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The interaction between energetic electrons and a circularly polarized laser pulse inside an ion
channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron
oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed
angular momentum manifests itself as a strong axial magnetic (freldrse Faraday effectThe
magnitude of this magnetic field is calculated and related to the amount of the absorbed energy.
Absorbed energy and generated magnetic field are estimated for the small and large energy gain
regimes. Qualitative comparisons with recent experiments are also mad00® American
Institute of Physics.[DOI: 10.1063/1.1430436

I. INTRODUCTION pulse, electrons absorb not only the laser energy but also the
proportional amount of the total angular momentum of the
The interaction between intense laser radiation and mataser pulse. This angular momentum transfer leads to the
ter is known to produce a wealth of nonlinear effects. Those:lectron rotation and generation of the axial magnetic field
include fast electron and ion generation,indicating that by the azimuthal electron current. Naturally, IFE is impos-
ultra-strong electric fields are produced in the course of theible for a linearly polarized laser pulse since it does not
laser—plasma interaction. An equally ubiquitous, althoughpossess any angular momentum.
less studied, effect accompanying laser—matter interactionis |FE has since been measured in several
the generation of ultra-strong magnetic fields in theexperiments:**'°The conditions under which IFE is pos-
plasma®~*® Magnetic fields can have a significant effect onsible are still not fully explored. What is theoretically
the overall nonlinear plasma dynamics. Extremely highknown'® is that there is no magnetic-field generation during
(megagaugsmagnetic fields play an essential role in the par-the interaction of the inhomogeneous circularly polarized
ticle transport, propagation of laser pulses, laser beam selklectromagnetic waves with the homogeneous plasma. Mag-
focusing and penetration of laser radiation into the overdensgetic field can be produced in the presence the strong plasma

plasma. inhomogeneity,~1° either pre-formed or developed self-
There are several well-understood mechanisms ofonsistently during the interaction.
magnetic-field generatiofsee, for example, Ref. 7 for a re- Here we consider an alternative mechanism of magnetic-

view). In many instances, magnetic field is generated by a jefield generation which involves the resonant engiayyd an-
of fast electrons in the direction of laser propagation by gular momentum exchange between the laser and the
the nonlinear current of the background plasma electfdhs. plasma electrons. To our knowledge, this is the first calcula-
Electron currents producing the magnetic field can be viewedon, which explicitly relates the energy deposition by the
as generated due to the momentum transfer from the lasgaser pulse to the magnitude of the magnetic field using a
pulse to the plasma electrons. Laser photons carry momemoncrete example of the resonance. The resonance occurs
tum in the direction of their propagation regardless of theirbetween the fast electrons, executing transveébstatron
polarization. Therefore, the resulting magnetic field is azi-oscillations in a fully or partially evacuated plasma channel,
muthal (taking the direction of the laser propagation ag a and the electric field of the laser pulse. The betatron oscilla-
axis). In this paper we consider a very different, polarization-tions are caused by the action of the electrostatic force of the
dependent method of generating indal magnetic field. channel ions and self-generated magnetic field. This type of
The generation of the axial magnetic field in the plasmaresonant interaction was recently suggested as a mechanism
by a circularly (or elliptically) polarized laser is often re- for accelerating electrons to highly relativistic enerdi®s:
ferred to as the inverse Faraday eff@ieiE). First theoreti- When a circularly polarized laser pulse is employed, its an-
cally described by Pitaevskfiand Steiger and Woods, it gular momentum can be transferred to fast resonant electrons
results from the specifics of the electron motion in a circu-along with its energy. The resulting electron beam spirals
larly polarized electromagnetic wave. During the interactionaround the direction of the laser propagation, generating the
of the plasma electrons with the circularly polarized laseraxial magnetic field? In this paper we calculate the intensity
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of magnetic field generated in relativistic laser channel tak-  Different electron populations are likely to co-exist in
ing into account self-generated static fields, which are nethe plasm&® Some electrons may leave from the side of the
glected in known IFE theori€<*° Our calculation is also channef® These electron populations will not significantly
motivated by the recent experiments at the Rutherfordtontribute to the magnetic-field generation, and will not be
Appleton Laboratory(RAL)*® which exhibited very large considered here. We focus on the other group of electrons
(several megagausaxial magnetic fields during the propa- which have a modest energy, and are eventually overtaken by
gation of a sub-picosecond laser pulse in a tenuous plasmthe laser pulse. These electrons are left in the channel after
The intriguing aspect of the RAL experiment is that both fastthe passage of the laser pulse, participating in the magnetic-
electrons and the strong magnetic field were measured in tHeeld generation. Another group of electrons may even over-
same experiment. It should be noted that the magnetic fielthke the laser pulse, generating magnetic field in front of the
generation mechanism first proposed in Ref. 22 and considaser. Regardless of whether the fast electrons are moving
ered here has been observed in recent numericdhster or slower than the laser pulse, the speeds of the elec-
simulation®® trons and the pulse are close to the speed of ligiftince in

The basic mechanism of the plasma channel formation isnost short-pulse experiments the length of the plasma is at
the ponderomotive expulsion of the plasma electrons by thenost 10—20 times the laser pulse widtfgst electrons are
laser pulse. Channel formation in underdense plasma hdikely to stay within a few pulse widths from the center of
been confirmed by both experimefité* and particle-in-cell the laser pulse.

(PIC) simulations?®~2" Assuming a circularly polarized The paper is organized as follows. In Sec. Il we describe
Gaussian laser pulse propagating alangxis with vector the electron dynamics in the ion channel in the absence of
potential the laser pulse. By analogy with the quantum-mechanical
description of a particle in a centrosymmetric potential, we

A(r,t)= Agexp( —r2/R?— £5/T?) characterize the transverse electron motion using two prin-

. ciple numbers! (proportional to the total transverse energy
X + 1 :

[&sin(£1) + & cos£n)], @) andL (proportional to thez component of the angular mo-
where &= wt—wzlvy,, &=2vg—t, vy, andug are the mentum). We then calculate the magnetic field and flux pro-

phase and group velocity of the pulse, respectively, the radiguced by an ensemble of electrons with different valueis of

ponderomotive force acting on a given is given by andl. In Sec. Il we describe the coupling between the laser
field and electrons and derive a kinetic equation for the elec-

r ezAg exr(—2r2/R2—2§§/T2) tron distribution functionf(I,L). Interaction with the laser
Foon= — . (2 pulse modifies the electron distribution function, resulting in

R? 4ymc? h : -

e energy absorptio® and angular momentum absorption
AL. The latter produces the magnetic fldx and the aver-
aged over the beam radius magnetic fijg;. In Sec. IV we
alculateQ, @, andB;,q in the quasi-linear and strongly non-
near regimes. The strongly nonlinear and quasi-linear re-
gimes differ from each other by, respectively, large and small
éjistortion of the distribution function. Section V concludes
and summarizes the obtained results, making connection
with the experimental observations.

