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The nonlinear, relativistic dynamics that results when intense ( 10” W/cm* and above) and 
ultrashort (one plasma period or shorter) laser pulse travels through a cold underdense plasma 
is investigated. Using a Lagrangian analysis of the plasma response, it can be demonstrated 
that the nonlinear wake, the collective dissipation, the nonlinear Compton losses, and the 
harmonic generation, are all determined by a finite set of integrated scalar quantities. This 
result holds for one-dimensional, short pulses of arbitrary amplitude, shape, and polarization, 
so that these very short intense laser pulses in a plasma can be viewed essentially as a 
quasiparticle characterized by a small set of global parameters. 

1. INTRODUCTION 

That electrons or photons might be accelerated by high 
phase velocity nonlinear plasma waves’ focuses attention on 
the possibility that such waves might be generated by means 
of intense ultrashort laser pulses in a cold plasma. Tech- 
niques of pulse compression’ now make possible the explo- 
ration of the laser-plasma interaction at fluxes above 10” 
W/cm2. Thus there is a need to develop new theoretical tools 
to understand the intense relativistic pulse-plasma interac- 
tion regime. 

The nonlinearity parameter of an electromagnetic 
transverse wave with vector potential a is 7 = ea/mc, where 
c is the velocity of light, - e the electron charge, and m the 
electron mass.3 When v- 1 (- 10” W/cm2 for visible 
light), the quiver velocity becomes relativistic. When the 
fields are so strong that the nonlinearity parameter 77 > 1, the 
dipolar approximation is no longer valid, the Lorentz equa- 
tions become nonlinear because of the occurrence of a space- 
dependent term in the driving wave phase, and the relativis- 
tic momentum is a nonlinear function of the velocity. Yet 
another source of nonlinearity, appearing in the Eulerian 
representation but avoided in a Lagrangian analysis, arises 
from the convective derivative of the velocity. 

This paper addresses the problem of the nonlinear rela- 
tivistic interaction of a given one-dimensional, very short, 
electromagnetic pulse of arbitrary amplitude, polarization 
and shape, with a cold underdense plasma. The plasma is 
considered cold, in that both the electron quiver velocity in 
the pulse, and the electron longitudinal velocity in the wake, 
are larger than the electron thermal velocity. 

Although there are no general methods to deal with 
such a nonlinear, initial value problem, a Lagrangian analy- 
sis of the electrons plasma response is powerful mathemat- 
ically, and affords a clear physical picture of the nonlinear 

*) Permanent address: Association EURATOM-CEA, C.E.N Cad., 13 108 
St. Paul lez Durance, France. 

processes. Here, we shall consider the effects of a given pulse 
on the plasma; the effects of the plasma on the pulse occur on 
a time scale longer than the time scales involved in the dy- 
namics of the plasma responses. The slow evolution of the 
shape of the pulse will be considered in a forthcoming paper. 

The consideration of an ultrashort pulse actually simpli- 
fies considerably the mathematical analysis. This is fortu- 
nate, since, in the relativistic regime, the dipolar expansion 
which assumes 74 1 cannot be used. Moreover, the usual 
formalism of parametric coupling of nonlinear laser-plasma 
interactions cannot be put at work efficiently, because, in the 
regime we consider, the plasma experiences a ballistic, very 
short, passing perturbation rather than a harmonic one. 

Consider an ultrashort pulse with a broad spectra whose 
mean frequency, Z, is above the plasma frequency wP, and 
whose width SW is larger than 0,. The plasma is assumed to 
be underdense for the main spectral components of the pulse 
(75 f SW > wP). Thus there are two small parameters, 
oP/‘ZJ < 1, and w,,/Sw < 1, and, since So ~73, the second in- 
equality ensures the first one. 

The inequality wP/Sw < 1 means that the pulse duration 
is shorter than the time for the electrons to set up a collective 
response. In other words, the electron motion inside the 
pulse is dominated by the single particle response to the 
transverse wave packet, and the collective longitudinal re- 
sponse can be treated as a perturbation in front of the driving 
pulse forces. On the other hand, behind the pulse, the plasma 
reorganizes itself through a purely longitudinal collective 
response to the initial perturbation induced by the pulse, and 
this result in an electrostatic wake. 

A Lagrangian analysis, efficient in analyzing the weakly 
relativistic regime of the beat wave problem,4 is also suited 
particularly to the present parameter regime of a given arbi- 
trary short pulse on a cold plasma. 

