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Ponderomotive barrier as a Maxwell demon
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The possibility of efficient ponderomotive current drive in a magnetized plasma was reported
recently in[N. J. Fisch, J. M. Rax, and I. Y. Dodin, Phys. Rev. L&, 205004(2003)]. Precise
limitations on the efficiency are now given through a comprehensive analytical and numerical study
of single-particle dynamics under the action of a cyclotron-resonant rf drive in various field
configurations. Expressions for the particle energy gain and acceleration along the dc magnetic field
are obtained. The fundamental correlation between the two effects is described. A second
fundamental quantity, namely, the ratio of the potential barrier to the energy gain, can be changed
by altering the field configuration. The asymmetric ponderomotive current drive effect can be
optimized, by minimizing the transverse heating.2@04 American Institute of Physics
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I. INTRODUCTION compared to the particle oscillations and the beat frequency
) o L w—{) changes little in a period. In a certain vicinity of the
An intense electromagnetic field can exert a S'gn'f'canEycIotron resonance, whef@(z) ~ , this condition is vio-

gme-aviraged f&rﬁe OP a gha;]gerc]j plart|cle k_nown tas tthel POMated and the approximation of a ponderomotive poteftial
€romotive, or MIller, Torc€, which piays an Important role - ¢ 1 this case, nonadiabatic effects come into play.

folr undgr?tandtl_ng varlouslf ?onlln_ear f!cl)henortnet_na OF\]: Wave= - as proposed in Refs. 10 and 11, the ponderomotive force
plasma interactione.q., self-focusing, filamentation, Raman can be used to drive electric current in a magnetized plasma

s:cattermg. In the presence qf a magnetic field, ponderomo—thmugh a rf barrier asymmetry: As the potentia) experi-
tive effects are explained in terms of a pseudopotential

. . - X n ingulari h lotron resonan resonant rf
which governs the particle guiding center motion along th ences a singularity at the cyclotron resonance, a resonant

magnetic field. The pseudopotential can be put in the fotm ield can oper_ate e;sgntlally like a I\/.Iaxwelll dem(cMD)., .
reflecting particles incident on one side while transmitting

e?|Ey,|? those incident on the other side of the ponderomotive barrier,
V=0 +uBy, &= ———, D i -
Amo(w + vQ) and hence producing a curresiee Sec. Il for detaijs Un
like a true Maxwell demon, particles experience collisionless
HereE , is the rf field component with polarization,, heating while passing through the resonance, and the amount

of energy they receive stochastically appears to be linked
tightly with particle acceleration along the magnetic field.
x® andy? are the unit vectors in the plane perpendicular toThe asymmetric ponderomotive current dried>CD) effect
the magnetic field,~z°By(z), smooth on the scale of the has many uses, and could be competitive with other means of
oscillations amplitudey is the frequency of the rf field, and If current generatioﬁl.
Q=eBy/mc is the Larmor frequency. The quantity The purpose of this paper is to study the conditions un-
:mUE/ZBO represents an approximate integral of the particledel’ which APCD can be sustained. To explore the basics of
motion?* analogous to the adiabatic invariant of free gyro-the effect, we consider the simplest analytic model, which
motion in a slowly varying magnetic fieldHere v, =v,  demonstrates the fundamental properties of the asymmetric
-V, is the velocity additional to the velocity of the rf- barrier operation. In particular, we limit ourselves to the
driven oscillationsv;.) problem of nonrelativistic single-particle dynamics in given
The ponderomotive force plays an important role in therf and static fields and neglect the electrostatic field, which
dynamics of naturalcosmig plasmassee, e.g., Refs. 436 appears in a real plasma due to charge separation caused by
yet its properties often come in useful in the laboratory asa ponderomotive force. In this case, for studying the current
well. The practical applications include isotopes separationirive effect, the action of the rf field on plasma particles can
in plasmas composed of multiple ion speciems well as be conveniently described in terms of the mapping between
stabilization of low-frequency mod&% and rf plugging in  the particle velocities before and after the interaction with
magnetic confinement devicéfor review, see Ref. 2 For  the rf field: v,=T(v,). In the paper, we show how the func-
all of these effects, it is sufficient that drift particle dynamicstion T can be obtained and how these results can be used to
follows the “adiabatic” model describable in terms of a re-optimize the field configurations for applications like current
versible potentiall). However, for the reversible potential to drive.
establish it is required that rf and dc field profiles vary slowly =~ The nonadiabatic dynamics of rf-driven particles in the

