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Alfvé n wave tomography for cold magnetohydrodynamic plasmas
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Alfvén wave propagation in slightly nonuniform cold plasmas is studied by means of ideal
magnetohydrodynamics~MHD! nonlinear equations. The evolution of the MHD spectrum is shown
to be governed by a matrix linear differential equation with constant coefficients determined by the
spectrum of quasistatic plasma density perturbations. The Alfve´n waves are shown not to affect the
plasma density inhomogeneities, as they scatter off of them. The application of the MHD spectrum
evolution equation to the inverse scattering problem allows tomographic measurements of the
plasma density profile by scanning the plasma volume with Alfve´n radiation. © 2002 American
Institute of Physics.@DOI: 10.1063/1.1448499#
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I. INTRODUCTION

The problem of finding the eigenwaves of various pla
mas is most easily considered under the strict assumptio
homogeneous plasma properties. Such an approach a
significant simplification of dynamic equations leading
relatively simple dispersion relations for the waves propag
ing in uniform plasmas, further called the partial wave
However, the assumption of plasma homogeneity is of
inapplicable to real systems.

Consider a plasma medium, which is adequately
scribed in terms of ideal magnetohydrodynamics~MHD!.
One of the features of MHD-like plasmas consists of the f
that magnetoactive collisionless plasmas can sustain st
state localized structures, maintaining total~kinetic plus
magnetic! pressure balance with the ambient media. Su
structures are often called magnetic bubbles~for density de-
pressions! or magnetic bottles~for enhanced density!1 be-
cause of the disturbance of the magnetic field caused by
diamagnetic effect of their localized plasma density chang
The spatial distribution of magnetic bubbles~or bottles! rep-
resents a nonuniform plasma pressure profile, whose sp
harmonics can be treated as static waves described by
dispersion relationv(k)50. From this point of view, the
problem of finding the eigenmodes of ideal nonunifo
MHD plasma can be considered in terms of MHD part
waves, scattering on plasma inhomogeneities~magnetic
bubbles or bottles!, as long as the partial waves remain w
defined, i.e., the plasma pressure inhomogeneity rem
small enough. Therefore, the lowest-order effect coming i
play when the plasma density inhomogeneity is taken i
account can be expected to be the coupling of conventio
Alfvén waves, which represent the partial waves of MH
plasmas, on the quasistatic waves of plasma density pe
bations described previously.

In this paper, we consider the evolution of Alfve´n waves’
spectrum specifically due to their scattering on quasist
7601070-664X/2002/9(3)/760/6/$19.00
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perturbations of plasma density in a cold slightly nonunifo
ideal MHD plasma.~The term ‘‘slightly nonuniform’’ refers
to the amplitude of plasma density perturbations, but d
not limit the ratio of the wavelength and the characteris
spatial scale of the density perturbations considered, whic
allowed to be of the order of unity.! This problem is a three-
wave interaction problem, where one of the waves has z
frequency and nonzero wave vector and the two other wa
are conventional Alfve´n waves, whose dispersion relation
are derived under the assumption of uniform plasma m
dium. Various nonlinear and three-wave interactions in m
netohydrodynamics have been intensively studied; for
tailed review, see, e.g., Ref. 2, and references therein
particular, the effect of Bragg scattering of MHD waves
spatial lattices of plasma structure with given wave numb
has been experimentally studied in the context of ionosph
irregularities.3,4

In the present paper, we find explicit solutions for t
problem of partial waves scattering in cold slightly nonun
form plasma. On the other hand, inverting the problem, o
can get the full information about the density spatial dis
bution out of the obtained scattering properties of given pl
mas. In principle, these results allow realization of quasil
ear Alfvén tomography, i.e., the procedure of obtaining t
plasma density profile from measurements of the Alfv´n
spectrum transformation. We call the proposed tomogra
quasilinear because despite the nonlinearity of the M
equations used, the final equation for the Alfve´n spectrum is
shown to be linear, which makes its solving procedu
equivalent to the standard tomography problem solution5,6

Tomographic measurements are currently being used, for
ample, in magnetic fusion plasma devices with application
x-ray waves for measuring the electron temperature in
core of tokamak plasma7–9 and in ionospheric electron den
sity measurements in radio-frequency range.10–12We demon-
strate that in cold slightly nonuniform plasmas, Alfve´n radia-
© 2002 American Institute of Physics
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tion can also be used for similar purposes broadening
spectral limitations of plasma tomography.