This problem of intense relativistic pulse-plasma inter- 
action has been recently addressed with a quasistatic reduc- 
tion of the Eulerian representation,’ which assumes an or- 
dering of the same type. These reduced Eulerian equations 
account for both the effect of the pulse on the plasma and the 
the self-consistent reaction of the plasma on the pulse, result- 

1323 Phys. Fluids B 4 (5), May 1992 0899-8221/92/051323-09$04.00 @I 1992 American Institute of Physics 1323 

Downloaded 23 Nov 2005 to 198.35.4.75. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



ing in wave depletion through an adiabatic redshifting. 
Using the present Lagrangian method, rather than the 

quasistatic reduction, it can be shown that the plasma re- 
sponses can be calculated in terms of a small set of global 
quantities; moreover, this can be accomplished for arbitrary 
amplitude, shape and polarization, of the pulse. From this 
analysis, a given pulse appears as a quasiparticle character- 
ized by a few scalar parameters, which we calculate. The 
Lagrangian analysis provided here can also deal with dis- 
creteness effects, such as nonlinear Compton losses which do 
not appear in the fluid representation. 

Suppose a wave packet propagates in the z direction, 
with vector potential a(t -z/c). Suppose further that 
a(t-z/c<O) =a(t-z/c>T) =O. The pulse is then 
characterized by two time scales: its mean frequency 73 and 
its total phase duration T, where TSW- 1. Our study is re- 
stricted to a pulse traveling at the velocity oflight, which is a 
good approximation for waves in an underdense plasma, and 
an even better approximation for very intense waves6 In 
that case, the duration seen by a rest observer is, in fact, TtB. 

It turns out that, for short pulses, many important phe- 
nomena do not depend on the details of the pulse shape; 
rather, certain global parameters play a key role. For exam- 
ple, consider the total energy content per unit surface, u. 
This quantity can be expressed in terms of the square of the 
electric field ( h2 = I+) as follows: 

s 

T 

u=eo UEEo h2(u)du. (1) 
0 

As will be demonstrated in the forthcoming sections, a set of 
integrated quantities, or what we call “global parameters,” 
ofwhich Uis a member, turns out to characterize the plasma 
dynamical responses. 

The paper is organized as follows: In Sets. II and III, we 
review the exact relativistic orbit of an electron in an arbi- 
trary electromagnetic pulse, and the Lagrangian theory of 
relativistic nonlinear plasma waves. In Sec. IV, we study the 
relativistic interaction of a short, intense pulse with an un- 
derdense plasma. The electron response inside the pulse is 
calculated through an expansion that exploits the exact cal- 
culation, discussed in Sec. II, of electron motion in vacuum 
fields. The net effect of the pulse on the plasma depends on 
two quantities that describe the electron as it leaves the 
pulse, the exit position H, and the exit velocity I’. These 
quantities, like U above, can be expressed as weighted inte- 
grals over the pulse. 

In Sets. V and VI, on the basis of H and V, the wake 
structure, and collective energy losses, are calculated. Then, 
in Sets. VII and VIII, nonlinear Compton losses and har- 
monic generation are studied, and these effects are shown to 
be determined by two new global parameters. A Lagrangian 
picture of photon acceleration is briefly analyzed in Sec. IX. 
In Sec. X, the various density regimes for nonlinear dissipa- 
tion are explored. In Sec. XI, our results and conclusions are 
summarized. 

To simplify the presentation, in the following, rather 
than the I.S. of units we shall use m = c = e = 1. Thus the 
nonlinearity parameter 7 is in fact a, and the permittivity of 

free space e. is the inverse of the clasical electron radius 
1/4lrr,. 

II. EXACT RELATIVISTIC MOTION IN A LASER PULSE 

The relativistic motion of an electron in an electromag- 
netic pulse of arbitrary polarization and shape is integrable.7 
In this section, we will briefly review this important result 
which is the underpinning of the Lagrangian analysis. Inte- 
grability is a consequence of the existence of a space-time 
symmetry associated with the phase of the wave: Since the 
system is invariant with respect to translation perpendicular 
to the phase direction in space time, Noether’s theorem as- 
sures the existence of an additional invariant associated with 
this symmetry. The motion of the electron in the wave is 
described by the Lorentz equation, 

-f@-=g+vX(nX&) *=+v 
dt ‘dt ’ 

(2) 

where the wave travels in the direction of the unitary vector 
n, the electron momentum is denoted by p, and the velocity 
by v. The dot stands for differentiation with respect to the 
phase argument, (f - z), and y is the relativistic energy. 
Multiplying the first equation by n, using am = 0, and sub- 
tracting the second equation, we find that the quantity 
y - n-p is a constant of the motion. In a cold plasma 
( T, 4 5 11 keV), this constant is clearly y( - M ) 
-IPp( - a~) = l.Thuswehave 

y-n*p= 1, 7=t-z, (3) 

where r is the particle proper time, and the equation at right 
is simply a proper time integration (with a suitable choice of 
the integration constant) of the equation at left, i.e., 
y = dt /dr, n-p = dz/dT. The solution of Eq. (2) can then be 
expressed in terms of this proper time as follows: 

z(r) = +- 
s 

I 
a2(u)du, Y(Q) = 1 + --$a2(T), (4) 

0 
where we have used the conservation of the canonical trans- 
verse momentum, n Xp = nXa. This implicit result, if not 
given explicitly, is, however, exact to all orders in a. Altema- 
lively, we can express this implicit solution in the form 

t(r) = 7 + 3 
s 

T 
a2( u)du 

0 
(5) 

from where we can deduce the following physical interpreta- 
tion: As the pulse passes the electron, no final exchange of 
energy or momentum between the pulse and the particle 
takes place, and the only effect of the wave packet on the 
electron after the packet passes the electron is a relativistic 
ponderomotive displacement of the electron, 
6~ = .f$r2( u)du/2, which occurs precisely in the direction 
of the wave propagation. 

