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The guiding-center equations are derived for electrons in arbitrarily intense laser fields also 
subject to external fields and ponderomotive forces. Exhibiting the relativistic mass increase of 
the oscillating electrons, a simple frame-invariant equation is shown to govern the behavior of 
the electrons for sufficiently weak background fields and ponderomotive forces. The parameter 
regime for which such a formulation is valid is made precise, and some predictions of the 
equation are checked by numerical simulation. 

I. INTRODUCTION 

The increasing degree of interest in high-intensity la- 
sers (a = eEdmcw - 1) motivates a theoretical examina- 
tion of the behavior of electrons oscillating in the fields of 
such lasers. The electron motion is well understood when 
the only forces present are those from the wave,’ this paper 
examines the motion of electrons when other fields are 
present in addition to the wave. 

The nonlinearity parameter a can be understood as the 
ratio of the momentum imparted by the wave field in a 
single oscillation to mc. (For il= 1 pm, a=0.84 at an in- 
tensity of I=cE387r= 10” W/cm*.) As a- 1, the quiver 
velocity of an electron in the wave becomes relativistic, 
and, as a result, the magnetic component of the wave be- 
gins to affect the motion. Because the electron velocity is 
relativistic over much of the orbit, the electrons can exhibit 
an increased “effective mass” or increased inertia to ap- 
plied forces. While effective mass equations do appear in 
the literature, there remains a need for a general and sys- 
tematic derivation of such equations, including precise 
statements concerning the limitations of such approxima- 
tions. We show here that the nonoscillatory part of the 
electron motion is given by a simple guiding-center equa- 
tion, which predicts some interesting results, verified here 
by numerical simulation. 

The formulation developed here is useful in many sit- 
uations of practical importance where electromagnetic 
fields in addition to the wave field are present, and where 
these background fields are much weaker than the wave 
field and vary only slightly over oscillation time and space 
scales. For example, longitudinal electron oscillations in a 
plasma occur with characteristic time l/w,> l/o and space 
scale roughly the Debye length ;1,, which may be larger or 
smaller than the beam wavelength. Plasma oscillations in 
the presence of laser pulses play key roles in the beat wave 
accelerator2 and wakefield accelerator.3 Close-encounter 
collisions involving oscillating electrons can occur on time 
and space scales smaller than those of the oscillations, and 
in this case the enhanced-mass picture ceases to be valid, 

but a different form of the equations derived here can be 
applied to this case as well. 

Various accelerator schemes- attempt some sort of 
conversion of the intense transverse fields of a laser into a 
more useful form, and constraints on when such conver- 
sion can occur are given here. The general constraints 
given here confirm and generalize the constraint found by 
Apollonov ef aL4 for a specific accelerator design, and also 
explain the optimal parameters Kawata er al. found nu- 
merically for two accelerator designs.5’6 Essentially these 
accelerator designs convert some of the relativistic quiver 
velocity into drift velocity, and this can only be done with 
certain types of background fields. Powerful laser pulses in 
the presence of background fields may also have applica- 
tions as diagnostic tools in plasmas.’ 

Electrons struck by a laser pulse experience a ponder- 
omotive acceleration at the beginning of the pulse that can 
result in a relativistic drift velocity (distinct from the 
quiver velocity) during the body of the pulse.8 It turns out 
that the ponderomotive acceleration appears naturally 
through an analysis of these drift velocities. We derive a 
simple equation, Eq. (41), which governs the time- 
averaged behavior of oscillating electrons in the presence of 
weak background fields and/or weak ponderomotive gra- 
dients, for incident plane waves of arbitrary intensity. We 
show that, in some ways, the character of the ponderomo- 
tive force in the presence of additional fields is changed. 
For example, in the absence of background fields, the pon- 
deromotive force, taken over the whole wave, only dis- 
places the particle and does not change its energy, while, in 
the presence of a background electric or magnetic field, 
energy transfer from the ponderomotive force can take 
place. 

It will be assumed throughout that the pulse has no 
transverse variation and has phase velocity equal to the 
speed of light in uacuo. The small spot sizes required to 
achieve very high intensity do create some transverse vari- 
ation of the pulse, but in many cases this variation is small 
over a single electron’s orbit. For vacuum applications the 
assumption that the phase speed is equal to c clearly poses 
no problems, although in plasma applications the phase 
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speed may vary. Often plasmas irradiated by intense lasers 
are quite underdense, so that the deviation of the phase 
velocity from c is small. Longitudinal variation of the pulse 
leads to the well-known ponderomotive effect, which is 
considered here in some detail, Transverse variation of the 
pulse leads both to transverse ponderomotive effects and to 
waveguide-like longitudinal fields; while these effects can 
be significant and useful, as in ponderomotive focusing’ 
and longitudinal acceleration,” in many applications they 
are either small in magnitude or affect only a small fraction 
of the irradiated electrons. The analysis is specific to the 
case of nearly monochromatic laser light, because in the 
nonlinear regime the superposition of frequency compo- 
nents becomes very complicated.” 

Some predictions of the analytical framework derived 
here are checked with a short computer code that inte- 
grates the Lorentz force equations numerically. The code is 
also used to examine regimes beyond the scope of the equa- 
tions here, in order to understand qualitatively the changes 
in the electron motion. 

In Sec. II the guiding-center equations are found by 
using special features of the drift solutions of electromag- 
netic waves. Section III details the assumptions leading to 
the guiding-center equations and relates the conditions for 
their validity to optimal designs for certain accelerators. In 
Sec. IV, numerical examples are used to show, when con- 
ditions for their validity are not satisfied, the breakdown of 
the guiding-center equations and the subsequent interest- 
ing dynamics. Section V examines the classes of fields that 
allow the guiding-center equations to be averaged to a sim- 
pler form. Section VI derives guiding-center equations that 
are frame invariant, including the ponderomotive force in 
the presence of background fields. Our main results are 
summarized in Sec. VII. 

II. DERIVATION OF GUIDING-CENTER EQUATIONS 

To derive the guiding-center equations, we treat a 
background force as a series of closely spaced impulses. 
Between the impulses, the electron is subject only to the 
intense electromagnetic wave, The size of each impulse is 
approximated as the instantaneous force multiplied by the 
time interval between impulses. Then the effect of the back- 
ground force is updated at each impulse, and such an ap- 
proximation converges in the limit of infhritesimally spaced 
impulses. (This approach is similar to the Picard method 
used in the theory of differential equationst2) Certain fea- 
tures of plane waves make it possible to find the response 
for all times from an arbitrary impulse; then, if it is possible 
to integrate over the applied impulses, the electron trajec- 
tory can be determined. The only approximations and con- 
straints enter at the integration stage. 

