affecting both
the current and power dissipated. Our main interest is
to find the resistivity for a given set of plasma parame-
ters., Thus, the assumption of a fixed temperature back-
ground electron distribution represents not only a signi-
ficant mathematical simplification, but a specific frame-
work in which we can pose the questions of current mag-
nitude and resistivity in the steady state.

As written, there are a large number of parameters
to be specified in Eq. (1) before it can be solved. These
parameters specify both the nature of the wave spec-
trum and the components of the background distributions.
It turns out that the solution space is, for practical sit-
uations, ingensitive to a number of these parameters,
which we now seek to eliminate from consideration.

The three dimensionless parameters governing the
collision operator are the mass ratio, m,/m,; the temp-
erature ratio, 7;/7,; and the ion charge state, Z;. Since
m;/m, > 1, whereas 7;/7T,~ O(1) in all cases of interest,
the ions are so much slower than the electrons that
their exact velocities are immaterial. For the same
reason, the energy transfer to the ion distribution is of
order m,/m, of the energy lost on the background elec-
tron distribution. Thus, for all practical purposes, all
problems are nearly characterized by m,/m; =0, in
which case 7;/7, is unimportant. Here, we pick T;/7,
=1 and m;/m,= 18386, corresponding to hydrogen plas-
mas, but obtaining results equally applicable to other
plasmas such as deuterium or tritium. In contrast to
the mass and temperature parameters, the ion charge
state is important in Eq. (1). It governs the relative
importance of pitch angle to energy scattering, and can
have a large effect on the two-dimensional velocity-
space structure of the solution to Eq. (1). In this paper,
we will pick Z;=1, which is the case of most relevance
to first-generation fusion reactors. In Sec. VI we will,
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however, briefly discuss the dependence of the solution
on Z;.

Normalizing velocities to vy, = (T,/m,)!/* and time to
v;', where

R 1y 3 ;
vy = loghw,, /2ty T, (2)

Eq. (1) becomes

3f 8 3 3f .
—_———= ! - + —_ .
ot  ow D) ow s (BT)C ®)
where 7=, 10=10,/vg, and D(w)=D.(v,)/(v5,vy). (The
notation for the other components of the velocity is u
=V/Vr,, X=V,/Vp,.)

Having dealt with the parameters describing the colli-
sion operator, we now turn to those characterizing the
wave spectrum. In general, the wave spectrum may be
of arbitrary shape. However, we may partially antici-
pate the solution of the problem by noting that at very
large spectrum amplitudes, the effect of the waves sat-
urates, and the precise wave amplitude is immaterial.
Thus, we may neglect the Bessel function dependence’®
of D on v, and take D, to be a function of », only, as
mentioned earlier. This assumption is strictly valid
when v, ~<Q_/k,, where k, is the perpendicular wavenum-
ber. However, since the collisional diffusion, against
which the quasi-linear diffusion is eventually balanced,
decreases at large v,, this assumption on D, is, in fact,
reasonable for v, even larger than Q,/k,. Thus, we
choose

(D for w, <w<w,,
D(w) :? (4)

0 otherwise,

where the constant, D, is chosen large enough for the
solution to be insensitive to its precise magnitude. This
is, in fact, what occurs in situations of interest such as
rf heating or rf-driven tokamak reactors. Thus, in
summary, we have pinpointed the important free para-
meters in the problem as just two, w, and w,, which
characterize the spectrum location.

11l. COMPARISON WITH THE ONE-DIMENSIONAL
MODEL

Equation (3) was considered in Ref. 1 in the high-velo-
city limit, valid for the resonant and nearby electrons,
for which Eq. {3) becomes

af 5 Z,+1 8 o O
= N +_l_,§___ - =L
3t om Dl e Y 4u°  Bu (=4 du
1 8 (109f )
— =
2u’ du <u ou ) - )

