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A Lagrangian analysis simplifies considerably the description of the ultrahigh intensity regime 
of laser-plasma interaction, and facilitates the identification of several new and important 
effects. First, the vacuum figure “8” orbit is shown to be unstable, with respect to a stochastic 
instability leading to collisionless heating. Second, in the generation of plasma wakes using 
ultrahigh intensity laser pulses, it can be shown that, for long-duration laser pulses, the plasma 
wake is insignificant, but, through proper phasing of a set of short-duration pulses, a dramatic 
amplification of the wake amplitude occurs. Third, in the generation of third-harmonic waves 
using ultrahigh intensity, long-duration laser pulses, it can be seen that a mismatch in the phase 
velocity limits severely the power conversion, but a conversion efficiency free from saturation 
might indeed be possible by employing either a density-modulated plasma or an ionized buffer 

1. INTRODUCTION 

The basic physical processes involved in laser-plasma 
interaction, up to lOI W/cm’, are now well understood; 
on the other hand, a large number of fundamental issues 
remain open in the study of the ultrahigh intensity (UHI) 
relativistic interaction regime. Recent advances in pulse 
compression now make possible the exploration of laser- 
plasma interactions in this UHI (above lOi W/cm2) 
regime. ’ 

In this new regime of laser intensity, the quiver veloc- 
ity of the electrons is relativistic, so that both the single- 
particle and collective responses become nonlinear func- 
tions of the incident field. This nonlinearity has been 
identified as the source of new nonlinear, collective,2 and 
single particle3 processes. 

The nonlinearity parameter of an electromagnetic 
transverse wave, with vector potential A, is eA/mc, the 
normalized quiver momentum of the electron, where c is 
the speed of light, e and m the electron charge and mass. 
When eA/mc reaches one, the electric field can accelerate 
an electron up to its rest energy in one wavelength. 

When an UHI laser pulse interacts with a plasma, 
three time scales are involved, the pulse is characterized by 
its mean frequency, o, and its frequency width, SW. The 
plasma is fully characterized by the plasma frequency, wP , 
Apart from relativistic effects, there are then three regimes 
to consider: (i) w,<Sw<w, (ii) w,-So<o, and (iii) 
SW <oP < o; furthermore, because of the relativistic in- 
crease of the electron mass, the effective plasma frequency 
is in fact decreased, so that we should also consider a 
fourth regime, (iv) SW < w < oP . 

In this paper, we describe and analyze certain basic 

*Paper 516 Bull. Am. Phys. Sot. 37, 1470 ( 1992) The interesting effects in the UHI regime which have 
bited speaker. been predicted and described in the literature, such as 

collective processes relevant to the UHI interaction in the 
so called short pulse (i) and long pulse (iii) regimes in 
which nonuniformity transverse to the wave-vector direc- 
tion is irrelevant. The validity of this one-dimensional 
( 1D) model2 requires the transverse size of the laser pulse 
to be larger than c/w,. The physical interpretation of these 
two interactions regimes is illustrated in Figs. 1 and 2. 
These space-time diagrams, introduced in Ref. 4, are par- 
ticularly convenient in analyzing, for UHI interactions, the 
processes which take place in the direction of propagation 
of the pulse. 

In Fig. 1, in the short pulse case when the pulse passes 
by an electron, the relativistic ponderomotive deflection 
displaces the electron in the direction of the pulse propa- 
gation. But, because the pulse is so short, the plasma does 
not have enough time to set up a collective response, so 
that the electron behaves nearly as an electron interacting 
with an UHI pulse in vacuum. Nevertheless, as a result of 
the ponderomotive displacement, the plasma does set up a 
collective response in the form of an electrostatic wake 
behind the pulse. 