This approach leads to tractable equations for the 
problem at hand for two reasons: one, exact analytic solu- 
tions can be written for electrons in arbitrarily intense elec- 
tromagnetic plane waves;i3 and, two, plane waves remain 
plane waves in any frame of reference, so that the exact 
solutions are applicable as the particle drifts. These two 
properties of intense plane waves can be used to derive a 
simple and accurate guiding-center equation in the pres- 

ence of external forces, as we now show. The goal is an 
approximate solution of the equation of motion 

dp ~=dEwave+BX~w,ve) 

-te(Ebackground+BXBbackground). (1) 
First, note that there are exact analytical solutions for 

the motion of individual electrons in a plane, monochro- 
matic wave of any polarization (see, e.g., Landau and 
Lifshitz13 for the case of linearly and circularly polarized 
waves; the case of elliptical polarization can be handled 
similarly). Integrability is a consequence of the existence of 
three integrals of the motion.14 The canonical momenta 

Py =p,, -I- eA,,/c, P, =pz + eA,/c (2) 

are conserved, because of the system’s symmetry with re- 
gard to translations perpendicular to the direction of the 
wave’s propagation. Here p denotes the kinematic momen- 
tum and P the canonical momentum, with the direction 1; 
of the wave taken along the x axis. In addition, there is a 
third invariant of the motion mcy-p, (here y is the Lor- 
entz factor of the electron), associated with the depen- 
dence of the problem on x and t only through the phase 
v=w(t--x/c). The exact solution for the motion can be 
derived from these three constants of the motion. In the 
presence of background fields, however weak, these three 
quantities are not necessarily conserved, raising the ques- 
tion of how the motion is modified. 

Second, note that a plane wave in one frame appears as 
a plane wave in all other frames, though possibly with a 
different direction, frequency, and amplitude. Monochro- 
matic waves remain monochromatic, however, and polar- 
ization (i.e., eccentricity of polarization ellipse) is also in- 
variant. The norm of the vector potential v ( =cE/o 
for a linearly polarized wave) is clearly invariant, so that a 
strength parameter a can be invariantly defined by 

(3) 

with ( > denoting an average with regard to phase. (Note 
that some other authors define a without the factor of 2.) 
Thus, given a drift velocity vd relative to the lab frame and 
a plane monochromatic wave in the lab frame, there exists 
a solution of the equations of motion for which the average 
value of the electron velocity, as calculated in the lab 
frame, is vd. In the frame moving with velocity vd relative 
to the lab frame, the electron has zero average velocity, and 
in this frame the electron’s path is a circle for circularly 
polarized light and a figure-eight for linearly polarized 
light.13 

In our analysis we will use the converse of the preced- 
ing theorem: given any instantaneous velocity for the elec- 
tron v, and the phase T of the wave at the electron’s loca- 
tion, there exists a unique frame moving with some velocity 
vd, different from v, in which the electron is moving in a 
stationary figure-eight orbit. (Some subtleties do arise in 
the definition of the drift velocity when background fields 
are present. The definition to be used here is that the drift 
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velocity is the average velocity that the electron would 
have if all background fields were instantaneously elimi- 
nated. For further discussion, see Appendix A.) There are 
explicit functions pl (7) and ~11 (q), depending on the 
wave only through a, that specify the components of the 
electron momentum perpendicular to and parallel to the 
wave axis in the rest frame (pI is a single function for 
linear polarization and two functions for circular polariza- 
tion; the idea is the same). The functions pl and Q are 
calculated explicitly in Landau and Lifshitz.” In the 
unique rest frame of the electron, the components of the 
electron momentum parallel to and perpendicular to the 
wave axis are plI and pl . 

At time to, suppose that the electron has zero drift 
velocity in the frame where our cpordinates are defined. In 
this frame define ir parallel to k, the wave axis. After a 
small time step dt, the electron has position and momen- 
tum given by 

x(tlJ+dt) =x(&J) +v(to)dt+owh 

p(t,+dd =p(qJ +F,,,, dt+F,,, dt+Wi&. 
(4) 

Here Fwave and F,,, are the forces on the electron at time to 
from the wave and the background fields. After this time 
step, the wave has some phase q=osa that is unchanged 
by frame switches. Our task is to determine the drift ve- 
locity dvd of the frame in which the electron would be at 
rest on average if the applied force F,,, went to zero after 
the time dt. We know that p( to) +F,,,, dt satisfies the 
equations of motion at phase q in the original frame, i.e., in 
the absence of the background fields this value for the 
momentum would be part of an oscillation with zero aver- 
age velocity in the original frame. In other words, 

PJto) +Fwa”e dt=PII (VI), 

p,Oo) +J’w,v, df=p, (~1. 
(5) 

The important feature of the functions pl and pII is that 
they depend on E and o only through the ratio E/u, which 
is a Lorentz invariant, as explained above. 

Now consider the electron momentum in the frame 
moving with velocity dv relative to the original frame. In 
this frame the electron has momentum components: 

p~=px--mydv,, 

where y is the Lorentz factor of the electron in the original 
frame. In the primed frame, however, the x axis, which is 
parallel to the original x axis, is no longer parallel to the 
wave axis, because the wave direction changes under Lor- 
entz transformations. Assuming dt taken small enough 
that 

IFextdt/mI - IdvdJ -4~ (7) 

the wave in the new frame is altered by a rotation through 
an angle dvy/c. This result (the aberration of light) can be 
derived either from the transformation of the electric and 
magnetic fields or from the velocity addition formulas, 
treating the wave as a particle moving with the speed of 

FIG. 1. Stationary oscillation in two frames. The right frame has velocity 
0.5~ in the positive y direction, measured in the left frame. As a result the 
figure-eight is reduced in size by a factor y=O.86 and rotated by an angle 
e=30”. 

light.15 The frequency of the wave is also changed, so the 
amplitude of the oscillations is changed, but the relation- 
ship between momentum and phase depends only on a and 
is hence preserved. 

Figure 1 shows the figure-eight motion from the same 
plane wave in two different frames, one the lab frame (in 
which the wave travels in the x direction) and the other 
moving in the positive y direction with velocity 0.5~. The 
angle of rotation satisfies sin e=dv,/c, and (to first order 
in &y/C) cos f3= 1. From this rotational effect, 

P; dvu 
Pi; =p:f-y- 

P; dvy 
-px--m 4 y-7, 

P: dvy 
p; =p;-,- 

P: dvy 
-pu-m dv, y+, . 

(8) 

Our goal is to choose dv, and dv,, so that the electron 
is at rest on average in the frame moving with velocity dv. 
In other words, 

Pi ‘PII (71L 

P; =Pl (7). 
(9) 

Combining Eqs. (4), (5), (6), (8), and (9), and writ- 
ing dp for F,,, dt, we obtain 

PII (rl) +dp,--my dv,- 
PI Wdv, 

c ‘PII (771, 

PI (rl) =dp,--my dv,-t- 
PII Wdvy 

c =P1 (7). 

