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Alfvén wave propagation in slightly nonuniform cold plasmas is studied by means of ideal
magnetohydrodynamid$1HD) nonlinear equations. The evolution of the MHD spectrum is shown

to be governed by a matrix linear differential equation with constant coefficients determined by the
spectrum of quasistatic plasma density perturbations. The Alvaves are shown not to affect the
plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum
evolution equation to the inverse scattering problem allows tomographic measurements of the
plasma density profile by scanning the plasma volume with Alfsadiation. © 2002 American
Institute of Physics.[DOI: 10.1063/1.1448499

I. INTRODUCTION perturbations of plasma density in a cold slightly nonuniform
ideal MHD plasma(The term “slightly nonuniform” refers
The problem of finding the eigenwaves of various plas-to the amplitude of plasma density perturbations, but does
mas is most easily considered under the strict assumption @fot limit the ratio of the wavelength and the characteristic
homogeneous plasma properties. Such an approach allowpatial scale of the density perturbations considered, which is
significant simplification of dynamic equations leading 1o gjlowed to be of the order of unifyThis problem is a three-
relatively simple dispersion relations for the waves propagatyayve interaction problem, where one of the waves has zero
ing in uniform plasmas, further called the partial waves.frequency and nonzero wave vector and the two other waves
However, the assumption of plasma homogeneity is ofterye conventional Alfve waves, whose dispersion relations
inapplicable to real systems. o are derived under the assumption of uniform plasma me-
Consider a plasma medium, which is adequately degjym various nonlinear and three-wave interactions in mag-

scribed in terms of ideal m_agnetohydrodyngm(M;HD). netohydrodynamics have been intensively studied; for de-
One of the features of MHD-like plasmas consists of the fac}

that toacti llision! | tain st iled review, see, e.g., Ref. 2, and references therein. In
at magnetoactive collisioniess plasmas can sustain s ea@érticular, the effect of Bragg scattering of MHD waves on
state localized structures, maintaining tot&inetic plus

spatial lattices of plasma structure with given wave numbers

magneti¢ pressure balance with t_he ambient me@a. Suckhas been experimentally studied in the context of ionospheric
structures are often called magnetic bubliffes density de- irregularities

pressions or magnetic bottlegfor enhanced densbﬂ/ be- . - .

cause of the disturbance of the magnetic field caused by the In the presgnt baper, we f|n_d e>_<pI|C|t soI_utlons for th_e
diamagnetic effect of their localized plasma density changes[.)mblem of partial waves scatterln_g n (.:Old slightly nonuni-

The spatial distribution of magnetic bubblgs bottles rep- form plasma. O'T' the other hand, inverting t_he prok_)lem_, one
resents a nonuniform plasma pressure profile, whose spatigf”! 96t the full information about the density spatial distri-

harmonics can be treated as static waves described by tfpation out of the obtained scattering properties of given plas-
dispersion relationo(k)=0. From this point of view, the Mas: In principle, these results allow realization of quasilin-

problem of finding the eigenmodes of ideal nonuniform&2r Alfven tomography, i.e., the procedure of obtaining the
MHD plasma can be considered in terms of MHD partialPlasma density profile from measurements of the Aifve
waves, scattering on plasma inhomogeneiti@sagnetic ~ SPectrum transformation. We call the proposed tomography
bubbles or bottles as long as the partial waves remain well quasilinear because despite the nonlinearity of the MHD
defined, i.e., the plasma pressure inhomogeneity remaigguations used, the final equation for the Atfvapectrum is
small enough. Therefore, the lowest-order effect coming int¢éhown to be linear, which makes its solving procedure
play when the plasma density inhomogeneity is taken int€quivalent to the standard tomography problem soltition.
account can be expected to be the coupling of conventiondlomographic measurements are currently being used, for ex-
Alfvén waves, which represent the partial waves of MHDample, in magnetic fusion plasma devices with application of
plasmas, on the quasistatic waves of plasma density pertux-ray waves for measuring the electron temperature in hot
bations described previously. core of tokamak plasma® and in ionospheric electron den-
In this paper, we consider the evolution of Alfvevaves’  sity measurements in radio-frequency rahgjé?We demon-
spectrum specifically due to their scattering on quasistatistrate that in cold slightly nonuniform plasmas, Alfveadia-
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tion can also be used for similar purposes broadening tha wave equation for an anisotropic medium. Looking for the

