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Abstract. The interaction between a lower hybrid wave and a fusion alpha particle 
displaces the alpha particle simultaneously in space and energy. This results in coupled 
diffusion. Diffusion of alphas down the density gradient could lead to their transferring 
energy to  the wave. This could, in turn, put energy into current drive. An initial analytic 
study was done by Fisch and Rax. Here we calculate numerical solutions for the alpha 
energy transfer and study a range of conditions that are favourable for wave 
amplification from alpha energy. We find that it is possible for fusion alpha particles to 
transfer a large fraction of their energy to the lower hybrid wave. The numerical 
calculation shows that the net energy transfer is not sensitive to the value of the diffusion 
coefficient over a wide range of practical values. An extension of this idea, the use of a 
lossy boundary to enhance the energy transfer, is investigated. This technique is shown 
to offer a large potential benefit. 

1. Introduction 

Lower hybrid current drive has been an attractive alternative to inductive current 
drive, but for reactors there has been concern that fusion alpha particles would be a 
strong absorber of lower hybrid power [l, 21. Recently, however, it has been pointed 
out [3] that under the right conditions the alpha population can actually amplify the 
wave, thereby harnessing some of the energy of the alpha population for the current 
drive. The necessay conditions require that there be a density gradient of fast 
alphas, and that ks of the wave be in the correct direction. The process utilizes the 
fact that transfer of energy between wave and particle is accompanied by a change in 
the particle's gyrocentre. Thus, diffusion in energy is coupled directionally with 
diffusion in space, and, with the correct choice of direction, a population of alphas 
diffusing in space under the influence of the wave will, on the average, transfer 
energy to the wave. 

This possibility was discussed in a paper by Fisch and Rax [3], where they 
estimated the amount of energy transfer in the limiting case of infinite diffusion 
coefficient. In this paper we describe a finite-difference calculation used to solve the 
differential equation that models the process for finite diffusion coefficient. We 
simulate the limiting case (by taking a large value for the diffusion coefficient) to 
verify the analytic results of [3]. Small errors in the equations have been corrected. 
Then the energy transfer is calculated for a range of practical values and is found to 
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Figure 1. Schematic diagram of the coupling between the absorption of energy from the 
wave by an alpha particle and the shift of its gyrocentre. 

be considerable. Finally, we modify the boundary conditions to introduce particle 
losses that enhance the energy transfer from particles to wave. The effect appears to 
be very promising. 

2. The process 

The process by which the energy and space diffusion are coupled has been described 
in 131. It is summarized here. An example of the interaction is shown in figure 1, in 
which an alpha particle is encountered by a wave travelling the y-direction. As long 
as the,velocity of the alpha, uI, in the plane is greater than or equal to the wave 
phase velocity, o/k,, the two interact, and the alpha receives an increment of 
velocity Auy (positive or negative). As a result, the gyrocentre of the particle is 
shifted by an amount Axgc. The momentum change is m,Au,, and the energy change 
is m,Au,. The gyrocentre shift is equal to AuY/Q,, where Q, = 2eB/m,. Therefore, 
Axgc = AE(k, /m,sl ,o) ,  showing the coupling between energy transfer and spatial 
shift. The guiding-centre shift is inversely proportional to the wave phase velocity. 
We would choose a value like o/k, - 6 X (ion thermal velocity), in order to avoid 
wave interaction with the thermal ions. For the case of total alpha energy transfer 
equal to the production energy, E,, = 3.5 MeV = m,u~,,/2, the guiding centre would 
move by L=u~,,kY/2oQ,-2Ocm in a 5 T field. Note that, for a given density 
gradient, more energy is extractable by making L long, that is, making the phase 
velocity low (so long as L < a, where a is the minor radius, which is generally 
satisfied anyway). 