The paper is arranged as follows: In Sec. II, we int
duce the nonlinear MHD equations and define the types
partial waves and ways of their interaction. In Sec. III, w
derive the Hamiltonian evolution equation for Alfve´n waves
spectrum. We prove that in the cold plasma limit, the Ham
tonian remains constant~under the assumption of sma
waves amplitudes!, and is determined by quasistatic plasm
density perturbations not changing in time. The solution
the Alfvén tomography problem is discussed in Sec. IV.
Sec. V, we summarize the main results of our work.

II. MOTION EQUATIONS AND PARTIAL WAVES OF
MHD PLASMA

Let us consider plasma immersed in a static unifo
external magnetic fieldB05B0ẑ, “B0[0, where ẑ is the
unit vector along thez axis. Under the assumption of th
MHD-like plasma motion, in the cold plasma limit, when th
plasma kinetic pressurep is negligible compared with the
pressure of the external magnetic fieldB0

2/8p (b58pp/B0
2

!1), the full set of plasma motion equations can be writ
in the following form:

] tU2VA
2 ~¹Ãb!3 ẑ5NU , ~1!

] tb2¹Ã~UÃẑ!5Nb , ~2!

] tx1¹"U5Nx . ~3!

HereU is the plasma flow velocity,b5B; /B0 is the normal-
ized magnetic field perturbation,x5r2 /r0 is the density
perturbation normalized on the average uniform plasma d
sity r0 , and VA

2 5B0
2/4pr0 is the squared Alfve´n velocity.

Nonlinear ‘‘forces’’ written on the right-hand sides of th
equations can be expressed as

NU52x] tU2~11x!~U"¹!U1VA
2 ~¹Ãb!Ãb, ~4!

Nb5¹Ã~UÃb!, ~5!

Nx52¹"~xU!. ~6!

For our further purposes, it is more convenient to rewr
Eqs.~1! and~2!, and~4! and~5! in a matrix form introducing
a vector of the transverse flow velocityU'5Uxx̂1Uyŷ:

D"U'5N' , ~7!

where differential operatorD is given by

D5S ] tt
2 2VA

2 ~]xx
2 1]zz

2 ! 2VA
2]xy

2

2VA
2]xy

2 ] tt
2 2VA

2 ~]yy
2 1]zz

2 !D ~8!

and transverse nonlinear forceN' can be expressed as

N'5] tNU,'1VA
2 ~¹ÃNb!Ãẑ. ~9!

Consider now the case when plasma inhomogeneit
purely oscillatory in time and space. Then, in the linear
proximation one can treat Alfve´n velocity as constant an
sinceN' is negligible, the linearized equation~7! represents
Downloaded 17 Jan 2006 to 192.55.106.171. Redistribution subject to AIP
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a wave equation for an anisotropic medium. Looking for t
eigenstate of plasma motion governed by~7! in the form of a
plane wave

U'5U'
(0) exp~2 ivt1 ik'•r'1 ik uuz!, U'

(0)5const ~10!

~here k'5kxx̂1kyŷ, r'5xx̂1yŷ, kuu5k• ẑ and k is the
three-dimensional wave vector! one immediately gets the
well-known dispersion relations for compressional Alfve´n
waves~further called the CA modes!

vCA
2 ~k!5k2VA

2 ~11!

and the shear Alfve´n waves~SA modes! correspondingly:

vSA
2 ~k!5kuu

2VA
2 . ~12!

The plane wave representation~10! of MHD plasma
eigenmodes breaks down as soon as Alfve´n velocity be-
comes location dependent. As long as the inhomogeneity
mains smooth (kL@1,L5r0 /u¹r0u), the Wentzel–
Kramers–Brillouin~WKB! theory adequately describes th
wave propagation process, and the representation~10! with
the wave amplitudeU'

(0) slowly changing in space stays
good approximation for the eigenmodes of MHD plasma.
wave scattering is taking place in this case. On the ot
hand, as soon as the wavelength 2pk21 becomes compa
rable with the spatial scale of density inhomogeneity (kL
;1), the geometrical optics~or WKB approximation! breaks
down and different approach becomes needed for descri
the wave propagation in nonuniform plasmas.

For the purpose of considering arbitrary values ofkL,
we note that the modes~11! and~12! do not form a complete
set of linear solutions for all MHD plasma perturbations, a
static density perturbations should be treated separately f
Alfvén waves. Indeed, as soon as one introduces a non
plasma temperature~which is still allowed to be infinitely
small to satisfy the condition of negligible plasmab), MHD
plasma becomes capable of containing steady state loca
structures, maintaining the total pressure balance with
ambient medium described by the equilibrium condition

¹S p1
B2

8p D5
~B"¹!B

4p
. ~13!