Heree andm are the charge and the rest mass of electcon,
is the speed of lighty= \1—0v?/c? is the relativistic gamma
factor of the electron. As plasma electrons are expelled bfi
the ponderomotive force, the ion channel forms alongzhe !
axis. The radius of the ion channel, is estimated by bal-
ancing the ponderomotive force and the ion attracting forc
Fres=4me?n;r, wheren; is the ion density

e’AZexp — 2r3/R?—2£3/T?)=16mn;ymcPR%.  (3)
) . . Il. ELECTRON DYNAMICS IN THE ION CHANNEL

It is seen from Eq(2) that the ponderomotive force is
reduced for hot electrons with=1. They can then remain An electron in a partially evacuated ion channel, inter-
inside the channel and execute betatron oscillations with freacting with a laser pulse, can be described by a relativistic
quency(); as they propagate alorgaxis. Laser-electron Hamiltonian
energy exchange occurs when the resonance condition be- mO2(x2+y?)
tween the Doppler-upshifted betatron oscillation and laser H=cymd+(p, +eAlc)’+ p§+ — %
field is satisfied:Q)5/(1—B,Bpn) = . If the laser pulse is
circularly polarized, electrons can also resonantly absorb where92:w§i=4772e2ni2/m. From here on we will use the
significant amount of its angular momentum. dimensionless units, normalizing the timedo !, the length

The main objective of the paper is to calculate energyto c/w, the momentum tanc, and the vector potential and
and angular momentum exchange through this mechanisenergy tomc?. The last term in Hamiltoniait4) describes
and obtain an estimate for the generated magnetic field. It ithe electrostatic potential of the channel ions. We assume
a further object of the paper to describe formally the electrorthat the electrons are highly relativistig?> 1+ (p, +eA)?.
dynamics. We do not address the question of how the han the highly relativistic limit the Lorentz force of the self-
electrons got pre-accelerated to become resonant with thgeenerated magnetic field on the electron is almost compen-
laser field. As shown below, the required energy boost is vergated by the force of the radial electric field of the electron
modest(several MeV, and can be accomplished, for ex- beam?® Therefore, only the restoring force of the ions is to
ample, by the plasma wavés. remain significant.

4
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For highly relativistic electrons the Hamiltonidd) can Since variablegp, andL are not changed as a result of
then be expanded &$~Hy+H;,, whereH, is the nonin-  the transformation we will use the old notatigr; and L
teractive Hamiltonian instead ofP, andL;. In the new variables, the transverse

M2 pf (2 +y?) momentap, andp, are expressed as

Ho=p,+ s—+5—+————, S
P, P petVelh-Leoso- o)

and H,,=e(p,A)/p, describes the laser—electron interac- )
tion. Heree= 0/ w, andM = m?+e?A?%/c? is the renormal- —VeVp,(1+L)sin(6,+0)],
ized electron mass in a circularly polarized electromagnetic 9
wave. Below, we perform a series of canonical transforma-  Py=3[ V eVp,(1+L)cog 6, + )
tion which significantly simplify the noninteractive Hamil-
tonian Ho. —Vep,(1-L)sin( 60— 6,)].
The noninteractive Hamiltoniakl,, expressed in the trans-
A. Canonical transformations formed variables, is given by
Since the goal of this calculation is to demonstrate how M? el
the angular momentum can be transferred from the laser =Pt 2p2+\/_—p' (10
z

pulse to the electrons, we proceed by transforming the non-
interactive HamiltoniaH to the form which explicitly con-  Note that the longitudinal and transverse degrees of freedom
tains the electron angular momentum. Introducing cylindricalare coupled through the third term in the E§0). The inter-
coordinates j§,, r; L, ¢), the Hamiltonian can be rewritten action HamiltonianH;,; is expressed in terms of the new
as canonical variables in Sec. lll. It is also shown in that section
NE 2 L2 55 that the interaction term depends on the phase arfybsd
—p,+—+ Pr 1_ 6) 6, only as a combinationd+ 6,). This will motivate a fur-
2p, 2p, 2pyr% 2 ther simplifying canonical transformation which emphasizes
that the changes ih and| are related.

The next step is to introduce the action-angle varialles
=p?/(2p,) + L% (2p,r?)+ €’r?/2 and 6 instead of p,, r)
variables. Herd plays the role of the “principal quantum
number,” i.e., it is proportional to the total transverse energyB. Electron motion in the channel and magnetic-field
Performing a canonical transformation with the generatinggeneration

function Without the interaction termi, L, and#, are exact con-
Si(l,r,Ly,¢,P,,2) stants, and) changes according to
—p z+L<p+E\/(e\/Fr2—I)2+L2—|2 o= <t (11)
z 2 z 1 \/E
L 6\/—”2_'_2 | I—r E\/— For a vanishing angular momentuns 0, Eq.(11) simplifies

arCSI to

NN Ty 2arcsm——I Z
() .= Ve\p, cod 0+ w/4)cod 6, + mld),

we obtain the following relationships between the old vari-

ables 0,, z p,, r; L, ¢) and new variablesK,, Z; 1, 6; L4, py= VeVp,l cog 0+ m/4)sin( 6, + w/4).

0,):

(12

Therefore, electrons with =0 execute linear harmonic os-
p.=P,, L=Lq, cillations through the origin. The constant angle defines
5 the orientation of the oscillation direction, and the linearly
5 | VIT=Lg evolving according to Eq(11) coordinated marks the oscil-

= + S . . .

' eVP, P,e In(26), ® lation phase. An example of such a trajectory, corresponding
to 6, = — /4, is shown in Fig. 1 as a straight horizontal line.
1 e\/—IrZ—L2 If L is equal tol or —1 then the electron performs circular

=06+ arc3|

r2e\P\I2—L2%’ motion with radiusr o= \1//p,€. In the general cas@n

arbitrary value olL) the electron trajectory is an ellipse con-
fined between the maximal radius,
4P,

— h2_12 / 2
where | and L are proportional to the transverse electron rma*“'l‘)_\/(l FNIE=LO/Vpze?, (13

energy and the projection of the electron angular momenturand minimal radius
on z axis, respectively. Note that|<I, soL can be viewed
as the projection of on thez axis. I min(1,L)= \/(I - )/\/p €2 (14

N2-12
7=7—- ——1c0g26),
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real space. Despite the singular nature of this, so called,
Kapchinskii—Vladimirskii(KV) distribution function, it can
be used for analytic estimates.