The poloidal wave numbers that are needed to accomplish the radial diffusion 
are much greater than are generally employed in current lower-hybrid heating 
experiments. In addition, the spectrum of waves must, of course, be launched in only 
one poloidal direction. For coupling both to the alpha particles and to fast electrons 
travelling in one direction, for enhanced current drive. the waves need to be 
launched also in one toroidal direction. The requirements on the wave (in the case 
of current drive) are that ks >> k,, k,,, where ks is the poloidal wavenumber, k, is the 
radial wavenumber. and k,, is the parallel wavenumber. Such wavenumbers obey the 
lower hybrid dispersion relation, where k,/k,, as large as a is  allowed.^ The 
question of how to couple to these waves from the tokamak periphery is more 
difficult. There are solutions to the ray-tracing equations that do encircle the 
tokamak magnetic axis, with k,>>k, at least in the most interior points [4-61. 
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Achieving high ke, especially relative to kii. is not simple and may require toroidal 
effects on the ray tracing. Alternatively, the necessary conditions on the wave in the 
interior might be produced at high power by nonlinear wave interactions of waves 
that can be propagated easily from the periphery. 

3. Analytic treatment 

The differential equation describing the alpha density as a function of energy, 
position and time, under the influences of this ‘quasilinear’ diffusion, slowing down 
on electrons, and a source is [3] 

This equation is in terms of dimensionless quantities: E = u ~ / u z 0 ,  X = x, /L,  
z = Zvf, where v is the slowing-down rate of alphas on electrons, E, = ( o / k , ~ , ~ ) ~ ,  
the kinetic energy below which the alpha is not in resonance with the wave. p is the 
alpha density and S is the alpha source. The boundary conditions are determined 
from following: D = 0 for E < E,. since there is no wave-alpha resonance there, and 
the wave exists only in a beam extending laterally from X = 0 to X = A-outside 
that range D = 0. 

The analysis of the behaviour of a population of alphas is, again, summarized 
from [3]. The process takes place in a space shown in figure 2. It will be convenient 
to introduce a transformation given by U = E  fX and U = E - X. The boundary 
conditions on the diffusion imply that aplau = 0 on the top and bottom boundaries. 
Since nothing can take particles across the right boundary, we can take p = 0 there. 
Only slowing down (and not diffusion) takes particles across the left, E = E , ,  

boundary, so one can write the flux at that boundary as - E P ;  equivalently one can 
take the boundary condition ap/au = 0. The diagram of the region of wave-particle 
interaction in this paper differs from that in [3],  because here we draw the diagonal 
along which diffusion occurs at 45” to the right, a line of constant U. This is 
consistent with the form of the diffusion operator in equation (1). This difference 
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Figure 2. The effects of diffusion and slowing down on alpha-particle energy and 
location. The coordinates are dimensionless (see text). The source is at ( E ~ , X , , ) .  
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does not affect the conclusions, since it is merely equivalent to a replacement of X 
by A - X.  One should think of X = A being closer to the centre of the plasma, 
where the alpha-particle density would presumably be higher, so that the overall net 
energy trans€er is from the particles to the wave. This is, of course, always possible 
by making the proper choice of ke. 

Consider a short pulse of alphas produced at ( E ~ ,  Xo) ,  i.e. a &function source. 
Consider the case in which D+m. Initially the population diffuses along the 45" 
diagonal specified by Po = - Xo, and the density immediately becomes uniform 
along that line. The energy exchanged, wave to alpha, is given simply by 

WO(X0, EO) = REmax + Emin) - Eo (2)  
where the first term is the final average kinetic energy. Along the diagonal, 

= - X o  + A ,  and is given by 
if Po is in region (b) 
if Po is in re@on (a) 

(see figure 2). Substituting into equation (2), we obtain 

(3)  

(4) 
A / Z - X o  if Pu is in region (b) 

if Po is in region (a). w,(xo' = { (A - X0) /2  - (Eo  - E,)/2 

This instantaneous energy exchange can he positive or negative; for Xo near A ,  it is 
negative. 

The subsequent slowing down and diffusion are considered as a repeating 
alternation of slowing down for a short At,  followed by d ~ u s i o n  for an equal 41. 
Each slowing down takes the alpha population from a diagonal P to a left-shifted 
h e  tilted slightly toward the vertical. The diffusion then spreads the density 
uniformly along a band around the average 45" diagonal. As shown in [3].  in region 
(b) the energy exchange vanishes. 