7= (X0 iy0)/ V2, 70=2% (2)

1070-664X/2004/11(11)/5046/19/$22.00 5046 © 2004 American Institute of Physics

Downloaded 18 Jan 2006 to 192.55.106.171. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp


http://dx.doi.org/10.1063/1.1787771
http://dx.doi.org/10.1063/1.1787771
http://dx.doi.org/10.1063/1.1787771
http://dx.doi.org/10.1063/1.1787771

Phys. Plasmas, Vol. 11, No. 11, November 2004 Ponderomotive barrier as a Maxwell demon 5047

cyclotron-resonance area has been studied in a number of
works?>*?¥primarily inspired by interest in rf plasma con-
finement, yet the general analytical treatment, sufficient for
studying the APCD effect, has not been fully put forth. For
instance, weak heating was studied for particles quasiadia- <
batically trapped by a rf field within a plasiia-> with little
attention to those transmitting through rf plugs and leaving
the operating volume of the fusion device. The most general
analytic model of transmitting particle dynamics was pro-
posed in Ref. 12, where the major emphasis was made on
particle acceleratiorfrom the resonance region. In other
cases, effects caused by the inhomogeneity of the dc mag-
netic field were either studied heuristicallpn the level of
elementary estimatésyr neglected completei’;?.‘”What re-
mains necessary is a full and general treatment of the pl’OthG. 1. Schematic of an asymmetric ponderomotive barrier with a rf electric
lem. In this paper, we present a comprehensive study ofeld having a maximum az=0, where the local cyclotron frequendy
nonadiabatic particle dynamics for a broad variety of field=eB/mcequals the rf field frequency. Ponderomotive potentiab(z) is

; : : e gingular and changes its sign over the cyclotron resonance. The average
conflguratlons. In dOIhg so, we address as well a SpeCIfI?ongitudinal Lorentz force is directed the same way to both sides of the

application of Currem drive in a magnetize_d plasma. ~ resonance and drags a charged particle towards weaker dc magnefield
The three main results are presented in the paper. First,

we developed a nonlinear analytical model of transverse

heating and longitudinal acceleration of rf-driven nonrelativ-

istic particles near the cyclotron resonance and establishe@ftion region, the gradient af/(z) changes sign along the

integral equalities showing the fundamental correlation beparticle trajectory, and the momentum transfer in the region

tween the two effects. Second, we estimated the minimum r»V/dz>0 will be canceled by the interaction in the region

power deposition into a plasma, which would be sufficient tod//dz<0. Thus, it is impossible to put the ponderomotive

sustain the asymmetry of a barrier for APCD. Third, we pro-force at work in a homogeneous magnetic fiBld

posed an alternative scheme of the ponderomotive current However, one can design a magnetic-mirror field con-

drive of substantially higher efficiency than that recently pro-figuration(that is, whereBy, is nonuniform along), such that

posed in Ref. 11, yet it remains to identify how the effectthe sign of the factotw—)™* in F,,=-d®/dz compensates

might be implemented in a plasma device in a practical manthe sign of the energy density gradieht//dz In the region

ner. wheredW/dz< 0 the rf field frequencyw is below the cy-

The paper is organized as follows. The idea of a rf barclotron frequency, and in the region wheré)V/dz>0 the

rier operating in a quasi-MD regime is discussed and fundatf field frequency is abové). For example, suppose that the

mental limitations on sustaining the asymmetry of the barrieff electric field envelope has a maximum at the cyclotron

are considered in Sec. II. Basic equations are introduced irfesonance, and thi; experiences phases reversal over the

Sec. IlI. In Sec. IV, we discuss the simplest approximationgesonance(Fig. 1). The average Lorenz force due to rf-

for the rf heating and the height of the ponderomotive barrieinduced transverse particle oscillations can be put in the form

in case of smooth field profiles. In Sec. V, the transversdAF,)=F;+F,, where

heating is discussed for a fairly general field configuration. 1 1

In Sec. VI, we introduce the approach for calculating the  F;=—(v;; X Bg),, F2= —(Vit X Bp). (3

average longitudinal force, which is used further in Secs. VIl ¢ ¢

and VIII for particular cases of interest. In Sec. IX, we dis- To get the sign ofF;, and F, note that the phases of the

cuss how particle acceleration is connected to resonant hegjarticle oscillatory transverse displacemegliz,t) and oscil-

ing and derive restrictions on the energy transfer for a realtatory velocityvy(z,t) change over the resonance by(see

izable asymmetric rf barrier. In Sec. X, we discuss theSec. Ill). Hence, so does the phase of the small transverse

possibility of applying a cyclotron-resonant rf barrier with component of the dc fiekBO’rx—%rrch’)yz, seen by the par-

reduced transverse heating for efficient current drive in plasticle atr 4(z,t). Thus, at eaclz both F; andF, are directed

mas, or, for that matter, for other applications as well. In Secthe same way, namely, towards weaker dc magnetic field.