In the long pulse regime, depicted in Fig. 2, the situa- 
tion is completely different. In this regime, each electron is 
displaced in the direction of the pulse as the pulse passes it 
by, but, after a short transient response (not represented in 
Fig. 2), a nonlinear oscillation, driven by the wave, and 
modulated by the plasma collective effects, is set up. In this 
regime, both the energy and the momentum transferred 
from the pulse to an electrostatic wake behind the pulse 
turns out to be very small, except if a nonadiabatic process, 
such as an ionization or an instability, takes place. Al- 
though wake generation is negligible, phase-matched har- 
monic generation becomes interesting and will be consid- 
ered in Sec. V. 
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FIG. 1. Space-time orbit ii a circularly polarized UHI short pulse. 

wake generation and harmonic generation,2 are collective 
processes. But, in order to understand laser-plasma inter- 
action at intensities above lo’* W/cm2, the very first issue 
logically to address is the stability of the nonlinear single 
particle motion in the field of an UHI laser wave. We will 
carry out this task in Sec. III and show that, besides the 
adiabatic regime leading to the ponderomotive force, a 2-D 
wave can display a large number of new resonances called 
Compton resonances identified in Ref. 3. Above a stochas- 

* 
Z 

-0 

FIG. 2. Space-time orbit in a linearly polarized UHI long pulse. 
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ticity threshold, which can be easily fulfilled, these reso- 
nances can overlap and the electron orbit becomes chaotic. 

To study phase-matched harmonic generation, wake 
generation and amplification, and relativistic stochastic 
heating, we use a single theoretical framework relevant 
both to the UHI single particle and collectives processes: A 
relativistic Lagrangian description of the electron response. 

In the next section, we set up this formalism, and we 
clarify the relationship to the Eulerian quasistatic descrip- 
tion introduced in Ref. 2. Throughout this paper, except 
when needed for clarity, we use e = m = c = o = 1. 

II. LAGRANGIAN DESCRIPTION 

Consider an UHI laser pulse, linearly polarized along 
the x axis and propagating along the z axis, in an infinite 
homogeneous plasma. Each electron is labeled by its un- 
perturbed position, zo, x0, and, as a result of the interac- 
tion with the pulse, it describes an orbit x( t,zo,xo), 
h(t,z,,x,) =z(t) -zo . This orbit is the solution of the 
Lorentz’s equations: 

dy aA dh 
-=v. -- 
dt at Wp’z’ 

(1) 

where p, v, and y are, respectively, the momentum, veloc- 
ity, and energy of the electron, and A( t,z) is the vector 
potential of the laser pulse. The last term on the right-hand 
side of both equations is a restoring force, arising from the 
application of Gauss’ theorem to the perturbed electron 
density.576 This electrostatic force describes the collective 
plasma response to all orders and avoids the use of a scalar 
potential in this Lagrangian representation. Equation ( 1) 
can be solved either numerically7 or analytically.4 Then, 
given the Lagrangian displacement, we calculate the Eule- 
rian electron density, 

n(t,z) =a$ s dz,S[z-z,-h(t,z,,A)l. (2) 

To make the description self-consistent, we use the conser- 
vation of the transverse canonical momentum, ydx/dt 
=dx/dr=A, where r is the proper time, to obtain, with 
the Lorentz gauge, 

a2A a2A 
-ig-g-m=cc$A(z,t) 

s 
dzo “‘z-;(;z;;;~A)l . 

(3) 
Equations ( 1) and (3 ) are a closed, self-consistent descrip- 
tion of the 1-D UHI interaction. The integral on the right- 
hand side of Eq. (3) can be performed, and we are led to 
the evaluation of the inverse of y( 1 + 6’h/dzo). All the elec- 
trons have the same orbit translated in space and time. 
This translation accommodates the delay between their ex- 
citation, as depicted on Figs. 1 and 2, namely, 

s 

T(VO) 
r(t’zo) z=zo+ y(u)& 

0 
p( u)du, t=;+ 

s 0 
(4) 

where V is the slope of this space-time translation, and 
p=dh/dr. Near the front of the pulse, V=c; in the bulk, V 
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is to be calculated self-consistently with Eq. (3). Differen- 
tiating z and r, with respect to z,, we finally obtain 
y( I+ Jh/Jzo) = y-p/V. This latter identity shows the 
connection between this Lagrangian method and the Eul- 
erian quasistatic description.2 