In region (a) the energy exchange is no longer zero. The starting value of P 
depends on whether the alphas were produced in region (b) or (a). In the former 
case, the starting value is Po, = E,; in the latter, Po, = Po = - Xo. Modifying the 
derivation in [3] for X + A  - X and correcting minor errorst we have for the 
exchange subsequent to the initial exchange 

where s E 2e,/(P0, + A  + E ~ ) .  All the particles are gone by the time z = z,,,,,, where 
zmax= 21n(l/s); see [3].  Therefore, if the rf power is on continuously, the ultimate 
value of W, is 

(6) 
E, 

1-s WL(Po,, zmax) = - (2 In(s) + Us - s). 

?In equation (14) of 131, the sign in the denominator should be reversed, so that it would read 

N(T). dN 
dz P ( T ) -  E~ 
_=_- 

Nevertheless, equation (U) is correct. In equation (16) we have corrected the mnstant factors in front of 
the first and third terms in the brackets. As a result, each term has a factor of 4. A factor of 114 in front 
cancels these factors, giving finally equation (5) in this paper. 
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The total energy exchanged from wave to alpha is W = WO + W,. In deriving 
equations ( 5 )  and (6) certain approximations were made, in addition to taking the 
limit D + w. There is no limit in which these approximations are rigorous, but what 
we show (through numerical solution of equation (1) in the following sections is that 
these analytic expressions for W, are very nearly correct for D,+m. 

Note that W, is always positive. If X o  is chosen so that WO is negative, meaning 
that the alphas give energy to the wave, then when they are in region (a), the wave 
‘gives back’ energy to the alphas. For this reason, a scenario with only short pulses 
of rf appears advantageous. 

4. Maximum energy transfer 

The quantity E ~ ,  the initial perpendicular energy, is given by the alpha production: 
the pitch angle determines an ~ ~ c 1 . 0 .  The distribution in so is uniform. To 
maximize the number of alphas diffusing to lower energy we need X o  to be near the 
top of the region. In the practical situation ks would be chosen so that X o  is toward 
the centre of the plasma with X = 0 toward the periphery. The quantity E, is the 
lowest perpendicular kinetic energy, relative to the total kinetic energy at produc- 
tion, of an alpha that is resonant with the wave. For putting the alpha energy into 
electrons. choose E, well above ion thermal energies, for example w / k s  - 6vT, to 
avoid ion damping. This corresponds to -500 keV and E, = 0.15. 

Using the analytic expression (6), we did a scan of the three parameters, E ~ ,  E, 
and A,  to locate the regions with the most energy exchange from alphas to wave. 
The energy exchange ‘saturates’ at around A = 1. Figure 3 shows the variation with 
E, and E, for A = 1 and X, = 0.95. The initial energy exchanged is plotted, as well as 
the net taking into account the ‘give back’ during the alpha slowing down. Note that 
for a normal population of alphas, isotropic in velocity space. one would need to 
integrate over 

For the short-pulse rf scenario, clearly, the lower the value of E,. the more 
energy from alpha to wave; however, with continuous rf there is a broad maximum 
in the neighbourhood of E, - 0.2. This is an additional reason for choosing E, in the 
vicinity of (but above) 0.15 mentioned above. 

to get the total energy transfer. 

0.5 _ _ _  Initial exchange - Time-integiated exch -. . 

O t  
0 

zw 

Figure 3. Energy exchange from alpha particles to wave as a function of the minimum 
resonance kinetic energy. 
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5.  Comparison with numerical solution 

The analytic study described above has been supplemented by a finite-differencc 
solution of equation (1). This calculation allows us to model the effects of finite 
values of the diffusion coefficient, D. and altered boundary conditions intended to 
enhance energy exchange. This finite-difference solution can be used in the future to 
model other scenarios, such as applying the wave power in short pulses, also for the 
purpose of enhancing the fraction of the particle energy delivered to the wave. 