Note that this relativistic ponderomotive displacement, 
Eq. (4)) is different from the nonrelativistic one because the 
proper time, Eq. ( 5 ) , is a nonlinear function of the time. 

In a plasma, this displacement will induce electric forces 
resulting from perturbation of the charge density. The plas- 
ma will try to restore local charge neutrality. The competi- 
tion between this plasma collective response and the pulse- 
induced ponderomotive displacement dominates the physics 
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of nonlinear short pulse-plasma interaction inside the pulse. 
Note that the first-order plasma correction to the electron 
motion is of order w;/,/so2 and will be studied in Sec. IV, but 
the plasma correction to the wave dynamics is of order 
wi/w2 and thus can be neglected. Clearly, however, from 
this picture we can anticipate certain excellent approxima- 
tions, namely, that the main result of the pulse is a displace- 
ment, and subsequent dynamics can be considered without 
regard to the pulse. 

III. EXACT RELATIVISTIC MOTION IN INTENSE 
PLASMA WAVES 

We consider a cold plasma perturbed in the z direction. 
Each electron is described by its unperturbed position z, and 
by its Lagrangian displacement h (t,z, ), so that the running 
Eulerian position is given byz = z, + h.8 Assuming that the 
initial perturbation and the subsequent dynamics does not 
invert the initial z, ordering of the electrons (no overtak- 
ing), we can apply Gauss’s theorem to find the relativistic 
motion along the z axis: 

& -= _ 
dt 

w;h, *= -+dh. 
dt dt 

(6) 
d2h -=m[ax(nxa)] -ogyh=G--wiyh. 
d72 

(11) 

Integrating the equation at right with respect to time, we find 
that y + wih 2/2 = 1 + wih L/2 is an invariant, where h, 
is the maximum elongation of the considered oscillation. 
This allows us to introduce the proper time r, and to express 
the dynamics in the proper time representation: 

(7) 

Thus, the proper time representation of the dynamics leads 
to a nonlinear oscillator equation, whose solution can be put 
analytically in terms of Jacobian elliptic functions: 

h(T) = h, sn(wr,k), 

K(k) t(r) = 7--- 
w 

r 

s 
cn’(wu,k)du, (8) 

KC k)/o 

where w and k are, in fact, functions of the amplitude, given 
by 

o*=w;[l +w;(h&/4)], k2=w;h~/4wZ. (9) 
The initial condition is h( t = 0) = h,, and K is the com- 
plete elliptic integral of the first kind. It is to be noted that the 
integral of cn2 in Eqs. (8) can be expressed in terms of the 
elliptic integral of the second kind E, i.e., 
k*~“cn*[u,k]du=E[am(u),k] - (1 - k*)u. As for the 
solution in the pulse, but without the plasma, described in 
the previous section, the solution here is fully relativistic, 
and exact to ail order in h,, but implicit. 

The nonlinear oscillator described by Eq. (7) can also 
be approached through perturbative methods; the well- 
known result of such an analysis is relevant to the weakly 
relativistic regime and is given by 

h = h, cos(ot), o=w,(l -3m;hb/16). (10) 

We shall now address the problem of the competition be- 
tween the motion described in Sets. II and III, the regime in 
which the electron is inside a relativistic wave packet that 

propagates in a cold underdense plasma. The result of this 
competition will be captured by the parameters Hand V, the 
exit position and exit velocity from the pulse. Then, behind 
the pulse, the motion is described by Eqs. (8)) with the initial 
conditions being Hand V. 