Such structures are often called magnetic bubbles1 ~or mag-
netic bottles, depending on whether plasma density is
pressed or enhanced inside a structure!. Magnetic bubbles
are often observed in space,13–15 created artificially in the
Earth ionosphere3,4 and laboratory conditions16 and generally
represent a certain scientific interest for astrophysics
plasma science.

From ~13!, it follows that as long as the plasma kinet
pressure remains isotropic, no equilibrium pressure varia
along the field lines can be maintained self-consisten
which means that in isotropic plasmas, magnetic bubbles
only be two-dimensional~2D! structures axial symmetric
along the static uniform magnetic fieldB0 . Pressure anisot
ropy is often present in real plasmas14 but since its level is
usually low, bubbles tend to elongate in the direction of e
ternal field,3,14 so that their longitudinal size is significantl
larger than the transverse one. Thus, for simplicity we w
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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assume the bubbles to be completely two-dimensional
that for small variations of plasma kinetic pressure the eq
librium condition ~13! is equivalent to

b52 ẑ
gb

2
x, ~14!

whereg5O(1) is introduced through the plasma equation
state p5p0(r/r0)g. For our purposes, it is convenient
think of such 2-D small-amplitude static plasma density p
turbations as of static waves~S modes!, which dispersion
relation is given by

vS~k!50, kuu50. ~15!

Low-amplitude Alfvén waves~11! and~12! andSmodes
~15! represent thepartial waves of MHD plasmas meanin
that each of these waves is an eigenmode of alinear MHD
system only where mode coupling is negligible, but, as s
as the nonlinear driveN' is taken into account, these wave
generally cannot exist independently. Consider a ‘‘pumpin
Alfvén wave with frequencyvp and wave vectorkp propa-
gating in a region of spatially modulated plasma density a
let the modulation be purely sinusoidal with the wave vec
kS . The presence of quadratic nonlinearity in the express
for N' shows that the energy of the pumping wave will
transferred into a scattered wave with the frequency and
wave vector given by

vsc5vp , ksc5kp1kS. ~16!

Equation ~16! represents the conditions of resonant thr
wave interaction, or well-known Bragg scattering of pum
ing Alfvén wave on a spatial plasma structure. The scatte
wave, in turn, is also scattered by the lattice with the wa
vectorkS producing a third wave and amplifying the pum
ing one, etc., so that the amplitudes of the waves will evo
in time. In the following sections, we show the explicit wa
of finding the scattering properties of arbitrarily modulat
plasma density in the case when the amplitudes of th
modulations remain small.

The conditions for resonant interaction~16! indicate the
possible pairs of Alfve´n linear modes, which can couple t
the inhomogeneities of plasma density. For scattering of
SA mode into another SA mode, the necessary condition
coupling

kuu,SA,15kuu,SA,2, k',SA,15k',SA,21kS ~17!

show that every shear Alfve´n wave is potentially unstable t
transformation into another similar wave with the same p
allel and different transverse wave numbers. On the contr
in CA↔SA scattering process, condition~16! combined with
the dispersion relations~11! and ~12! require the equalities

kuu,CA
2 1k',CA

2 5kuu,SA
2 , kuu,CA5kuu,SA, k',CA5k',SA1kS ,

~18!

which lead to the additional conditions on wave numbers

k',CA50, k',SA52kS . ~19!

In other words, CA wave with nonzero transverse wave nu
ber cannot interact resonantly with SA waves via Bragg s
Downloaded 17 Jan 2006 to 192.55.106.171. Redistribution subject to AIP
so
i-

f

r-

n

’’

d
r
n

he

-
-
d

e

e

se

e
of

r-
ry,

-
t-

tering on static density perturbations. The third type of wa
transformation, namely CA↔CA process, simultaneously re
quires

kuu,CA,15kuu,CA,2, k',CA,15k',CA,21kS , ~20!

and, similarly to SA↔SA process, for arbitrarykS ~unless
kS.2k',CA,1), there always exists a scattered Alfve´n wave
meaning that the pumping CA wave is always unstable
Bragg scattering on plasma density perturbations.

