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Abstract-The loop voltage in Tokamaks is particularly difficult to measure anywhere but at the plasma 
periphery. A brief, deliberate, perturbation of hot plasma electrons, however, produces a transient radiation 
response that is sensitive to this voltage. We investigate how such a radiation response can be used to 
diagnose the loop voltage. 

1. I N T R O D U C T I O N  
AN EXAMIKATION of the transient, synchrotron radiation signal which arises from a 
deliberate, perturbation of hot Tokamak electrons. can be quite informative. The 
perturbation might be produced, for example, through brief heating of superthermal 
electrons by lower-hybrid waves. The plasma radiation response to this perturbation, 
in frequency-time space, forms a two-dimensional pattern that looks different under 
different plasma conditions. An example of this radiation pattern, R(w,  t ) ,  is given in 
Fig. 1. The parameters to which this radiation is sensitive include the dc electric field 
E, the ion charge state ZeK, the angle of viewing with respect to the magnetic field 0, 
the density y1, and the precise velocity of the perturbed electrons. These parameters 
comprise a set of conditions under which the radiation response is observed. Through 
a comparison of the radiation patterns that would be produced with any parameter 
sets that might possibly explain the transient signal, the relative probabilities of the 
competing parameter sets can be evaluated. 

The deliberate heating or probing of the plasma to produce synchrotron radiation 
directly attributable to this probe has been the subject of previous work. A math- 
ematical inversion of the two-dimensional transient synchrotron data to obtain a two- 
dimensional electron momentum distribution function was described by FISCH (1 988), 
assuming as given, however, parameters describing the plasma. Of greater diagnostic 
interest is that the deliberately produced transient emissions cculd be employed to 
deduce various plasma parameters, as shown by FISCH and KRITZ (1989a). In these 
previous works, the dc electric field was assumed absent. 

A generalization of this work to include a dc parallel electric field (FISCH and KRITZ, 
1989b) both expands the range of experiments for which the radiation can be used to 
deduce other parameters and allows us to deduce the electric field itself, something 
entirely unavailable otherwise. Typically less than 1 V m- in a Tokamak, this field 
is far too small to be inferred through atomic phenomena, and cannot be measured 

335 



336 N. J. FISCH and A. H. KRITZ 
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FIG. 1 .-Radiation response R(o, t )  (arbitrary units) at extraordinary polarization for 
different electric fields. (a) Normalized electric field 6 = 0.3 (this corresponds to about 0.02 
V m- '  at density 1014 ~ m - ~ ) .  (b) 8 = 0.0. The peaks in the plot correspond to second, third, 
fourth and fifth harmonic radiation. The incremental radiation arises from electrons initially 
at about 700 keV. corresponding to tail electrons in a reactor plasma, so the harmonics are 
relativistically downshifted in frequency. Here, the radiation is viewed perpendicular to the 

magnetic field and an ion charge state of 1.5 was assumed. 

directly by probes because the plasma is too hot. Its effect is manifest, however, in 
the dynamics of superthermal electrons, exactly those that synchrotron radiate most 
profusely. Of course in a truly steady state, one could measure the loop voltage at the 
plasma edge to deduce the central loop voltage, but in many instances the plasma is 
far from steady state. An example for which the edge voltage may be informative is 
during nonohmic current-drive on axis. The plasma response at the periphery reflects 
the current-drive only after a magnetic relaxation time. Early experiments on current- 
drive by lower-hybrid waves, in fact, were ambiguous precisely because the experi- 
ments were too short. 

A goal of this paper is to simulate how from a transient radiation signal, one might 
detect a loop voltage on axis a t  the same time that the loop voltage vanishes at the 
plasma periphery. Additionally, in this paper, we derive in detail the Green's function 
for the radiation response for relativistic electrons in the presence of the dc parallel 
electric field. We extend here two themes of our previous work : first, that the transient 
response indeed informs us about plasma parameters, and, moreover, that the pa- 
rameters of interest can be deduced almost orthogonally, i.e. ignorance or even mis- 
information concerning some parameters does not impair significantly the inference 
of other parameters ; and second, that fast algorithms are available for processing the 
data quickly, which is an important requirement when searching a large dimensional 
space. 

The technique explots a fortuitous separation of time scales 1 /o << t d e t  << t, << z ~ ~ ~ .  
From the first inequality we have that the radiation frequency o (- 100 GHz) is 
sufficiently characterized on the instrumental detection time scale of Tdet, which can 
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be 50 p s .  The time history of the radiation response is well characterized since there 
are many detector observations in a superthermal electron slowing down time, zc, 
yet, the parameters themselves change on the longer time scale zpdr, so that their 
values may be treated as constant during the transient analysis. Of course, there 
is the opportunity, by repeating the probe, to average the results of several transient 
analyses. 

By producing a transient signal, we endow the time measurements with informative 
potential otherwise absent. For example, the steady background synchrotron radiation 
is entirely insensitive to the ion charge state ZeR; no matter how frequently measure- 
ments are made, this parameter is not deducible from the background radiation. 
However, the transient response is quite sensitive to this parameter, since this pa- 
rameter governs the collisional pitch-angle scattering of fast electrons in velocity 
space. Synchrotron radiation is quite sensitive to the velocity-space pitch-angle of 
radiating electrons. 