where y=w/u. In Eq. (5) the second term on the right-
hand side represents pitch-angle scattering off ions and
electrons and the last term represents energy scatter-
ing off electrons. It was further assumed in Ref. 1 that
the perpendicular velocity-space dynamics play a minor
role. Thus, a Maxwellian perpendicular distribution
was assumed and Eg. (5) was integrated over that direc-
tion obtaining an evolution equation for the parallel velo-
city distribution, F(w), (Ref. 4)
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2+Z
B_F( v)——..a_.D( (.)B_F(u.)_{__i_a_

u 1
o7 duw dw 2 dw

x (1—3 2 . -l—Z)F(w) . (6)

we o  w

Solving for the steady-state distribution, we obtain

ot —wdw
Flw)=C exp(f 1+ 20 D)/ (21 7)) ) ) (M

where C is a constant. Now using Eq. (4) in Eq. (7), we
see that the one-dimensional solution for the distribution
function is flat in the resonant region if, for Z, =1,

wiD> A, (8)

where A =w,—w, and we assume that A>1/w,. This
means that the current and power dissipated are inde-
pendent of D. In most of the cases that we will discuss,
we will take D=3}, but we will check that the two-dimen-
sional solution is insensitive to the value of D in Sec.,
VI.

It should be mentioned that the one-dimensional me-
thod of solution represents a model in which the bulk
electrons and ions dissipate both the current and the
energy of the test distribution. At {irst glance, this
model appears unphysical since ions cannot absorb en-
ergy because they are heavy, and since in like particle
collisions, the current cannot change. The model, how-
ever, is seen to be reasonable upon further inspection.
Electron momentum transfer is reasonable because,
although the current is not dissipated per se in elec-
tron-electron collisions, any momentum transferred
from the fast electrons to the slow electrons is then
quickly dissipated by the ions. Thus, although the mo-
mentum transfer between electrons does not immedi-
ately affect the current, it allows the ions to collide
more often with current-carrying electrons. Ion en-
ergy transfer is reasonable because to sustain a given
current in any manner against momentum scattering,
work must be performed. The non-Maxwellian features
in the test distribution resulting from the work on the
test electrons are eventually smoothed out by electron-
electron collisions. Thus, the electron-ion collisions
do not dissipate energy, but, nevertheless, enhance the
transfer of energy to the background electrons.

What the one-dimensional model does not account for
is that a significant portion of nonresonant electrons
can carry current preferentially in one direction. Al-
though the electron-ion collisions produce a nonreson-
ant current-carrying population by scattering electrons
out of the resonant region, continued electron-ion scat-
tering tends to produce a canceling current as momen-
tum is further isotropized. The isotropization effect
is aborted, however, because electron-electron colli-
sions can slow down electrons before they produce the
canceling current. This means that the total current,
J, and the ratio of current to power dissipated, J/F,,
should be greater than in the one-dimensional analysis,
but the extent of the enhancement must be analyzed num-
erically, which we now set out to do. ‘
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{V. METHOD OF SOLUTION

We rewrite the right-hand side of Eq. {3) as the nega-
tive of the divergence of a flux so that Eq. (3) becomes

8f/8aT=-V,-S. (9)

Equation (9) is then solved using an alternating-direc-
tion-implicit scheme. The integration is carried out

in spherical coordinates, » and 6 =tan™'(x/«). The do-
main of integration is u <, with a boundary condition
that

S-u=0 (10)

at w=uwu_,,. The justification of this boundary condition
is, in part, based on the analytical finding that a steady
state will, in fact, be reached.’

The numerical method is such that the laws of con-
servation of particles and energy,

_a_f 3
Py fdu=0,

_?_flq 3 4[ 3
pyn 2nfdu_ u-Sdu.

are exactly obeyed when the integrals are replaced by
the appropriate sums.

(11

(12)

We choose ., =10 and a grid size of 50 X44(u X 9).
Doubling the number of points in either direction gives
about a 1% change in the ratio of current to power dis-
sipated. In most cases we use a time step, A7, of 0.4.