III. EVOLUTION OF MHD SPECTRUM IN BRAGG
SCATTERING PROCESS

In order to derive the equation for the evolution
Alfvén spectrum in Bragg scattering process, let us repre
the transverse plasma flow velocity in the form

U5E d3k@UCA, k~r ,t !e2 ivCA(k) t1USA, k~r ,t !e2 ivSA(k) t

1US, k~r ,t !#eik"r1c.c., ~21!

where the partial modes spectraUCA , USA, andUS are gen-
erally slow functions of time and space compared with
characteristic frequency of Alfve´n waves and the larges
wavelength being considered; c.c. stands for the comp
conjugate term. Let us then introduce 2-D ‘‘polarization
vectorsj and scalar wave amplitudesUk for each partial
wave a according toU',a,k5jaUa,k , where for compres-
sional Alfvén waves polarization is defined asjCA5k' /k'

and for shear Alfve´n waves asjSA5 ẑÃk' /k' . Considering
the Fourier representation of~7! in high-frequency~Alfvén!
part of flow velocity spectrum and multiplying it by polar
ization vector one gets the equation for the amplitude of e
of CA and SA spectra:

dUk

dt
5 i

j"N'v,k

2v~k!
. ~22!

Here d/dt5]/]t1Vgr"¹ is the convective time derivative
along wave package trajectory,Vgr is the group velocity,
N'v,k is the Fourier-transformed right-hand side of~7!; fre-
quencyv(k) is calculated according to one of the dispersi
relations~11! and ~12! depending on the wave considere
Equation~22! is obtained under the assumption thatUk is
changing slowly compared to e2 ivt, so that
]2(Uke

2 ivt)/]t2'2(v2Uk12iv ]Uk /]t)e2 ivt, and
similarly—for spatial derivatives ofUke

2 ik"r. Since v is
connected withk via dispersion relation, the terms propo
tional to Uk cancel out whenD"Uk is multiplied with polar-
ization vectorj (j"D(v(k),k)"j50). Therefore, one is left
with only the first-order derivatives on the left-hand side
the equation, which lead to the final result~22!.

Denote the order of velocity perturbations for CA an
SA modes with a small parametereA , and the order of smal
density perturbations for theS modes witheS . Require that
the perturbations of the magnetic fieldbS caused by theS
modes are small compared to those caused by the Alf´n
wavesbA :

bS;eSb!bA . ~23!
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Thus, although suchSmodes disturb the plasma density, th
do not change the magnetic field in cold plasmas.

Relation ~23! allows significant simplification of the
nonlinear forceN' because in this case the only nonline
drive comes from the termx ] tU. Under the assumption o
infinitely small b, one can then rewrite~22! as an integral
equation

dUk

dt
5

iv~k!

2 E d2k'8 ~j"j8!xS~k'2k'8 !Uk8
, ~24!

where k85k'8 1kix̂, xS(k') is the static density perturba
tions spectrum, and the density perturbations caused
Alfvén waves are assumed small compared to the static
sity perturbations of theS modes. Unless the Alfve´n spec-
trum is represented by shear waves only, one needs to re
that eA!eS to satisfy the latter assumption.

The equivalent representation of~24! has a form

i
dUk

dt
5HUk , ~25!

where the operatorH, defined over the set of eigenfunction
$wn(k'), n50,1,...%, has matrix elements

Hnm52
1

2E d2k',1d
2k',2~j"j8!v~k1!wn* ~k',1!

3xS~k',22k',1!wm~k',1!. ~26!

Consider now the limitations of the proposed approa
Equations~24! and~25! are derived under the assumption
resonant coupling, meaning that only those waves, wh
frequencies and wave vectors strictly satisfy~16!, are consid-
ered as interacting with each other. Certainly, this assump
is only satisfied for sufficiently large systems compared w
the characteristic Alfve´n wavelength 2pk21 and on large
time scales of interaction compared with the characteri
oscillation period 2pv21. The former condition follows
from the requirement of spatial resonance, which can now
rederived directly from~24!. Indeed, the amplitude of Alfve´n
waves with a wave vectork is changed by the interactio
with a wave having vectork8 only if the spectral amplitude
of static density perturbationsxS is nonzero atk2k8, mean-
ing that there exists a spatial lattice satisfying the spa
resonant interaction condition~16!. Note that in ~24! and
~26!, the integration ink space is taken only over the su
space of transverse vectorsk' , since static density perturba
tions are assumed purely two-dimensional and the longit
nal wave number does not change in Bragg scatte
process.