Using Eq.(16) and integrating ovelr andL the expres-
sion for the azimuthal¢) component of the electron current
density in the channel can be derived:

eNL 1
e 2rp, Il loiLo)— 12— 2m(lo Lo)]

FIG. 1. Transversal dynamics of an electron in ion channel without interac—NOte that the magn'tqde and .the sign of the current depends
tion with laser pulse. Straight line 1 is the electron trajectory without angularon L. Clearly, there is no azimuthal current fbp=0 be-
momentum [ =0). Circumference 2 is the electron trajectory with maximal cause all electrons are executing purely radial oscillations.
or minimal angular momentumL&1 or L=—1). Curve 3 is the electron The axial component of static magnetic field can be

trajectory with (-=1/2). found from Ampee’s law V X B= 4]

) 2eNQ)  /mc
B,(r)=sign(Lo)— r

z

(18)

Examples of the linear, circular and elliptic orbits are shown

in Fig. 1. _ _ . 1, 0<r<rpmin,
Let us consider a group of electrons which are uniformly ) 5
distributed along the axis, have the same values lofL o 2arcsi lor“evp,—Lg C ey
S - — ey —— nSrs<= ,
andl =1y, and are evenly distributed over the angigs 6. T epr1Z—L2’ min max

It means that electrons uniformly cover the area between the
inner circle with radiug ,,, and the outer circle with radius
I'min- This group of electrons populate a family of identical (19
elliptical trajectories, each of which is tilted by its own angle
6, . At any given moment in time, electrons are executing
their motion along the ellipses according to their phése

0, r>rpax

In writing Eq. (19) we used the convention sigf(=0 for
x=0. This dependence of the magnetic field on the radius
arises because the azimuthal current flows within a cylindri-

_LTh'S dt;strlbu.tlo? dfun(;tlotﬂf(I,LI,e,HL)=6lgI—.Ito)é(l_t cal shell located between=r,, and r=r ... Magnetic
o) can be projected onto the real spacey) by integrat- field is uniform inside this “solenoid” ifr <r ,;, and gradu-

ing qver_the phage angles. The corrgsponding a}ngle—averagg falls off to zero wherr is outside ofr 5. The thickness
distribution functionF(I,L,r) is obtained according to of the current shell can vary between zero fiog] =1, and
N (2= (2= 1 I max for LOZO'
F(,L,r)= ﬂf j dgodﬁr 8(1—1g)6(L—Lg) For future convenience, we also calculate the total mag-
o Jo netic flux® produced by the current shell

x8r—r(l,L,0)]8 ¢—(l,L,0)], (15 27eNL
] ) ) fb=j f B-ds= —— (20
whereN is the linear density of the electrons along the chan- z
nel and the electron trajectories is taken from Eg. Inte- 51 the axial magnetic-fiekkB) in the ion channel
grating over the angles can be performed exactly, yielding
(B) b 2eNQ  /mc Lo 21
2N S(1—=1g)d(L—-L = = . .
F(LLr)= U= To)ok ~Lo) 16 T © Y Pelgr\TE-L2

2 2 2 2 !
7 rmaf1,L) =PI (L)) It is reasonable to assume that, in the absence of the
wherer in(1,L)<r<rma{I,L). Considering a group of elec- laser—electron interaction, the electron distribution function
trons with a fixedl =1, which are, in addition, uniformly ~depends only on, i.e., f=f(l). Since an equal number of
distributed over the angular momentuml ,<L,<lI,, the  electrons possess positive and negative angular monhenta

electron distribution functiori16) can be integrated ovdr,  the magnetic field produced by such a beam is equal to zero.
Lo, andl we obtain the electron density in the channel Interaction with the laser pulse can distort the distribution
function and produce a large magnetic field.

N(eVp,) 2 2l

=

2l 0 ' 6\/E,
n(r,e),,= o (17 111, INTERACTION BETWEEN ELECTRONS AND
0, r> 0 LASER FIELD

The previously introduced interaction Hamiltoniéh,,
Equation (17) expresses the well-known faktthat a uni- =e(p,A)/p, describes the laser—electron interaction. For a
formly focused beam with a fixed transverse energy in Gaussian laser pulse given by Edj), using the Bessel func-
our casg has a uniform flat-top density distribution in the tion identities
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+o wherew= y+ €%r?/2 is the total electron energy in the chan-
exp(iy sinx) = Z Jn(y)explinx), nel. The equatiorw=v ,,p, follows from the fact thatw
S (22 +v,np,= const is the integral of the motion defined by the
+o initial Hamiltonian (4) (see also Ref. 20
exp —y sinx) = Z I m(y)exdim(x+ @/2)], Equation (25 is the consequence of the energy-
m=-= momentum conservation law for the resonant wave-particle
and Eqgs(8), (9), H;, can be expressed as interaction. It can be derived using the following simple rea-
soning. As a result of the interaction, an electron may absorb
& I = 12—L? n circularly polarized photons. The energy gain in this case is
Hin=ao ex _F_W mi= " 4p, Aw=n#w, gain in longitudinal momentum idp,=n#k,

=Aw/vp, and the gain in angular momentum Ad =n#.

ThereforeAw/AL= L/y=w. The transverse energy incre-
mentAw, is related to the total energy changev through

2 2
><Im< )exp[ia(m+n)+imw/2]
Qglw. Since the betatron frequency i€),=Q/\p,

Rze\/E

e(l+L) :Q/ﬁ, the above relationship is consistent with E25).
X Wsw{gl_ 6.~ 0] For simplicity we will derive the Hamiltoniaf24) with
Pz assumptionv j,=v=Cc. More general case ,#vq#C is
_ considered in Appendix. Wave—particle interaction destroys
e(l-L) .
+ Tcog{gl_ 6.+6]f, (23 the constancy of the three actiopg, |, andL. But, accord-
2p; ing to Eq. (25), the changes in these actions are identical

because the interaction Hamiltonian depends on a single
variable V= ¢, — 0, — 6. Therefore, through an appropriate
choice of the new action-angle variables, one can express the
Hamiltonian as a function of a single action varialpléts
conjugate angle variab. The canonical transformation is
given by the generating functid®;

where ay=eA,/(mc) is the normalized amplitude of the
laser pulseJ,(x) andl(x) are the Bessel function and the
modified Bessel function, respectively.

Bessel functions),, originate from expanding the har-
monic part of the vector potentidl (sin{; and cos; terms,
while the modifiedl, Bessel functions originate from ex-
panding the expfr?/R%) term. We will not expand the term S.(p,z,C41,6,,C5.0)

exp(— §§/T2) because the pulse length is much longer than the

amplitude of the electron betatron oscillation in the channel ~ =C10+(2C2—C1) 6, +p(f.+ 06— &y). (26)
Tvg> \/(IZ—LZ)/pZ and harmonic part of this term will be The old ®,, I, L) and new p, C,, C,) actions are related
small. _ _ _ according to

The betatron acceleration of the electron in the ion chan-
nel implies that the amplitude of transverse oscillation is less  P,=P, [1=C;+p, L=2C,—C;+p. 27

than the radius of the laser channel. Then

The new action€, andC, are the constants of motion. For
lo(VIZ=LZR2e\p,)=1 and I,.o(\12—L2%/R%e\/p,)=0. ! 2

=12 ) example, an electron propagating straight along the channel
AISO’ we assume that the argume ._L /_4p2,'s small, with a vanishing transverse energy Hasthe absence of the
i.e., that the oscillation amplitude in direction is smaller

thanc/w. (This oscillation is caused by the relativistic cou- Iase&scilrllg i?lzequarl)i';iesp2>1+(p +eA)?, e<1 andl>L
pling between the transverse and longitudinal degrees e have the followiné inequzsﬁities fo,p C, and C,:
freedom) Using these assumptions, we can only retain thep3/2/'5>C ~C.. It follows from our assijmptions thap
interaction term near the fundamental resonanoe=0, n —p,~7 alnd Azp:Aw if v ~c.