IV. PULSE-PLASMA INTERACTION 

To address the problem of the motion of a plasma elec- 
tron first inside a pulse, and then behind it, let us refer to the 
space-time diagrams in Figs. 1 and 2. The forward and back- 
ward fronts of the pulse travel along two light characteris- 
tics, and the length of the pulse is T. When an electron enters 
the pulse, it is deflected according to the equations of motion 
as given by Eq. (2). Figure 1 corresponds to the case of 
circular polarization and Fig. 2 corresponds to the case of 
linear polarization of the wave. This deflection causes a den- 
sity perturbation inside the pulse, which leads to a longitudi- 
nal electric field. This collective electrostatic field tends to 
pull the particle back to its unperturbed position. Accord- 
ingly, we have 

The initial condition is h = 0. If the pulse is short enough, 
the second term on the right-hand side will remain smaller 
than the first term, so that we can expand about the exact 
result of Sec. II, namely, we can expand h = h, + h, 
+ h, + e-v . The other dynamical quantities of the problem 

can be expanded similarly, y = ye + yi + y2 + * *a and so 
on. The first-order correction h, , due to the presence of plas- 
ma, will be of order wg/Sw2. As discussed in the ordering of 
Sec. I, this is, by assumption, a small parameter; similarly, 
the h, term scales as w;f, etc. The system of equations to be 
solved is: 

FIG. 1. Space-time diagram of the interaction of an electron initially at z, 
with a circularly polarized laser pulse. Within the pulse, the electron is de- 
flected by the laser. Upon leaving the pulse, the electron oscillates in the self- 
consistent, nonlinear plasma wake. 
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With these expressions for the first-order quantities, Eq. 
(17) can be solved explicitly. After integrating twice by 
parts, we obtain 

FIG. 2. Space-time diagram of the interaction of an electron initially at z,, 
with a linearly polarized laser pulse. Within the pulse, the electron is de- 
flected by the laser, where it oscillates at twice the mean pulse frequency. 
Upon leaving the pulse, the electron oscillates in the self-consistent, nonlin- 
ear plasma wake. 

dp ir*(t- h) 
-z= 2 - 

+y, 

dr (i2(t - h) 
-z= 2 

- a;: hp, 

dh 
z=P) 

dt -= 
dr Y* 

The zeroth-order response is the one found in Sec. II. The 
invariant y. -pO = 1 allows to calculate the proper time 
r = to - h, and the zeroth-order energy and position 

h, =$- 
s 

Ta2(u)du, y. = 1 +$a2(T). (16) 
0 

The first plasma correction is governed by the system of 
equations 

dp, (tl -h, )ii2(to -ho) 

z= 2 - ~;hoyo, (17) 

dy, (t, -h, )ii2(to -ho) 
-= 

dr 2 
- 0; hopoF (18) 

dh, 
--&‘PD 

dt, 
--&- = Yl * (20) 

To solve this system of equations, we subtract the first equa- 
tion from the second one to derive an expression for y, - p, . 
Then, we can solve for the quantity t, - h, using 

s 

T 

YI -PI =Q$ ho(s)& 
0 
7 

s s 

u 
t, - h, = co; du ho (s)ds. 

0 0 
(21) 

p1 =~(62[du~du~dsaZ(s) -a2[du 

s 

Y 

X 
0 

dva2(v) -Plduldua’(o)). (22) 

After further algebra, the total effect of the pulse on an elec- 
tron can be expressed as a net displacement Hand as a small 
exit velocity V. The displacement, H = ho ( T’) + h, ( T), is 
illustrated schematically in Figs. I and 2. Note that the exit 
velocity 

V=PO(T) -I-P, (T)/[yo(T) + y1 (r)] =p, (T) 

is a pure plasma effect. These exit quantities can be written as 

H+ 
s 

r 

0 
a’(u)du-$c$ ~TdsJrddu~doa2(u) 

xl1 +a2(dl, (23) 
T I4 

V= -$i$ du 
I s 

dua2(u). (24) 
0 0 

From this solution, we can define precisely the range of va- 
lidity of the Lagrangian expansion. When an electron exits 
the pulse, its displacement, due to the plasma collective ef- 
fect, must be smaller than the displacement due to the pon- 
deromotive forcedescribed in Sec. II, i.e., ho ( r) > h, ( T). In 
the weakly relativistic regime, a - 1, this condition is equiva- 
lent to C$ < Sw2, In the strongly relativistic regime, a $. 1, this 
condition is equivalent to @:a2 < Sw2. 

A complementary case, where the effect of a pulse on a 
plasma can be calculated analytically, is when the time or- 
dering condition is relaxed, but the interaction is nonrelativ- 
istic, (a Q 1). Admittedly, for the purpose of wake and har- 
monic generation, this nonrelativistic case is less important, 
but we present it here, for academic reasons, for the sake of 
completeness. Consider an electromagnetic pulse described 
by its vector potential a( t,z) 4 1. We do not assume the pulse 
length or the wave period to be smaller than the plasma wave 
period, nor do we assume the group velocity to be the light 
velocity. In this linear, nonrelativistic case, a is the small 
parameter. The Lagrangian coordinates of an electron inside 
the pulse are described by 

-$= -n*[a(t,z)x(n@y)] -@;h 

= -a(t,z)~--;h. (25) 

