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The extent to which nonlinear wave-particle resonance broadening results in a narrowing of an incident
lower-hybrid wave spectrum is investigated. This narrowing is of concern because it could make control of
lower-hybrid heating difficult. It is shown numerically, however, that relatively uniform spatial power
deposition occurs if resonance broadening effects are treated consistently on both the wave spectrum and the

particle distribution.

I. INTRODUCTION

The injection of lower hybrid waves into a tokamak
plasma has been suggested as a means of heating the
plasma to ignition® or as a means of driving the torodial
plasma current.”? The success of both schemes is based
on the absorbtion of the rf power by plasma electrons
and depends, in part, on the expectation that the
spatial deposition of the rf power can be controlled. In
particular, for heating electrons or generating current,
it is likely that the most desirable deposition of lower
hybrid rf power would be near the plasma center where
the temperature and density profiles are relatively flat.
The goal of the present study is to assess whether the
nonlinear effect of resonance broadening® interferes with
the control that we hope to retain over the power
depostion.

To facilitate our assessment of resonance broadening
effects, we must model the interaction of the waves with
the plasma in a manner that is realistic, yet isolates
the effects of resonance broadening from other effects.
Specifically, we shall model the plasma as a homo-
geneous slab. We are motivated by the following qualit-
ative description of the spatial deposition of the rf
power: We imagine that the parallel (to the magnetic
field) wave phase velocity is chosen large compared
with the electron thermal velocity near the plasma peri-
phery, but only three to four times the thermal velocity
at some hotter interior point. Thus, exponentially few
electrons are resonant with the wave near the cool peri-
phery so that the wave propagates relatively undamped
until it reaches an interior point. There, the plasma is
warmer so that a substantial number of resonant elect-
rons are present. The wave power is absorbed between
this interior point and the plasma center (the magnetic
axis). To the extent that the interior point in question
and the plasma center are close together, the plasma
can be modeled as nearly homogeneous. Although the
model may not be entirely accurate, it does isolate the
resonance broadening effects from the effects of temper-
ature and density gradients. The other simplification
that we employ in modeling the power deposition is that
the waves are incident upon an infinite half-space,
rather than converging upon the magnetic axis. This
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modeling isolates the resonance broadening effects from
the effects of cylindrical geometry.

In order to understand the role of resonance broaden-
ing with regard to the spatial deposition of rf power, it
is important to distinguish low-power injection from
high-power injection. By low-power injection we mean
that the rf power is so weak, or the plasma collision-
ality is so strong, that the electron velocity distribution
remains nearly Maxwellian. (It is understood that the
relative plasma collisionality depends, in part, on the
wave phase velocity.?) In this limit the damping co-
efficient for the waves is independent of their power.

In a uniform plasma, the transmitted wave power would
decay exponentially with distance into the plasma since
the damping coefficient is proportional to the velocity
derivative of the distribution function. That is, dD/dt

= yD, where D is a measure of the incident rf power
and where y o« 8F/8v is essentially independent of D.

In the opposite limit of high-power rf waves, the col-
lisionality of the plasma is too small to restore the
Maxwellian electron velocity distribution. Instead, a
plateau forms on the tail of the parallel velocity distri-
bution at the velocity corresponding to the wave phase
velocity. Thus, in the high-power limit, the slope of
the distribution function and, consequently, the damping
coefficient for the waves is inversely proportional to the
wave power so that it is the rate of power deposition,
and not the damping coefficient, that is independent of
the wave power, i.e., dD/dt « (1/D)D. Therefore, the
transmitted wave power would only decay linearly with
distance into a uniform plasma. However, even when
high-power lower hybrid waves are injected into the
plasma, there are some components in the velocity-
space spectrum, in particular, those near the edge of
the spectrum, whose decay is governed by the low-
power limit. That there exists some spectral compon-
ents in the low-power regime is assured if the spectrum
is continuous. Thus, we expect that under high-power
injection, the edge of the wave spectrum must sharpen
because the intensity of the components near the spect-
rum edge is in the low-power regime and they experi-
ence exponential decay relative to the linear decay of
the components in the central portion of the spectrum.
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Associated with this sharpening of the spectrum, there
would be a narrowing of the spectrum because of the
faster decay of the edge of the spectrum. However,
narrowing can occur independently, i.e., even when the
spectrum is flat. The narrowing of the spectrum can
occur by virtue of resonance broadening, which assures,
among other things, that the damping rate of the spec-
tral components undergoes a continous transition be-
tween low- and high-power limits. In particular, the
spectral components within a resonance broadening
width® of the spectrum edge would experience a damping
rate larger than the components in the center of the
spectrum. Physically, this corresponds to these spec-
tral components exchanging energy with electrons that
have velocities outside the range of the wave phase
velocities associated with the spectrum, i.e., with
electrons for which the velocity distribution function
presumably has a larger slope. If the resonance broad-
ening width is broader than the characteristic width
associated with the edge of the wave spectrum, then it
can be imagined how the spectrum can narrow indepen-
dently of the sharpening of the edge.