X1, we present the results of our numerical calculations, andjNote also that the diamagnetic forég, due to a nonzero

in Sec. Xll, we summarize the main results of the work.magnetic momenty of particle Larmor rotation, Fy

Some supplementary calculations are given in Appendixes.=-4B((z), is similarly directed. Hence, if transversely
heated by the rf fieldwhich corresponds to an increase of

II. ASYMMETRIC BARRIER M), a particle can also gain longitudinal acceleration by con-
verting its perpendicular energy via a magnetic nozzle, as

Let us consider a standing wave such that the rf energproposed in Ref. 20.

density\W=|E|? is a function ofz. If the frequency of this This prescription permits net thrust from a standing

wave is close to the cyclotron frequency, the ponderomotivearvavelo'11 applied near the cyclotron resonance: while par-

force Fpy, Will be quite large. SincéV=0 outside the inter- ticles traveling from weaker magnetic fie{f) <w) are de-
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celerated and, in principle, can be reflected by the barriei]l. BASIC EQUATIONS
those traveling from stronger field) > w) are automatically

transmitted and accelerated by the rf field. Without resonan T(.) explore the ba5|cs_ of the APCD effect, et us consider
. . . . the simplest model, which demonstrates the fundamental
heating, the barrier would operate precisely like a MD,

i ) properties of the asymmetric barrier operation. Let us assume
which would decrease the plasma entropy without energy 4t the motion of a particléan ion or an electroncan be

deposition into the plasma and whose existence is thus preggequately described by nonrelativistic equations. Let us as-

hibited by the second law of thermodynamics. Hence, th&ume also that the rf radiation represents a transverse plane

heating inprinciple cannot be reduced lower than a certainwave of an arbitrary longitudinal structure, while the influ-

limit, which then determines the upper bound for a realizableence of the electrostatic field, which can appear in a real

current drive efficiency. plasma due to charge separation caused by the ponderomo-
The same idea can be alternatively explained as followstive force, is of minor importance. In this case, the particle

A physically realizable rf gate, which could reflect particles motion is governed by the equation

moving in one direction while transmitting those traveling

the other way, is constrained by the Hamiltonian nature of m_v = e<Erf + v X (B + Bo))- (4)

the wave—particle interaction. Since collisionless particle ¢

motion under the action of an electromagnetic field is arssume a linearly polarized localized rf figlfbr alternative

Ham|I.ton|an process, the pamcle phase fIO\{v remains 'ncomf)olarizations, see Appendix)Aletermined by the vector po-
pressible throughout the interaction. Imagine now that Wgegpiq) (in units m&/e)