This equation is valid provided that the velocity of the elec- 
tron remains smaller than the velocity of light. This occurs if 
a 4 I, otherwise proper time corrections are needed. We can 
then use a dipolar approximation for the first term on the 
right-hand side of Eq. ( f6), a( t,z) = a( t,zo 1, and 
da(t,z)/dz = da(t,z, )/a~. Thus the equation to be solved 
becomes linear, and can be integrated directly. Let T be the 
pulse length. The sole effect of the pulse on the plasma, as in 
the previous case, is to disturb the electron position and ve- 
locity by an amount Hand Vgiven by 
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Hd- J- T 
JQ2(U,0) du 

, 

tip O  

sin[w,(u- T)] az 

v= -$ 
s 

r 

cos[wp(u - T)] (26) 
0 

Whereas from either a practical, or a fundamental, point of 
view, this nonrelativistic result may be less interesting than 
the relativistic one, this solution does arouse some interest. 
Note that, if w,, T < 1, the scalings, with respect to w,, and a, 
of the incremental displacement and velocity, Hand V, are 
different from the fully relativistic nonlinear case. This indi- 
cates that to reach perturbatively, from the nonrelativistic 
case, the relativistic case may require a large number of 
terms in the expansions that rely upon the smallness of wP or 
a. 

V. NONLINEAR WAKE 

Using the results of the previous sections, the structure 
of the nonlinear wake behind the pulse can be calculated 
easily. First, let us investigate the weakly relativistic re- 
sponse described by Eq. ( 10). The weakly relativistic La- 
grangian displacement behind the pulse can be written as 

h(t,z,) =Hcos[o(t-z,)] + (V/w)sin[w(t-z,)], 

t>zo, (27) 

where z, is the initial unperturbed position of the electron. 
The nonlinear frequency is given by 

w(H,y) =  wp( 1 - 3w;h L/16), h  b = H2 + V2/w;. 
(28) 

It can be verified that Eq. (27) fulfills both the dynamical 
equation of Sec. III and the initial condition just behind the 
pulse calculated in Sec. IV. The Eulerian density perturba- 
tion can be expressed on the basis of the unperturbed density 
n(z, ) and h, namely 

n(G) = dz, n(z,)S[z-z, -h(t,z,)] 
s  

= dzo 

s s 

~n(zo)e-‘k[‘-“h’L”l, (29) 

where 6 is the Dirac function. The exponential of the oscil- 
lating Lagrangian position in Eq. (27) can be expanded in 
terms of Bessel functions of the first kind J,. For t > z, we 
obtain, behind the pulse, 

XJ,,, (kH)e- 
ik(r-.qj)ei(m + n)o(r-2~) 

(30) 

Note that after at least one plasma period, h(z,,t) is unaf- 
fected by the electrons just leaving the pulse. Thus the z, 
integral can be extended from - CO to + CO. It then be- 
comes apparent that Eq. (30) simplifies, because the integral 
over z, can be performed, giving the Fourier transform of 
the unperturbed density profile n (z, ). Thus Eq. (30) can be 
put into a particularly convenient form to study the effect of 
inhomeneous density distributions, such as might arise, for 
example, in tapering the plasma in wake field accelerator 
schemes. Here, we shall restrict our attention to the case of 

uniform unperturbed density, so that the wake can be put in 
the form of a sum of harmonic waves, namely 

Xeimo(H,Y)(r-z). (31) 

The use of the weakly relativistic approximation for the elec- 
tron oscillation, Eq. ( lo), means that Eq. ( 3  1) is valid where 
the sum over m is dominated by the small m. 

Consider now the case of highly relativistic electrons 
described by Eq. (8). Here, it appears that the wake struc- 
ture can be expressed as an implicit function of (t - z). 
Rather than using the harmonic representation of the Dirac 
distribution in Eq. (29)) we first make use of the representa- 
tion 

n(z,t) =  dzo n(z,)S[z - z, - h(t,z,)] 

= no (32) 

In order to simplify, we retain only zeroth-order plasma ef- 
fects inside the pulse, namely, we use H = ho and V = 0. The 
Lagrangian compression can then be calculated with the 
help of the chain rule for differentiation applied to Eq. (8). 
After some algebra, one obtains 

1 _ 2wH cn(wr,k)dn(wr,k) 

> 

- * 
2  + o.$H* cn*(w,k) ’ 

(33) 

where r is an implicit function oft - z given by 

t-z=r- K(k)/co - Hsn(w,k) 

m2H2 r 
+“1  

I 
cn2(wu,k)du. (34) 

K(k)/w 

Overtaking between neigboring electrons occurs when the 
velocity of an oscillating electron reaches the phase velocity 
of the wave.’ The overtaking in the Lagrangian picture leads 
to wave breaking in the Eulerian picture, which results in the 
production of fast electrons. Because we have assumed that 
the group velocity of the pulse is equal to the velocity of light, 
overtaking clearly is impossible. Thus the phenomenon of 
wave breaking cannot be addressed within the framework of 
the present model. In fact, in the strongly nonlinear regime, 
(I $1, a precise and meaningful definition of the group veloc- 
ity is still lacking. 