(10) 

In these equations we have dropped terms of order dv2/2, 
since these terms make no contribution in the limit dt-+O. 
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Related terms will return, however, when we attempt to 
sum the infinitesimal impulses from the background field. 
Solving the above equations, we obtain 

dpx PY dP, 
dvx=Fy-my[ mcy--piI (q) ] ’ 

c dn, 
(11) 

dvy=mcy-jj; (77) * 

We can simplify these equations slightly by noting that 
y-pII (v)/mc is a constant (called y by Landau and Lif- 
shitz, henceforth yo) with the value dm, where a is 
the strength parameter of the wave defined above. The 
phase-averaged (not time-averaged ) relativistic mass of an 
oscillating electron is yo, and the reciprocal of the time 
average of the reciprocal of y for an oscillation is also yo. 
This important relationship follows from the third invari- 
ant of the unperturbed motion: 

y-pk&Eyo*;= l- pIl VII d7 mcy= 1-7=x. (12) 

Therefore averaging l/y with regard to time is equivalent 
to averaging l/y0 (a constant) with regard to 7. For cir- 
cular polarization piI is zero and y= yo. For linear polar- 
ization, the time average of pIi is nonzero in the rest frame, 
where vII averages to zero; this occurs because the varia- 
tion of y is correlated with that ofpi, . The statement that 
the electron has zero average momentum in the rest frame 
is thus not strictly correct; the rest frame should be defined 
as the frame with zero average velocity, in cases where the 
two are not identical. The calculations for the z direction 
are the same as those for the y direction, so finally we 
obtain 

dv,,=$ , du,=-$, 

dv _dp” pydpy pzdpz 
’ my-m2cyyo-m2cyyo 

(13) 

writing p,, and pz for the two transverse components of the 
exact solution for the momentum (which are equal to the 
y and z momenta in the original frame neglecting the ex- 
ternal force, or to they and z momenta in the new frame if 
we take into account the rotation required by the aberra- 
tion of light). 

Equations ( 13 ) hold for arbitrary polarization and for 
any wave causing periodic motion. The equations and the 
approximation used to derive them are accurate for arbi- 
trary a; however, in deriving them we made the assump- 
tion that the total velocity gain from the impulse was much 
less than c. The form given above is useful for collisions 
and other short-time-scale behaviors, but we can extend it 
without great difficulty if we retain the assumption that the 
total momentum supplied by the external forces is insuffi- 
cient to make the drift velocity relativistic (the quiver ve- 
locity, of course, remains arbitrarily relativistic). Note that 
the velocity gains are separately linear in each of the com- 
ponents of the apphed force. 

There are three effects of order Q/C smaller than the 
leading velocity gain we wish to calculate. Including these 
effects complicates the equations sufficiently that numerical 
solution seems to be the only means of future progress. 
Velocity gains from a continuous series of impulses can be 
added simply (i.e., linearly) if we know that the sum of the 
magnitudes of the velocities is much less than c, but rela- 
tivistic addition of veIocities introduces second-order terms 
that become comparable as ud nears c. As described above, 
the perceived change in the wave’s direction of incidence 
has the effect of a rotation of coordinates. This rotation 
means that the wave’s direction of incidence in the drift 
frame is no longer parallel to x, but the error arising from 
ignoring this rotation is of order vd/c smaller than the 
result of the first-order calculation (since the rotation an- 
gle scales as ad/c). Finally, the background electric and 
magnetic fields in the drift frame differ from those in the 
original frame by a factor of order ad/c. The assumption 
that the drift velocity remains nonrelativistic under small 
perturbations is justified by the impulsive equations above. 
Ignoring these three corrections, we obtain the differential 
equations for the drift velocity: 

dvY FY dv, r;, -=- -=- 
dt my0 ’ dt my0 ’ 

(14) 

where vu and vZ represent the quiver velocity in the y and z 
directions rather than the drift velocity. 

For many background fields the differential equations 
can effectively be averaged over a period to give the result- 
ing drift acceleration. For example, for a uniform electric 
field E along ii we obtain that the drift velocity after one 
period is just eE/my@ (which only approaches c for 
E- 10’s V/cm) along 2. For sufficiently weak and uniform 
fields, however, it will be shown that the second and third 
terms in the v, equation vanish and the y in the first term 
can be averaged to yo. In this case the equation becomes 

(15) 

simply 

dVd F -=- 
dt my0 

Equation 
(15) are a m2- 

( 14) and the equation for the drift motion 
liar result of this paper; we now turn to the 

conditions of applicability of these equations and the errors 
caused by the use of the averaged motion (Sec. III), the 
extension of these equations to various types of back- 
ground lieIds (Sets. IV and V), and generalization of these 
equations to the case where the wave fields are changing in 
time (Sec. VI). Section VI also contains a frame-invariant 
version of the guiding-center equation. 

The impulse equations contain an interesting asymme- 
try between the x response and the y response, in that any 
impulse acting in they direction accelerates the electron as 
if it had mass myo, rather than my, the effective mass in 
the x direction. The effect of dp, on the x motion is also 
surprising. These two effects are observed in a single- 
particle numerical simulation of the impulse problem. For 
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FIG. 2. Acceleration (top), velocity, and displacement that might give 
rise to a phase velocity. Acceleration oscillates about zero but velocity has 
nonzero average. 

uniform fields the asymmetry between x and y disappears. 
However, it is this asymmetry that explains the pondero- 
motive acceleration along the wave axis, which is examined 
in detail in Sec. VI. 

III. CONSTRAINTS ON THE GUIDING-CENTER 
DESCRIPTION 

This section examines the conditions under which Eq. 
(14) is valid, and the following two sections look at the 
conditions under which Eq. (14) can be averaged to Eq. 
( 15). As we show, there are a number of subtleties in the 
use of these equations. First, note that the use of the aver- 
aged acceleration in place of the actual acceleration intro- 
duces an error, as in the following example. For an electric 
field along y, the drift velocity in the y direction after a 
period is eE/my@, and the drift velocity in the x direction 
is 

s 
- eEv,, dt 

mv0 ’ 
(16) 

period 

This integral is zero to our current level of approximation, 
so that there is no velocity gain over a period in the x 
direction. However, the integral of the drift velocity over a 
period (“the drift displacement”) can be nonzero, depend- 
ing on when the period is taken to begin, since the electron 
may gain drift velocity in one direction and then lose it, 
resulting in zero net velocity gain but in some position 
gain. Figure 2 shows the acceleration, velocity, and dis- 

placement graphs in the x direction for an applied field 
along y that is turned on instantly at one point in the 
oscillation. We have 

-eEy, dt @y(t) =-- 
mcy0 mcy0 ’ 

where y(0) is chosen to be 0 and y(t) represents the elec- 
tron’s displacement within its figure-eight orbit rather than 
relative to the lab. If, say, at time 0 the electron is at its 
highest y displacement, then for all times the velocity in the 
x direction will be in the direction eE, although this veloc- 
ity is periodic in the same way as y(t). Using the equation 
given below for the function y(t), the integration gives an 
average velocity in the x direction of magnitude: 

2eEymax 2a2c E 
v =K=x&* x (18) 