The steady-state solution of Eq. (9) with D(w)=0is a
Maxwellian

Flw) = (2m) 3 2exp(-u®/2) . (13)

However, when we approximate Eq. (9) by a difference
equation, then the steady-state solution is given by the
recurrence relation : ’

Au A\ 1 —u,Au/2
f(uzuﬂ-—) :f(nzuj —i>——‘—-’—

2 2 J1+u;8u/2 7 (14)

where Au=0.2 (the grid spacing in «) and «, = jau.
Equation (14) closely approximates Eq. (13) where
(u}.Au/Z)z« 1. When numerically solving Eq. (9), we

use Eq. (14) as the initial condition at 7=0 since it is
only this “computational Maxwellian” that is nonevolving
in the absence of the rf waves.

The quasi-linear diffusion term is turned on with a
ramp function over 0<7<1. In addition to the w de-
pendence given in Eq. (4), the quasi-linear diffusion co-
efficient is set to zero for ¥ >9.5 in order to minimize
the interaction of the rf with the boundary at 2 = 10.

V. ATYPICAL CASE

In order to appreciate the structure of the solution of
Eq. (3), particularly in the steady state, we examine,
in detail, a representative case, namely D=1}, Z,=1,
wy; =3, wy=3.

By 7= 600, the solution for this case has reached a
steady state. (The change in the current from 7=400 to
7=600 is about 1.5%.) In Fig. 1 we show the steady-
state solution. In the resonant region, w <w <w,, the
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FIG. 1. The steady-state distribution function for z;=1, D=1,
wy, =3, wy=5. (a) Contours of constant f(w,x), At the jth con-
tour the magnitude of f is f;= @m/? expl— (jav) /2], where
Av=0.4. In this way the contours would be equally spaced cir-
cles for a Maxwellian. (b) The surface f(w, ). This is trun-
cated at 0.02 times the maximum of f, in order to show the
plateau more clearly. The ranges of « and x plotted are
-7<ws Tand —~7T<x<7,

elecirons are approximately plateaued in the parallel
direction. There is significant flattening in the perpen-
dicular direction, also.

By integrating over perpendicular velocity space, we
obtain the parallel distribution function, F(w) (Fig. 2),
which clearly exhibits the current-carrying plateau.
Note that F(w >w,) drops off more slowly than a Max-

wellian distribution with the original temperature would.

This is seen more clearly in Fig. 3, where logF is
plotted against parallel energy. We see that F(w >wy)
is roughly Maxwellian with temperature 37,. The in-
fluence of pitch-angle scattering produces the same en-
hanced temperature for w <-w,, although there are far
fewer electrons there than in the region w>w,. The rf
waves also produce an increase in the perpendicular
temperature, as may be seen in Fig. 4. From the fi-
gure we see that the perpendicular temperature in the
resonant region is about 57,.

In order to see the non-Maxwellian features of the
time-asymptotic distribution function more clearly, we
subtract from it the Maxwellian distribution character-
ized by f{u<wu,), i.e., a Maxwellian distribution with
the original temperature but a slightly lower density
given by (27)%/%f(u=0). The resulting distribution,

f =Sy 1s shown in Fig. 5.

In order to appreciate the various features of Fig. 5,
in Fig. 6 we plot the streamlines of the flux of f. These
are defined, in analogy with normal fluid flow, such that
at any point the flux, S, in Eq. (9) is tangent to the
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FIG. 2. The parallel distribution function, F(v), for the case
shown in Fig. 1. In (b) the vertical scale has been magnified
tenfold over that in (a). The dashed line in (b) shows the initial
Maxwellian distribution,

streamline at that point. The streamlines form closed
curves because in the steady state the velocity-space
flow is divergence free, i.e., V,-S=0. The streamline
picture is especially useful because it displays the dy-
namics that are characteristic of the steady state, not-
withstanding that the distribution function itself is in-
deed static.