Throughout this work, we distinguish the total radiation emitted from the plasma 
into angle 0, Rto,(w, t ; 0). from the incremental or transient signal, R(w,  t ; e) ,  that is 
directly proportional to the invasive, brief heating that we refer to as the probe 
heating. The total radiation emitted from an optically thin plasma is 

where f is the electron momentum distribution function and I is the radiation power 
at frequency w,  due to a single electron at momentum p, which is radiated into angle 
0 with respect to the magnetic field. The radiation can be considered separately at 
either the ordinary or extraordinary wave polarization. 

The distribution function f can be separated into f = fM(l +4B+4), where f M  
is a Maxwellian distribution, q5B describes the relatively constant deviation from 
Maxwellian of the background distribution, and 4 describes the time-dependent 
distribution specifically associated with the probe heating. In terms of contributing 
to the collision integral, both q5B and 4 may be treated as small, so that f obeys the 
linearized Fokker-Planck equation. The evolution of 4 may then be written as 

where Cis  a collision term. The initial condition on 4, which is the result of the probe 
heating, is taken to be f M q 5  = - Q(p/mc)/(mc) 3, where m is the electron mass, where 
the speed of light, c, is introduced for later normalization, and where Q is the 
normalized initial deviation from background due to the probe heating. For example, 
were the probe to consist of an impulse of a narrow spectrum of high-phase-velocity 
lower-hybrid waves, then Q(p/mc) would be finite in a narrow range of superthermal p. 
Using normalized momentum, U = p/mc, and normalized time, z = vet, with collision 
frequency v, = nq4 log A/4nm2&;c3, we write the incremental radiation associated with 
the initial condition on fM4 as 
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where the second equality above recognizes that a large saving in effort is possible by 
defining a Green’s function $ for the radiation response. 

The comparison of many possible radiation responses to data is facilitated by fast 
algorithms. The Green’s function makes efficient the simultaneous consideration of 
many initial perturbations Q(p). Choosing to perturb electrons on the tail of the 
distribution function, superthermal but not runaways, makes enormous analytic pro- 
gress in solving for $ possible, since for these electrons, energy diffusion by collisions 
is ignorable compared to energy loss. Moreover, equations (1.2) and (1.3) admit 
several scale-invariant transformations of the radiation response R(w, t ) .  Having 
solved for R(w, t ; e), where 0 is a set of parametric dependencies which includes the 
magnetic field amplitude B, electric field E, the density n. and the perturbation 
amplitude A ,  we also have for any constants a,,  a 2 ,  and a3 ,  

Further simplification of equation (4) is made possible by choosing to heat those 
electrons for which it is permissible to linearize R = Ro+ERl .  These would be tail 
electrons, but not nearly so fast as to be runaway electrons that are strongly affected 
by the dc field. 

The use of the background emission is, of course, an established diagnostic for the 
electron temperature, and recently there have been attempts to uncover further details 
of the electron momentum distribution function. Useful constraints on the electron 
distribution function have been derived, e.g. by CELATA and BOYD (1977) ; TAMOR 
(1979); BORNATICI et al. (1983): CELATA (1985); HUTCHINSOX and KATO (1986); 
KATO and HUTCHINSOX (1986) ; and LUCE et al. (1988). In a relativistic electron ring 
geometry, a one-dimensional f was deduced elegantly by MAHAJAN et al. (1974). In 
these studies, the deduction of details of the electron distribution function was based 
on the synchrotron emission from the entire distribution of electrons. The utility of 
information provided by transient radiation during collisional relaxation has been 
recognized before : for example, ALIKAEV et al. (1976) observed radiation decay 
subsequent to intense cyclotron heating in the TM-3 Tokamak, and GIRUZZI et al. 
(1986) observed numerically the transient radiation pattern associated with cyclotron 
heating in the presence of a dc electric field. A more refined treatment, but with no 
dc field, was recently carried out by GIRUZZI (1988). 

In our work there is a great emphasis on fast computation in extracting important 
information from transient signals. In Section 2 ,  we derive the Green’s function $ for 
the transient radiation response in closed form and in terms of integrals over elemen- 
tary functions. This efficient form enormously simplifies the work of comparing 
numerically radiation responses arising under different plasma conditions. Certain 
details of the derivation are left to Appendices A and B. In Section 3, we examine the 
utility of the method in the nontrivial parameter space of six unknowns. Here, 
radiation patterns arising from over a million parameter sets are compared to numeri- 
cally simulated noisy data. The noise model is specified, so precise statements can be 
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derived concerning the probability distribution of parameter sets in view of the 
simulated data. In Section 4, we apply information-theoretic techniques to assess both 
the informative content of the transient synchrotron data and the relative ortho- 
gonality of parameters of interest. In Section 5 ,  we summarize our findings and we 
offer a number of caveats regarding the applicability of the technique. 

2 .  G R E E N ‘ S  F U N C T I O N  F O R  T H E  R A D I A T I O N  RESPONSE 
The Green’s function for the radiation response, $, solves the relativistic Fokker- 

Planck adjoint equation (see e.g. FISCH, 1987), which we write as 

f h l  a*idt - q f M E  * VP$ - C($) = 0. (2.la) 

We employ the normalized variables, U = p/mc, T = v,t, and & = qE/mcv,, and we 
specialize to superthermal excitation in the high-velocity limit, in order to write the 
adjoint equation as 

where Z,, is the ion charge state and we define ?’(U) pll/p. This 
equation is to be solved with the initial condition $(a, U ; 6, T = 0) = I(w, U ; 6). The 
solution for $ is then used in equation (1.3). 