This is one example of a systematic error resulting 
from the use of the average acceleration as an actual ac- 
celeration. In effect, information about the initial phase of 
the electron is lost in the transition to average “guiding- 
center” equations. The use of the averaged acceleration as 
the actual acceleration necessarily gives the correct final 
velocity, taken over an integral (or very large) number of 
periods; the final displacement may be inaccurate, as in the 
example given above. Often this “phase velocity” is of little 
interest, for two reasons. The first is that often the resulting 
velocity is less than the change in the drift velocity over a 
single period; since the drift velocity accumulates over 
many periods while the phase velocity does not, the drift 
velocity over practical times is much larger. As an exam- 
ple, consider the case with a) 1 and an applied electric field 
in the y direction. Then 

4cE tictE 
v,=-, 

Eo 
(,I=- 

Y Eo 
(19) 

and after a few periods vy is much larger than v,. This 
argument does not hold for the case of a uniform magnetic 
field or other field which produces no drift acceleration 
averaged over a period; in this situation the phase velocity 
can dominate. The other reason the phase velocity can 
typically be neglected is that in practice either the applied 
field or the wave field is turned on over many oscillations. 
If the rise of the wave or electric field is uncorrelated with 
the wave frequency, then the effect of the phase velocity 
becomes much smaller. This happens for the same reason 
that a smooth wave packet (i.e., one which is effectively 
linear over a period) tends not to produce a significant 
displacement in the transverse direction: because the accel- 
eration oscillations are changing in amplitude, the velocity 
changes sign after each period and oscillates with roughly 
zero average. As an example, note that 

(S 

t 
a sin t’ dt’ 

0 > 
= (a-a cos t) =i 

so that the phase velocity is nonzero, while for a linearly 
rising wave packet, 
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t’ sin t’ dt’ 
> 

= (sin t-t cos t) -0. (21) 

The average of f cos t is effectively zero, in that it remains 
bounded while the wave amplitude grows without bound. 

Averaged over all initial phases, the phase velocity 
vanishes, for otherwise it would contribute to the acceler- 
ation. This can be shown as follows: if a(f) is the acceler- 
ation producing the phase velocity at time t, define a func- 
tion v(t) by 

J t v(t) = a(t)dt. (221 
0 

Because the average of a(t) is zero, v(t) must be a periodic 
function with period 2?r/c0. Then for the averaged phase 
velocity we have 

=(~)‘J-dto~+*~‘~ [v(t)-v(to)ldt 

=(~)2J~~‘~dfoJ~+2ff’.v(t)df 

Cd f *r/cd 

-z;; 0 J v(to)dto 

0 
J 

*n/o 277/m =- 
2l-r 0 v(t)dt-$ 

J v(to)dto 
0 

=o, (23) 

where in the next-to-last step we have used the periodicity 
of v. 

The use of the averaged acceleration eliminates many 
of the terms in the equations for the drift motion, and the 
remaining terms closely resemble those for a nonoscillating 
electron with increased mass, as will be shown below. If the 
velocity gained by an electron is small over a single period, 
we can describe the behavior of the electron over many 
periods by using the acceleration averaged over a period as 
the electron’s acceleration, and then treating this acceler- 
ation relativistically; this method will give the correct an- 
swer as long as the velocity gain over a period remains 
small, and will continue to describe the motion correctly as 
the aggregate drift velocity becomes relativistic. In some 
cases the secondary terms in v, do not vanish and make a 
necessary contribution, as in the case of a ponderomotive 
force associated with the growth in intensity of the original 
wave, which will be examined below. It will be shown that 
for many types of background fields, the electron motion is 
given to a high degree of approximation by a simple equa- 
tion that effectively sums the contributions from the back- 
ground fields and the wave’s ponderomotive force. 

One condition already mentioned that must be satisfied 
for the drift equations to be valid is that the drift velocity 
gain induced by an external field over a single period of the 
wave be nonrelativistic. If the drift velocity gain is relativ- 
istic, then the simple addition of velocities breaks down 

and transfer of energy from the wave to the electron or vice 
versa is possible. In more precise language, the addition is 
legal, and the motion described by Eqs. (14), if in the 
frame where the electron has GO drifr velocity the applied 
fields satisfy 

e&ppm Eapplied 
capplied =MCW= 

wave Ec,i, gl* 
(24) 

Here e&.,, = mcu,,,, ( Bappried can be substituted for Eapplid 
in the above). Note that this constraint has nothing to do 
with the strength of the wave, and the wave can be weaker 
than the applied field, as long as the applied field is suffi- 
ciently weak. Strong background fields are numerically ob- 
served to produce very complicated motions, although cer- 
tain regularities seem to exist in some cases. 

As an example of the importance of this constraint, 
consider the accelerator scheme of Kawata et aL,5 whereby 
a transverse static electric field is used to convert wave 
energy into particle energy. The constraint must be vio- 
lated to produce significant energy transfer. In the lab 
frame the static electric field has Eapp&Ecet 
=2.18x 10V5, In the frame of the electron, however 
(which has inital velocity 0.9999c), awave and Erel are de- 
creased by a factor 2y- 141, and Eqplied is increased by a 
factor of y. Thus in the electron’s frame 
Eapp&Ecct -0.2 12, and the absorption of wave energy by 
the electron does not contradict the above results. The 
results of our numerical simulation for these parameters 
match those in this paper. In another paper6 Kawata et al. 
use a magnetic field with a,,,t;~=0.0057 in the lab frame 
and initial y of 3.2, so that 2~ala,=adtif,=0.117. In fact, 
the correct y to use in calculating adtin should include the 
ponderomotive increase in the electron drift velocity, 
which will be discussed in greater detail below; the actual 
adtin values for the two methods described above are 0.243 
and 0.133. In another acceleration method, that of Apol- 
lonov ef aL,4 the prescribed initial y is equal to 
(omc/2eB) “*, which is exactly our condition that 
2&M&.3. 

If an applied electric field is weak, then according to 
the above equations the drift acceleration of the particle 
can never be more than twice as large as the acceleration of 
a stationary electron in the same field (“twice” because of 
the additional terms in the x equation) and will typically 
be less because of the increase in effective mass. A weak 
applied magnetic field that is highly nonuniform over a 
figure-eight can lead to significant acceleration, and this 
case is considered below. For simplicity, the rest of the 
results in this paper will be specific to the case of linear 
polarization unless otherwise noted. The generalization to 
other polarizations is in most cases straightforward. 

IV. SIMPLE APPLICATIONS OF THE EQUATION 

Some results regarding simple types of background 
fields can be easily determined from the equations above. 
For simplicity, these results will be derived for the case of 
linear polarization; in most cases the treatment for arbi- 
trary polarization is similar, although the results may dif- 
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fer. The unperturbed equations of motion in the rest frame 
of the electron, for the vector 
A=A,= -am2 sin(v)/e, are” 

potential 

a2c sin 271 ac cos 7j 
x=-T, y-y, z=o, 

a’mc cos 277 (25) 

PX’PII = - 
4Yo 

, pY=pl = -amc sin 7, 

pz=o. 