The temporal resonance condition~16! requiring the
lower limitations on the interaction time in the proposed a
proach, however, cannot be derived from the obtained eq
tions, since it has already been taken into account in
derivation, and thus should be considered separately.
SA↔SA scattering, this condition is satisfied automatica
as soon as the space resonance requirement is fulfilled
deed, the latter assumes conservation of the parallel w
number of scattering wave (kS,uu[0 ⇒ kuu,SA,15kuu,SA,2),
which according to~12! is equivalent to the temporal reso
nance condition. For CA↔CA interaction, however, the situ
Downloaded 17 Jan 2006 to 192.55.106.171. Redistribution subject to AIP
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ation is different because frequencies of compressio
waves are determined by the transverse wave number
well. On the other hand, if one assumes the interaction of
waves withgiven k' , Eqs.~24! and~26! become applicable
too. Such a situation occurs, for example, in the scattering
a plane compressional wave with a given wave vector. In
case, the modes that are born in the Bragg scattering pro
will automatically get the samek' though the direction of
their wave vectors will be rotated ink' subspace dependin
on the plasma density profile.

Consider now the evolution of Alfve´n spectrum in the
frame moving with a group velocity with respect to the lab
ratory set of coordinates. For each spatial harmonicck of
Alfvén spectrum in new frame of referenceUk(r ,t)5ck(r
2Vgrt,t), one then gets the well-known Schro¨dinger equa-
tion

i
]ck

] t
5Hck , ~27!

where the eigenvalues of the HamiltonianH represent noth-
ing else as Doppler-shifted frequencies ofspectrumoscilla-
tions. Similar to the original Hamiltonian of quantum m
chanics,H is Hermitian as can be seen directly from i
definition ~26!. Since its eigenvalues are real, there follow
the absolute stability of the transformed spectrum under
adopted approximation. Also, like the corresponding cons
vation law for the quantum mechanicsc function, the Alfvén
spectrum conserves the ‘‘normalization’’* ucku2d3k5const.

Equations~24!–~27! needs to be solved together with th
equation describing the time evolution of the density fluctu
tions spectrumxS(k). The latter equation can be obtained b
Fourier transformation of~3! where only the resonant term
governing low-frequency drive must be kept. Alfve´n wave
density perturbations spectrumxk can then be related to th
flow velocity spectrumUk through xk5k"Uk /v, which
gives for quasistatic density perturbations spectrum

] txS,kS
52 i H kS"US,kS

1E d3k

v~k!
@~kS"UCA;kS2k' ,2kuu

!

3~k"UCa,k!1c.c.#J , ~28!

where c.c. stands for the complex conjugate term. The rig
hand side of~28! can be evaluated through Fourier represe
tation of ~2!. In order to evaluate the terms that contain h
monics of the high-frequency magnetic field, note that for
Alfvén wave with givenv andk, the corresponding pertur
bation of the field is given by

bk5 ẑ
k"Uk

v
2

kuuUk

v
, ~29!

as follows from linear form of~2!. Substituting~29! into
nonlinear equation~2! and performing the integration ove
all k with resonant conditions~16! taken into account, one
can show that at low-frequency, magnetic field spectr
change is then determined by the evolution of quasist
plasma density profile:

] tbS,k'] txS,k . ~30!
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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SincebS;eSb and] t;eS for spectral quantities, the chang
of the field produced by evolution ofS modes can be ne
glected, so the quasistatic plasma density profile remains
changed (] txS,k50). Thus,

H5const, ~31!

making Eqs.~24!–~27! self-consistent and linear.

IV. APPLICATIONS OF MHD SPECTRUM EVOLUTION
EQUATION: ALFVÉ N WAVE TOMOGRAPHY

The fact that the matrix equation~24! and ~25! is linear
opens up the possibility of tomographic applications. Co
sider, first, harmonic spatial modulation of the plasma d
sity:

xS~k'!5eS~d~k'2kS!1d~k'1kS!! ~32!

leading to the following form of Eq.~24!:

U̇k5eS

iv~k!

2
~Uk2kS

a21Uk1kS
a1!, ~33!

wherea65jk"jkÁkS
5O(1) are polarization factors. Equa

tion ~33! can only be solved together with similar equatio
for Uk6kS

, which, in turn, require solving the equations f
Uk6nkS

with higher n. Therefore, the complete set of equ
tions ~33! is infinite (n50,1,...,̀ ) and, thus, hard to analyz
for arbitrary initial conditions. However, an approximate s
lution of ~33! can be found for limited-time scattering of
plane wave with a given wave vectork. The first harmonics
that will be generated during the interaction process will
shifted ink space only on single value ofkS from k. These
harmonics will later produce the waves havingk vectors
shifted on62kS , which then give rise to the waves withk
6nkS , n52,3,..., etc. Hence, in the beginning of the sc
tering process, harmonics with highn do not have sufficient
time for being pumped and thus can be neglected under
approximation of limited scattering time. In the first~linear!
stage of interaction, the harmonics withn50,61 are enough
for an adequate description of the scattering process. T
solving Eq.~33! one gets for the amplitudes of these wav