From the streamlines we can explain the two-pronged
dip in the distribution f-f,, near x=0 and w=w, as seen
in Fig. 5. These dips occur where the waves suck elec-
trons out of the Maxwellian region of velocity space,
creating local depressions. The electrons drawn into
the resonant region are then accelerated in the perpen-
dicular direction by a balance of pitch-angle momentum
scattering and quasi-linear rf energy input. Finally,
the angle scattering dominates and the electrons are
kicked out of the resonant region. The electron-elec-
tron collisions cause the streamlines to close upon

0
-5 w>0
IogeF
-10
-15
w<0
45 125
14 l | i l !
-20 Tt
0 5 0 15 20 25 30
wéi2

FIG. 3. A Plot of logF against %?/2 for the case shown in Fig,
1,
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FIG. 4. A plot of logf against x%/2 for various values of w for
the case shown in Fig. 1.

themselves before significantly invading the region w
<0. This is tantamount to the absence of a significant
canceling current. The electrons are then collisionally
diffused toward the two-pronged depression, where the
dynamics are repeated. The depression is off-axis be-
cause, at x=0, the pitch-angle scattering is only in the
perpendicular direction. Incidently, the fact that there
is negligible circulation of electrons beyond # =5 indi-
cates that the domain in which the problem has been
solved is sufficiently large.

We close this section by showing how the current den-
sity, J, and the power dissipated evolve in time to the
steady state. Figure 7 shows the growth and saturation
of J. The turn-on time for the current, as defined by
this figure, is about 90v;'. In Fig. 8 we show the power
dissipated as a function of time. We distinguish two

powers
_ (L .2 8 .
Pﬂ—fzu awD(w)awfdu’ (15)
and
p= 1—u2(2f~> &y (16)
c 2 8T/, ’

which, respectively, give the rate of energy gain by the
test electrons due to the rf waves and the rate due to

FIG. 5. The non-Maxwellian part of the electron distribution
funetion, f~-fy, for the case shown in Fig. 1. The temperature
and density of f), are those characteristic of f for u< wy. The
ranges of w and x plotted are — Tsw< 7T and —T<x< 7,
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FIG. 6. The streamlines of the flux §, for the case shown in
Fig. 1. Equal amounts of flux flow between adjacent contours.

collisions with the background distributions (particularly
the electrons). The unit of power is yyn,y7,. We see
that B, is initially large, but quickly falls to nearly its
time-asymptotic value as f plateaus in the resonant re-
gion. On the other hand, P, approaches its asymptotic
value much more slowly, on about the same time scale
as the current rise. In the steady state, we have

By(T==)=-P(T-w)=F,, (1n)

where the power gained from the rf is exactly balanced
by power lost to the background distributions. One in-
teresting feature of P, is that, just after the rf waves
are turned on, it is positive. This is because the back-
ground electrons must supply energy to fill in the pla~
teau formed by the waves, while the number of particles
in the resonant region is still too small to effectively
heat the background electrons.

V1. CHECKING THE ONE-DIMENSIONAL ANALYTIC
THEORY

In this section we wish to check the predictions of the
one-dimensional analytic theory regarding the steady-
state current, the turn-on time of this current, and the
power dissipated in sustaining this current. In the
limit w, > 1 and Dw?> A > 1/w,, which assures substan-
tial deviation from a Maxwellian distribution with an
essentially flat resonant region, it may be found from
Eq. (7) that

exp(-w?/2 +
J= EwF(w) dw = XFE(Tr)lIt/lZ/ )A<w12 w2>’ (18)
o~
Tt-0
44
Jx10?) A

0 1rl%lw—rl_|l11||lll|||%|T11='1v11j1

0 200 400 600

r
FIG. 7. The temporal evolution of the current, J, for Z;i=1,
D=3, w;=3, and w,=5. The unit of current is engvr,. The
definition of 7., 18 also shown,
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FIG. 8. A plot showing the variation of P;; and P, [see Eq. (13)
and (16)] with time for the case given in Fig. 1. The unit of
power is vyn,T,.

w2 dF exp(—w?/2) W )
- GE = o WD) () 9
P, fw wD - dw = a 22 lo (w, ; (19)

1
where @ =(2+Z;)/2. J is expressed in units of enyvy,,
and F, in units of vyn 7,. The turn-on time for this cur-
rent given in Ref. 1 is