spectral limitations of plasma tomography. eigenstate of plasma motion governed(Byin the form of a
The paper is arranged as follows: In Sec. Il, we intro-plane wave

duce the nonlinear MHD equations and define the types of 110 . . _ )_

partial waves and ways of their interaction. In Sec. Ill, we U =Ul"exp—iwt+ik, -1, +ikyz), UT*=const (10)

derive the Hamiltonian e\_/olut|on equation fo_r Aliv(waves _(here kL:kX;(Jrkyg/, rL:x>A<+y§/, ksz-i and k is the

spectrum. We prove that in the cold plasma limit, the Hamil-,.aa_dimensional wave vecjoone immediately gets the

tonian remains constarfunder the assumption of small \ e\ known dispersion relations for compressional Ative
waves amplitudes and is determined by quasistatic plasmawaves(further called the CA modes

density perturbations not changing in time. The solution of

the Alfven tomography problem is discussed in Sec. IV. I w2,(k)=k?V4 (11)

Sec. V, we summarize the main results of our work. and the shear Alfee waves(SA mode correspondingly:
wia(K) =kfV2. (12)

IIl. MOTION EQUATIONS AND PARTIAL WAVES OF The plane wave representati¢t0) of MHD plasma

MHD PLASMA eigenmodes breaks down as soon as Alfwelocity be-

Let us consider plasma immersed in a static uniformtOmMes location dependent. As long as the inhomogeneity re-
external magnetic fieldy,=Byz, VBy=0, wherez is the mains smooth. KL>1,L=po/|Vpol), the Wentzel-
unit vector along thez axis. Under the assumption of the Kramers—DBrillouin(WKB) theory adequately describes the

. S L wave propagation process, and the representafibnwith
MHD-like plasma motion, in the cold plasma limit, when the . (0) U
the wave amplitudeJ}~’ slowly changing in space stays a

lasma kinetic pressurp is negligible compared with the o .
Sressure of the pexternaﬁ magngeti?: fieB@/STrp(,B=87rp/Bz good approximation for the eigenmodes of MHD plasma. No
0. wave scattering is taking place in this case. On the other

ih)]ét::) elkl;w:nse';;rfn?.lasma motion equations can be Wmtenhand, as soon as the wavelengtirk2 * becomes compa-
9 ' rable with the spatial scale of density inhomogeneky. (

<9tU—Vi(V><b) X 7= Ny, (1) ~1), the geometrical optid®r WKB approximation breaks

~ down and different approach becomes needed for describing
b= VX(UXZ)=Ny, (2)  the wave propagation in nonuniform plasmas.
dx+V-U=N, . 3) For the purpose of considering arbitrary valueskaf

we note that the modd41) and(12) do not form a complete
HereU is the plasma flow velocith=B_. /By is the normal-  set of linear solutions for all MHD plasma perturbations, and
ized magnetic field perturbatiorny=p_/p, is the density static density perturbations should be treated separately from
perturbation normalized on the average uniform plasma demajfvén waves. Indeed, as soon as one introduces a nonzero
sity po, andVi=B§/4mp, is the squared Alfe velocity.  plasma temperaturévhich is still allowed to be infinitely
Nonlinear “forces” written on the right-hand sides of the small to satisfy the condition of negligible plasms®, MHD

equations can be expressed as plasma becomes capable of containing steady state localized
Ny= —X&tU—(1+X)(U-V)U+Vi(V><b)><b, (4) struqtures, m.aintaining_ the total pressure balance_\_/vith the
ambient medium described by the equilibrium condition
Np=VX(UX
b=VX(UXb), 5 B2 (BB
NX:_V,(Xu)_ (6) Vip+ g = T aa (13