We are fortunate that equation (2.1) is tractable analytically in the limit of small 
electric fields, i.e. for small b. Let us expand 

1 +U’ and ,u 

then the equation for becomes 

with initial condition $(a, U ; 6, T = 0) = I ( o ,  U ; 6). The equations for higher order 
$ ( I 2  are inhomogeneous but with homogeneous initial conditions. The equation for 
$ ( I )  becomes 

to be solved with a homogeneous initial condition. 

we separate both $(@I and the initial condition into Legendre harmonics, Pk(p). Let 
The method of characteristics may be used to integrate equation (2.2) for $(‘I, once 
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then the equation for $Lo) can be written as 

where rk (1 +Z,,)k(k+ 1)/2. Let u = u(s ,x) ,  T = T(s ,x ) ,  where s measures along 
the characteristics and x specifies the characteristic. The initial conditions, specified 
on s = 0, are $L"[u(O, x), ~ ( 0 ,  x)] = $Lo)(O, x), where we can parameterize the initial 
conditions by writing ~ ( 0 ,  x) = 0,  u(0, x) = x, and $ho)(O, x) = I k ( x ;  U, e) .  Then the 
characteristic equations, and their solutions for the given initial conditions, are : 

(2.5a) 

(2.5b) 

It remains to give explicitly the function X ( T ,  U). We define a function 

du' = U -  tan-' U, 

then, we have g(u) -g(x) = s = T ,  and, defining also an inverse function, g- we have 

Thus, substituting for x(u ,z )  in equation (2.5c), we have the zeroth order Green's 
function $koj(u, T ) .  

The solution to the first order adjoint equation can be approached similarly. We 
separate $('I into Legendre harmonics to derive for the kth harmonic, 

where we defined, for notational convenience, the inhomogeneous terms, bk. This 
equation is to be solved for homogeneous initial conditions. A quick solution to the 

is obtainable, because, as we later show, the bk can be put into a much simplified 
form. The characteristics here are the same as solved for in equations (2.5a) and 
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(2.5b). The equation for $i'), which is analogous to the homogeneous equation ( 2 . 5 ~ )  
for $io), is : 

The solution to this equation, for homogeneous initial conditions, is 

(2.10) 

where U = u(s ,x)  = g-'[s+g(x)]. 
It might be imagined that each bk can be expressed only in terms of all the $io); 

fortunately, however, it turns out, as shown in Appendix A. that the bk can be written 
as the finite composition of the two harmonics, k- 1 and k +  1, namely 

where the partial derivative with respect to U is a t  consant 7 .  For insertion into 
equation (2.10), we need the bk, and hence a$i0)/3u, as functions of x and s. First note 
that 

a ax a 2s a +-- 
au c'u ax du as 
- - ~ ~  - (2.12) 

Since, from equation (2.5),  s(u, z) = 5 ,  we have dsjdu = 0. From equation (2.7), we 
have 

(2.13) 

where g'(u) dg,idu = u'/y'(u). Thus, at constant z, a/& = [g'(u)/g'(x)] d/ax, and, 
conversely, at constant s, a/dx = [g'(x)/g'(u)] c'jau. Note also that, from equation 
(2.5c), $bo) separates into 

where x = g- [ g ( u )  - z] and 

(2.15) 
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Note also that dYk(x),’dx = ak Y , (x ) (xy (x ) .  Using equations (2.12)-(2.15), we can 
write 

Inserting equation (2.16) into equation (2.1 l), we have the bk in terms of s and U only. 
We now obtain $i’) by integrating equation (2.10). 

The integral over s is to be performed at constant x. Since g(u) = g(x) +s, we can 
change variables, ds = g’(u) du. Using x constant in equations (2.10), we have U = x 
at s = 0, so that, in changing variables, the range is now from x to U ,  and the integral 
in equation (2.10), again performed at constant x, is rewritten as 

(2.17) 

From equations (2.5a) and (2.7), we have I ) ~ ’ ) ( u ,  z) = $h’)[s(u, z), X ( U ,  z)]. Given the 
response function I )k ,  we can of course write the radiation response R(w, 7). Expanding 
Q(u) and $ in equation (1.3) into Legendre components & ( U )  and and performing 
the p-integration, we get 

(2.18) 

The solution, $ k  = $io) + $h’), is written in complete form in Appendix B, where some 
further simplifications are noted in obtaining R(o,  z) from the $ k .  Incidentally, note 
that at z = 0, x = U ,  so $hi) (U, z = 0) = 0, since the range of integration in equation 
(2.17) shrinks to zero. The response first order in the electric field vanishes at z = 0 
because, as we might expect, the electric field does not immediately cause a large 
deviation in the electron trajectory ; rather, it is the cumulative effect over time of the 
acceleation due to the field that leads eventually to large differences in the radiation 
response. 

3 .  LOOP-VOLTAGE TOMOGRAPHY 
In order to examine the sensitivity of the radiation response to important plasma 