If we neglect the collective term in Eq. ( 1 ), we can 
solve* this equation for an arbitrary laser pulse A (t-z), to 
get the exact motion 

X(T) = 
s 

TA(u)du, 
0 

h(T)=; T s A2( u)du, 
0 

t(7) =r+; s 
7 (5) 

A2( u)du. 
0 

It is evident from this exact solution that as the pulse 
passes by the particle, no net exchange of energy and mo- 
mentum between the wave and the particle takes place. 
The remaining effect of the passing wave packet on the 
electron, after it has passed, is only a spatial displacement 
of the electron in the direction of the wave propagation, 

The situation is completely different in the long pulse 
regime, where the motion within the pulse, rather than just 
the net effect of the pulse, now assumes importance. Sup- 
pose a vector potential of the form A=A(t-z)cos(t-z), 
with A(t-z) is now an envelope varying on a time scale 
much slower than tip ‘. Apart from insignificant, short, 
transient effects when the pulse first encounters, or ceases 
to encounter the electron, the electron oscillates in the 
wave with no drift, since the wave envelope is smoothly 
varying. The oscillatory solution, without drift, is the well- 
known figure 8 vacuum orbit.’ To obtain this solution the 
invariant of the motion y-p which we set equal to 1 in Eq. 
(5) is now given by y - p = M = ,/m the effective 
mass of the electron; 

x(r) =G sin[Mr(t)], h(r) =& sin[2Mr(t) ], 

A2 
t(7)=M7+8~2sin[2MT(t)]. 

The key to describing the various plasma responses in the 
UHI regime is to use the exact motion, Eqs. (5) and (6), 
as a starting point for an W/SW expansion in the short 
pulse regime4 or for an w~,~/Aw~ expansion in the long 
pulse one. lo 

III. ADIABATICITY, RESONANCES, AND CHAOS 

Consideration of the single particle motion in UHI la- 
ser fields logically precedes the more complex motion that 
involves collective effects. The motion of an electron in a 
one dimensional, infinite, linearly polarized UHI wave, de- 
picted on Fig. 3, is the combination of a drift and a non- 
linear oscillation. For an inhomogeneous two dimensional 
UHI wave, what has been treated so far in the literature is 
only the “adiabatic” regime, i.e., the regime in which the 
particle motion is not stochastic in the wave. So even be- 
fore addressing collective plasma effects, one must inquire 

FIG. 3. Orbit in a 1-D linearly polarized UHI wave. 

about the stability of this drifting figure 8 motion, which, in 
fact, may not itself be stable, with respect to electromag- 
netic and electrostatic perturbations. 

The uniform drift translation is described by a parallel 
momentum, Pl, , in the wave propagation direction, z, a 
perpendicular momentum, P1 , in the polarization direc- 
tion, x, and a relativistic average energy, E. As shown in 
Ref. 3, these variables provide a simple set of actions on 
which to base a Hamiltonian analysis of the instabilities. If 
we consider time as an additional configuration variable, 
then the proper time becomes the new time associated with 
the extended phase space. The Hamiltonian, derived 
previously,3 but now generalized to include electrostatic 
perturbations, becomes 

~o(rJ,P,-Y) = 1+p2- tr+e2 

= 1+ P+ (A+4 12- [r++12, (7) 

where a is an electromagnetic perturbation, and 4 a poten- 
tial one, arising, for example, from the collective effects 
through space charge self-consistency, i.e., Eq. (2). 