partition the particlephase space into small cells of equal
volume AT;=AT, and to each cell attach a certain value of  A;=x%(z)cosr, e(*x)=0, (5
the one-particle distribution functiof. Then the number of
cells that have a given value bfs conserved throughout the and thus given by
interaction procesgand so does the plasma entrof$/
=-AT'SfIn f,%) as follows from the Liouville theorem. Al-
ternatively, thi; fggt Can_ be expressgd f"‘s con§ervation gf ﬂ]ﬁ unitsmwc/e. Herew is the frequency of the field;=wt is
so-called Casimir invariants, or Casimirs, which ess:entlallythe dimensionless time, ammis the longitudinal coordinate.
determine the distribution of the valués(see, e.g., Ref. 32 The normalized rf field amplitude is assumed small com-
and whose existence is an intrinsic property of any Hamilpared to unity, as it represents the ratio of the momentum
tonian system. imparted by the wave field in a single oscillation mac.
Suppose that plasma particles having an initial phas€onsider also a dc magnetic field determined by the vector
space distributiorf; are introduced into an electromagnetic potential, which we approximate by a linear function with
field for a limited time, which eventually results in bringing respect to the transverse displacement:
the plasma into some final stafg. Since limited by the
Casimirs conservation, the distributida may not be arbi- Aq(r) =3b(2)(2° X 1) (7)
trary but will rqther represent a result of “restacking” of the(in Units m&/e). Then, in unitsmac/e, the actual fieldBq
preserved original phase-space elemeXits, regardless of .
: X =V X A, can be written as
the spatial and temporal structure of the field the plasma has
undergone interaction with. To drive a current as efficiently xb’ yb'
as possible, one would need to minimize the energy deposi- Bo=- 7X0— 7)/0"r bz°, (8)
tion into a plasma for a given current produced by the gate.
However, the fact that; is a restacked; imposes a limita-  where the particle coordinates are measured in ufits
tion on the energy and momentum exchange between the Tfhe dimensionless functioh(z) is approximately equal to
field and plasma particléd:* the magnetic field strength measured in uniksc/e, or the
Calculating the absolute limit determined by the Ca-local ratio of the nonrelativistic Larmor frequenc{
simirs conservation for a gate of an arbitrary structure repre=€By/mc normalized onw. Thus, b(z)=1 at the cyclotron
sents a separate problem, which we consider elsewkese resonance located at0.
Ref. 25. Approaching the absolute minimum in practice is I dimensionless notation, when the particle velocity is
challenging(if not impossible. However, a matter of practi- Normalized on the speed of ligh the scalar motion equa-
cal interest is how efficiently the power deposition can petions can be put in the following form:
minimized in a technically realizable gate. Here, we estimate ,
the minimum heating, at which a realizable rf barrier remains ~ v,=v/b+ yvzz +esinT—uv.e’ cosT, (99
capable of driving a current, and propose a near-optimum
current drive scheme. First we discuss the single-particle dy-
namics in the vicinity of a cyclotron resonance, to which the
next few sections are devoted.

E,=x%(2)sint, Bys=Yy%’(z)cosr (6)

!

ijy=—vxb—XvZ?, (9b)
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. b’ O(2)

U, =Uye' COST+ (Xvy — yvx)z. (90
The two types of oscillations are intrinsic to the particle mo-
tion in rf and dc magnetic fields. Those are free Larmor
rotation with frequencyb(z) and rf-driven oscillations with
unit frequency(in dimensionless notatign If the relative
change in the beat frequency between the two is small over a
period of that frequency and the spatial scale of the rf field
L is large enough, i.e.,

v, d(1-b) v,
<1, Lg> —2—,
(1-b? dz 7 |1-b|

then the two types of oscillations uncouﬁl@, and one can
solve for the transverse particle motion to get

(10)

r =rg+rg V, =Vg+Vyg. 11
+ dr i Tl d rf (19 FIG. 2. Ponderomotive potential in a smooth field configuratibp,Lg

Herer 4 andvy are the drift displacement and velocity under- >v./): in the resonance regiofshadegi where the ponderomotive ap-

going free Larmor oscillations. while. and v.. stand for proximation does not hold, the rf electric field is approximately constant,
! rf rf and the dc magnetic field can be approximated with a linear functian of

rf-driven (tO the Ieading order, purely transve}s&elocity (Q/w=1+z/Lg). The characteristic width of the resonance regiorzis

and displacement given by =\Lgv,/ »; the characteristic height of the ponderomotive barrier is about
. (2.
_esint _ &bcosr @
Xt 2 T T T (129
__ecosT _ebsint 2h b(z2=1+7Lg (17)
UtxT T g2t Uy T e (Fig. 2). Then the dominant heating effect can be calculated

as follows. Consider the general expression for the average

Under the approximation of smooth rf and dc fie{d§), energy change

two integrgls of particle motion are approximately
conservef’. the magnetic moment of the drift motion (A&) = <f v&[2(7)]sin 7_d7_> (18)
p=d 13 | | .
2b with expression for the particle velocity, given by Eq.(12),

and the so-called quasienergy of the longitudinal motion which, in dimensional complex notation, is given by

1)2 — lw %e—iwt
€=+ b+, (14) NS T m e

(19

Noting that the lineafin &) response functiom,(w) cannot
experience a singularity in the upper half of thecomplex
£2(2) plane, when integrating across the cyclotron resonance, one

where the ponderomotive potenti@lis given by

®(2) = 4(1-b%2)’ (15 must shift the singularity from the real axis
o correspondingl§**®to get
In the vicinity of the cyclotron resonandé(z) = 1), the av- . )
erage potentiab(2) yields a singularity, which is a clear sign (AE) = 1 Im f elz(7)] dr (20)
of the ponderomotive approximation failure. To describe par- 2 . bz(nD?-1-i0