We  have shown in Sec. III that y + wzh 2/2 is an invar- 
iant, so that, behind the pulse, there is a maximum electric 
field EM, and a maximum relativistic energy yM of an elec- 
tron during its nonlinear oscillation in the plasma wave. 
These quantities are given by 

E2,=2u;(y,-- l)=o;H2+~;V2. (35) 

Note that, here, E,,, is the peak electric field behind the pulse 
and should not be confused, in the literature, with the maxi- 
mum electric field of an infinite nonlinear plasma wave,’ 
arising from the wave-breaking limit. Although, as men- 
tioned above, the wave-breaking limit is not considered in 
the present model, it so happens that even if the group veloc- 
ity of the pulse were smaller than c, Eq. (35) remains valid. 
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This happens because the maximum values of these quanti- 
ties are reached here just behind the pulse, where we solved 
only an initial value problem, prior to the completion of a 
plasma oscillation. On the other hand, the difficulties that 
arise in overtaking occur only upon the completion of one 
plasma oscillation, and there arise particular difficulties in 
studying the steady state of nonlinear plasma waves. 

VI. NONLINEAR COLLECTIVE ENERGY LOSSES 
If one views the pulse as a ballistic perturbation sweep- 

ing a one-dimensional array of nonlinear oscillators, one can 
imagine a continuous transfer of energy from this ballistic 
perturbation to the array of oscillators. The energy balance 
of such a system can be performed straightforwardly. Com- 
pare the plasma energy before and after the pulse passing; 
the difference is the work of the pulse on the plasma, 

dU 
-rt= 

-$N’-$V’. (36) 

The nonlinear character of this dissipation is obvious from 
the fact that it is proportional to the square of the electron 
density. A linear, resonant dissipative process would incur 
this loss of energy through a decrease in the amplitude of the 
wave at constant frequency. However, since the processes 
involved here in this energy exchange are nonresonant, the 
wave action is conserved, and that the interaction result in a 
slowing down of the pulse, i.e., a decrease in the mean fre- 
quency W. 

VII. NONLINEAR COMPTON SCATTERING 
Competing with the losses calculated in Sec. VI, due to a 

coherent transfer of energy to longitudinal waves, is an inco- 
herent transfer of energy to transverse waves. The latter 
transfer can dominate at low density. When an electron en- 
ters the pulse, it is accelerated in the transverse direction, in 
the process radiating part of the energy in the pulse. This 
spontaneous process is, in fact, nonlinear Compton scatter- 
ing. The single particle dissipation is given by” 

dy 2re -= -- 
dr 3 y 

(37) 

Neglecting both the plasma response, and the radiation reac- 
tion force, inside the pulse we can exploit the fact that t - z is 
the proper time r. The total energy loss S, resulting from one 
electron transit through the pulse, can then be put in the 
form 

S=2j)2(u)[1 +y]du. (38) 

The bracketed term in the integral above accounts for the 
nonlinear, relativistic modifications of the usual Thomson 
cross section. To obtain the pulse energy loss due to Comp- 
ton scattering, we assume the existence of a decorrelation 
mechanism and sum the contributions from all electrons en- 
tering the pulse. The additional loss term, which would com- 
plete the coherent losses in Eq. (36), is then given by 

dU w2s dt=- p’ 

As might be imagined, these incoherent losses tend, at very 
low density, to dominate dissipation due to collective effects. 

VIII. APPLlCATlON TO RELATIVISTIC HARMONIC 
GENERATION 

A short intense pulse produces transverse harmonic 
fields because of the nonlinear response of the plasma.5 This 
occurs in addition to the effects considered above: nonlinear 
Compton scattering and the generation of a longitudinal 
wake. In harmonic generation, the polarization of the wave 
plays an important role. In a linearly polarized pulse, the 
quantity a2 is characterized by two time scales, 273, and SW; 
on the other hand, a circularly polarized pulse, in effect, 
characterizes a2 with only one time scale, namely, the pulse 
width, SW. This difference between the circular and linear 
polarization is depicted schematically in Figs. 1 and 2. Lin- 
ear polarization, because a2 contains the time scale 2Z, gives 
rise to harmonic generation at 3Z. 

The transverse current, due to the electrons response 
inside the pulse, is given by 

j= -eof$ dz,&z-z,-h)a 
Y 

= (4) 
The ponderomotive perturbation of the density inside the 
pulse, ( 1 f dh /dzO ), can be calculated using the results of 
Sec. IV. Expanding in the density, the leading terms for the 
proper time of an electron initially at z, are given by 

r=t-z,-h-- 7 6’-Bhdu[du[dsa2(s). 