Even a small narrowing of the wave spectrum may be
of great importance because it affects the value of v,
the lowest parallel phase velocity in the wave spectrum.
The number of resonant electrons in the steady state
scales as N,~ exp(-v ,/2v%,), where v, is the electron
thermal velocity and is a function of distance into the
plasma. The sensitive dependence of N, on v, is re~
flected in the power deposition. A small narrowing of
the spectrum implies that the power in the edge spec-
tral components is quickly (exponentially) absorbed by
the plasma. As a consequence, v, becomes a function of
distance into the plasma. Associated with the increase
in v, the plasma becomes transparent to the central
spectral components. Thus, the narrowing of the spec-
trum would give a very unwelcome profile of power
deposition.

The concern of this study is whether, due to resonance
broadening, the narrowing of the wave spectrum occurs
in the high-power limit. This concern is particularly
appropriate in the case of current generation in tokamak
reactors where one starts with a narrow spectrum
incident on the plasma. We will, in fact, show that this
narrowing does not occur when the effects of resonance
broadening are included in a proper and self-consistent
manner in the evolution of both the wave spectrum and
the electron velocity distribution. The concern, although
eventually discounted, is nevertheless genuine and
could not have been alleviated without a numerical
calculation. We will show how a more naive formulation
of the problem, including the resonance broadening
effects on the evolution of the wave spectrum only, does
lead to a narrowing of the spectrum and an unfavorable
deposition profile in the manner that has been described.

The paper is organized as follows: In Sec. II we write
down the basic equations and pose the concern raised in
this section in a more quantitative manner. The deriva-
tion of these equations is found in the Appendix. In Sec.
III we present the numerical solution of the resonance
broadening equations and demonstrate the importance of
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self-consistency in formulating these equations. We
conclude with a discussion of our results in Sec. IV.

Il. BASIC EQUATIONS

The evolution of the parallel electron velocity distribu-
tion F may be described by a Fokker-Planck equation
{written in parallel velocity only) with an added quasi-
linear diffusion term due to the waves, i.e.,

oF @ oF 8 F
E - ot g, () W
where the quasi-linear diffusion coefficient D depends on
F[see Egs. (4) and (5)] . All quantities are written using
the normalizations introduced in the Appendix. Thus, T
is time in units of inverse collision frequency, w is
parallel electron velocity in units of the electron thermal
speed, and &, the normalized spatial variable, is a
measure of distance into the plasma. We use the
averaging operator < > defined by

w+6

1
(Gw) =5= Gw')dw’, @)
267/,
where § is a given resonance broadening width and G@w)
is an arbitrary function, which is averaged over this
width. The collision operator is given by

9F\ _ 8 1oF 1
(ﬁ)c 5w wd ow " w? @)

This operator is linearized and written in the high-velo-~
city limit. Also, a Maxwellian distribution has been
assumed for the perpendicular velocity direction. The
justification for using this collision operator in the
present problem follows the arguments offered in Refs.
2 and 4. The wave diffusion coefficient D, which is
proportional to the incident wave power (see the Appendix),
evolves according to the equation

oD oD

%—T"' Vla_§= ’)’(W,E,T)D, (4)
where V= w and £ are the dimensionless radial group
velocity and spatial coordinate as shown in the Appendix.
The wave damping rate y is given by

Y=Awiw‘%: (5)

where the constant A is defined in Eq. {A12). We shall
discuss some of the properties of Egs. (1)-(5).