Uk'12
a1

2 1a2
2

8
eSvt, Uk6kS

' i eS

a6v

2
t ~34!

for ‘‘pump’’ wave with initial amplitude Uk51. Formula
~34! is valid until the dynamics ofUk6kS

is entirely deter-
mined by the value ofUk and the second harmonicsUk62kS

remain small, namely on time scalest!(eSv)21. A more
careful treatment requires taking a larger number of hig
harmonics into account.

Until now, we have been solving the direct scatteri
problem obtaining the amplitudes of scattered Alfve´n radia-
tion from a known plasma density profile. However, the
verse scattering problem might also be of certain inte
especially because of its certain possible practical appl
tions. Indeed, if one knows the spectra of Alfve´n radiation
before and after scattering, in principle, one can reconst
the plasma density profile from these data. The solution
Downloaded 17 Jan 2006 to 192.55.106.171. Redistribution subject to AIP
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the problem consists of inverting Eqs.~24! and~25!, in order
to obtain the matrixH, from which the static density pertur
bation spectrumxS(k) can be derived:

xS~k2,'2k1,'!52
2

v~k1!
~j1•j2!21wn~k1,'!Hnmwm* ~k2,'!.

~35!

In order to obtain the matrix elementsHnm from the results
of Alfvén waves scattering, one can employ a known Alfv´n
wave source, comprised of wave packets characterized
their initial spectrumUk

( i ) . Formal integration of~25! on a
time intervaltP(0,t) gives the expression for the final spe
tral function Uk

( f ) , which can be written in the following
form:

Uk
( f )5MUk

( i ) , M5exp~2 iHt!. ~36!

Scanning the plasma withN wave packets with differen
initial conditionsUk

( i ) , whereN is the number of basis func
tions wn(k') used for spectrum representation, one g
enough independent equations for obtaining the element
the matrixM . ~In order to get the exact density profile, on
needsN→`.) Taking the matrix logarithm ofM , one then
gets the HamiltonianH, and, therefore, obtains the densi
spectrum~35!.

The proposed procedure solves the general inverse s
tering or tomography problem,5,6 i.e., the multiple scanning
measurements allow reconstruction of the static density
turbations in a cold plasma. Other tomographic methods
tively used in plasmas include the application of x-ray wav
for measuring the electron temperature in hot core of a to
mak plasma7–9 and in ionospheric electron density measu
ments in the radio-frequency range.10–12 The Alfvén radia-
tion tomography discussed in the present work provides
particular, the opportunity for studying density profiles
cold plasmas.

Practical difficulties that might be encountered in t
present tomography problem are likely similar to the dif
culties encountered in other tomographic applications. Si
the complex logarithmic function is not defined uniquely,
inevitable uncertainty in tomographic reconstruction aris
as one tries to obtain the matrixH from the matrixM . How-
ever, using the linear stage of spectrum transformation
cussed previously, or scanning the plasma volume w
Alfvén waves of different frequencies, one can, in princip
further constrain possible reconstructions. The additio
problems of Alfvén tomography that must be solved befo
the technique can be applied to real systems includes ta
into account both thermal corrections and other nonlin
MHD effects.2

V. SUMMARY

In this article, we investigated the nonlinear coupling
Alfvén waves to inhomogeneities of cold collisionless pla
mas. We demonstrated that in the limit of negligible plas
pressure (b→0), the plasma inhomogeneities do not evol
in the interaction, so that the Alfve´n wave coupling can be
considered as Bragg scattering on fixed spatial lattices
plasma. In this case, the Hamiltonian~26! governing the evo-
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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lution of the MHD spectrum remains constant, which mak
the corresponding evolution equation~24!–~27! linear. Rep-
resenting plasma quantities by their Fourier spectra lead
simple solution of the direct scattering problem.

In particular, we obtained the scattering properties o
given system including the case of a static sinusoidal pla
density perturbation. Knowing the spectrum of the incide
and scattered Alfve´n waves, we derived an expression for t
Hamiltonian, from which the static density perturbatio
spectrum can be found easily. The solution of this inve
scattering problem indicates how tomographic reconstruc
of plasma density perturbations might be achieved by me
of imposed Alfvén radiation.
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