=0) and assumdo(y1°—L"/4p,)=1, Jmo( V1"~ L"/4p,) In the new action—angle variables, the Hamilton{24)
=0. Isolating the single most important resonance is a StarEimplifies to

dard approximation technique in the nonlinear dynarfics.

In our case, the resonance condition ensures &hat6, M2  e(p+C)
—0=0. H= % T

Under this approximation, in the close vicinity of the P
resonance, the total Hamiltonian is given by {2 e(p+C,)

) +ag exp( — —2) Tzsin\lf (28
y +|v|2+ e . p( 2\ Je(l+L) d p
=p,t5—+—=+apexp — = —
©2p: p, T? 2p3”? where
Xsin &~ 6, — 6], (24) d=2\(M?p 2+2ep Y2+ 2eC,p 332

whereag=eA,/(mc?). It follows from the Hamiltoniar(24) =2\p%(M?+(p?))
that

is the laser pulse duration in the coordinate system of the
_9H_H _, AL o (05  ©lectron and\=Ta. Alternatively,d is the time over which
a0, 30 PN 5z phPz= W, the laser pulse and the electron overlap.

Downloaded 17 Jan 2006 to 192.55.106.171. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 9, No. 2, February 2002 Magnetic-field generation and electron acceleration . . . 641

The resonance condition is given by ergywg. Another important feature of the quasi-linear regime
is that the beam velocity always remains smaller than the
— 4 - "7ty (29) group velocity of the laser pulse and the electrons quickly
2p? 2\/5 2p32 pass the pulse. Moreover, the laser pulse is assumed to be

Hot electrons which interact with the laser pulse mostsufﬂmently short, so that the electron has enough time to slip

. . . through the pulse while remaining in the channel. This re-
strongly are characterized by the action varialgeand C, uires thatcT<eL./\p, where L is the length of the
satisfying Eq(29). From Eq.(27) and virial theorem we can & €hen/ VP, ch 9

obtain an identity channel.
In the strongly nonlinear regime, strong modification of

€(Po+C1)\Vpo= €lg\po=p? o2+ €’r§/2~p? ;, (30)  the structure of electron orbits in phase space leads to the
. rticle trapping an n rption of laser ener
wherep, ;is the transverse momentum at the initial momentpa ticle trapping and subsequent absorption of laser energy
X ’ ) o . . and angular momentum. As a result, the energy exchange
of time andr is the initial radius of the electron location.

This identity can be used to expreSs and substitute it into between the electrons and the laser can be comparable or

the resonance conditig@9). We now assume, for a moment even exceed the initial electron energy. In this regime the
. L N " beam velocity is close to the group velocity of the laser pulse
that an electron with the initial longitudinal energy and

fransverse momentu is resonant with the laser imme- and the electrons slowly pass the pulse so that the time of
. UL o : flight of an electron through the pulse is greater than the
diately upon entering the channel, i.@,e=pPo and p; res

) : L res rPeriod of the nonlinear oscillation in the laser field
=p, o, Where the resonance energy is defined as in dimer-
sional variables T
Ugr

g
23 m>ttrapy (34)

. dHg  M? e €Cy
p

M2c?+pf
Yres= Pres/ (MC) = m (31)

wheret,, is the characteristic period of trapped oscillations
Using the fact that the betatron frequencﬂgzﬂ/\/ry and in the phase space.
expansion ymc®=p,c+M2c%/(2p,) +p? c/(2p,) follows

.. A. Quasi-linear regime
from Eq. (5), the condition(31) for betatron resonance can Quastl g

be rewritten in more familiar forA? In the quasi-linear regime, the energy absorbed by the
hot electrons can be obtained using the perturbation theory.
QB:“’<1_E)- 32  In analyzing this regime, we employ Madey's theo@n,
originally developed by John Madey for the analysis of

In the limit M=m andp, o=0 the expression for reso- FELs. Subsequently, Madey’s theorem was generalized and

nant electron energy coincides with one calculated in théPPlied to arbitrary Hamiltonian systerffs. o

limit v y=c. This expression is also similar to one known in It follows from Egs.(25) and (27) the change inw is
the theory of ion channel 1ag8r2in the theory of free elec- Proportional to the change ip. (Moreover in our case
tron lasers FELS).333In FEL the electrons transversely os- =¢ AW=Ap.) So to calculate change in electron energy we
cillate in undulator instead of the betatron oscillation in ioncan calculateA p. Formally, the last term in the Hamiltonian

channel. The wavelength of the radiation emitted in forward28) is responsible for the wave-particle energy exchange. To
direction in FEL is givef®3* zeroth order, there is no energy exchange:

u

A 2 0 0 IHo
A= . S(1+af), (33 p@=p,=const, W )(po,t,\Po)=£t+\If0. (35
Y 0

where A, is the undulator wavelength anda, 7o first order, there is no overall energy exchange since equal
_=eBO)\u/(27rmc2) is the undulator parameter. If we take ,mpers of electrons gain and lose energy. Individual par-
into account thatp, =mca, in FEL, M=1 and € (cles gain/lose energy according to

=N/ (Vy\) =Q/w then we obtain Eq(31).