We begin with the transformation U = E  + X and U = E - X .  While it does no 
good to transform the whole equation, it does simplify writing the diffusion term, 
since it implies d / d e  + d / d X  = 2 a/&. Figure 4 shows the grid that is used, along 
with the locations of diagonals and the points used in the central differences. For the 
diffusion term we choose the finite differcnce form to be space centred and use the 
Crank-Nicholson method 171, For the slowing-down tcrm, which has the form of a 
flow in the direction of decreasing E ,  we use the 'upwind' diffcrence [8]. This method 
is to take the difference between the point being worked on and the one from which 
the flow is coming: it gives stable solutions and has been widely used. The difference 
equation is 

A7 
AF P; .z '=P; .k  + - ( F i + l P ; + l . k -  E! f ; .h )  

4 A7 
+ (1  - A m p )  7 [ K,.+ i n (P ;+  i.h+i ~ p ; d  ~ K,- 1 n b i . h  - Pj ~ I.& 111 

@ U ) -  

4 A7 
+ A , , , ~ ~ [ K j + , ~ ( P ~ ~ ~ . h + ,  ~ Pj.;.') - .,-in(P;;' - P j T k i ) ]  + A 7 s j . k  

@U)' 

( 7 )  
where K, = D/-, and Am,, is normally set =OS. To make the method 
second-order in time, we take a half step. with Amp = 1.0, to get half-step values for 

Figure 4. Grid for thc finite-difference calculation of alpha particle encrgy and location. 
On thc top, holtom and left boundaries dpjau = 0, except in the case with lrakagc (see 
text). Note: ileration Continues through the upper left CO~IICT.  
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the slowing-down term. The boundary conditions are p = 0 on the right (diagonal) 
and ap/& = 0 on the left, top and bottom. First-order differences are used in 
implementing the boundary conditions. The sets of simultaneous equations gener- 
ated by the implicit differences are solved by the method of Richtmyer and Morton 
[9] .  We step through the diagonals, one by one; on each there is a system of 
equations for the p'+'; [9] gives a simple recursion method for solving the system 
subject to the boundary conditions. 

The method and the computer program that implements it were tested by using a 
test function for the density, p. The function was chosen to satisfy the boundary 
conditions on all four boundaries. The function, p,  was substituted into equation (1) 
to determine the corresponding source function, S(E. X ,  z). That source was used in 
the finite-difference program to calculate p(&, X ,  z) numerically. The results were 
compared with the assumed p to verify the method and to test the rate of 
convergence. The function chosen is the product of four polynomials. Substitution 
into the partial differential equation (PDE) leads to a large amount of manipulation, 
which, fortunately, is easily performed with the Macsyma symbolic manipulation 
system [lo]. The Fortran code for the source function was also produced by 
Macsyma. 

Figure 5 shows the results of the testing, monitored at two representative points. 
For the testing we used D = 0.3. E, = +0.1 and A = 0.5. The test function looks like 
a smooth hill, with the edges =O at the boundaries and the peak at the centre of the 
space. The function was multiplied by an exponentially decayjng factor, with time 
constant zdeCay = 0.0844. The errors plotted are at time z = 0.15. The errors displayed 
are at points near the left-hand boundary, where the error is largest. The error 
varies more slowly than the first power of step size, apparently because of the factor 

in the denominator. Nevertheless, the error is clearly converging on zero 
with decreasing step size, indicating the correctness of the method. 

The goal of the calculation is to obtain the energy exchanged between fast alpha 
particles and the wave. To calculate this, once we have the alpha density, p(E, X ,  z), 
we multiply the PDE through by E and integrate over all E and X 

' /EpdEdy= E-(€p)dEdX+4 ESdEdX. 
az I :E I 

0 0.004 0.008 0.012 
SbP 

Figure S. Difference between finite-difference solution and test function versus spatial 
(and energy) step size. The test function has an amplitude of 3. 



862 MeV a-particle energy transfer 

This represents 

I (a  stored energy) dE dX = (power from electron drag) dEdX 
az I 

+ (power from the wave) dE dX + (0 source power) dE dX I I 
where positive quantities represent power flowing to the alpha particles. The second 
term on the right is the power we are interested in. Under some conditions, in 
particular when the majority of alpha diffusion in space is accompanied by a 
lowering of alpha kinetic energy, the second term is negative, implying a net transfer 
of energy from alphas to the wave. 