parameters, we simulate an example of practical value. The example illustrates three 
points : first, that the synchrotron radiation data can be quite informative-in this 
example, an interior dc electric field can be deduced in a Tokamak ; second, that a 
parameter space of several dimensions can be scanned numerically quite efficiently- 
here, response patterns produced by over a million parameter sets spanning a six- 
dimensional space are compared to the data ; third, that the six-dimensional parameter 
space nearly separates into smaller partitions, in the sense that the data depend 
on the parameters in ways different enough that the parameters can be inferred 
independently. 
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The example that we set is that one detector is available, which observes along a 
vertical direction (at constant B,,,), so that the detector sums radiation arising from 
points all along the viewing direction. The incremental radiation might arise from a 
brief surge of lower-hybrid power-the background radiation is ignored. We use here 
a very coarse-grained model in which radiation originates at just two points along the 
viewing direction, one point in the plasma center, and one peripheral point (see Fig. 
2). While we imagine that the plasma is well characterized in other ways, we do 
imagine that we are unsure as to how large a perturbation, A ,  was created at each of 
the two points. We also imagine that we are unsure of the q profile, which means that 
we must also treat as unknown the viewing angle with respect to the magnetic field 
at each of these points. Given these unknowns, we wish to determine the dc parallel 
electric field a t  each point. We do imagine that the ion charge state is known and the 
same at each of the two points, and that the density at each point is known and 
different. Suppose further that the location in velocity space of the absorbed probing 
radiation is also known and the same at each point, possibly because of a resonance 
condition. Thus the detector sums 

where c labels parameters at the plasma center and p labels parameters at a peripheral 
point. Thus, the problem is to find the probability distribution over all possible 
parameter sets in the six-dimensional space (8,. A, ,  O, ,  b,, A, ,  e,) given a very 
crude a priori probability distribution and the data R(w,  t ) .  In Fig. 1, we show the 
incremental radiation response for two different electric fields. What is observed here, 
however, is only the sum of two such responses, and the object is to deduce the 
separate contributions to this sum in the presence of noise. 

Note that if the density were the same at the two radiating points, then there would 
be no way to distinguish radiation emanating from the plasma center from radiation 
emanating from the peripheral point, no matter how different the other parameters 
might be. The density difference means that radiation from the denser place (generally 
but not necessarily the center) decays faster. Although only the sum of the radiation 
from the two points is measured, the different decay constants distinguish the con- 

A 
4 Detector 

I Magnetic Surface 

FIG. 2.-Viewing the radiation. A detector sums radiation emanating from a central region, 
with electric field Ec, and from a peripheral region, with electric field Ep.  The viewing plane 
is the vertical plane that is tangent to the magnetic surface, such that, at 0 = 0, the radiation 

is viewed perpendicular to the total (toroidal plus poloidal) magnetic field. 
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tributions to this sum. The larger the density difference, the easier the distinguishing 
of the individual contributions. 

We simulate the results of an experiment by calculating first the radiation response 
R(w, t )  in equation (3.1) for a specific set of plasma parameters. We assume, however, 
that in a realistic experiment this precise radiation response is not measured directly, 
e.g. because of calibration errors, because of background radiation fluctuations, or 
because of imprecise assumptions concerning the governing physics. For the purposes 
of this simulation, we model all of these uncertainties by Gaussian uncorrelated noise, 
i.e. we imagine that we measure instead R,(w, t )  = R(o, t )  + g(w, t ) ,  where 0 is an 
uncorrelated noise signal. In our work, we shall for simplicity assume time and 
frequency independent noise, ~ ( w ,  r )  to be a consant. Obviously, in the limit G -+ m ,  
there is total degradation of our measurement, and we are left with the a priori 
probabilities as our best guess for the parameter set probabilities. For finite 0, our 
guess can be far more informed. Given the noise model, we can, of course, make 
precise statements concerning the probability distribution of parameters given the 
noisy data. 

As shown by FISCH and KRITZ (1989a), the probability of deducing parameter set 
(a), given that the data were obtained with parameter set (0,) and under noisy 
conditions characterized by 0, can be constructed as an ensemble average 

The ensemble average (NR - 80 generally suffices) is over the probability of parameter 
set (0) given each pattern RLJ) in the ensemble of observations under conditions 
(0,). We can put the right-hand side of equation (3.2) in terms of known or calculable 
quantities by using Bayes's theorem in the form P(@lR$)) = P(RI;/)/@)P(O)/ 
P(R$)), where the a priori probability P ( 0 )  of each parameter set (0) is as- 
sumed given. We can then calculate P(R:)) = CP(Rj;')IO)P(O), where the sum is 
over all possible parameter sets CO}. Finally, the probability density of observing 
the data set pattern R:), given the parameter set (a), P(R$"@), can be written 
as 

where the data are taken at some set of frequencies and times (w! ,  zi), numbering say 
ND data measurements in all. The probability of the complete pattern is the product 
of the probabilities of each datum, since we have assumed that the noise is Gaussian 
and uncorrelated. 

If it were certain that measurements were obtained in the complete absence of 
noise. i.e. 0 -+ 0, then even one measurement R,(w,, r,) differing from the expected 
measurement [R,(w,, r,) 101 for the parameter set (0) immediately rules out that 
parameter set (0) as possibly explaining the data. In the opposite limit of utter noise, 
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0 +. x, all measurements are equally likely for any data set, so no particular set of 
parameters is the preferred explanation of the data. Of course, for finite noise, there 
is no guarantee that any parameter set {a} can reproduce exactly a particular noisy 
observation R,. 