ticle motion in this regime, more detailed analysis is needed. ) )
With dz=v,dr and assuming,=const in the resonance re-

gion, one obtains
IV. QUASILINEAR APPROXIMATION FOR SMOOTH
FIELDS (AE) = ESSA. (21)
First, consider the simplest case when the spatial scale of
the dc magnetic field is large compared to the particle longiThe assumption of constant and linear response,(w) to
tudinal gyroradius: calculate the nonadiabatic heating effect constitute the so-
_ called quasilinear approximation, which is valid only for fast
A=Lglv,>1, (16) . )
particles. Indeed, as, goes to zero, the expressi¢?l) ex-
assumingd_g/v,>1 as well. Suppose the rf field amplitude is periences a singularity being a sign of the quasilinear ap-
approximately constant across the resonance regitm, proximation failure. Hence, for low velocities, detailed
~ g, While the magnetic field strength can be approximatedanalysis is needed to calculgt®€) more accurately, namely,
with a linear function, by considering the finite width of the region where a particle
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undergoes resonant interaction with the rf field. The width ofV. TRANSVERSE HEATING

this regiort® _ _ _
To solve for the transverse particle motion, let us first
Z=1Lgv,, (22)  introduce a complex transverse displacement

v aiy = raid
can be readily obtained from E€L0), which yields the con- pEX+ly=re7, (26)

dition |2/ >7Z for the reversible quasipotentiél5) to be es- in terms of which the transverse motion equation takes the
tablished. The time scale, over which the particle passes following form:

the resonance region, is then of the ordex af Therefore, a P d

fast particle does not have sufficient time for being heated, p+ibp+ —pb=—-—(e cosr). (27)

and thus, energy gain must decrease as its longitudinal ve- 2 dr

locity is increased, exactly as predicted by E21). How-  For given functionsb(7) and (1), this equation turns to a

ever, this scaling holds only for magnetic fields) smooth  |inear ordinary differential equatio(ODE), so that one can
inside the interaction region, unlike abrupt fields, for whichyite

the conclusion must be revis¢8ec. VIII).

The effective height of the barrier, which determines the (7 = pi(7) + pi(7), (283
maximum longitudinal energy a particle must have to be re- _
flected adiabatically, can be estimateddag,~ ®(z), or pi(70) = po, (28b)
Dpax~ 82\‘/K7 (23) pi(10) =0, (280

and thus depends on the particle initial |Ongitudina|vyherepf stands for the solution of a homogeneous equation

velocity’® The characteristic of the barrier independent of(i-€., describes free Larmor oscillations with initial displace-
- ment py), while p,; stands for the rf-driven oscillations and

the particle initial velocity is the “critical” energy& Lo

a5 - _ A_\/: vanish |fs=0_. o _ _

=gg Lg » or the critical velocityy = V¢, In the region of the most efficient interaction with the rf
field, p,s and p; oscillate at approximately equalnit) fre-
quencies, and the particle orbit is approximately circular. The
latter is also true away from the rf field, where the gyroradius
is inverse proportional td. Then, in the leading-order ap-
proximation, one can accept the general formula

D=egLy". (24)

Particles withv,<v are reflected adiabatically from the bar-
rier if moving from the weak-field sidd()<w). Those
which travel in the same direction with,=v (and all of
those traveling backwards and hence experiencing pondero- p=iw/b, (29
motive acceleration rather than deceleratipenetrate the
resonance region and undergo cyclotron heatitg. this
case, the quantity equals the characteristic momentum a  w=yp,+ ivy. (30
particle gains inside the resonance reg]if)nFor particles
havingv,> 0 and traveling each way, the longitudinal veloc-
ity change is small compared tg. For more accurate de-

where we introduced a complex velocity=p,

Hence, one can rewrite EQR7) as a first-order ODE fow:

. b d
scription of transverse heating and longitudinal acceleration, W +ibw— E)W= - d—(s cos7). (31
a general model of particle nonadiabatic dynamics is devel- T
oped in the next sections. Supposing the motion starts &t 7, at the locatiorz=z,, one

It must be understood that the presented results remaigan get an exact solution of this equation:
applicable only for classical particle motion. Even small rela-
tivistic modification of the Larmor frequency can change the
scalings, which describe the resonant interaction of a particle .
with an rf field(see, e.g., Ref. )2The characteristic time, at Wr = W\ /b[Z(T)] exp(— if b[z(r’)]dr’), (33)
which the particle ceases to interact resonantly with the field b(zy) 0
because of relativistic shift of the gyrofrequency can be es- _ . . -
timated asre~ & 23 If 1=, relativistic effects become wherewo=vyo+ivyq IS the initial value of the complex ve-

dominant, and the spatial scdlg no longer determines the locity, and the rf-driven part ofv is given by