For our further purposes, it is more convenient to rewriteg,ch structures are often called magnetic buBklesmag-
Egs.(1) and(2), and(4) and(5) in a matrix form introducing  netic bottles, depending on whether plasma density is de-

a vector of the transverse flow velocity, =U,x+U,y: pressed or enhanced inside a strudtuldagnetic bubbles
DU =N (7)  are often observed in spa s1° created artificially in the
1 1 . s
Earth ionosphere and laboratory conditiot8and generally
where differential operatdD is given by represent a certain scientific interest for astrophysics and
2 \j2( 92 | 2 _\y2 2 plasma science.
D= % VA(SXX; 7% ) ZVijy ) ® From (13), it follows that as long as the plasma kinetic
—Vadxy 95— Va(dyy+d3,) pressure remains isotropic, no equilibrium pressure variation
along the field lines can be maintained self-consistently,
and transverse nonlinear forbe can be expressed as which means that in isotropic plasmas, magnetic bubbles can

only be two-dimensional2D) structures axial symmetric
along the static uniform magnetic fieR},. Pressure anisot-
Consider now the case when plasma inhomogeneity isopy is often present in real plasmésut since its level is
purely oscillatory in time and space. Then, in the linear ap-usually low, bubbles tend to elongate in the direction of ex-
proximation one can treat Alfvevelocity as constant and ternal field>'* so that their longitudinal size is significantly
sinceN, is negligible, the linearized equati@i) represents larger than the transverse one. Thus, for simplicity we will

N, =Ny , +Va(VXNp) Xz 9)
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assume the bubbles to be completely two-dimensional, stering on static density perturbations. The third type of wave
that for small variations of plasma kinetic pressure the equitransformation, namely CA CA process, simultaneously re-

librium condition(13) is equivalent to
e (19

wherey=0(1) is introduced through the plasma equation of
state p=po(p/po)?. For our purposes, it is convenient to
think of such 2-D small-amplitude static plasma density per
turbations as of static wave$ modes, which dispersion

relation is given by
wg(k)=0, k;=0. (15

Low-amplitude Alfven waves(11) and(12) andS modes

quires
(20

and, similarly to SA-SA process, for arbitrarks (unless
ks>2K, ca1), there always exists a scattered Alfverave
meaning that the pumping CA wave is always unstable to
Bragg scattering on plasma density perturbations.

K|,cai=Kj,caz:  Kicai=Ki caztKs,

Ill. EVOLUTION OF MHD SPECTRUM IN BRAGG
SCATTERING PROCESS

In order to derive the equation for the evolution of

(15) represent thepartial waves of MHD plasmas meaning Alfvén spectrum in Bragg scattering process, let us represent
that each of these waves is an eigenmode bifiear MHD  the transverse plasma flow velocity in the form

system only where mode coupling is negligible, but, as soon
as the nonlinear drivdl, is taken into account, these waves
generally cannot exist independently. Consider a “pumping”
Alfvén wave with frequencyw, and wave vectok, propa-
gating in a region of spatially modulated plasma density and

U: f dsk[UCA’ k(l‘,t)e_i“’CA(k) t+ USA, k(r,t)e_imSA(k) t

+Us ((r,0)]e* +c.c., (21

let the modulation be purely sinusoidal with the wave vectomwhere the partial_ modes spectiga, Usa, andUs are gen-
ks. The presence of quadratic nonlinearity in the expressiorally slow functions of time and space compared with the

for N, shows that the energy of the pumping wave will be

characteristic frequency of Alfve waves and the largest

transferred into a scattered wave with the frequency and th&avelength being considered; c.c. stands for the complex

wave vector given by

ws=wp, Ks=KptKks. (16)

Equation (16) represents the conditions of resonant three
wave interaction, or well-known Bragg scattering of pump-
ing Alfvén wave on a spatial plasma structure. The scattere

conjugate term. Let us then introduce 2-D “polarization”
vectors & and scalar wave amplituddg, for each partial
wave a according toU, ,=&,U,«, where for compres-
sional Alfven waves polarization is defined @s,=k, /k;
and for shear Alfva waves astsa=2zXk, /k, . Considering
the Fourier representation ¢f) in high-frequency(Alfven)

wave, in turn, is also scattered by the lattice with the wavePart of flow velocity spectrum and multiplying it by polar-

vectorkg producing a third wave and amplifying the pump-

ization vector one gets the equation for the amplitude of each

ing one, etc., so that the amplitudes of the waves will evolve®f CA and SA spectra:

in time. In the following sections, we show the explicit way
of finding the scattering properties of arbitrarily modulated

plasma density in the case when the amplitudes of these

modulations remain small.