(41) 
Now use the identity d/r /&, = (dh /dr) (&r/dz, ) 
= p&/dz,, to find, after some algebra, the density perturba- 

tion 

(1 +-@-)-I= y(l -+S,idu~dm’(u)). (42) 

Note that using Eq. (42), the current defined in Eq. (40) 
appears to be a sum of the usual linear reactive contribution 
and an active nonlinear contribution. In the case of linear 
polarization, the nonlinear contribution contains the third 
harmonic of the original pulse. Let a, be the harmonic vector 
potential radiated by this nonlinear part of the current, 
where a, obeys the inhomogeneous wave equation, 

($---$)a, = -a~~eZdu[dud(ul, (43) 

which can be solved using the Green’s function for the one- 
dimensional wave operator. The Green’s function is 0 every- 
where except in the backward light cone denoted, in Fig. 3, 
by C, and C- . In this causal light cone, the Green’s func- 
tion takes the value l/2. Thus, to solve Eq. (43 ), the integra1 
over the Green’s function is restricted to the intersection of 
this light cone with the support ofj,, shown as the shaded 
area in Fig. 3. Assume now that the interface between the 
vacuum and the plasma is located at z = 0, make a change of 
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IX. APPLICATION TO RELATIVISTIC PHOTON 
ACCELERATION 

In an optimally efficient scheme for relativistic photon 
acceleration, a leading pulse, depicted as “P 1” in Fig. 4, de- 
livers energy to the plasma wake, and this energy is entirely 
reabsorbed by a lagging or accelerated pulse, depicted as 
“P2.” Complete pulse reabsorption, leaving no energy in the 
plasma, implies 

FIG. 3. Only events inside the causal cone (C, ,C_ ) can influence the 
point ( fz). Inside the causal cone, only the shaded area, where the interac- 
tion between the incident pulse and the plasma takes place, can support the 
nonlinear current sourcej, . 

variables from (z,t) to (z - t,z + t), whose Jacobian is 2, 
and find for the first-order plasma induced harmonic pulse 

4 

a,(t,z) = -F 
t--I 

(z + t) a(w)dw 

w 

s s 

u 
X du du a2(u). (44) 

0 0 

This result can be simplified if we write z + t = 2t - (t - z), 
and then note that the first-order harmonic response appears 
as the sum of a growing propagating term and a constant 
propagating one, i.e., function of (t - z) only. After few 
plasma periods, the constant response is dominated by the 
growing term. The associated unstable electric field 
- r.Y( a, /dt) can then be written as 

A, - = w4,ta(t -z) r-=du f”dua2(u). (45) dt r Jo Jo 
To describe the power conversion due to this unstable term, 
we introduce the integrated quantities R, where 

R =~Tdin2(1)(B’dw[duo2(u))Z. (46) 

The energy, in the harmonic pulse grows as w:t ‘R, repre- 
senting a power loss, competing with the terms in Eq. (36)) 
which may be written as 

dU -= 
dt 

- h;tR. (47) 

The integral R captures the information relevant to the har- 
monic generation effect. Evidently, the harmonic power 
conversion scales as wi, or with the fourth power of the plas- 
ma density. 

Note that, by varying the degree of polarization of the 
original pulse, the mean frequency of the harmonic unstable 

FIG. 4. Two pulses P, and Pz such that all the energy transferred from pulse 
P, to the plasma longitudinal relativistic wake is reabsorbed by pulse P2 

pulse can be tuned between 5 and 35. after l/2 a relativistic plasma period. 

H, = H2, V, = V,, (48) 

where Hi and Vi are the position and velocity shifts follow- 
ing pulse i. Since the energy exchange process does not in- 
volve resonant processes, it follows that the pulse action is an 
adiabatic invariant. Hence, in absorbing the wake energy, 
the lagging pulse experiences a mean frequency upshift,” 
rather than a growth in amplitude. 

The salient parameters of such a photon accelerator are 
the mean frequency upshift of the accelerated pulse and the 
delay between the two pulses. A precise calculation of the 
mean frequency upshift requires a study of the adiabatic 
transfer of energy from an oscillating electron to a pulse, 
which is beyond the scope of the present study. We can, 
however, calculate directly the optimally efficient time delay 
in an underdense plasma. 

In the nonrelativistic regime this delay, is simply 
n + l/2 times the plasma period, where n is an integer. On 
the other hand, in the relativistic regime, which is particular- 
ly important because of the possibility of large density gradi- 
ents, proper time corrections are needed to calculate this 
delay. 

Consider an underdense plasma, so that the exit veloc- 
ities Vi can be neglected ( Vi = O,H, = H). The condition 
for an efficient transfer of energy then becomes 
h(D) = - H, where D is the electron proper time delay be- 
tween the two pulses. Using now Eq. (8), the condition can 
be put in the form 
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OD = 2nK(k), w’=w;(l fw;H2/4), 

k ’ = m;lH 2/4m2. (49) 
This condition on the proper time of the electron becomes a 
condition on the time delay between the two pulses t(H,n), 
such that 

wt(H,n) = 2nK(k) + - cn2( u,k)du, (50) 

which gives the condition for the time delay that allows a 
photon accelerator, operating in an underdense plasma but 
in the relativistic wake regime, to be maximally efficient. 