We show in Fig. 3a the marginal probability of deducing the electric fields given 
the data, 

where the right-hand side above is calculated using equation (3.2). Here, the apriori 
probability is taken as flat over the range plotted, so that, clearly, the noisy data allow 
a significant refinement of the a priori probabilities. In this example, we measure 
radiation at the extraordinary polarization, and the true plasma parameters include 
a nondimensional dc electric field of 0.08 on axis, 0.0 off axis, and equal perturbation 
strengths A at both locations, corresponding to a loop voltage on axis not yet relaxed 
via magnetic diffusion. The true viewing angles are both taken to be perpendicular, 
8, = 8, = 0. The density off axis is taken as 60% of the density on axis. The noise 
level, 0, is 10% of the maximum of the incremental pattern R(o, t ) .  In practice, purely 
experimental noise can be kept much lower. The data were simulated on a 40 x 40 

FIG. 3.-Joint marginal probability distribution. (a) P,(h",, gP). (b) P,(G,,  &,I@,, OP). In 
Fig. 3b, the marginal distribution was obtained by summing the joint distribution over all 
combinations of amplitudes A,  and A,,  but using BC = = 0. For Fig. 3b, the relative 

uncertainty, S,  is 0.63, which is only slightly less than for Fig. 3a, where S is 0.66. 
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grid in frequency-time space. The marginal probability distribution was calculated 
by comparing to the noisy data radiation responses arising from over 1.4 x lo6 sets of 
plasma parameters. 

Of particular interest is to compare the above result to the marginal probability 
distribution for the electric fields given the correct viewing angles, PM(6, ,  &,I e,, e,), 
which is shown in Fig. 3b. (This distribution is the sum, over all possible combinations 
of A,  and A,, of the joint probability of both fields and both amplitudes, given the 
true angles 8, = e, = 0.) Apparently, the probability distribution for (gC, B p )  is not 
materially affected by our knowledge concerning the viewing angle ; in either event, 
it is possible to discern the case at hand, where a loop voltage is induced in the plasma 
center but not a t  the plasma periphery. 

Knowledge of the viewing angle is not critical in determining the electric fields not 
because the viewing angle is not an important factor in the radiation response. but 
rather because small changes in the viewing angles affect the radiation response in 
ways very different than do small changes in the electric fields. This can be seen by 
considering the marginal probabilities of the viewing angles, Phf (Q,, e,), which we 
depict in Fig. 4. The viewing angles, from which we could deduce the g-profile, are 
each resolved on the order of k 1". Clearly, in order to deduce so well the viewing 

FIG. 4.-Joint marginal probability distribution PLI(Bc, BJ. The marginal probability dis- 
tribution was obtained by summing over amplitudes A, and A,, and over fields 8, and &,. 
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angles from the radiation, the radiation must, in fact, be sensitive to these angles as 
well as to the electric field, but the deduction of these parameters from the radiation 
can proceed almost orthogonally. Alternatively, one can sum over all possible viewing 
angles and all possible electric fields at the periphery, as well as over both radiation 
amplitudes, to find the marginal probability PM(8c,Q,) ,  which we show in Fig. 5. 
Again: the marginal probability distribution is fairly sharp. The sharpness of the 
probability distribution is not very much degraded from what one might obtain were 
the radiation in fact emanating from only one point along the viewing direction, again 
indicating a certain orthogonal dependence of the radiation pattern on different 
plasma parameters. These findings are consistent with what we have found in previous 
work (FISCH and KRITZ, 1989a), that did not include the loop voltage, but did 
check for the relative orthogonality of parameters such as ZeR, 8, and parameters 
characterizing the probe spectrum. 

4 .  I N F O R M A T I O N - T H E O R E T I C  E N T R O P Y  
These ideas concerning the informative content of the data and the orthogonality 

of the parameters can be made more precise. Consider the information-theoretic 
uncertainty, or entropy, defined by H - C,P, log P, (see, e.g. SHANNON and WEAVER, 

FIG. 5.-Joint marginal probability distribution PM((6,, OJ. The marginal probability dis- 
tribution was obtained by summing over amplitudes A,  and A,,  and over the peripheral 

parameters 8, and 8,. 
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1949). The entropy is maximum when the probability P, is flat over the allowable 
space, which is the distribution we take for the a priori probability distribution. The 
allowable parameter space is assumed to be discrete and finite, but a generalization 
of these ideas to continuous parameters is possible. A measure of the utility of the data 
is the reduction in this uncertainty given the data. To this end, define HA as the 
maximal, a priori, uncertainty ; for example, for N possible sets of parameters, we 
would have HA = log N.  A measure of the information content in our refined estimate 
of the probability distribution, say, PM(€ , ,  8,) in equation (3.4) is the uncertainty 
given the data, 

The relative uncertainty, S(&,, €J H(B,, € , ) / H A ,  is a measure of the utility of 
the data. Here. HA = log N. where N is the number of allowed combinations of 
(&,, 8,). A relative uncertainty S = 1.0 corresponds to the data being entirely useless, 
whereas the limit S = 0.0 corresponds to the data being entirely conclusive. The 
relative uncertainty S(Q,, 8,) for the probability distribution in Fig. 3a is about 0.66, 
which is a considerable reduction from the a priori relative uncertainty of 1. Similar 
observations can be made concerning the other parameters. The relative uncertainty for 
the probability distribution shown in Fig. 4 is S(O,, e,) = 0.53, and for the distribution 
shown in Fig. 5, the relative uncertainty is S(6,. e,) = 0.61. 

While these numbers for the relative uncertainty indicate a significant reduction in 
uncertainty in view of the data, it should be recognized that the meaning of this 
reduction in uncertainty involves an understanding of how this information might be 
used, since the exact value of S is dependent on the particular choice of the range of 
the plasma parameters. A larger range for these parameters, for example, appears to 
diminish further the relative uncertainty, since coarse discriminations are easier to 
accomplish than are fine discriminations. Therefore, meaningful comparisons can be 
made only for the same parameter range. In Fig. 6 we show the relative uncertainty 
S(B,, 8,) vs noise 0 for peripheral densities at different fractions of the central density. 
This shows that larger density differences allow finer distinctions to be made in 
the data. Note two important limits. At large noise levels, all data become useless as 
S -+ 1 .O. In the limit of vanishing noise, all data are conclusive as S -+ 0.0. 