We introduce the actions (P1 ,Pll ,E), angles (O,q,c), 
and, to perform the canonical change of variables, we 
use a generating function =W, ,PII ,-KwJ) 
=P,, x+PL y-Er-P, A/P,, -E sin(z-t) -A2/8P,, 
- 8E sin( 2z- 2t). With the help of this generating func- 
tion, the unperturbed Hamiltonian can be expressed in 
terms of these actions variables describing the drift of the 
figure 8 orbit: 

ffo(P, PI ,E)=M2+3 +p: -E2. (8) 

To address the orbital stability problem, let us consider a 
set of harmonic, transverse, and longitudinal perturba- 
tions, a(r,t) =a sin(k,, z+k, y-fit), and #r,t) 
=d sm(kll z+k, y-Qt). The Hamiltonian then becomes 

H(r,t,P,--) =Ho+2P*a(r,t) +2A(r,t) l a(r,t) 

+W$W. (9) 
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~P&P~ = k#q + No 

P P UC II 

PI,) = 0 

FIG. 4. Resonances and diffusion paths in action space. 

We can express this Hamiltonian in terms of the actions, 
angles variables, and after some algebra, the final result can 
be in terms of a sum of harmonic interactions weighted 
by a combination of Bessel functions, i.e., 
fW, ,PII ,EQ-v$>=&U’, J,, 3)+&v V, cdk,, q 
+kl e+fIE+iV w(p+c)], where the sum is to be taken 
over all integers. It may be shown that V@aa#, and that 
the coupling coefficient can be put in terms of generalized 
or ordinary Bessel functions. If we plug the unperturbed 
motion into the argument of the perturbating cosines, some 
small resonant denominators appear as a result of the oc- 
currence of a stationary phase. Therefore, it is necessary to 
consider more carefully the dynamics of the electron in the 
vicinity of the Compton resonances, 

k,, P,, +k, PL -f-lE-No(E-P,, )=O. (10) 

Consider a point (P,, ,,PL ,,E,), which fulfills this reso- 
nance condition [if w~a, k,, zkL , and iVz=O( l), this 
gives resonant energies of the order of few MeV] and as- 
sume that the Nth resonant interaction can be considered 
without the influence of other resonances. Near 
(P,, ,,PL ,,E,) in the action space depicted on Fig. 4, the 
motion takes place along the direction of a reduced action 
J= (P,, -P,, c)/k,, +iVO. It turns out that this action is 
conjugate to the angle $=k,, q+k, B+fL$+Nw(p+~), 
so that this resonant motion is described by the equations 

dJ 
~=aVdf’~ etPll .&hin[$l, 

g= [2(k,, +Nfl)2+2kf --2(~+N!il)~]J. 
(11) 

The phase portrait of this nonlinear oscillator is depicted in 
Fig. 5, where the coupling coefficient V, is resealed to one. 
This universal structure of a nonlinear resonance is com- 
pletely characterized by the island half-width in action 

0 1 2 3 4 5 6 

angle v 

FIG. 5. Angle-action orbit near a nonlinear Compton resonance. 

space, i.e., the distance between the separatrix and the cen- 
ter in Fig. 5, which may be calculated to be 

AJ= 424 V,l/lk: t-b+, -d(k,, +w+2N)l. 
On the basis of this formula, the Chirikov criterion” tells 
us that the electron response becomes chaotic when the 
sum of the half-width of two neighboring islands becomes 
larger than the distance between the resonances. Above 
this stochasticity threshold, the random phase approxima- 
tion (RPA) can be applied to Hamilton’s equations. This 
RPA results in a quasilinear kinetic equation describing 
the stochastic heating of the electron population which 
takes place along the diffusion paths 

(12) 

Thus, as a result of this heating, both transverse (a) and 
longitudinal (4) perturbations are damped. 

IV. WAKE GENERATION AND AMPLIFICATION 

Nonlinear electrostatic plasma waves have recently at- 
tracted interest because of their ability to accelerate elec- 
tron and photon.12 In this section we will address two new 
issues related to wake generation, and in doing so, we will 
answer two important questions: First, why does a long 
smooth pulse not generate a wake? Second, how can the 
proper phasing of a set of short pulses be put at work to 
amplify wake generation? 