Aw(l): p_-= p(l)_ Po

IV. LASER ENERGY ABSORPTION AND MAGNETIC- f IH _[Ppo, VO (pg,t,Wo),t]

FIELD GENERATION P, dt, (36)

In this section we consider how the electron distribution
function evolves under the influence of the laser pulse, re
sulting in the absorption of the laser energy and angular mo®
mentum. There aren%)ge indications from numerical simula-
tions and experime that some of electrons gain a little . PotC>
amount of tr?e laser energy and some of themggain a large p-(Po) = \mead sin¥ V 32 exil — AW (po)l,
one. Therefore two regimes can be envisioned: Quasi-linear (37)

and strongly nonlinear. In the quasi-linear regime, the energy
change of the electrow_ much smaller than its initial en- where

whereH _=H,, is the last term in the right-hand-sidehs)
f Eq. (28). Integrating Eq(36) overt yields
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AT d?(9Hg)\?
(Po)=7 00 0.3
A2 €2(Cy+ M?2e\py — po)? 39 Q
— . O
4 (M?py %+ 2epy+2€Cy)?
Not surprisingly, resonant electrons interact strongest 0.3
with the laser becausA WV vanishes at resonance; laser-
0.2 0.4 0.6 0.8

particle energy exchange is exponentially diminished for

nonresonant electrons. Because of the sinusoidal dependence

of p_ on the phaséel,, the energy exchange_(p,) van-

FIG. 2. The dependence &f on X for linear absorption regime at=5.

ishes after averaging over the electron phases. The second

order calculation is needed to find the changewinOne

straightforward approach to deriving the phase-averaged eV is proportional to the normalized electron emittance. The

ergy incremenfAw to second-order in the laser fiedq is to

distribution function, expressed using the action variables, is

use Madey’s theorerif. According to this theorem, the diven by

second-order change m is given by

Aw=Ap=(p®—po)|y,

_ 1 J 2
_Ea_po<p“(p°)> (39

p;=constC,=const

ExpressingC,; andC, as function ofl ; andL with help of
Eq. (27), we can express Madey’s theordB9) using more
physically transparent actiong= (pg,lq,Lo)

Ap=3G(p%(lo)),
where
(p2(10)y=(lo+Lo)D(po. o),
me?agexd —AWV(pg,lo)]
(M?pg %+ 2¢l )2

A I)_)\262(|0+M2/6\/p—0—2p0)2
PO T (M, P 24l )2

(40)

D(po.lo)=

(41)

J J J
—t—+—].
dpg dlg dLg

The absorbed energy per electi@rcan be calculated by
averagingAp over the initial electron distribution function

F(lo)

1 -
Q= [ ApFle=— [ (P210)GF Il @2

The obtained expression is similar to the one for the rate of

Landau damping

e
L™ k Ev

(43

€
w) s
Vpo
Assuming that electrons are uniformly distributed over the
angular momentunk, integration of Eq.(42) over pg, |g

EIO

F(lg)=d(po— )5( (45)
0 Po—Pp \/P—o

yields
PW, /e W
:;f pwW, G<pg<pb,&’l-0)>dl-0-
4\/EWJ_ —VpW, /e €
(46)

For long laser pulseN=wT>1)

G(p% (19))=—(P2(10))GAW (Do, 1)l p,— p,- 47
Then Eq.(46) takes the form

W, | . W
Q:—zD(pb,@)GAW(pb,@). (48)

Introducing X= e\/p,/W, , we can rewrite Eq(48) in
the form
WEZAS
Q=———A2X?3(1-2X)(X—1)exd —A¥(X,\)],
2pyC
AW (X, N)=N%(1—2X)2. (49)

The dependence @ on X is shown in Fig. 2 and it is similar

to one for small signal gain in FEL*%.Spontaneous betatron
emission is maximized foX=1/2. According to Eq.(31)
and consistently with our earlier assumption\Wf >M/p,
X=1/2 corresponds to the exact wave—particle resonance.
Note that the total energy gaifioss by the electron
ensemble vanishes fof=1/2. This phenomenon, which is
the direct consequence of Madey’s theorem, is well-known
in the context of free-electron lasers: To achieve a small-
signal gain, the electron energyhas to be higher than the

where P, is the power of Cerenkov emission. In our caseresonant energyv,.s, calculated for given radiation fre-

<p3(|0)) is the power of “betatron” emission.

quency and magnetic undulator parametérghe exact

To calculate the absorbed energy, we consider a coldmount of the required for the peak gain energy excess

electron beam with the distribution function

F(pZ!pL!r)zé(pz_pb)g[HL(pZ!pi1r)_WL]! (44)

Wpeak— Wresdepends on the undulator length: the longer is the
undulator, the smaller is the differen@gea— Wyes.
The total duration of the electron—laser interaction is

whereH | = eI/\/Bz pf/p is the normalized transverse en- limited by either the length of the plasma channel, or by the

ergy, and for simplicity we assume that, >M/p. Note that

pulse duration(whichever is shorter We assume that the

Downloaded 17 Jan 2006 to 192.55.106.171. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 9, No. 2, February 2002 Magnetic-field generation and electron acceleration . . . 643

laser pulse duration in the reference frame of the hot electromhe field strength of the generat&dfield is calculated by
beamd<wl/c, whereL is the length of the channel. Assum- integrating Eq.(56) by parts and assuming an electron dis-
ing \>1, we find thatX= 1+ 1/(2y2)\) maximizes the elec- tribution function given by Eq(45)

tron energy gain, whileX=3—1/(2/2\) maximizes the

small-signal gain of the laser pulse. The maximum of the Bmd:f F(IO)é[<pi(|0)>éB(|O)]d|O, (58
absorbed energy as a function of the normalized pulse dura- 2
tion \=wT>1is After straightforward but cumbersome algebra, we obtain
me?AZ \ 1 ( T 2eNQ O m&@ Q
-0 _Z Bing=|1——[(2—X — 59
16p,C \/Eex 2)' (50 ind 4] W, pyC 59

where Q is the absorbed energy per electron given by Eq.
49).

F] Introducing the average electron beam densifyn the
channel according to

Note that for the resonant electrons=27Ns., whereN g
is the number of betatron oscillations executed by an electro
while it stays inside the laser pulse.

Given the perturbed distribution functid®(p,I,L), the

average magnetic-fieldB) can be computed according to N 1 NoQ [p,mé 1 NQ?mdc
- M. 2n @ Vmcel, 2m @ W
B B 2eNeL  F(1) (60)
Bi“d_f (B)F(hdl _f 1+17—L2 \p dl. (51) Eq. (59) can be recast in a more intuitive form
2
The perturbed distribution functiof(p,l,L) can be ob- Wee _ 1_2 (Z_X)ﬁe Q 61)
tained from the unperturbed distribution functiéifl,) by 4 w2\ ppc/’
integration along the appropriate characteristics: 5 ) )
wherewy .= 4men,/m, andw..=eB,q/mcis the nonrela-
Ap=Al=AL, (52)  tivistic electron cyclotron frequency. Assuming thaﬁﬁe

=a?, wherea=n,/n; is the degree of electron evacuation

where Eq.(52) follows from Eq.(25). Instead of doing this, in the channel, we rewrite EG61) as

we use the fact that, initially, there is no magnetic field be-
cause electrons are uniformly distributed.inTherefore, the Wee

induced quasi-static field can be calculated as o

: (62

1—z>(2—X)a62
4 ypmM¢

Bind:f (B(I))F(I)dl=f (B[1(1o)]))F(I)dlgy, (53 where relativistic gamma-factor of the electron,, is used
instead ofp,, because in approximatiop=p=pZ>1+(p,
wherel(lo) is the set of perturbed action variables of the ~€A)%. Note thaty,mc? in Eq. (62) is the initial electron

electron which starts out with the set of unperturbed actiorPnergy. Equatiort62) loses validity wherQ, becomes com-
variablesl . parable toy,mc?. Therefore, the largest reliable value of the