W= W + W, (32)

amount of energy a particle can gain from the rf field. How- T b[z(7)] d ) ,

ever, if 7> 7, relativistic corrections remain of minor im- Wit = _f b[Z(T’)]E{S[Z(T )]cosT'}

portance, and the assumption of classical particle dynamics ”

(used in this papgmecomes sufficient for adequate descrip- N , R

tion of the APCD effect. For velocities,~ 0, the latter con- ><exp<— 'fT b[z(7")]d7 )dT ' (34)

dition, which we will assume satisfied, can be expressed in
terms of the rf field amplitudey and the characteristic scale Near the cyclotron resonance, in the leading-order approxi-

of the dc field inhomogeneitg: mation one can takb=1 and replace the full-time deriva-
15 205 tive under the integral witf;=-¢ sin7’, as the remaining
g " Lg < 1. (25 term f,=& cos7' is relativistic and represents the higher-
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order correction. Indeed, the terimcould contribute signifi-  the functions scale such &s~ e/(1+b), meaning that
cantly tow,; in abrupt fields, where the magnetic rf field is o

large compared to the electric rf component. However, in the h-/h, = O(A). (42)
worst case of as-shapede’(2), taking a nonzerdf; into In terms ofh,, the expression for the rf-produced energy
account would yield only a small correctiagiv,;~ €, whlch gainé‘rf:%|wrf|2 can be put in the form

is much less tharw,; as can be seen from the following

estimate. Let us put Eq34) in the form Er=g(n?+|h_?) + 5(h,n’e* 0+ c.c), (43)
erzf s[z(r’)]exp<—iJ b[z(f’)]df’)sin de or, taking Eq.(42) into account,
—» T B |h|2 _
(35) 5”_?, h=nh_. (44)

To estimatewy, suppose the simplest case whgrchanges  Then, to the leading-order approximation, one can estimate

inSigniﬁcantly during the interaction, the rf field is apprOXi' the rf-produced Change of the partide magnetic moment
mately uniform across the resonance region, and the dc magg, .= (AM,:)() with the following expression:

netic field changes linearly in the vicinity of the resonance .
(Sec. V). Applying the steepest descent method to the inte- Ay = 5(H|?, (45)

gral (35), one gets forr— whereH =h[z(«)],

_ .. ]TLe
Wl =2\ 50 H(ro) = f e(ee—22 (46)

UZ(Z! TO) ,

[in compliance with Eq(21)], or o .
andy= y_. As seen from the derivation, the expression holds

Wit ~ eVA. (37)  for arbitrary(both smooth and abrupprofiles of the dc mag-

netic field and the rf field. Therefore, studying the properties

of H considered as a functional of the field profikg), b(z)

and the particle trajectory( 7, 7p) can yield a complete infor-

mation about the particle transverse heating under fairly gen-
1 eral conditions.

A~ (1-b(2))? >1 (38) Thereby, let us ask a question if it is possible to adjust

_ ) ) ] £(z) andb(z) to minimize transverse heating for theajority
wherez stands for the edge of the nonadiabatic region angys particles, whose longitudinal velocities vary in a wide

can be obtained from E@10). Further, we accept E@38) 8 rangeay,~v,. To answer that, let us first rewrite the expres-

the general definition of.. _ sion forH in the following form:
Now considerr(z,7y) as the moment of time when a

Despite in abrupt fields the expressiof#2) and (36) are
invalid, the scalingg23) and(37) yet hold(see Sec. VI if
A is defined according to

particle arrives at a given locatianif launched at the mo- . d_éX _ &2
ment , from the given locatiorzy: H=1| V(@) dz dz, V()= 1-b(2)° (47
Hz,70) = 70 + fz dz . (39) To figure out the physical meaning of the functid(z), note
’ 2 vAZ,70) that the rf-driven oscillations of the particle transverse veloc-