The conditions for resonant interactiob6) indicate the
possible pairs of Alfva linear modes, which can couple to
the inhomogeneities of plasma density. For scattering of on

dUy _i &N ok
dt 2w(k) -
Here d/dt=4d/dt+ V-V is the convective time derivative
along wave package trajectory,q is the group velocity,

N, ., « is the Fourier-transformed right-hand side(@f; fre-
guencyw (k) is calculated according to one of the dispersion

(22

SA mode into another SA mode, the necessary conditions oelations(11) and (12) depending on the wave considered.

coupling
17

show that every shear Alfvewave is potentially unstable to

kH,SA,1: kH,SA,Zv K, ,SA1T k, sA2T Ks

Equation(22) is obtained under the assumption thét is

changing slowly compared to e*‘“’t_, so that
P*(Uye "N ot?~ — (w?Uy+2iw dU, [ot)e ', and
similarly—for spatial derivatives otJ,e '*". Since w is

transformation into another similar wave with the same par£onnected wittk via dispersion relation, the terms propor-
allel and different transverse wave numbers. On the contraryional to U, cancel out wher-Uy is multiplied with polar-

in CA— SA scattering process, conditi¢h6) combined with
the dispersion relation&l1) and(12) require the equalities

2 2 2
Kij cat KT ca=Kijj sar Ky ,ca=ky satKs,

(19
which lead to the additional conditions on wave numbers:
Ks. (19

In other words, CA wave with nonzero transverse wave num

kll,CA:kH,SAy

kL,CA:ov kL,SA: -

ber cannot interact resonantly with SA waves via Bragg scat-
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ization vectoré (&-D(w(k),k)-£=0). Therefore, one is left
with only the first-order derivatives on the left-hand side of
the equation, which lead to the final res(2p).

Denote the order of velocity perturbations for CA and
SA modes with a small parametex, and the order of small
density perturbations for th& modes witheg. Require that
the perturbations of the magnetic fighd caused by thes
modes are small compared to those caused by the Alfve
wavesb, :

bs"" Esﬁ< bA .

(23
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Thus, although sucB modes disturb the plasma density, they ation is different because frequencies of compressional
do not change the magnetic field in cold plasmas. waves are determined by the transverse wave numbers as
Relation (23) allows significant simplification of the well. On the other hand, if one assumes the interaction of CA
nonlinear forceN, because in this case the only nonlinearwaves withgiven k , Egs.(24) and(26) become applicable,
drive comes from the terny 9,U. Under the assumption of too. Such a situation occurs, for example, in the scattering of
infinitely small B8, one can then rewrit€22) as an integral a plane compressional wave with a given wave vector. In this

equation case, the modes that are born in the Bragg scattering process
. will automatically get the samk, though the direction of
d Uk | C!)(k) . . .
= j d?k | (&&)xs(k, —k| Uy, , (24)  their wave vectors will be rotated i, subspace depending
dt 2 on the plasma density profile.
wherek’=k! +k X, xs(k,) is the static density perturba- Consider now the evolution of Alfwespectrum in the

tions spectrum, and the density perturbations caused biyame moving with a group velocity with respect to the labo-
Alfvén waves are assumed small compared to the static def@tory set of coordinates. For each spatial harmapicof
sity perturbations of thé& modes. Unless the Alfvespec-  Alfven spectrum in new frame of referentg(r,t) =y (r
trum is represented by shear waves only, one needs to requireVqt,t), one then gets the well-known Schifoger equa-

that ep< g to satisfy the latter assumption. tion
The equivalent representation (4) has a form I
i~ =Hy (27)
. d Uk ot k>
| W =H Uk , (25)

where the eigenvalues of the Hamiltonidnrepresent noth-
where the operatdd, defined over the set of eigenfunctions ing else as Doppler-shifted frequenciesspiectrumoscilla-

{en(k,),n=0,1,..}, has matrix elements tions. Similar to the original Hamiltonian of quantum me-
1 chanics,H is Hermitian as can be seen directly from its
Hom=— _f d?k, 0%k, A EE) w(ky)e* (K, 1) definition (26). Since its eigenvalues are real, there follows