Resonance broadening allows waves to exchange
momentum with particles traveling at not exactly the
wave parallel phase velocity, i.e., such that w/k,#v,.
Since the ratio of wave momentum to wave energy is
not the same as the ratio of particle momentum to part-
icle energy for w/ky #v,, it follows immediately that if
momentum is conserved, then energy cannot be con-
served in this simplistic model of the interaction in one
dimension. More sophisticated treatments are required
to assure energy conservation, but the advantages of
these sophisticated treatments are not necessary for the
present purposes. Note that if collisions are neglected,
i.e., @F/87),=0, Egs. (1)-(5) conserve energy only if
the resonance broadening width 6 is equal to zero.
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(Note that momentum is conserved even for 6#0.) When
0 is not equal to zero, conservation of energy is main-
tained only if we do not use a function to approximate
the resonance broadening operator derived in Ref. 3.
However, the equations would then assume a far more
complicated form. Alternatively, we could force energy
conservation in the manner described in Ref. 5, but we
do not consider this necessary for the present applica-
tion. Energy is nearly conserved if & is small. More-
over, in the presence of collisions, the energy and
momentum of the resonant electrons and waves are not
separately conserved. Thus, the solution for F in the
presence of collisions is not sensitive to small dis-
crepancies in the separate balance of energy and mo-
mentum between the resonant electrons and the waves.®
On the other hand, Eqs. (1)—(5) do advantageously pre-
serve the non-negative nature of both F and D, no matter
how & is chosen. Thus, for the present application,
where the energy that the resonant electrons gain from
the waves is to be balanced against the energy they lose
by colliding with nonresonant electrons, our approach of
introducing the phenomena of resonance broadening in an
approximate but simple manner (with desirable math-
ematical properties) retains the essential physics.

Our interest lies in obtaining the steady-state solution
of Egs. (1)-(5). Taking 8F/87= 0 in Eq. (1), we immed-
iately find®

R

where c(£) is determined by the condition that the elec-
tron density|[ i.e., F(w) integrated over the parallel velo-
city w] remains a (given) function of £ only. Note that
F@) is Maxwellian where (D) vanishes and is flat where
{D) is large. Furthermore, note that the height of the
plateau where F is flat is exponentially sensitive to the
value of the slowest phase velocity in the wave spectrum.

The power carried by the transmitted wave may now
be determined using Eqs. (4)—(6) with 8D/87= 0. The
concern regarding resonance broadening, expressed in
Sec. I, stems from Eq. (4). Near the spectrum edge,
the damping rate tends to be much larger when the
averaged F is employed instead of the unaveraged F.
The effect of this larger damping rate is that the edge
spectral components are lost faster than the central
components. However, we shall see that this effect is
mitigated when the D used in Eq. (6) is averaged over
the resonance broadening width, as opposed to not being
averaged. The reduction of the resonance broadening
effect occurs because the particle distribution becomes
flattened somewhat even outside the range of the spec-
trum phase velocities when (D) is used.

In the next section, we will present numerical solu-
tions of Eqgs. (4)—(6). When the resonance broadening
effects are included in both evolution equations, i.e., for
the waves and for the electrons, we refer to the solu-
tions of the consistent set of equations. What we refer
to as solutions of the inconsistent set of equations are
solutions of Eqs. (4)~(6) but with the unaveraged value
of D (naively) employed in Eq. (6) instead of the reson-
ance broadened value (D) . It will be shown that it is
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only the inconsistent set of equations that exhibits the
severe narrowing of the spectrum and the consequent
unfavorable power deposition profile.