In the quasi-linear absorption regimg[I(l,)] can be magnet_ic field which can be deduced from the quasi-linear
Taylor expanded: theory is of the order oB;,4/B,~ €2, whereB,=mco/e.
Foral um laser pulsd3 ,~100 MG. Therefore, for a tenu-
(p%) 5 ous plasma with density>210'° cm™2 (which corresponds
TG B(lo), R plasma density measured in the RAL experiftgnt
the predicted magnetic field is at most 0.5 MG. Since this
where we performed the averaging o%g. Using general-  prediction is almost an order of magnitude below the re-
ized Madey’s theorent89), we can reduce Eq54) toamore  cently measured magnetic-field strengtrand since the en-

B[1(10)]=B(lo)+ApGB(lo)+

convenient form ergy transferred to the electrons can be much higher than
A o . their initial energy’® the strongly nonlinear calculation is
Integrating Eq.(53) by parts yields
- —f <p%(|°)>éB(IO)éF Cal =6 B. Strongly nonlinear regime
ind™" 2 (lo)dlo. The perturbative treatment of the previous section is not

) o .. applicable in the strongly nonlinear regime, where the elec-
_ Equation(S6) for the magnetic field bears some similar- ., energy change can be very significant, and electrons can
ity with Eq. (42) for the absorbed energy, except for an ad-g,en pecome trapped in the laser field. Under conditdiy,

ditional factorGB(lo): the variation of the laser wave amplitude, seen by an electron
executing a nonlinear oscillation, is small. Therefore, adia-
GB(lg) = —ZeN €| iJr lo—Lo batic theory is adequate for describing the electron motion.
lo+\13—L3 Vpo Po otlo The adiabatic invariant of the electron motion can still

(57) be broken if the electron orbit in the phase space crosses a

Downloaded 17 Jan 2006 to 192.55.106.171. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



644 Phys. Plasmas, Vol. 9, No. 2, February 2002 Kostyukov et al.

separatrix at a particular value of the system paranietét. o
At this moment the electron becomes trapped by the wave, o1 “°
conversely becomes free after being trapped. The breaking oY20
the adiabatic invariant leads to the absorption of the wave
energy. Incidentally, the Hamiltoniai28) is somewhat simi- 0
lar to the one describing the nonlinear electron motion in a -2
strong plasma wav€ *' or close to the cyclotron
resonancé®~** Below, we demonstrate that the crossing .,

separatrix by electron also occurs in our system. y = 7 ¢
Assuming that the absorbed energy in this regime is |
much larger than initial energy, we neglect tg in the =
Hamiltonian given by Eq(28), and consider a simplified "=
Hamiltonian
FIG. 3. A sequence of snapshots of phase space of the electron moving
M2 6(p+C ) across the laser pulse illustrating the heating in the strongly nonlinear re-
_—— Y a(t) \/Epf V4cosW, (63 gime. The thin lines are surfaces of constant Hamiltonian. The particles are
2p \/6 indicated by the heavy lines. They are first pulled through the hyperbolic

fixed point from below separatrixa)—(c)]. Half of the particles are expelled
above separatrix(d) and (e)]. Parameters are=0.1, Aq=1.5, py=3.9,

where a(t) =ag exp(—t%d?). It follows from Eq. (27) that Ve sepdl
p.o=2,C,=0.

conditionC,=0 implies thatt >L>0. The equations of mo-
tion in the (p; V) plane are given by

dp B \/_ 4 adiabatic condition{34), electron transitions from one curve

ar - Vep Tsiny, (64 {5 another are governed by the conservation of the adiabatic
invariant

dw M2 e  €Cy| a(t)e

daro |- 2_pz+ 2\/5_ 2p¥2 - 4p5 cosV. (69 J= fﬁ pd¥, (66)

The bracketed term in the rhs of E§5) is equal to the where the integral is taken over one complete period of mo-
detuning from the betatron resonance. It vanishes when tion in phase space. If electron is not trappéds the area
=Pres, Wherep,esis defined by Eq(29). Whenp<p,., the  under a curve of constami; for trapped electrond is the
bracketed term is negative. THe-dependent term in the rhs area enclosed by one of the closed contours surrounding the
of Eq. (65) is the so called inertial bunching, well known in elliptic fixed point. In the limita— 0, J is proportional to the
the theory of the Cyclotron Autoresonant Maserelectron energy. Therefore, the conservationJafust be
(CARM).*=%7|In the context of the ion-channel laser, this broken for an electron in order to gain energy as it passes
term was identified by WhittuAi3? as the “debunching” through separatrixi.e., through the laser pulse
term. The mechanism of the electron heating in the nonlinear

A somewhat similar system of equations was previouslyregime is schematically demonstrated by Fig. 3, where we
derived by Tsakiri®t al.?® and used for calculating the elec- present sequence of phase space snapshots of the dynamical
tron energy gain. Linearly polarized laser pulse was assumeslystem governed by the Hamiltonid@8) with parameters
in Ref. 28. Our calculation differs from Ref. 28 in two re- pp=3.9, p, o=2, C,=0, ande=0.1. The relation between
spects. First, it assumes a circularly polarized laser pulsp, o andC; is pf,0= €(C1+ po)/\/po and follows from Egs.
since the focus of our calculation is the magnetic-field gen{27) and (30). A similar sequence of phase space snapshots
eration via the IFE. Second, by preserving the Hamiltonian(albeit for a very different physical systeéiwas produced by
nature of the equations of motion, we retained the inertiaNevinset al*?to illustrate the nonlinear regime of the cyclo-
bunching term which was omitted in Ref. 27. tron heating. The initial particle distribution of cold electron

There are several fixed points in the phase space: apeam is shown as a thick line in Fig(@. For simplicity, we
elliptic fixed point at¥ = 77, and a pair of fixedelliptic and  assumed fast electrong¥ p, ,1+ a?) which are still moving
hyperbolig points at¥ =0 (see Fig. 2 Contrary to the non-  slower than laser pulse {<v,) (see Fig. 4 Such electrons
linear electron dynamics near the cyclotron reson#négin can be, for example, pre-accelerated by the plasma wave
our case no bifurcation of phase space happens and all fixezkcited in the front of the laser pulse. If the pre-acceleration
points exist at an arbitrary value aflike in the problem of takes place where the amplitude of the laser pulse is rela-
electron trapping in plasma wave.*!For constant laser am- tively small, then the electrons are not initially trapped. An-
plitude a, the Hamiltonian is a constant of motion, and the other plausible scenarigvhich is outside of the scope of this
electron orbits are given by thel=const curves in the work but can be described in our mogehan be envisioned:
(p;¥) phase space. Electrons can be accelerated by the plasma vimrendthe

A particle passing through the laser pulse experiencekaser pulse and gain significant energy to overtake the pulse.
the slowly changing with time laser amplitude. The Hamil- An additional (and the most significahtenergy gain will
tonian is then no longer a constant of motion. Under thehen occur during the electron passage through the pulse.