X. DENSITY REGIMES FOR DISSIPATION 
The previous sections show that, to lowest order in tip, 

there are three main channels for nonlinear energy dissipa- 
tion, and, for very short pulses ( V = 0), the total dissipation 
is 

dU 
dt= 

-~H2-m;S-2~;tR. (51) 

From Eq. ( 5 1) , we discern several different density regimes 
of dissipation. To investigate the boundaries between these 
regimes, consider, for a > 1, the scaling of the parameters, H, 
S, and R: 

H-a2Sw- I, s- a4&..o - ‘7j2r c, R-a’&- ‘. (52) 
We expect, then, that incoherent spontaneous losses will 
dominate coherent longitudinal dissipation for densities as 
low enough that 

rq$-)g)%  (53) 

where r, is the classical electron radius. Harmonic genera- 
tion may dominate wake generation at higher density and 
higher laser intensity, but here there is an important depend- 
ence upon the duration of the process or the length of the 
plasma. After a time t, the losses due to harmonic generation 
dominate if 

w,t> (:,‘(Ey. (54) 

At the present, state of the art of short, intense laser pulse 
technology, losses incurred through wake generation always 
dominate, and losses due to harmonic generation are negligi- 
ble. 

Xl. SUMMARY AND DISCUSSION 
We have shown in the previous sections that many of the 

effects of an intense, short laser pulse on a cold, underdense 
plasma can be calculated by solving the equation of motion 
of each plasma electron, and then summing the effects of all 
these motions. The result, valid to all order in the intensity Q, 
gives the collective transverse and longitudinal induced 
fields. The nonlinear energy losses are mainly due to the 
longitudinal-induced wake, which scales as wi. The losses 
due to the transverse-induced response, which happens at 
high frequency only in the case of non circular polarization, 
scales as wz. In the weakly relativistic regime, these losses 

are negligible compared to the longitudinal losses. Incoher- 
ent nonlinear Compton scattering becomes important only 
at very low density. 

We have been mainly concerned by the effect of a given 
pulse on the plasma; what we have not considered in detail is 
the self-consistent problem that considers also the effect of 
the plasma on the pulse. We show, however, that these ef- 
fects occur on a longer time scale than do the effects consid- 
ered above, and so may be neglected. 

Two time scales are associated with the modification of 
the pulse due to the plasma: one, a nonlinear time scale asso- 
ciated with the energy losses; and, two, a linear time scale 
associated with the dispersive dynamics of the pulse enve- 
lope. The time scale t, associated with the linear dispersive 
evolution of the pulse shape arises because of the dependence 
of the group velocity on the frequency, &at, av,/& - c/SW. 
Using the usual dispersion relation for a cold plasma, we 
find, wp tt - (Z/&J) 2 (Z/up ) , This time scale is larger than 
the time scales associated with the processes studied above. 
To evaluate the nonlinear time scale t,, associated with the 
longitudinal energy losses, we use the global energy balance, 
and we find wp t, - ( Z/mp ) 2 (&w/w, ) . This time scale is also 
longer than those associated with the processes studied in 
this paper. 

The above result can be compared with that of the quasi- 
static reduction of the Eulerian representation.’ As far as 
harmonic generation is concerned, in this reduced descrip- 
tion, the nonlinear current can be expressed as a function of 
the electrostatic potential 4 so that the second term of Eq. 
(43) can be written in terms of this potential as wia+ Solv- 
ing the quasistatic equation for the potential gives 

r$= -+[-‘du[dua’(u), 

so that Eq. (44) describing harmonic generation from a 
short pulse can be recovered within the quasistatic frame- 
work. As far as wake generation is concerned, the compari- 
son is less straightforward because the quasistatic equation 
has been mainly solved for square pulses5 and the quantities 
Hand V have not yet been identified in this Eulerian frame- 
work. However results for the short square pulse case are in 
agreement with the more general results presented here. 

In summary, on the basis of a fully relativistic Lagran- 
gian density expansion, we have demonstrated that the ef- 
fects of an ultrashort intense laser pulse on a cold plasma can 
be captured, in fact, by a small set of integral parameters, H, 
V, R, S, and W. The general formula for the nonlinear wake, 
nonlinear Compton losses, and harmonic generation have 
been obtained in term of these global quantities. In addition, 
what emerges from these new results, and from the Lagran- 
gian method for obtaining them, is a more clear physical 
picture of the nonlinear processes involved in the ultrashort, 
pulse-plasma interaction. 
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