For comparison between the analytic and the finite-difference calculations we 
select two cases. Case I has A = 1, E, = 0.15, E~ = 1.0, X u  = 0.95, which locates the 
source in region (a), and Case I1 is in region (b), with A = 0.5, E, = 0.10, E” = 1.0, 
Xo=0.4. The latter case will demonstrate all the features of the predicted time 
evolution of the energy exchange, namely, a rapid initial exchange, followed by no 
exchange for the rest of the time in region (b), followed by a gradual return of a 
portion of the energy while in region (a). 

To illustrate the behaviour of the energy exchange as a function of time, we first 
plot, in figure 6, ,alpha-to-wave energy exchange for Case I1 mentioned above 
(source in region (b)). As above in the analytic calculation, the source was taken to 
be a S-function in E, X and t. (Thus, the result here can be considered to be a Green’s 
function for the energy exchange.) In this plot we have inverted the sign of the 
energy exchange so that alpha-to-wave is plotted as a positive quantity. Figure 6 is 
the result from the finite-difference calculation, integrated as described above. As 
expected from the analytic analysis, the energy exchange begins with an immediate 
transfer to the wave, after which the exchange during the rest of the time in region 
(b) is zero. When the alphas are in region (a), the wave ‘pays back’ some of the 
energy, but, by the time all of the alphas have slowed down below E, (in this case 
z/r, = 3), there is still a net amount of energy that has been transferred to the wave. 
For this case the analytic analysis gives W, = 15% (using equation (4)) for the initial 

-“I” -I I 
Remainder of Time in Region lb) 

c Initial Diffusion 
0 ._ 

Eq. 5 
Y 

0 1 2 3 
TIME (Unils of Slowing.Down Time) 

Figure 6. Time-integrated energy transfer from alpha particles to wave for Case 
II-source in region (b). 
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transfer from alpha particles to wave. Using equation ( 5 )  for the return of energy 
from wave to alpha particles gives the curve in figure 6 labelled 'Eq. 5'. The 
agreement is very good, verifying the analytic formula. 

The convergence of the energies as a function of step size is very satisfactory. As 
the E (and X )  step was varied from 0.03 and 0.003, the energy unaccounted for at 
the end of the calculations went down from 12% to 1.3% and extrapolates to a value 
extremely close to zero for step size equal to zero. Also, the energy exchanged from 
alphas to wave extrapolates, as a function of step size, to the same value as the 
analytic calculation within -0.1%; the difference for the step size used for the 
results below (0.003) is 0.25%. 

6. Optimal energy-transfer case 

We now examine in detail Case I, namely, A = 1, E, = 0.15, so = 1.0, X o  = 0.95. 
Although a slightly higher energy transfer to the wave could be obtained with 
E, - 0.3, as may be seen in figure 3, the value chosen is more nearly suited to the 
average value of E" and is more practical, since it would employ the lowest- 
frequency wave source consistent with the 6vT requirement. In this case the source 
is in region (a), so there is no period of zero exchanged power. Results from the 
analytic formulae are as follows 

WO = 40.0% (initial transfer) 
WL= -19.5% (later transfer) 
W = 20.5% (net transfer). 

The analytic formulae are for D +m; the finite-difference calculation shows that the 
process saturates for D = 10 and above, where the analytic approximation, again, is 
numerically verified. 

Figure 7 shows the energy transferred as a function of time for this case. When 
D = 10, as we have taken above. the behaviour is as expected for a source in region 
(a), that is, after the initial, immediate transfer, the 'give back' begins immediately. 
Interestingly. we find that, as the strength of D is reduced, its value has much more 

0% , , , , , , , , ,  I / / , ,  I , , , , , , , j , l , , , , / , , , ,  , , / ,  

0 1 2 3 4 
TIME (Units of Slowing-Down Time) 

Figure 7. Time-integrated energy transfer from alpha particles to wave for Case 
I-source in region (a)-for a range of values of D, the diffusion coefficient. 
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effect on the early energy exchange than on the net amount. Likely values of D 
would probably be in the range 3 > D  >0.3 [Ill, over which the net energy 
exchange varies only slightly. This has the fortunate implication that the strength of 
the wave can vary over a wide range while still effecting nearly optimal energy 
exchange. 