Downloaded 17 Jan 2006 to 192.55.106.171. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 9, No. 2, February 2002 Magnetic-field generation and electron acceleration . . . 645

0.83 (a)
0.81
H
0.79
0.77
-3 -2 -1 1 2 -
t/T 2’=7-Vgt
FIG. 6. The dynamics of the Hamiltonian during the interaction of an elec-
0.76 tron with laser pulse with energy gaia) and without energyb). Parameters
H are the same as for Fig. 5.
0.72 (b)
0.68 pushed back into the passing region, but roughly half of them
are expelled above the separaffi¥?**Those electrons that
-3 -2 -1 /T 1z are pulled out into the trapped region from below the sepa-

ratrix and end up above the separatrix gain energy and angu-
FIG. 4. Schematic of the electron acceleration in the frame of the lasefar momentum.
pulse. Electron first is pre-accelerated in the front of laser pulse but have Sincep=y in our model we will use the kinetic energy
velocity less than group velocity of laser pulse. In the frame of laser pulse . S
the electron moves across the laser pul$ae electron is overtaken by the of the electron,y instead of the longitudinal momentum of
laser pulse in laboratory franje. the electron,p. In Figs. 5a) and 8b) we show a typical
trajectory of an electron which crossed the separatrix twice
) without the net energy gain. Our numerical simulation con-
As the electrons move into the center of the laser pulSefiyms that the fraction of such electrons is about 1/2. A phase-
the field strength parameter increases, and the region of gpace trajectory of another electron, which also crossed the
trapped orbits about the elliptic fixed point expands. As theseparatrix twice, but absorbed some net energy, is shown in
trapped region expands, the phase volume flows from theigs 5¢) and 5d). Numerical simulation indicates that ap-
region of open orbits below the separatrix, through the hyproximately half of the electrons do not change energy and
perbolic fixed points, and into the trapped region. If the waveetyrn to vo, another half of the electrons reach the final
amplitude is sufficiently large, all of the phase volume belowenergy ¢, and a small fraction of the electrons have the
separatrix is pulled into the trapped regifsee Fig. 8)].  final value of energy betweem, and y;. The last portion
For the present simulation parameters, trapping occurs fofppears because the adiabaticity condition is not strictly ful-
ay=0.7. Below we derive a qualitative criterion for the onsetjjjjeq [lvz_vgr|ttrap/(Tvgr)7&0]-
of trapping. To estimate the energy gain in nonlinear regime, we
As electrons move out of the pulsedecreases and the shoyld use the fact that adiabatic invariants conserved
trapped region collapses. The phase volume is expellegefore the separatrix crossing. Unfortunately the Hamil-
through the hyperbolic fixed point into both the regionsonian (63) is too complex to provide analytical calculation
above and below the separatrix. Therefore, electrons args j and we will use the factfollowing from numerical
simulationg that the Hamiltonian does not change essentially
during interaction(see Fig. 6. Before electron enters the

* appea (@) 60 (®) pulse @=0), its Hamiltonian is equal to
Y40 paricle passing Y4o )
particle 1 € +C 1+ p
N, 26 H(t=—o)=Hy=~—+ (Yo 1): L,Ol 67)
27 NS 2o
-40 -20 0 2 4 -4 -2 0 2
¥ ¥ After electron passing the laser pulags again equal to 0.

The equationH(t=+»)=H(p,a=0)=H, has two solu-
tions, yo andys, where

trapped
particle (C)
passing ’Y

60 60

4

40 particle 40 P! o
20 20 € fyo
N A A A=
a 1 2 3 4 . . .
P To derive this expression we assume tpé%»l and

use the fact thafs> y,. Note that, contrary to the quasilin-

FIG. 5. Typical electron trajectory of an electrons moving across the laser . . _ .
pulse in the strongly nonlinear regime without energy gainand (b) and ear regime of the energy absorption whérp=Aw, in

with energy gain(c) and (d). Parameters are=0.12, A,=3, p,=5.9,  Strongly nonlinear regim?’f> Yo andép:AWZ Y- FOT the_
P, 0=2,C,=0. parameters of the numerical simulations presented in Figs. 5
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and 6 (’}’0259, piyo=2, 62012), Eq(68) prediCtS i 2\/§eN62 2eNe 2eNQ m
=25, in fairly good agreement with the numerical respft Bing= W = = — (75
=24. Hence, the averaged energy gain is L VQ ¢ Q
Yi+ Yo pj 0 Sincel;=vy; we can present Eq60) in the form
(Ay)=T5== 5 (69
2€%yy

JNFIdI e NoQ mc
Electron trapping occurs when the initially injected par- (o) wrﬁm ollo)dlo 2m/Q c? Q-

ticles cross the separatrix. Using the conservation of the adia- (76)
batic invariantJ(H,a)=J(Hy,0)=const we can expresd

as function ofa: H=H(Hg,a). This function is not valid at  Thus, the axial magnetic field generated in the strongly non-
the moment when the particle orbit cross the separatrix in thénear regime can be rewritten in the form

phase space and the adiabatic invariant becomes broken. )

Separatrix is characterized by the certain value of the Hamil- ~ ®ce _ M:aez 77
tonian Hge,. Separatrix crossing occurs at=a;, when the ® w? '

given electron orbit starting with parametétg anda=0 at

t=—c in the phase space becomes the separatrix. The value Equation(77), derived for the strongly nonlinear regime,
of a,, at which the separatrix crossirigr particle trapping  yields no surprises or new results beyond what one could
occurs, can be estimated from the equatid(Hy,a=a,)  expect from pushing Eq62) to its applicability limit. For
=Hsep. Electrons are trapped in the wave if the peak lasethe parameters of the recent experiment at RAthe peak
amplitudea, satisfies magnetic field can be estimated as less than 1 MG. This
estimate is almost three times smaller than the experimen-

30> ar(70,P1,0:80)- (70 tally measured field.
The range of parameterg,, p? ,, a, for which elec- Interestingly, Eq.(77) indicates that the magnetic field
trons can be accelerated in the strongly nonlinear regime caffoes not depend on the actual amount of eneogyangular
be obtained from the momentum gained by the electrons. This result can be un-
derstood as follows: Since magnetic field is determined by
¥1(Y0,PL 0> Y0 (71)  the azimuthal electron curref, andj,=—enyw,,, what
and Eq.(70). ultimately matters for B-field generation is the azimuthal

electron velocity , . But the increasév ,=Ap,/p, where

Using expression69) f(_)r mean energy gaim, Fhe. ab_ Ap, is the electron momentum increment. Therefore, as
sorbed energy can be obtained for electrons with distribution . . .