As described above, the drift induced by a uniform 
electric field is in the direction of the electric field, and the 
electron’s effective mass is my,. For a uniform magnetic 
field, the equations of motion ( 14) give the integrals 

A$= 
- ev, B, 
- dt, 

mcy0 

Au,= 
4v,&-vyBx) 

mcy0 
dt, 

Avx= 
s 

ev,J% - ev, B, v,, 
--p--t. 
w mw c 

(26) 

Since J-Vi dt=O for each index i, the first two integrals are 
zero. The x integral is also zero, as can be verified by direct 
computation or by use of some symmetries of the figure- 
eight motion that will be described below. As a result, a 
uniform magnetic field in the rest frame of the electron has 
no effect to first order in the strength of the magnetic field. 
For large magnetic fields the motion ceases to oscillate in 
an orderly manner. 

This result can be used to explain the behavior of drift- 
ing figure-eight orbits in a uniform magnetic field. Suppose, 
e.g., that a laser pulse induces (through the ponderomotive 
force) a drift velocity relative to the lab frame. During the 
body of the pulse, figure-eights moving with this drift ve- 
locity then move in cyclotron orbits in the presence of 
weak magnetic fields. In order to get these effects from the 
equations above, we begin by transforming the magnetic 
field from the lab frame to the electron’s drift frame. The 
equations below are written for the case vdl B; a parallel 
component of vd merely makes the motion helical rather 
than circular. The fields in the drift frame are then 
E= ydvd/cXB and B= ydB. Here yd is the Lorentz factor 
of the drift motion. The drift velocity of the figure-eight in 
the lab frame can be arbitrarily large without causing dif- 
ficulties for the method described above, as long as the 
change in drift velocity over a period is nonrelativistic. In 
this moving frame, then, the electron experiences an accel- 
eration perpendicular to the direction of its drift velocity 
with magnitude eyfldB/mcyo. The assumption that the 
fields are effectively constant over a period in the drift 
frame requires that o,<o,,,, but this criterion is difficult to 
violate for wavelengths of interest. Essentially the criterion 
states that the fields in the electron’s drift frame change 
slowly over a period of the wave. Transforming a perpen- 
dicular acceleration introduces two time dilation factors of 
yd, so that in the lab frame the electron experiences an 

0 
FIG. 3. “Cyclotron” motion of oscillating particles in uniform magnetic 
fields. In the first frame a ,,,1id=4.66~ 10m4 (10 T). In the next frame 
a applied = 0.466; in the last frame =,pplied = 4.66. The strangely shaped orbit 
in the last frame is only repeated a few times before the motion changes 
markedly. The figures are scaled approximately proportionally to the 
magnetic field strength. 

acceleration eVdB/mcycyd. Hence the modified Larmor 
frequency w, is eB/mcyoyd, and this result is observed 
numerically. 

The multiplication of Lorentz factors in the denomi- 
nator of the previous expression can be understood by 
viewing the oscillating electron as a “quasiparticle” of 
mass m yo. The transformations to and from the drift frame 
in the above calculation can be generalized simply by not- 
ing that a particle whose displacement satisfies the Lorentz 
equation of motion in one frame is constrained to obey it in 
all frames. Thus we have the general result that, for fields 
which in the rest frame of the electron vary slowly over the 
single-oscillation time and space scales and which do not 
induce relativistic velocities over a period of the wave, the 
electron behaves like a quasiparticle of enhanced mass 
myo. This enhanced mass, and its effect on the plasma 
frequency, has appeared in the literature before, e.g., in 
studies of focusing of laser beams by plasmas;16 the com- 
plete derivation here of the enhanced mass and the condi- 
tions for its applicability, however, appear to be new. The 
methods described here can also be applied for weak fields 
which are not uniform in space or time, as in the following 
examples. 

Although figure-eights make closed cyclotron orbits to 
first order, this analysis cannot rule out a velocity change 
of order (dv’ reriod/c) per oscillation or (o/w,) (d&&c) 
per cyclotron orbit. For sufficiently strong magnetic fields, 
even electrons with zero initial drift velocity are strongly 
affected, and the orbits no longer resemble cyclotron mo- 
tion. Figure 3 shows the progressive breakdown of the cy- 
clotron motion; it is interesting that the motion retains 
some regularities even for applied fields of very high 
strength. When the electron has zero drift velocity in a 
constant magnetic field, to first order the magnetic field 
causes no acceleration and the higher-order terms domi- 
nate. The methods given in this paper calculate what in 
most circumstances is the dominant part in the motion; in 
certain special cases the part calculated here goes to zero 
and other less easily determined behaviors become evident. 
The simplest, most important such case is that of a static 
uniform field which in the electron rest frame is purely 
magnetic. 

Phys. Plasmas, Vol. 1, No. 5, May 1994 J. E. Moore and N. J. Fisch 1111 

Downloaded 23 Nov 2005 to 198.35.4.75. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



V. MOTION IN NONUNIFORM FIELDS 

This section extends the conditions under which the 
asymmetry in the guiding-center equation disappears upon 
averaging. The results obtained in this section will depend 
on the linear polarization of the incident wave; the effects 
of varying fields on oscillations in circularly and elliptically 
polarized waves are much different. The primary result is 
that, for linear polarization, fields which vary linearly al- 
low the averaging of Eq. ( 14)) even if the fields vary sig- 
nificantly over a figure-eight length scale. Hence the 
guiding-center equations are applicable for a wider class of 
background fields if the wave is linearly polarized. 

A uniform magnetic field causes no change in the drift 
velocity over a period, as shown in Sec. IV. In the presence 
of a spatially varying magnetic field, we expect a drift ac- 
celeration of order 

where il is used as an estimate of the figure-eight excursion 
distance. If the electron is moving with velocity vd relative 
to the frame where the field is purely magnetic, the mag- 
netic field (ignoring the gradient) induces an acceleration 
in the drift frame of magnitude: 

e”dtiftydtift B 
adrift= mc . 

Comparing the two, we get 

(28) 

VB 
agradgad,-$t=k’y~<~ I (29) 

Depending on the size of vdtift and the degree to which the 
magnetic field varies over ;1, the gradient may induce ef- 
fects less than, comparable to, or larger than the effect of 
the field without the gradient. Because v, can be relativ- 
istic while u&.$t is small, even for fields varying by a few 
percent on the oscillation scale the gradient term can be 
larger than the static term. For the case of circular or 
elliptical polarization, these estimates are substantially cor- 
rect; fields varying slightly on the oscillation scale can in- 
validate the guiding-center picture and yield energy trans- 
fer from the wave to the particle. For linear polarization, 
however, linearly varying fields end up causing a much 
smaller change in the acceleration. Magnetic fields are of 
primary interest because a gradient in an applied electric 
field changes the acceleration by at most a factor of VW& 
so that the effect is small unless the electric field changes on 
a scale length less than or equal to a period. 