For the long pulse case (Fig. 2) and the Eq. (l), the 
relevant equations are 

&y-p) 
p=G$y-p) ‘h, dr 

d( t-z) 
-= (Y-P), dr 

(13) 
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where, for simplicity we take V=c. Recasting this Lorentz 
equation in an Hamiltonian form reveals the underlying 
physics and considerably simplifies the analysis. We intro- 
duce the following variables: 

e= (y-p), q= (t-z>. (14) 

Consider a circularly polarized UHI long pulse, A (4))) and 
introduce the variable P, canonically conjugate to Q with 
respect to the time q, then Eqs. ( 13) are simply Hamil- 
ton’s equation associated with the Hamiltonian 

(15) 

This Hamiltonian can describe a one dimensional nonlin- 
ear oscillator driven by a time-dependent force. If the driv- 
ing force vary on a time scale longer than oP, then the 
action, I= J- PdQ, of the free nonlinear oscillator is an 
adiabatic invariant. No exchange of energy and momen- 
tum takes place between the UHI pulse and the electron; 
moreover, as a consequence of this adiabatic invariance, no 
ponderomotive displacement takes place as the pulse 
passes by the electron. Thus, given the fact that the adia- 
batic invariance is guaranteed to exponential accuracy, 
with respect to the parameter ~3A/w~&p, in the long pulse 
regime the wake amplitude is insignificant except if a non- 
adiabatic process, such as an ionization, takes place. 

When q,/aA/ap becomes small, the adiabatic theory 
applied to the Hamiltonian, Eq. (15), no longer applies, 
and the ponderomotive potential gives rise to a displace- 
ment. The physical interpretation of this short pulse re- 
gime is straightforward: If w,<6w, the pulse duration is 
shorter than the time needed for plasma electrons to set up 
a collective response, i.e., the motion inside the pulse is 
dominated by the response to the transverse wave. In this 
regime, studied in Ref. 4, the collective longitudinal re- 
sponse can be treated as a perturbation. The total ponder- 
omotive displacement and the velocity change due to the 
interplay between the collective effect and the ponderomo- 
tive force are then 

s 

T 

0 
A2(u)du-; 0; JOT ds j-i du Jo’ duA2(v) 

A2( u)du. 

(16) 

These position and velocity coordinates now become the 
initial condition of the nonlinear oscillation behind the 
pulse, i.e., of the wake. Thus the wake can be completely 
characterized in terms of these two quantities, h and u. In 
fact, a short UHI pulse in a plasma can be viewed as a 
quasiparticle characterized by these two scalar quantities. 
Two pulses with different frequency, amplitude, and polar- 
ization will have the same effect on the plasma, provided 
the integrated quantities h and u are equal. 

Based on this Lagrangian picture of wake generation, 
it becomes clear how one might devise a way to amplify the 
generation process. Consider Fig. 6, which depicts an elec- 
tron interacting with a set of short pulses so that the cu- 

FIG. 6. Space-time orbit with a phased set of short UHI pulses. 

mulative effects of the pulse add up to induce a larger 
wake. This resonant effect takes place if the delay between 
two pulses is such that the pulses interact with the electron 
just at the maximum amplitude of the nonlinear oscilla- 
tion. The delay, TN+, , between the N and N+ 1 pulses is 

a2h2 
$A’-N+, =4K(kN) ++ cn2( u)du, 

(17) 

where K and cn are elliptic integral and function. This 
resonance condition depends on the Nth amplitude be- 
cause the free oscillations are nonlinear. The displacement 
after the Nth pulse is given approximately by Nh, and the 
energy transfer to the wake scales as N2. Note that if the 
same amount of energy were delivered to the plasma in the 
form of a long pulse, rather than a set of phased short 
pulses, the wake would be exponentially small. The pro- 
posed resonant scheme which can result in significant en- 
ergy transfer, operates if the nonlinear plasma oscillations 
in the wake of the pulse remain coherent for at least several 
plasma periods. 