7. Enhancing the energy transfer to the wave 

Particles near the boundary E = E, can only take energy from the wave as they 
diffuse up along the diagonal; therefore, it would be advantageous to get rid of 
them. I1 would be possible to introduce perturbations into the plasma to cause 
particles to cross that boundary in excess of the collisional slowing down. To model 
the effect of such a particle loss, we have investigated changing the boundary 
condition on the left boundary, E =-E,, from a p l a u  = 0 to apldu + Au = 0, where A 
is an adjustable ‘leakage’ parameter. The result is that a relatively small value of A 
produces a large beneficial effect. This is shown in figure 8, where, as before, the 
energy exchanged as a function of time for a &function source is plotted. D = 0.3. 
The coefficient A is in effect the fractional variation of the particle density per unit 
distance in U at the boundary. Starting from the net energy exchange of 19% for the 
case of no leakage, we find that A = 0.3% increases the energy exchange to 26%, 
while A = 3% takes it up to 51 %. The strong value of A = 50% yields 74% exchange. 
The possibility of enhancing the energy transfer to the wave, if such a means can be 
found, appears very promising. 

8. Further applications of the program 

Certainly, other scenarios can be modelled. One example would be using short 
pulses of rf, rather than continuous power, to derive the maximum benefit from the 
initial energy exchange (this would be an alternative to the lossy boundary). 

- 
- 

A =  0.5 

E ? -  
& -  
0 

A-0.03 , , ,  , , . , .  , ,  i -  
r -  a z -  A =  0.003 
c 5 -  
t -  
0% , , , , 1 / , 1 , , , , , / 1 , , , , , , / , / , , , / , 1 , , , , 1 , 1 , , ,  

0 1 2 3 4 
TIME (Units Of Slowing-Down rime) 

Figure 8. Time-integrated energy transfer from alpha particles to wave for Case 
I i o u r c e  in region (a)-for~a range of values of the leakage coefficient, A. D = 0.3. 
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Another example would be allowing a general variation of D as a function of X, 
representing a more realistic localization of the wave in space. 

9. Discussion 

To look at the actual magnitude of the diffusion constant, D ,  and the power 
available from the alphas, consider ITER. In [2] the authors contemplate using 
90 MW of lower hybrid power. This would give D - 0.3 to D - 3 [2,11]. As shown 
above, this is in a range that produces practical energy exchange from the alpha 
population to the wave. The amount would be approximately the fusion power of 
lOOOMW, times a fraction of 20% that goes to the alphas, times a fraction of 40% 
that is transferred from the alphas to the wave. The result is 8OMW from alphas to 
wave, or just about the amount needed to keep the current drive going. 

If the rate of normal collisional diffusion were io exceed the quasilinear diffusion 
considered in this paper, then the effect of the latter would be diluted. To make the 
comparison we can convert the dimensionless D used here to SI units. Recalling that 
our time is in units of (2v)-', and that length is in units of L, we have that the SI 
value is Ds, = 2vL'D. For the mean value D = 1, with v-' = 0.4 s, and L = 20 cm, 
Os, = (0.2 m)' X U0.2 s = 0.2 mz s-'. One of the smallest values of D we have 
considered is D - 0.1, or DsI - 0.02 mz s-'. This is of the same order of magnitude as 
possible fast-alpha collisional diffusion [12]. In that case one would expect the 
energy exchange from alpha to wave to be diluted by the collisional diffusion. That 
puts a lower bound on the necessary wave intensity for an effective energy exchange. 

10. Summary 

We have provided numerical justification to the treatment of [3] for the D + m limit, 
we have shown numerically how that limit is approached for finite D ,  and we have 
numerically investigated the useful effect of leakage of particles out of the resonant 
region in optimizing the transfer of alpha-particle energy to waves. 
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