A measure of what we have called the orthogonality of the plasma parameters is 
the mutual information between them ; for example, the mutual information between 
the fields (B,, gP) and the viewing angles (e,, e,) is 

where the symmetry, Ad(&,, B, ; e,, 0,) = M(Bc, 0, ; Q,, 8,) follows from the symmetric 
form of equation (4.2), and the nonzero nature of the mutual information follows 
from the definitions of the entropies given by equation (4.1). The mutual information 
can be interpreted most easily by defining an average conditional entropy 
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0 

FIG. 6.-Relative uncertainty given the data. S(B,, 8J, vs noise level. U, for three different 
ratios of peripheral to central density. 

so that we can rewrite 

Here, we subscript the marginal probability PM to indicate that the amplitudes (and 
other dependencies not appearing explicitly) have been summed over. Thus. the mutual 
information can be interpreted as the uncertainty in (&,,b,) resolved by knowing 
(ec, 6,). There are two important limits here : for independent parameters, i.e. 
PM(b, ,  b,, e,, 0,) = PM(B,,  b,)P(O,, e,), we have M(b,, 8, ; e,, e,) = 0, i.e. there is no 
mutual information, so knowing (ec, 0,) is not helpful in deducing (bc, gP) and vice 
versa. In the limit that (ec, e,) completely determines (gC, 8,), then M(b, ,  8,; 
d c ,  S,) = H(&,, 8,). so that there is sufficient mutual information to resolve completely 
the uncertainty in (BC, 8,). Conversely, in the limit that (gC, 8,) completely determines 
(ec, e,), then M(&, 0,; b,, 8,) = H(O,, e,), so that there is sufficient mutual information 
to resolve completely the uncertainty in (e,,Q,). Note that since M(€, ,€ , ;  
O c ,  e,) d H(b,, &,), H(f3,, e,) d HA, we note that the ratio M / H A  varies between 
0 and 1. 

Using equation (4.2), we have for the mutual information M(6,, B,; e,, 0,) = 0.05HA, 
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for the example given in Section 3. This indicates that the uncertainty in (c!?~,€~), 
resolved by knowing (ec, O,), is rather small. These numbers make more precise our 
observation that the data are quite informative in deducing the electric fields in the 
absence of definite information concerning other plasma parameters, and the further 
knowledge of these parameters is only of marginal value. We are led to conclude that 
these parametric dependencies on the radiation response are relatively orthogonal. 
From the standpoint of information processing, we prefer, of course, that the mutual 
information be small, because this simplifies our scanning of parameter space. If 
knowledge of one parameter is not helpful in searching for another, then we can 
partition the parameter space and conduct independent searches for each independent 
parameter or each set of only mutually dependent parameters. 

The worth of precise information concerning certain parameters in deducing others 
may also be seen in a somewhat different way. The relative uncertainty S(8,, 8,) for 
the probability distribution in Fig. 3a is about 0.66, whereas for the distribution in 
Fig. 3b, S(6,, 8,1Q, = 0, Qp = 0) = 0.63. In other words, exact knowledge of the 
viewing angles does not further reduce the uncertainty in the fields by much. Similarly, 
the relative uncertainty S(O,,O,) for the probability distribution in Fig. 4 is 0.53, 
whereas, if the electric fields were known precisely, then we would have 
S(O,, = 0.08, Q, = 0) = 0.50. For the distribution in Fig. 5, the relative uncer- 
tainty is reduced only from S(B,, e,) = 0.61 to S(6,. 8,lb, = 0, 6, = 0) = 0.59, when 
the peripheral parameters are known. In all cases here, the comparisons are made 
without precise knowledge of A,  and A, .  

5 .  S U M M A R Y  A N D  EXTENSIONS 
Uncovering plasma parameters might be accomplished by perturbing the high- 

velocity. superthermal, very fast electrons. A number of practical issues require further 
study, but, in principle, it appears from this preliminary analysis that transient radi- 
ation measurements can severely constrain the values that certain plasma parameters 
may jointly take. The fast electrons synchrotron radiate copiously, but lose energy 
slowly, so that there can be many time points in a recognizable incremental radiation 
pattern R ( w , t ) .  It is the time information in this pattern that makes it inform on 
certain plasma parameters such as the loop voltage or the ion charge state. Eliciting 
this information relies on, among other things, a clear understanding of the dynamics 
of these fast electrons. 

In this regard, the physics of these electrons is relatively well founded. Dominated 
by Coulomb collisions and the dc electric field, these electrons mainly flow along the 
magnetic field, largely immune to temperature fluctuations and other turbulence in 
the bulk of the ion or electron distributions. This understanding of the dynamics 
of fast electrons has received considerable experimental verification, particularly in 
experiments designed to drive current by lower-hybrid waves (JOBES et al., 1985 ; 
FISCH and KARNEY. 1985; KARNEY et  al., 1985; TAKASE et al., 1987; LEUTERER et 
al., 1985). Since relatively few parameters govern the dynamics of these electrons, it 
is possible to formulate a tractable inverse problem of determining parameters from 
the radiation response. 