. ity in the adiabatic regim€l2) can be expressed as
[Note that, generallyy, may represent a multivalued func-

tion, and the integration should be performed over the par- v(z,7) = %V(z)u(q-), (48)
ticle trajectory including all the branches ®f(z).] Assuming i i
Eq. (39), let us rewrite Eq(35) as where u=(-cosr,sin7) depends entirely orr. Thus, V(2)
can be thought of as the amplitude of adiabatic rf-driven
1 iy, 4 iy oscillations. One can see that\ifz) is smooth compared to
=—(h |X++|7_h_ Ix——1 , 40 ) ' R . .
Wt 2i( +© © ) (40 eX everywhere along the particle trajectduyhich, for trans-

mitting particles, requires also thafz) must be equal to zero

where we introduced the quantities at the resonangethe integral

z — dz
— Nl x+(Z',70) .
h.(z,7) JZO e(z')e 0 A2 70) (419 H=—i J exgv (49)
z , dz is exponentially small irrespectively of. Though trivial for
X+(2,70) = L) [b(z) +1] w7 70) (41b) adiabatically reflected particles, this statement is important

when applied to those which penetrate the resonance region,
The functionsh, approximate the complex amplitudes of the as it predicts that a reversible ponderomotive barrier can be
rf-driven velocities of opposite circular polarizations, andformed even for transmitting particles.

thush_> h,, as the rf field pumps up primarily the cyclotron- Hence, to ensure that the transverse heating becomes
resonant component of the particle velocity. More preciselysmall for all particles irrespectively of their velocity, the am-

Downloaded 18 Jan 2006 to 192.55.106.171. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



5052 Phys. Plasmas, Vol. 11, No. 11, November 2004 Dodin, Fisch, and Rax

plitude of adiabatic rf-driven oscillationg(z) must change (Mg, = Moy + M)y, (55)
little in a period of these oscillations. In other words, one
must have where M; stands for the magnetic moment of free Larmor
&(2) oscill.ations determined by the particle initial vglocity, and
1——b(z) =~ const (500 M, is the rf-produced part of the total magnetic moment.

Then, if averaged over the initial gyrophagg the longitu-
within the whole region of resonant interaction, yet the func-dinal force(52) applied to a particle at given can then be
tions &(z) andb(z) are not required to be constant or evenWritten as

continuous by themselvdasee Sec. VII).

(F) =(Fo) +(F) + (AFD) +(AF), (56)
_ where we omitted theé, subindex for clarity and introduced
VI. AVERAGE LONGITUDINAL FORCE: GENERAL the following quantities:
APPROACH

Now let us calculate the average force accelerating a (Fo == (Mpb’, (578

particle in the direction parallel to the dc magnetic field. In

this section, we will present the general approach to this d

problem, while the calculation of the longitudinal force for (Fip) = d_z[<u> +(1-b(Mp], (57b)
particular cases of interest will be given in Secs. VIl and VIII

(see also Appendix A

Under the conditions of adiabatic approximatigtD), AF) = — d co 57¢
the longitudinal forceF,=v, can be obtained by differentiat- AFY SdZ<vx s 570
ing Eq.(14)

d d<Mrf>
Fy==(ub+®). (51) A7) =(b-D— . (57d

However, this expression does not adequately describe thg,e force(F,) is the one a particle would “feel” in the same

particle motion near the cyclotron resonance, whBrexpe-  magnetic field without the rf drive. The other terms stand for
riences a singularity. However, even in this case, under cetz_qriven forces to be calculated below.

tain conditions, one can also derive a relatively simple ex- First, let us estimate the order of those. Assuming
pression for 7, from which fundamental qualitative _ 25 (see Sec. Y, one has each of the terms to be of the
qonclusion_s can be made r_ega_rding the longitudinal accelera; me order. However, while the diamagnetic force propor-
tion. Consider the full longitudinal forcg,=F,+F, Where  jona) to the change oM, continues to accelerate a particle
the force applied to a particle from the rf field &, i, 5 nonuniform dc magnetic field even away from the rf
_=vxs’ ClOST, and the one applied f_rom the dc magnetic f|eldﬁe|d, the termgAF,) and(AF,) disappear as goes to zero.