2 ’ ’ ' the absolute stability of the transformed spectrum under the

X xs(Ki =K Dem(K, 1) (26) adopted approximation. Also, like the corresponding conser-

vation law for the quantum mechanigsfunction, the Alfven

Consider now the limitations of the proposed approachspectrum conserves the “normalizatiofif | 2d*k = const.
Equations(24) and(25) are derived under the assumption of  Equationg24)—(27) needs to be solved together with the
resonant coupling, meaning that only those waves, whosgquation describing the time evolution of the density fluctua-
frequencies and wave vectors strictly sati€fg), are consid-  tions spectrumys(k). The latter equation can be obtained by
ered as interacting with each other. Certainly, this assumptiopourier transformation of3) where on|y the resonant terms
is only satisfied for Sqﬁiciently large systems compared Withgoverning |0W_frequency drive must be kept Alfvevave
the characteristic Alfuie wavelength zk™* and on large density perturbations spectrugy can then be related to the
time scales of interaction compared with the characteristigiow velocity spectrumU, through y,=k-U,/w, which
oscillation period Zro~ 1. The former condition follows gives for quasistatic density perturbations spectrum
from the requirement of spatial resonance, which can now be &K
rederived directly fron{24). Indeed, the amplitude of Alfwe S f ur .
waves with a wave vectdk is changed by the interaction MXsiks I(ks Uskst o(k) [k Uenksr, .-k
with a wave having vectok’ only if the spectral amplitude
of static density perturbationgs is nonzero ak—k’, mean- X (K-Ugag) + c.c.]], (28)
ing that there exists a spatial lattice satisfying the spatial
resonant interaction conditio(i6). Note that in(24) and  \here c.c. stands for the complex conjugate term. The right-
(26), the integration irk space is taken only over the sub- hand side 0f28) can be evaluated through Fourier represen-
space of transverse vectdes, since static density perturba- tation of (2). In order to evaluate the terms that contain har-
tions are assumed purely two-dimensional and the longitudimonics of the high-frequency magnetic field, note that for an
nal wave number does not change in Bragg scattering\jfyén wave with givenw andk, the corresponding pertur-

process. bation of the field is given by
The temporal resonance conditigd6) requiring the
imitati i ion time i i kU kU
lower limitations on the interaction time in the proposed ap b, = _ A
: H k_Z ’ (29)
proach, however, cannot be derived from the obtained equa- ® ®

tIOI’I.S, since it has already been taken Into account In th%s follows from linear form of(2). Substituting(29) into
derivation, and thus should be considered separately. For

. . R - . nonlinear equation2) and performing the integration over
gg;soﬁ z(;ag]ee”Zgééglsrecsoonnd;r'gg isatﬂzfrf:n?gmﬁgg"m‘ﬂ' k with resonant condition§l6) taken into account, one
P q " “can show that at low-frequency, magnetic field spectrum

deed, the latter assumes conservation of the parallel wa

ve . : . S
. nge is then rmin he evolution of istati
number of scattering wave kg =0 = kj sp 1=K s, change is then dete ed by the evolution of quasistatic

which according td12) is equivalent to the temporal reso- plasma density profile:
nance condition. For CA-CA interaction, however, the situ- Ibs = dixsk - (30
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Sincebg~ egB and d,~ eg for spectral quantities, the change the problem consists of inverting Eq24) and(25), in order
of the field produced by evolution d modes can be ne- to obtain the matrixd, from which the static density pertur-
glected, so the quasistatic plasma density profile remains urpation spectrunyg(k) can be derived:

changed §;xsx=0). Thus,

2
H=const, (31 xs(ka, —kq)=— Tkl)(gl'§2)_l¢n(kl,J.)Hnm‘P:1(k2,J_)-
(39

In order to obtain the matrix elemenit,,, from the results
of Alfvén waves scattering, one can employ a known Aifve

IV. APPLICATIONS OF MHD SPECTRUM EVOLUTION wave source, comprised of wave packets characterized by

EQUATION: ALFVE N WAVE TOMOGRAPHY their initial spectrumU{’. Formal integration of25) on a
time intervalt € (0,7) gives the expression for the final spec-

The fact that the matrix equatig4) and (25) is linear  tral function U{"’, which can be written in the following
opens up the possibility of tomographic applications. Con<form:

making Eqs.(24)—(27) self-consistent and linear.