The figure-eight motion in a linearly polarized wave 
has certain symmetries, and these symmetries greatly sim- 
plify the calculation of drift motions. Looking at Eqs. (25) 
we see that pX has the same value at ~=8, v=rr-13, 
~I=rr+tI, n=2rr- 6 for any angle 6. Similarly p,, has the 
same value at TI = 6 and q = rr- 8, and the negative of this 
value at n = rr+ 8 and v = 2n- 8. Since the Lorentz factor 
y is equal to Jl + (pX/mc)2+ (p,Jmc) 2, we also have that 
y takes on the same value at the four phase angles. These 
results are significant because the positions at the four 

FIG. 4. Rectangles of points with similar dynamical variables. Three 
sample rectangles are drawn in the picture. 

phase angles in question form a rectangle, and for linear 
field gradients the sum of the field at the four vertices of a 
rectangle takes a particularly simple form. The four phase 
angles 8, r-8, r-t-0, 2a-0 correspond to the top left, 
bottom right, bottom left, and top left corners of the rect- 
angle, as drawn in Fig. 4. These symmetries are summa- 
rized in Table I. 

In calculating the acceleration induced by an electric 
field, we obtain four integrals over the period of the mo- 
tion, which can be done explicitly using Bq. (25). Two of 
these integrals are proportional to JE( x>dt, one is propor- 
tional to J&(x)/y dt, and one is proportional to 
JE,( x)v,, dt. In the case of the first two types, the part of 
the integrand not depending on E takes on the same value 
at each of the four points on the rectangles described 
above. The original integrals are over time rather than 

TABLE I, Periodicity relations for figure-eight motion. 

Phase 

8 
iT-B 
r+e 
2n-0 

PX 4 Y 

+ -k + 
-l- -I- i- 
i- - + 
+ - i- 
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k 
BO 
VB 

I 

FIG. 5. Computer plot of gradient B drift of oscillating electrons in 
spatially varying magnetic field. The magnetic field varies linearly with 
scale length 100 A. 

phase, but they can be converted easily, noting that dt/dq 
depends only on v, and hence has the same value at the 
vertices of one of the rectangles constructed above. If the 
electric field varies linearly with position, the value of E, 
averaged over these four points, is equal to its value at the 
center. Therefore each of these integrals gives the same 
answer as if E were constant, with value equal to the value 
of the actual electric field at the figure-eight origin. In the 
last integral, however, the integrand takes on different val- 
ues at the vertices of the rectangle: it takes on one value at 
the top left and bottom right comers, and the negative of 
this value at the other pair of opposite comers. As a result, 
for a linearly varying electric field, this last integral has 
value zero, the same value as it has for any constant elec- 
tric field. Therefore, for a weak, linearly varying electric 
field, the acceleration over a period is the same as that of a 
particle of mass ntyo and charge e in a constant field with 
magnitude equal to the magnitude of the actual field at the 
origin. The only interaction between the figure-eight and 
the field gradient occurs through the drift velocity. 

The magnetic field case is only slightly more compli- 
cated, now the integrands contain magnetic field terms 
multiplied by vX, v/y, and v~v,,. (Once again an addi- 
tional factor of dt/dv enters that does not affect the calcu- 
lation.) The second two integrands thus average to zero for 
linearly varying fields, and the fhst gives the same effect as 
that of a uniform magnetic field with value at the origin 
equal to the value of the original field at the origin. Inte- 
grating vX over a period (for a uniform magnetic field) 
gives zero, however, so that magnetic gradients have no 
effect. The gradients affect the motion only through the 
drift velocity, therefore, so that figure-eights in linearly 
varying magnetic fields should exhibit BXVB drifts simi- 
lar to those of electrons not in waves. This behavior is 
observed numerically (Fig. 5); oscillating electrons in a 
linearly varying magnetic field drift with velocity: 

mu: ‘Yoydrif? VB 
us= 2eB >’ (30) 

The above calculation only considers the interaction of 
the figure-eight motion with the magnetic field (because 
the integration was performed over the unperturbed mo- 
tion); as the drift velocity of the particle increases over a 
period, the position of the particle measured in the original 
drift frame no longer lies exactly on the original figure- 
eight. This effect is smaller by a factor Aud/vquiver than the 
term calculated above, and can only be comparable to the 
acceleration induced by a static field of equal magnitude if 
AvdVB/~-vdB, i.e., the electron is stationary or the scale 
length is less than a wavelength. It should be pointed out 
that a spatially varying field in the lab frame may vary in 
time as well as space in the electron’s drift frame, and that 
even linear time variation can cause an additional acceler- 
ation. This acceleration is purely phase dependent, how- 
ever, and therefore has a negligible effect unless the elec- 
tron’s drift velocity changes greatly within a period. 

For magnetic fields which are weak but vary nonlin- 
early on the figure-eight scale, there can be significant up- 
take of energy by the electron (i.e., transfer of oscillation 
energy to drift energy). The simplest example is a field 
which is nonzero for only a small part of the orbit; then the 
figure-eight feels a large drift acceleration over this portion 
of the oscillation. 

VI. PONDEROMOTIVE FORCE IN PRESENCE 
OF EXTERNAL FIELDS 

To this point the analysis has been specific to the case 
of plane waves of constant amplitude. Waves of varying 
amplitude (e.g., pulses) generate the well-known ponder- 
omotive force in the direction of motion. The ponderomo- 
tive force in the absence of background fields can be easily 
derived from the three invariants of the motion. We 
present a calculation of the ponderomotive force using a 
variation of the frame transformation method applied 
above to demonstrate that the ponderomotive force is un- 
changed when background fields are present, under a suit- 
able set of assumptions. We then derive a covariant equa- 
tion of motion that describes the behavior of an electron in 
an arbitrarily intense but “smooth” pulse, in the presence 
of weak background fields. The ponderomotive force re- 
sults from a time-dependent scalar potential that happens 
to be conservative in the absence of external fields, i.e., 
after the wave has passed the electron has its initial energy. 
An important consequence of these equations is that en- 
ergy can be transferred to an electron by the ponderomo- 
tive force if background fields are present. 

The ponderomotive force derives from a change in the 
functions plI and pI over time, resulting from the change 
in the wave amplitude a over time. We use a to denote the 
envelope amplitude, rather than the instantaneous ampli- 
tude. Writing Ap for the change in rest-frame momentum 
resulting from the change in the wave amplitude, our goal 
is to find the velocity dv of the frame in which the electron 
has parallel momentum pII + ApII and perpendicular mo- 
mentum pI + Apl . By the same steps that led to Eq. ( lo), 
but with no external force and the momentum in the 
primed frame altered by Ap, 
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PII -m do, Y- 
PI dv, 
-‘PII +AP/I 9 C 

4 dVY 
pl -m dv, y+c=pI +APL . 