: electrons gain angular momentum, they also gain energy, in-
function F(yo,p. o)

creasingp. Thus, the angular momentum increase is offset by

the relativistic increase of the electron mass. This mass in-
Q=f L dyodp. oA ¥(¥0,PL 0 F(¥0,PL 0, (72)  crease is, ultimately, responsible for the weakness of the
res magnetic field predicted by Eq77).
whereS,sis the domain ofy,, p, o at which strongly non- To explain the experimental result, one may have to in-

linear acceleration regime occurs. For cold electron beanslude collective effects which could lead to the angular mo-
with distribution function(44), wherep, andW, belong to mentum re-distribution between the highly relativistic and

the resonance domat.s, we obtain non-relativistic electrons. Also, fast electrons produced by
the laser trapping can excite plasma waves. These plasma
Wf W, o? waves, supported by the ambient plastireand outside of
Q= E: L E ﬁ (73 the ion channg| can significantly slow down fast electrons.

The longitudinal electric field of the plasma wave does not

In the nonlinear absorption regime, electrons gain largeehange the angular momentum of the electrons. Its role is to

amounts of energy and angular momentum after interactioremove a significant fraction of the total energy imparted by

with laser pulse 4 y>yo=py,, Al>1y, andAL>Ly). Soin  the laser. As a result, fast particles can absorb significant
strongly nonlinear regime all resonant electrons after interamount of energyand angular momentunfrom the laser

action with laser pulse have=L=AI and perform circular ~without becoming very heavy. For example, to explain the

motion withr = \/AII(E:]A ). Then, the generated magnetic experimentally observed magnetic field 2.5 MG requires that

field in this regime is hot electrons lose about 2/3 of the energy gained from the
laser to plasma wave generation. Also numerical simulations

B —2eN Fo(lo) dl 74 show® that the highest electron density is outside the chan-

in SesVAy(1o) nel and near the channel border since the electric field of the

channel ions attracts the electrons outside the channel too.
where integration in this expression is taken over the resofhe number of these electrons substantially exceeds the elec-

nance particleSs Eq. (70). trons in the channel. These electrons can also perform circu-
Using the electron distribution function given by Eq. lar motion around the channel and generate ultrahigh inten-
(44) yields sity magnetic field.
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V. DISCUSSION AND CONCLUSION Our theory would have predicted a much larger magnetic

In this paper we have analyzed the dynamics of thdield if hot electrons were continuously slowed down by their
wave—particle interaction in an ion channel, with the emphainteraction with the surrounding plasma. For example, one
sis on the magnetic-field generation, or IFE. For the firstcould envision the energy loss associated with the generation
time, to our knowledge, a simple and intuitive physical pic-of the plasma waves by the fast electrons. Including this
ture of the axial magnetic-field generation through the angueffect would have brought the estimates into better agree-
lar momentum transfer from the laser pulse to the hot elecment with the experimental data. Moreover, to estimate the
trons is developed. Since the angular momentum absorptiognergy gain and magnetic-field strength, we used a very
requires the resonant photon absorption, we identified ongimple distribution function. To estimate the intensity of the
possible mechanism as the betatron resonance between th@gnetic field we consider optimistic case when most of the
hot electrons in the partially evacuated ion channel and thelectrons are in betatron resonance with laser field. Further
co-propagating laser pulse. This resonance has been recenifyestigations will include the more realistic electron distri-
identified®??®as the cause of the significant electron en-bution functions, as well as the more self-consistent analysis
ergy gain directly from the laser pulse. Here, we point outof the interaction between fast electrons and the ambient
that if the laser pulse is circularly polarized, then another byplasma.
prc_)duct of sgch_ a resonan§ wave-particle interaction is th%\CKNOWLEDGMENTS
axial magnetic-field generatio@lso known as IFE
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gime. In the strongly nonlinear regime, we _related the netAPPENDlX: BETATRON RESONANCE IN THE CASE
electron energy gain to the structural transition of the resos
nance electron orbits in the phase space as result of the sepa?’
ratrix crossing during the adiabatic change of the laser field In general casep,z)h#oo the Hamiltonian(28) have an
strength. For both regimes the absorbed angular momentuadditional term

is proportional to the absorbed energy that is the manifesta- D M2  e(p+Cy)
tion of the resonance nature of the radiation energy absorp- H=-— e ot =
tion phenomenof’ 2pgn <P Vp
While calculations were performed for the circularly po- )
i ini t e(p+Cy)
larized laser pulse, all the results pertaining to the energy +A exg — — sin (A1)
transfer are also valid for the linearly polarized wave. In this d? p®? ’

regard, our work extends the earlier simulatfdrf$and the-
oretical calculatior® which predicted a significant electron
energy gain. By using the Hamiltonian approach from the

start, we were able to retain some of the phy$e&s., force . JHy 1 M?2 € eC,
bunching term in Eq(65)] which was neglected in Ref. 28. v= ﬁz -2 -2t —\/—— s
Use of the adiabatic approximation also enabled us to treat 2Pph  2P7 2P 2p

the strong electron acceleration observed in these simulationghe resonance condition can be rewritten as follows:

whered=2\(M?p~2—p_2+2ep™ Y2+ 2eCip =3 L
The resonance condition is

0. (A2)

when the electrons overtake the laser pulse since all phenom- IH 1 \/5 2
ena like electron trapping in laser wave and separatrix cross- —° — _3/2( — - C,+ -p|—R, (A3)
ing in the phase space occur in this case too. dp - 2p 2pPgh 6\/5

One of the motivations for this work was to interpret the where R= p,;h2+C1P_1+ M2p~%2¢~1. To derive the con-

recent Iexperirr?ental measureméﬁtsfhtf;e IFE durin%IreIa- dition when we can neglect terRin Eq. (A3) we introduce
tivistic laser—plasma interactions. While we were able to ex ; ot ; ,
plain the effect qualitatively as being due to the resonan}ﬂ2nezgimfliznzﬁgesl—z?i?:Ja—CFfér:gtzgnczzn:ﬁg{;ec{[gd’ if
absorption of the laser angular momentum by the plasm 5*1?;|p +A| Ath the résonanc _ d

. . . ’ gl . res=Po AN pL,res
electrons, our estlmqtes of the magnetic field strength are D, o and the resonance energy is
lower than the experimentally measured. We speculate that > 4
this discrepancy is due to the fact that the model used in this ~ Yras™ Pres= 4€ Ppn,
paper is not fully self-consistent. For example, it neglects the M2+ Pf .
laser depletion by the hot electrons. All interactions of the  y,.=pre= 2—
hot electrons with the background plasma are also neglected. €
Such interactions include, for example, acceleration or deceln the limit M=1 andp, =0 the expression for resonance
eration of the hot electrons by the plasma waves supporteelectron energy coincides with ones calculated in Ref. 20
by the background plasma. (see Fig. 4 therein

213 (A4)
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