Although the model that we employ has been highly successful in describing the 
current-drive experiments, the conclusion that can be drawn from these experiments 
is only that the model is successful in an average sense, since current is a cross-section 



Loop-voltage tomography in Tokamaks 351 

integrated quantity. This means that there is some room to question the experimental 
basis for the physics model. The primary effect not accounted for in our model is the 
possibility of cross-field transport of fast electrons due to imperfect magnetic surfaces 
(STIX, 1978 ; RECHESTER and ROSENBLUTH, 1978). On the other hand, at least in the 
current drive experiments, this effect could not have been too strong, or the current- 
drive effect would not have been observed. The experiments, however, were carried 
out over a parameter range that is not necessarily subject to extrapolation. Accounting 
for the losses of these fast electrons (LUCKHARDT, 1987) might be accomplished 
analytically by introducing only a few new parameters. Since the radiation response 
remains linear, a Green’s function can still be defined and the fast algorithms that we 
have developed might be generalized to include transport and losses. Of course, it 
may be that in many instances the model as presented would suffice. 

The physics of trapped electrons is also not included in the present model. For 
probing radiation such as lower hybrid waves that interacts with electrons with high 
parallel velocity but only average perpendicular velocity, the electrons that carry the 
incremental signal remain largely untrapped as they slow down. The tendency to 
remain untrapped is more pronounced for the very fast electrons that we consider, 
because the mildly relativistic mass increase favors slowing down in energy over pitch- 
angle scattering. The trapping effect is ignorable here since, by the time an electron is 
trapped, it has already slowed down to an energy at  which the radiation is small. For 
probing radiation that interacts with trapped or nearly trapped electrons, however, 
the analysis here needs to be extended. 

The probing radiation must be powerful enough to produce in the plasma dis- 
tinguishable incremental radiation. The power requirement here is far less than for 
plasma heating, but may not be entirely negligible. A major source of noise is the 
fluctuations of the background radiation, so a more powerful incremental signal is 
desirable. Note that the total radiation power loss from a single electron scales as p : .  
For a Maxwellian, nonrelativistic distribution, the average radiation is from electrons 
with v L  = $vT. Thus, for example, tail electrons comprising only 0.1 % of the electron 
density, but situated at U _  = lOu,, would contribute approximately 5% of the synchro- 
tron radiation. While this is still a small part of the background emission, what is 
important is that there are frequency windows in which the incremental radiation 
dominates. For example, for perpendicular viewing (0 = 0), the background radia- 
tion appears primarily at the cyclotron harmonics, whereas the incremental radiation 
appears between these harmonics, since the fast electrons responsible for the incremen- 
tal radiation pattern suffer relativistic mass enhancement. 

The efficiency of producing the incremental radiation can be defined as the fraction 
of the incident probing r.f. power that is converted to the incremental signal power. 
Note that power loss of a single fast electron due to synchrotron radiation or due to 
collisions can be written as 

(5.la) 

(5.lb) 

where v, = (wp/471) In A(0,3/nc3), vSyn = (o,i671)(wc/o,)’(w~/nc3), and w, is the non- 
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relativisitic cyclotron frequency gB/m. Thus, very approximately, the fraction of 
incident probing radiation that is reflected back as synchrotron radiation is 

This indicates, e.g. that about 10% of the absorbed probing radiation is reflected back 
as incremental synchrotron radiation for electrons at about 600 keV, corresponding 
to electrons in the tail of the distribution function in a 25 keV plasma. A topic of 
future research might be to improve the accuracy of the Green’s function for the 
radiation response by accounting for the radiation recoil through a further expansion 
in P,y,/Pc,I. This refinement would be useful at the high end of energies (radiating 
electrons at greater than 600 keV) that this diagnostic might employ. Note, however, 
that vanishingly small radiation recoil, while mathematically expedient, is energetically 
wasteful, since very little of the probe power is reflected in the signal power. 

In our work we considered radiation emanating from only two spatial locations, 
and we considered only one detector to be available. A question for further pursuit 
is how best to exploit the happy situation when several views of the Tokamak are 
possible. Also, in a more refined calculation, more spatial locations in the plasma 
should be considered. In practice, however, rather than merely considering a finer 
mesh of independent radiating points. a functional parameterization of the spatial 
location of the radiation might be employed. While such an ansatz could significantly 
reduce the parameter space that need be considered, it remains a topic of further 
research to determine the extent to which the relative orthogonality of the parameters 
could aid in formulating this ansatz. 

In general, there is a great opportunity to limit the computational burden through 
feature selection. For example. in the tomography problem in Section 3, in fact, only 
amplitude-normalized response patterns were compared. In other words, only shape 
information was retained, which effectively reduced the parameter space dimension 
from six to five (since only the ratio APIA, enters). No further feature selection was 
pursued, but, in this example, great use was made of the scale-invariant features of 
the radiation response given in equation (1.4). Although 1.4 x lo6 radiation patterns 
were compared, only 13 were actually computed from the radiation response. These 
13 represented the possible viewing angles. The remainder of the responses were 
obtained from equation (1.4), by varying intensity, electric field or density. 

Even if the physics assumptions made here are reliable, even if the signaljnoise ratio 
is favorable for realistic probe power, and even if the computational burden can be 
handled in the manner envisioned here, there still remain many practical difficulties- 
of which we list here several-to be resolved before such a diagnostic could be 
demonstrated. First, care must be taken that wall reflections of the radiation are 
minimal, possibly through the use of a beam dump. Second, the radiation itself can 
be viewed only at frequencies well between harmonics, away from where large bulk 
emissions or absorptions mask the transient signal. Third, in a reactor, waves at the 
extraordinary polarization are likely to be trapped in the Tokamak interior, so only 
waves at the ordinary polarization can possibly inform on parameters on axis. In this 
regard, it should be noted that the probing radiation must be carried by a wave that 
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penetrates the plasma center, something of which the lower hybrid wave, in particular, 
may not be capable in a reactor. Fourth, to the extent that the plasma is not quite 
optically thin, in addition to the incremental radiation, one must take into account 
the incremental absorption produced by the probing perturbation. Fortunately, the 
incremental absorption can also be calculated efficiently by using, in fact, the same 
Green's function solution that facilitated the calculation of the incremental radiation. 
Fifth, care must be taken to trace accurately the ray paths of the transient signal. 