(31) 

Therefore the effect of an amplitude change is equivalent in 
our formalism to a force of - dplr /dt in the x direction and 
-dpl /dt in the y direction [the negative signs appear be- 
cause the force terms are on the left in Eq. (lo)]. The 
derivatives with respect to time should reflect only the 
change in wave amplitude, i.e., -dplt /dt should be prop- 
erly written ( -8~1, /aa) (da/dt), and similarly for the y 
direction. Since the ponderomotive force enters just as any 
other force, and the equations for the drift velocity are 
linear in the applied force, it follows that the ponderomo- 
tive force does not interact (for short times) with any 
other force that may be present if both are sufficiently 
weak. This result is nontrivial because the ponderomotive 
“force” is ordinarily derived from the three constants of 
the motion in the unperturbed case; since these constants 
are not preserved, there is no guarantee that the pondero- 
motive force should take a similar form. We have again the 
equations of motion 

dVY FY dv, Fx Fyyy -=-9 -=--- dt my0 dx my myo’ (32) 

The ponderomotive velocity reached as a wave rises de- 
pends only on the final amplitude of the wave and the final 
value of the vector potential, but this simplicity is obscured 
in the above equations, in that the ponderomotive force can 
come from any of the three terms in the equation above. 
We will concentrate on the case when the wave rises 
slowly, i.e., over many periods and at an approximately 
constant rate over each period, in this case the y equation 
is zero on average, so that the ponderomotive force is di- 
rected along the wave axis. The averaging of the x equation 
over a period, using the explicit equations (25) for the 
figure-eight motion, is not difficult (both terms contribute, 
however; see Appendix A) and yields for the average ac- 
celeration 

(33) 

This equation is in the rest frame of the electron, but note 
that da/dq is invariant, as both a and n are relativistic 
invariants. Integration of this equation in its present form 
is difficult, since the (possibly relativistic) velocity of the 
rest frame complicates addition of velocities. Later we will 
show that the equations can be written in an easily inte- 
grable form in the absence of external fields. 

We thus have an expression for the ponderomotive 
force in the frame where the electron has no drift velocity, 
as well as our previous expression for the behavior of the 
drift velocity in the presence of certain types of background 
fields. That is, in the drift frame we have 

amcok da 
my0 $=e(E+vdXB) +-- 

2~0 dq. 
(34) 

These equations can be made frame-independent without 
great difficulty and take a more intuitive form. First we 
note that by forming the number Yd defined as 
l/&i@, the vector vd= (yd,ydvd/c) is a four-vector. 
This four-vector represents the time-averaged four-velocity 
if all background forces and ponderomotive effects van- 
ished; this vanishing is a frame-invariant concept, and the 
average of a four-vector along a path in space-time param- 
etrized by a quantity transforming linearly (in this case the 
time) is a four-vector. This four-vector clearly has constant 
length i. Equation (34) generalizes naturally to 

dv$ 
my0 z= eQ&- (ponderomotive term). (35) 

Here J$ is the electromagnetic field tensor. For the pon- 
deromotive term, we need a four-vector which is parallel to 
the vector (0,k) when vd is equal to ( l,O,O,O). The pon- 
deromotive four-vector must also be orthogonal to vd, 
since vd has constant length (this condition is satisfied for 
the electromagnetic term by the skew symmetry of F) . The 
simplest four-vector satisfying these condi$ons is propor- 
tional to w”-v~(&& where w= (w,wk) is the wave 
four-vector. In order to make our equation look more like 
a force equation, introduce the four-vector pd defined as 
mcyovd (the time-averaged momentum four-vector, if all 
background fields disappear). By the chain rule 

dp: a dye dv; 
-&=mcvd -&i-mcyO -&. 

The second term is given by Eq. (35); the first is 

a dye omcv~b’v(@) da 
mcvd -&= 2Yo G’ 

This term cancels part of the first term, since 

[@“--Y;(dv‘@)] +v;(dv&) =tia. 

We are left with 

dpda umcaa da 
-;j;=eF$$l--- 

2~0 & 

(36) 

(37) 

(38) 

which is a major result of this paper. 
Because the ponderomotive term is parallel to ua, the 

momentum transfer from the ponderomotive effect is equal 
to that from a number of photon absorptions. McDonafdi7 
derives similar results in the absence of background fields 
starting from this assumption, which is valid only in the 
case of a slowly rising wave. It is important to note that the 
conditions for applicability of this equation are frame de- 
pendent: the fields must be weak and approximately uni- 
form in the electron rest frame. We see that the momentum 
transfer per proper time varies between frames in the same 
way as wa, consistent with the photon picture: the number 
of absorptions is naturally invariant (a count of distinct 
space-time events is preserved), but the characteristics of 
the photons absorbed change with oa. The rate at which 
momentum is instantaneously transferred to or from the 
wave depends only on the derivative da/dq an intrinsic 
property of the wave. The total momentum transferred, 
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however, depends on the proper time spent by the electron 
at various points in the wave, which depends on the initial 
conditions. 

This dependence can be demonstrated, and an easily 
integrable form of the equation obtained, by writing the 
ponderomotive term as 

amcaY da dr am2ccoa da ---= 
2y,, drd’l .zps,w,;i;’ (39) 

In the absence of fields other than those of the wave, the 
change in pd over time is parallel to tin, leaving the quan- 
tity p$$+ constant. Therefore we can simply integrate both 
sides with regard to proper time and obtain an expression 
for the ponderomotive velocity. For example, if the elec- 
tron is initially at rest, then psdo has constant value mu, so 
that 

(4) 

and the drift velocity 

(41) 

which is the correct result. 
In the presence of external fields, even weak ones, the 

product fldws is no longer constant, with interesting conse- 
quences. In the absence of external fields, it is well known 
that the net effect of the ponderomotive force over the 
pulse is just a displacement in the wave direction, but this 
no longer holds if an external field changes the denomina- 
tor. As a simple example, a weak magnetic field combined 
with ponderomotive gradients can yield a significant 
change in energy, when neither of these two forces acting 
independently can change the energy at all. The momen- 
tum transfer from the ponderomotiv$ force is largest when 
the momentum vector is parallel to k, so that particles can 
be accelerated or decelerated in the wave direction by mov- 
ing the momentum away from or toward k during the body 
of the wave, respectively. 

The ponderomotive terms in the above force equation 
can be derived from a potential: 

V= -mc2yo, (42) 

which is the negative of the phase-averaged energy of os- 
cillation. The background field terms in Eq. (38) are iden- 
tical to those for an ordinary charged particle. Since the 
ponderomotive term is the derivative of a function depend- 
ing only on space and time (through q), the drift equations 
(38) are Hamiltonian with H equal to the Hamiltonian for 
a charge in an electromagnetic field plus the ponderomo- 
tive potential term explained above. The ponderomotive 
potential is time dependent and therefore the energy need 
not be conserved, even between times when the pondero- 
motive potential is the same (e.g., before and after the 
wave passes). 

VII. SUMMARY 

For electromagnetic fields which are sufficiently weak 
and uniform in the rest frame of an oscillating electron, the 
presence of the wave affects the motion through an increase 
in the effective mass of the electron and through a ponder- 
omotive force during periods when the wave amplitude is 
changing. Equation (38) describes the particle’s motion 
under fairly general circumstances. Something that can be 
seen directly in this representation is that weak, uniform 
fields cannot induce significant energy transfer from a wave 
of constant amplitude to the electron or vice versa (no 
“inverse bremsstrahlung” ) , although a high electron veloc- 
ity may make weak fields effectively many times stronger. 
Interaction between applied fields and the ponderomotive 
gradient of a wave can lead to some energy transfer in 
either direction. The motion of an oscillating electron for 
weak but r&t necessarily uniform fields is governed by Eqs. 
(14) for the drift velocity. We therefore have a nearly 
complete picture of single-particle behavior in the weak- 
field regime. 