Tio= AWi/ . (20)

Our aim is to ascertain the accuracy of Egs. (18)—(20).
We ran approximately 50 cases with D=4 and Z,;=1
spanning the parameter space 3 sw; <6 and A=0.5, 1,
1.5, 2, and 3. The results are summarized in Figs. 9-
11,

Figure 9 shows the numerical results for J, display-
ing excellent agreement with the prediction, (18), of the
one-dimensional theory. Close agreement was to be
expected simply because of the predominance of the ex-
ponential in Eq. (18). Closer inspection of Fig. 9 re-
veals that at low w, the current is somewhat higher
than predicted, whereas at higher u, the current is
somewhat lower than predicted by one-dimensional
theory. The drop in the current at high « is due to the
numerical method of solving the problem. There are
two numerical limitations that could come into play.
One is that the boundary at # =10 in the numerical code,
where the boundary condition, (10), is imposed, some-
what restricts the amount of perpendicular velocity

20 ~p e}

J

I

|
] ‘

0 5 10 15 20
FIC. 9. Aplotoflog,Jagainst K = wl/2 — log,[A (w, + w}(8m)1 /2.

The dots give the numerical results, The line is the predic-
tion of the one-dimensional theory, Eq. (18).
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space that is available to carry current, which, of
course, preferentially affects the high ', cases. A se-
cond limitation, affecting electrons in a similar manner,
is the numerical version of a Maxwellian distribution.
The “computer Maxwellian,” given by Eq. (14), drops off
slightly more rapidly than a true Maxwellian, the dis-
crepancy becoming serious when wAu~2. Since we have
An=0.2, the velocity space is effectively restricted even
before # =10, so that, in our case, the second limitation
is more serious than the first. Plugging in the “com-
puter Maxwellian.” rather than the true Maxwellian,
into Eq. (18), in fact, fully accounts for the less than
predicted current.

It remains that the numerically found current is
slightly more than predicted at low w, (as, indeed, would
also be the case at high ', were it not for the numerical
procedure). This enhancement of the current is due to
the significant portion of the current that is carried by
nonresonant electrons, i.e., electrons outside of the re-
gion 1y <w<w,. This enhanced current, occurring es-
pecially in the region u >w,, is a fully two-dimensional
effect and could not have been predicted by a one-di-
mensional theory. Nevertheless, it should not be over-
looked that the one-dimensional theory, (18), predicts
the current generated, quite well.

In Fig. 10 we show the turn-on time for the current.
While it does scale as ], as predicted by the one-di-
mensional theory, (20), the dependence on A is more
like A'/® than like A. An approximate fit to the num-
erical results is given by

Tooo® 6A St (21)

(see Fig. 10). For A characteristic of practical appli-
cations, Eq. (21) represents a substantially longer turn-
on time than predicted by Eq. (20).

The most important prediction of Ref. 1 concerns the
current per unit power dissipation. From Eqgs. (18) and
(19), we see that

JI Py = (/o (22)
where
w Al tw,)/2  wltw A)Q]
2y = = 1+o0(—) |. 23
() log(ay/20y) 2 w, (23)
400
300 o
e
71 0 X e
200 ,}:/-‘f' ’
e
100~ e
-
e?

A2
FIG. 10. The turn-on time, 7., for the current as a function of
of al/% 2,
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Note that in Ref. 1, the collision frequency was incor-
rectly given.G Thus, the analysis of Ref. 1 uses o =1,
although for Z; =1, o should be 5. Figure 11 shows the
dependence of J/P, on (2 numerically computed from
the two-dimensional code. This gives

J/Py= 1. 7w . (24)
which is 1.7 larger than the value predicted by Ref. 1
[Eq. (22) with @ =1] or 2.5 larger than the correct one-
dimensional result [Eq. (22) with « =3]. While the dis-
crepancy with the result of Ref. 1 is not great, this is
the most important result of the present study. We will
return to the implications of this result in the next sec-
tion.