2:Sy§r, first, harmonic spatial modulation of the plasma den- UD=MU{, M=exp(—iH7). (36)

_ B Scanning the plasma withl wave packets with different
xstki) = es(O(k, —kg) + O(k, +kg)) @2 nitial conditionsU{”, whereN is the number of basis func-
leading to the following form of Eq(24): tions ¢,(k,) used for spectrum representation, one gets

(k) enough independent equations for obtaining the elements of
U= GST(Uk,kSa,Jr Uk+ksa+), (33)  the matrixM. (In order to get the exact density profile, one

needsN—o.) Taking the matrix logarithm oM, one then

where a . = §-&c+k,= O(1) are polarization factors. Equa- gets the HamiltoniarH, and, therefore, obtains the density
tion (33) can only be solved together with similar equationsSPectrum(35). _
for Uy, which, in turn, require solving the equations for The proposed procedure s60_Ives the general inverse scat-
Uy e With highern. Therefore, the complete set of equa- €1iNg Or tomography problefif) i.e., the multiple scanning
. S measurements allow reconstruction of the static density per-
tions (33) is infinite (n=0,1,...¢°) and, thus, hard to analyze . . X

. - o . turbations in a cold plasma. Other tomographic methods ac-
for arbitrary initial conditions. However, an approximate SO-4ively used in plasmas include the application of X-ray waves
lution of (33) can be found for limited-time scattering of a y P pp y

; . . ) for measuring the electron temperature in hot core of a toka-
plane wave with a given wave vectkr The first harmonics g P

that will be generated during the interaction process will bemak plasma ® and in ionospheric electron density measure-
e . ments in the radio-frequency rantfe!? The Alfven radia-
shifted ink space only on single value &k from k. These 9 y range

harmonics will later produce the waves havikgvectors tion tomography discussed in the present work provides, in
shifted on= 2ks, which then give rise to the waves with particular, the opportunity for studying density profiles in

. - cold plasmas.
+ = -
t_e rr:::s ?Océ’:;"'H’a?;::én:':sns\ﬁt’h'?“the (??%tn E:vge ZL:ESies:tat Practical difficulties that might be encountered in the
t'meg:‘op bein ' mped and th cgal nd be nealected unde th%resent tomography problem are likely similar to the diffi-
' F being pump: us car giected under ities encountered in other tomographic applications. Since
approximation of limited scattering time. In the fiéinearn

. . . . th mplex logarithmic function is not defin niquely, an
stage of interaction, the harmonics witk-0,= 1 are enough € compiex loga ¢ function is not defined uniquely, a

s ) inevitable uncertainty in tomographic reconstruction arises
for an adequate description of the scattering process. Then y grap

solving Eq.(33) one gets for the amplitudes of these WaveS'as one tries to obtain the matitk from the matrixM. How-
9 Ea. 9 P ‘ever, using the linear stage of spectrum transformation dis-

ai+a2 ) cussed previously, or scanning the plasma volume with
Ug=1-—F—e€sol, Upsy ~les t (39 Alfvén waves of different frequencies, one can, in principle,
further constrain possible reconstructions. The additional
for “pump” wave with initial amplitude U,=1. Formula  problems of Alfven tomography that must be solved before
(34) is valid until the dynamics oty is entirely deter-  the technique can be applied to real systems includes taking
mined by the value ot and the second harmonitk..,c,  into account both thermal corrections and other nonlinear
remain small, namely on time scales(esw) 1. A more MHD effects?
careful treatment requires taking a larger number of higher
harmon_|cs into account. . _ V. SUMMARY
Until now, we have been solving the direct scattering
problem obtaining the amplitudes of scattered Atfwadia- In this article, we investigated the nonlinear coupling of
tion from a known plasma density profile. However, the in-Alfvén waves to inhomogeneities of cold collisionless plas-
verse scattering problem might also be of certain interesinas. We demonstrated that in the limit of negligible plasma
especially because of its certain possible practical applicggressure g—0), the plasma inhomogeneities do not evolve
tions. Indeed, if one knows the spectra of Alfveadiation in the interaction, so that the Alfmewave coupling can be
before and after scattering, in principle, one can reconstruatonsidered as Bragg scattering on fixed spatial lattices of
the plasma density profile from these data. The solution oplasma. In this case, the HamiltoniéZ6) governing the evo-
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