V. HARMONIC GENERATION AND PHASE MATCHING 

While long pulses do not generate significant wakes, 
long pulses are useful for generating harmonics. To study 
third harmonic generation, we use the slowly-varying en- 
velope and phase approximation and consider a pump 
wave A(z,r) =A(z,t)cos[t-z+4(t)]e,, and a third har- 
monic wavea(z,t)=a(t)cos[3(t-z)+q(t)]e,. The phase 
mismatch between the fundamental and the harmonic is 
given by e(t)=q,(t)-3&t). In an expansion that essen- 
tially orders the density small, to the lowest order in the 
plasma density, the figure 8 motion does not gives rise to 

2582 Phys. Fluids B, Vol. 5, No. 7, July 1993 J.-M. Flax and N. J. Fisch 2582 

Downloaded 23 Nov 2005 to 198.35.4.75. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



0 1 2 3 4 5 6 
phase 8 

FIG. 7. Amplitude-phase orbit for harmonic generation. 

harmonic generation, but, as shown in Ref. 9, to order 
density squared, a and 8 obey the set of equations 

da A3 
‘;5;= -ai- sin(e), 

de h; A3 cos(8) 
;if=-7;i7-ai64;i?4 a ’ 

(18) 

The phase portrait of this dynamical system is depicted on 
Fig. 7 (where a/A is normalized to 3cozspa2/538M3). The 
third harmonic wave describes the separatrix orbit and no 
phase locking occurs, so that, instead of growing linearly 
with time, the amplitude oscillates.9”3 In the eA/mc- 1 
regime, the detuning length is of the order of (w/w,)~ 
times the laser wavelength, and the power conversion sat- 
urates at the level P3/P1 ~O[lO-~(w/o)~]. The reason for 
the absence of secular growth in the third harmonic can be 
understood as follows. From conservation of momentum in 
harmonic generation, we expect the wave vectors to fulfill 

3k(wV4) =k(3&4), 

but, the nonlinear dispersion relation k(wJ1) is 
(19) 

k(oJ) =o4/2wM. (20) 
Because in a plasma k is not linear in the frequency as it is 
in vacuum, Eq. ( 19) can not be fulfilled. 

To generate the third harmonic one might, for exam- 
ple, use a third wave so that momentum is conserved. Such 
a phase-matching scheme works, provided that the fre- 
quency of the wave density modulation, R, is a multiple of 
4W2@/3uM. A more practical way to generate the third 
harmonic is to use a buffer gas which can slow down the 

fast pump wave more than it slows down the slow har- 
monic wave. It turns out that the circumstances are very 
favorable for such a scheme: On the one hand, free elec- 
trons in plasma give rise to a refraction index smaller than 
one, and, on the other hand, bound electrons in ions lead to 
a refraction index larger than one. The right mixture of 
free electrons and residual bound electrons can then be 
used as a phase matched media. 

VI. CONCLUSIONS 

We have analyzed UHI laser-plasma interaction 
within a Lagrangian framework. Equations ( 1) and (3) 
provide a self-consistent description of the UHI interaction 
below the Lagrangian overtaking threshold (which corre- 
sponds to the Eulerian wave-breaking threshold). How- 
ever, even above this threshold the corresponding Lorentz 
equation can be derived, but with an additional coupling 
between neighboring electrons. This coupling gives rise to a 
degenerate eigenvalue in the linearized system, which sig- 
nifies a secular solution linearly growing with time, corre- 
sponding to the production of fast electrons. Thus, even 
when the relativistic fluid description breaks down, the rel- 
ativistic Lagrangian methods can still describe the nonlin- 
ear dynamics of the plasma. 

In conclusion, the Lagrangian framework developed 
here turned out to be a very powerful tool for discovering 
and calculating both various longitudinal collective effects 
and the single-particle stochastic motion that occur in the 
new ultrahigh intensity regimes now reached in laser 
plasma interactions. 
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