The general behavior of oscillating electrons in strong 
background fields presents a more difficult mathematical 
challenge. Computer simulation suggests that there are 
certain regularities in the motion, even for background 
magnetic fields strong enough to destroy the figure-eight 
motion. Some types of fields seem likely to induce stochas- 
ticity, however, e.g., two plane waves at incommensurable 
frequencies. An investigation of the case of multiple intense 
plane waves has been carried out by Rax,” but the general 
problem of intense background fields remains uncharted 
territory. 
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APPENDIX A: RELATION OF GUIDING-CENTER 
VELOCITY TO DRIFT VELOCITY 

Our current definition of the drift velocity has the ad- 
vantage of simplicity but does not represent an actual 
change in displacement over time; instead it represents the 
average displacement per time that would occur if the 
background fields were turned off. For some applications it 
might be more useful to deal with a guiding center or 
“instantaneous center of oscillation,” defined as some point 
along the particle’s orbit. For a figure-eight, we can con- 
veniently define the center of oscillation as the crossing 
point of the figure-eight in which the electron is instanta- 
neously moving. In other words, at any instant the electron 
is performing part of an oscillation in some drift frame, and 
the instantaneous center of oscillation is some point on this 
oscillation. As an analogy, in slowly varying magnetic 
fields electrons execute cyclotron orbits of varying radii, 
and it might be useful to operate with the center of the 
cyclotron orbit in which a drifting electron is instanta- 
neously moving. The center of oscillation moves for two 
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reasons: the drift frame where it is located translates at the 
drift velocity vd, and the background fields change the 
amplitude and shape of the oscillation. To first order, the 
amplitude of oscillation is altered with w and the shape is 
altered independently by the effective change in the inci- 
dent direction, Suppose x( 7) is a parametrization of the 
oscillation by the wave phase 7, with origin at the (arbi- 
trarily chosen) center of the oscillation. Once again elim- 
inating terms of smaller orders, we obtain 

&WC ikdo dxd0 
-=Vdf&x+z’;l; dt 

ax w dv, 
‘vd--&; dt- (Al) 

The last term on the right-hand side of the above~equation 
is bounded by i2dvd/c dt, and integrating dt gives that the 
contribution from this term is /2vd/c, i.e., much smaller 
than a wavelength. Similarly the second term is bounded 
by ildvd/c dt, since x scales with l/o if a is kept constant. 
Thus we can treat vd as the change in displacement of the 
oscillation center over time, with total error much smaller 
than a wavelength. One should keep in mind, though, that 
the effective wavelength of the pulse viewed in the electron 
frame may be rather large for highly relativistic electrons. 

APPENDIX B: CALCULATION OF PONDEROMOTIVE 
ACCELERATION 

The task is to integrate the differential equation for the 
drift velocity in the parallel direction over a period, using 
the exact solution to the motion (5). The two terms in the 
equation for dv,/dt, averaged over a period, give 

dvx 
( ) dt 

1 a~11 da 1 ~PL PI da _---_---- 
my aa dt my0 b’a my dt 

-_f_%---- 1 8Pl Pl 
my aa my0 aa my 

(BI) 

This integral takes a simple form when the exact solution 
(25) is substituted: 

w da 
s 

2r (ac cos 2q)/2+ac( 1 -cos 2q)/2 -- 
2rdrl o YOY 

drl 

WI 

The only variable term in the integrand is y, and l/y av- 
erages to l/ye, as before. Therefore the average pondero- 
motive acceleration is 

da acw 
=iq 2yyo * 033) 

‘J H. Eberly and A. Sleeper, Phys. Rev. 176, 1570 (1968); E. S. Sa- 
rachik and G. T. Schappert, Phys. Rev. D 1, 2738 (1970); T. W. B. 
Kibble, Phys. Rev, 150, 1060 ( 1966). 

*T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979); Laser 
Acceleration of Particles, edited by C. Joshi and T. Katsoulcas, AIP 
Conf. Proc. No. 130 (American Institute of Physics, New York, 1985); 
IEEE Trans. Plasma Sci. PS-15 ( 1987) (special issue on high-energy 
plasma based accelerators). 

3P. Chen and J. M. Dawson, in Laser Acceleration of Particles, edited by 
C. Joshi and T. Katsouleas, AIP Conf. Proc. No. 130 (American Insti- 
tute of Physics, New York, 1985), pp. 201-212; IEEE Trans. Plasma 
Sci. PS-15 (1987). 

4V. V. Apollonov, A. I. Artem’ev, Yu. L. Kalackev, A. M. Prokhorov, 
and M. V. Fedorov, JETP Lett. 47, 91 (1988). 

‘S. Kawata, T. Maruyama, H. Watanabe, and I. Takahashi, Phys. Rev. 
Lett. 66, 2072 ( 1991). 

‘S. Kawata, A. Manabe, S. Takeuchi, K. Sakai, and R. Sugihara, in 
Advanced Accelerator Concepts, AIP Conf. Proc. No. I93 (American 
Institute of Physics, New York, 1989), pp. 172-201. 

‘C. I. Castilio-Herrera and T. W. Johnston, IEEE Trans. Plasma Sci. 
PS-21, 125 (1993). 

sT. W. B. Kibble, Phys. Rev. 150, 1060 (1966). 
9C. E. Max, Phys. Fluids 19, 74 (1976); J. F. Lam, B. Lippman, and F. 
Tappert, ibid. 20, 1176 ( 1977) 

“M. 0. Scully, Appl. Phys. B 51, 238 ( 1990). 
“J.-M. Rax, Phys. Fluids B 4, 3962 ( 1992). 
“V. 1. Arnold, Ordinary D,ifSerential Equations (MIT Press, Cambridge, 

MA, 1978), p, 213. 
13L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th 

revised English ed. (Pergamon, London, 1975), p. 118. 
14J. H. Eberly and A. Sleeper, Phys. Rev. 176, 1570 (1968). 
“Reference 13, p. 13, 
16P. Sprangle, C. M, Tang, and E. Esarey, IEEE Trans. Plasma Sci. 

PS-15,145 ( 1987); X. L. Chen and R. N. Sudan, Phys. Fluids B 5,1336 
(1993). 

“K. T. McDonald, in Laser Acceleration of Par&es, edited by C. Joshi 
and T. Katsouleas, AIP Conf. Proc. No. 130 (American Institute of 
Physics, New York, 1985), pp. 23-54. 

1116 Phys. Plasmas, Vol. 1, No. 5, May 1994 J. E, Moore and N. J. Fisch 

Downloaded 23 Nov 2005 to 198.35.4.75. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