I11. NUMERICAL SOLUTION

In order to show the effect of resonance broadening on
the propagation of lower hybrid waves and deposition of
their power, we choose a typical set of parameters and
display various aspects of the steady-state solutions of
Egs. (4)~-(6) with (a) no resonance broadening, i.e.,
5= 0; (b) consistent resonance broadening; and (c)
inconsistent resonance broadening, i.e., §#0 in Eq. (5)
and 6= 0 in Eq. (6).

The method of solution involves starting at £= 0 where
D is specified on a uniform grid of spacing aw. I'@w,§
= 0) is determined from Eq. (6) by numerical quadrature
(using the rectangle rule). This is numerically differ-
enced to give v from Eq. (5) which is substituted into
Eq. (4). The wave spectrum is then determined at
£= A% by solving Eq. (4) using Euler’s method. The
resonance broadening operator, Eq. (2), is numerically
evaluated using the rectangle rule. We set Aw = 107 and
At= 1075

We chose D(w, £= 0)= 30/w for 3.6 sw < 6.0 and zero
outside this range of parallel phase velocity. This is
representative of lower hybrid waves with frequency of
1.2 GHz and power levels of 1 MW propagating in a
plasma with electron density 2.5x 10® em™ and electron
temperature 7, = 2.5 keV. The resonance broadening
width is taken to be constant equal to 0.1 v, l.e.,
6= 0.1. Taking 6 to be a constant and making no attempt
to relate it back to (D/k,)*? is not strictly correct but
suffices here in our examination of the nature of the
influence that resonance broadening has on the deposi-
tion of power.

The variation of the spectral power density as a func-
tion of £ is shown in Fig. 1. It is seen that with no re-
sonance broadening, curve (a), and consistent reson-
ance broadening, curve (b), the decay of the spectrum
is nearly linear. The decay in case (b) is somewhat
faster than in case (a). However, with inconsistent
resonance broadening, curve (c), a rapid initial decay
of the spectrum is followed by a much slower decay of
the spectrum. Case (¢) is illustrative of the effect that
we had feared before doing the problem self-consis~
tently.

The results shown in Fig. 1 are illustrated more suc-
cinctly in Figs. 2 and 3. In Fig. 2 we plot, as a func-
tion of £, the fraction of the total power carried by the
lower hybrid waves and in Fig. 3, the rate of power
deposition. Note in Fig. 3 the uniform deposition of
power in case (a) and (b) compared with the nonuniform
deposition in case (¢). The origin of this behavior can
be seen in Fig. 4 where we plot the location of the inner
(low velocity) edge of the spectrum as a function of £ for
the three cases. The location of this edge is defined by
the lesser of the two solutions to

Dw )= 0.5 max,[DW)] , ("

whereas, in cases (a) and (b), the edge is nearly station-
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FIG. 1. Wave power spectrum (in parallel velocity space) as

a function of depth into the plasma. At the £=0, the power is
zero except when 3.6 <w<6.0. In case (a) the effects of res-
onance broadening are omitted; in case (b) resonance broaden-
ing is included; and in case (c) resonance broadening is par-
tially taken into account and thus treated inconsistently.
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FIG. 2. Fraction of incident power retained by the rf as a
function of depth into the plasma; (a) resonance broadening
omitted, (b) resonance broadening included and (c) resonance
broadening partially taken into account.
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FIG. 3. Rate of rf-power deposition as function of depth into
the plasma; (a) resonance broadening omitted, (b) resonance
broadening included and (c¢) resonance broadening partially
taken into account.

ary until a major fraction of the rf energy has been
deposited, in case (c) the edge moves to larger velo-
cities with increasing ¢ (propagation into the plasma),
reducing the number of resonant particles and hence the
damping rate.

1V. CONCLUSIONS

We have examined the extent to which nonlinear re-
sonance broadening affects a lower hybrid rf spectrum.
While one might expect resonance broadening on the
waves to dramatically narrow the spectrum, it is shown
that this effect is counteracted by resonance broadening
on the particles, which extends the plateau in the par-
allel velocity distribution a resonance broadening width
into the nonresonance region. Thus, when resonance
broadening is treated consistently, the rf power spec-
trum does not narrow significantly and the uniform
spatial deposition of the rf power is retained. We have
considered the effects of resonance broadening on a
rectangular incident wave spectrum. Resonance broad-
ening has a greater effect on this power spectrum than
on a more realistic wave power spectrum.