In summary, the relatively modest diagnostic system that we propose includes both 
the brief, probing r.f. signal that leads to the incremental synchrotron signal, and an 
array of frequency detectors with submillisecond time resolution. In this manner, a 
great deal of data is focused on but a few choice parameters. including the otherwise 
unmeasurable dc loop voltage. Powerful analytic tools make feasible a numerical 
analysis of data that would otherwise be unthinkable. The example that we offer 
indicates that very large parameter spaces can be scanned efficiently. While further 
study is necessary to demonstrate the practical feasibility of this diagnostic, it does 
appear that information that is both novel and useful can. in principle, be obtained. 
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A P P E N D I X  A : S I M P L I F I C A T I O N  O F  I N H O M O G E N E O U S  T E R M S  
Here. we show that the inhomogeneous terms bk can be written in the simplified form given in equation 

(2.1 I ) ,  namely 

The simplification relies, in part, on the derivation, which we proceed to show, of several useful identities 
involving Legendre polynomials. 

Beginning with equation (2.8), we have 

where we define 

These expressions can be simplified through the use of the Legendre identity 

so that 

(A.3a) 

(A.3b) 

From the last equality, which made use of the definition of the Kronecker delta function (d2, = 1, i = j ;  
6,, = 0. i # j ) ,  it is evident that B,, = B,,. 

To simplify the A,,, we can integrate by parts, in the definition (A.3a), to get 

From the last equality we have 

Aki +Aik = 2Bk1. ('4.7) 

Next, we note that the Pk(p) also satisfy the Legendre equation 
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(A.8) 

so in the definition (A.3a) we could substitute 

where we integrated by parts to get the second equality and then used again the Legendre equation (A.8) 
to get the last equality above. Using now the definition, (A.3a), for Ak! in the last term above, equation 
(A.9) gives us 

Combining now equations (A.7) and (A.10), we have 

and using equation (A.5), we finally get 

(A.lO) 

(A. l l )  

(A.12) 

Finally, using equations (A.12) and (A.5) in equation (A.2), we derive the expression for the b, given in 
equation (A.1). 

A P P E N D I X  B :  R A D I A T I O N  R E S P O N S E  TO F I R S T  O R D E R  
In this Appendix, we present the complete radiation response to first order in the electric field. Using 

equation (2.16) in equation (2.1 l), we can rewrite 

The Green’s functions can be found by substituting for b, in equation (2.17). The radiation response 
R(w,  z) is then found by integrating equation (2.18). In practice. it is numerically expensive to retain the 
derivative terms dIk:dx, since the IA have many parametric dependencies : however, the contributions of 
these terms to the radiation response allows a simplification, because of the resonance condition. To keep 
track of terms, let us separate 

where the coefficients A.  B, C and D can be identified through a comparison of equations (B.l) and (B.2). 
The radiation response can be written as 
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R ( o , t )  = R A + R B + R c f R D ,  (B.3) 

and the subscripts identify the terms in equation (B. 1) through the corresponding coefficients. The radiation 
response term RA can be found directly from the corresponding response function 

where x = x(u. T) = g - ' [ g ( u ) - r ] ,  and one can write 

with Pk 
corresponding radiation response is found by direct integration over the Green's function. 

write the radiation response 

x k + ] - a k  = (1  -ZeK)(l+k) .  The Green's function $iIc)(s.xj can be handled similarly, and the 

In order to simplify, however, e.g. the response function proportional to dlk, Jdx, it is expedient to first 

We can rewrite 

and then we can integrate equation (B.6) by parts, noting that the & ( U )  vanish at the integration limits 
(because there is no perturbation to the electron distribution function at  these energy limits), to obtain 

In the second equality above, the bracketed terms are treated as functions of u with T entering parametrically. 
The second of these terms contributes to R ( o ,  z) proportional to the initial condition Qk(u) as do the terms 
A and D in equation (B.2). The first bracketed term multiplies dQ,:du, which is numerically easier to store 
than derivatives of the I,, since each of the Q,  are just one-dimensional functions, which are given in some 
analytic form. 

The further simplification in determining R ( o ,  z) occurs upon substitution of the specific form of the 
radiation function I, which is finite only at  the resonance condition. The radiation functions differ somewhat 
depending upon the polarization observed. For example, for extraordinary polarization (see, e.g. LAKDAU 
and LIFSHITZ, 1951), the radiation intensity Ix can be written as 

where n is the cylotron harmonic, Jh is the derivative of the nth Bessel function of the first kind, w, = eB/mc 
is the cyclotron frequency of nonrelativistic electrons, and ;"(U, p, e) = 1 -up sin Ob; is the extent of the 
Doppler shift through viewing the radiation at angle 0. The radiation intensity, for ordinary polarization 
(i.e. with E vector parallel to the magnetic field), may be written as 
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We now integrate equation (B.8) and analogous equations for the other response terms over the 6-  
function resonance in equations (B.9). For, say, the ordinary polarization, we get the following equation 
for the radiation response : 