Finally, we briefly look at the dependence of J/F, on
D and Z,. From the one-dimensional theory for Du?
>> A, J, and F, should be independent of D. If we double
the value of D in the example considered in Sec. V (i.e.,
let D=1), then J increases by 5%, F, by 3%, and J/P, by
2%, confirming the one-dimensional analysis.

The dependence of the problem on Z; is much more
pronounced. The one-dimensional analysis implies that
the effect of changing Z; (from Z; =1) is to decrease
J/P, by a factor of (2+ Z;)/3, as seen from Eq. (22).

To numerically examine the dependence of J/F, on Z;,
we ran the case D=3, w, =3, w,=5 with Z,=3 and Z,
=5, comparing the results with the case Z;=1, dis-
cussed in Sec. V. The one-dimensional prediction is
thatfor Z,=1, 3, and 5, J/P, scales as 1: 2: 2. The two-
dimensional numerical results reveal that this scaling
should be 1:0.82:0.71, i.e., J/P, decreases more slowly
with increasing Z; than the one-dimensional theory pre-
dicts. As Z, increases, the one-dimensional theory be-
comes less and less accurate, reflecting the increased
importance of the two-dimensional velocity-space struc-
ture.® The greater than predicted J/ P, is a result of the
large perpendicular flattening in the resonant region.
The non-Maxwellian electrons, which are the ones that
lose power to the bulk distribution through energy colli-
sions, are at higher absolute velocities than the one-di-
mensional analytic theory assumed. Thus, they collide
less frequently, dissipating less power, though carrying
the same amount of current. At high Z;, the flattening
in perpendicular velocity space is greater, so that this
effect, as expected, is all the more pronounced.

VII. CONCLUSIONS

We have numerically verified the most important pre-
dictions of the one-dimensional Fokker-Planck analy-
sis. The most important verification is the confirma-
tion that a new resistivity law holds for rf-excited cur-
rents wherein the power dissipated is proportional to
the current rather than the square of the current. The
proportionality constant scales as predicted, i.e.,
1/(w*), but our numerical analysis shows that the power
dissipated is only 60% of the prediction of Ref. 1. This
discrepancy, although slight, has important implications.
In the building of steady-state tokamak reactors, the
power requirements on the use of rf-driven currents
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FIG. 11. Aplot of J/P, against ¢r? [see Eq. (23)] for Z;-1.
The dots give the numerical results. The line with a slope of
unity is the one-dimensional prediction of Ref. 1,

was thought to be about 5% of the fusion power output.
For very large and hence undesirable machines, this
requirement could be reduced to about 37%. In any case,
these power requirements, hinging on the efficiency of
other components, are thought to be only marginally
feasible. Our numerical work now shows that a more -
accurate prediction of the cost of the rf power is 407
lower than previously thought and could well brighten
the prospect of economic feasibility.

The one-dimensional velocity-space model also pre-
dicted that the current in the steady state would be car-
ried by a “raised plateau” of electrons and that this
state would be reached on a collisional time scale. This
picture is numerically shown to be correct, although the
turn-on time for the current is substantially longer than
predicted. We should emphasize, however, that although
it is interesting to uncover and explain these discrepan-
cies with the one-dimensional theory, the differences
(other than in J/F,) are not relevant to the problem of
steady-state reactors. Any small enhancement of the
current discovered numerically would be overshadowed,
in practice, by even a very small displacement of the
wave spectrum location in velocity space. Similarly,
the increased length of the turn-on time is immaterial,
of course, to the steady-state operation.

Finally, we would like to emphasize that our primary
goal in this paper has been to numerically check the
validity of the one-dimensional approximation, which
appeared to be the most difficult to justify. Our num-
erical work still retains a number of other approxima-
tions regarding, for example, the nature of the back-
ground distributions. Thus, even in the steady-state
spatially homogeneous problem, considering only Cou-
lomb collisions and resonant diffusion effects, there re-
mains room for an improved posing of the problem and
further numerical work, although no drastic changes in
the present results are expected.
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