6 T T T T
(a)
(b)
(c)
4+ -
w1
r od -
0 1 1 { 1
0 0.2 04 ¢ 0.6 0.8 1.0

FIG. 4. Location of the inner (low velocity) edge of the rf
spectrum; (a) resonance broadening omitted, (b) resonance
broadening included, and (c) resonance broadening partially
taken into account.
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APPENDIX

It can be shown that when the plasma is subject to the
incident rf-electrostatic waves, the one-particle elec-
tron velocity distribution function satisfies the equation’

81re"’f B 9
po” dk 6kk—2-m

<}
a—t-f(vi’vilyt)=

1
—iw+ikyvy 8vu

—f} vy, t)+ <8{) (A1)

where L and || refer to the direction of the magnetic
field; v is the electron velocity, & is the wavenumber,
w is the wave frequency, and e and m are the charge
and mass of the electron. The values of §,, the spec-
tral energy density, and &,,, the parallel spectral
energy density, are expressed in terms of the energy
density ‘W associated with the incident rf waves (with
electric field amplitude E) by the relationship

fdk 8y = fdk“ 8,,= W=E*/87. (A2)
The dispersion relation for lower hybrid waves, i.e.,
B M 2 Wi
of = Wi, (1+ 2 m ); Win® 17 wfe/wfe s (A3)

where M is the ion mass and where w;;, wp, and w,,
are the plasma ion, plasma electron, and electron
cyclotron frequencies, respectively, is used to elimin-
ate k,/k from the integrand in Eq. (Al). Therefore, the
equation for the distribution function becomes

) 9 af
a—wD(w)a—wf+(a—; o (A4)

where we have expressed time in units of v-!defined

by vi= 4mnvi,/3wp, 1N\ and where
wW=Vy/Vie, Vie=KTo/m,
(A5)
D 27 w2 (w2 - w?
D==2 Spy|wpwy, » Do= i(“; 20)”‘) .
w I te nMUVU, Wiy

In computing the collision term, we assume that the
background distributions of both the electrons and ions
are nondrifting, nonevolving Maxwellian distributions.®
Therefore, in the high velocity limit, valid for the
resonant and nearby electrons, the collision term be-
comes

of Z;+1 0 2 af 1 1af
rl ity vy 8u<u6u f)’ (48)
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where u = v/v,, and = w /u. It has been shown® that the
perpendicular velocity space dynamics play a minor
role. Thus, we assume a Maxwellian perpendicular
distribution and integrate over that direction® so that
Eq. (A4) becomes

BF(w)
oT

where F(w)=f J dv,. When Z;= 1, Eq. (A7) reduces to
Eq. (1) with (8F/87), given by Eq. (3).

D( )—F(W)

w“w w?

2+Z, 9 /1 3
aw

)F(w) (A7)

The decay of D(w) is governed by the equation

8
2 L= 2p, (A8)

where the decay constant v’ and the group velocity v,
for the lower hybrid electrostatic waves are

w? m aF
(.l)nl M sw
2 3/2 4\ V2
= Uw, Wiy (@* -1) (— .
U= w? (w”l ) <M) Ut

1, v, in units of U defined in
Therefore, Eq. (A8)

2
=T Yhe w]wlkﬁ oF _m wi
2 w Boaw 2w

(A9)

We express ¢ in units of v~
Eq. (A9), and x in units of U/v.

becomes

BD ap

8 T V! ag YD (AlO)
where

Ve=w, E=xv/U, y=2v"4". (A11)

From Eq. (A9) it follows that the wave damping rate can
be written
(A12)

2
= Aw |w|—- A=p~ 1n—ﬂ-<—-—_1>
w w”l

When resonance broadening on F is included, Eq. (A12)
reduces to Eq. (4).
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