is Fp=3(xwy—yvyb'. Let us put?; in the form To ensure that the expression for the total force will allow

du d b’ calculating the particle longitudinal energy change
Z:E_Sd_z(vx cos7) +(XUy—va)E, (52
whered/dz stands for the full derivative <A5>:f<]-‘z>dz (58)
d - 9 + 19 (53) with an errorsmallcompared tab ~ SZ\R, one may evaluate
dz 9z vyt the forceAF;) and(AF,) in the leading order with respect

to A using Eq.(35) instead of Eq(34).
Let us put the expressions foAF;) and (AF,) in the
b’ r2£¢> following form:
]-'b=—5|m(pw*)=—/\/lb’, M=—7, (54)

andU is given byU=¢v, cosr. In terms ofp andw, one gets

(AFp=-eReG', (AFy)=(b-1)&;, (59

where M is the magnetic moment of the particle. In a uni-
form magnetic field without a rf drive, one hatsl:viIZb, whereG=(w,; cos7), and where we took into account that it
which also yields a good approximation favl if the local is only the rf-driven term that contributes to t@e Using the
motion is only slightly perturbed from circular by a rf field or results obtained in Sec. V, one gets immediately
a dc field inhomogeneityNote that in smooth fields, when
e(z) has a maximum at the cyclotron resonance, one has
F.<Fypin the resonance area, hence a particle is accelerated
toward weaker dc fielét all z.]

Using Eg.(28), one gets forM averaged over initial Obtaining a simple formula fofAF;), in turn, requires re-
gyrophasesp, writing the expression fo,

d |hf?
(AFp=-(1- b)d—z%. (60)
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h,e X+ - hoe™x- " tation (66) is that (F,) can be easily integrated along the
G= 4 (1+e7) - di (1+e77). (61) particle trajectory with known boundary conditions

Making certain assumptions about the fields structure allows (U)(#=) =0, (Mp)(==) =0,

to simplify Eq.(61) and proceed with derivation, as we do

below. (M) (+ ) =(Aw) (69
to obtain the net longitudinal energy chan@®) as a func-
VIl. SMOOTH FIELDS tion of the transverse heating

In smooth fields where the spatial scales of a dc field and (A&) =(Aw)(1 =Dy). (70)
a rf field far exceed the particle longitudinal gyroradius For the transverse and the total particle energy changes, one
(Lg/v,>1,Lg/v,>1), one can average the longitudinal then gets
force over the oscillation period. As the conditi¢t6) pro- _ _
vides that the number of oscillations within the resonance (A8,) =(Awbo, (AE)=(Aw), (71)

regionN~ \/A is also large compared to unity, such averag-where the change of the particle magnetic moment yields
ing can be performed not only in the adiabatic region, butA,)=Au, and is given by Eq(45).

near the cyclotron resonance as well. The formulas(70) and(71) are analogous to the known
By averaging Eq(61) over the fast particle oscillations, result (A&)=(Au) for smoothly inhomogeneous fieldse-
one gets low we will show that this result has a broader region of
v 1 . applicability), easily derivablgsee, e.g., Ref. 37f the dc
&(G') = 4—?(|hi|2‘ I’ [?) - 4_1(1 +b)h.h; magnetic field local inhomogeneity is totally neglectet

=), The new result, however, is the accuracy of E).
As follows from our analysis, the error of E(0) is of the
order of?, which is much less tha®,,,, even for finiteA.

. Hence, in case when the conditi@s0) is satisfied, that is, in
where we took into account that the case of zero transverse heating, particles cannot be accel-

€ v dh’; erated along the magnetic field: the average longitudinal mo-
U_ = dz (63) mentum of the order of, which they gain while being ac-
z . . .
celerated adiabatically, is compensated by the momentum

and denoted averaging ovewith angle brackets. Thus, us- gained by particles inside the resonance region. The conse-

- %(1 -b)h_h’", (62)

ing Eg.(42), one can write approximately quence of this effect will be discussed in the next sections.
d |h|?
(AFy=(1- b)d—z%, (64)  VIII. ABRUPT FIELDS

Let us now consider the opposite case of abrupt fields,
where, even if the phase-dependestocity modulation by
(AF)+(AF,)=0. (65)  the rf wave(dv,/dry) is substantial, the region of nonadia-
) ) ) i batic motion is yet short enough to provide that the longitu-
Finally, noting that in s_mooth fieldgo= (M =const,  jinal phasemodulation is negligible
one can formulate the obtained results as follows: In smooth
fields, the average of the longitudinal force over the fast 912, 70) _1:if dz <1 (72)
particle oscillations and the initial gyrophast simulta- Ty a1y J vz, 1) '
neously is given by

so that

where the integral is taken over the resonance region. This

_d condition allows us to accept a random rf phase approxima-
(2= dZ((U) (1 =0} M) = ub), (66) tion (RPA) for particles entering the resonance region with a
given longitudinal velocity, under which a simple expression
v dh* for F, can be obtained by averaging over the particle en-
(U)=- Zz ' (h dz ) (67) sembzle.

_ _ _ ~ To proceed, let us also accept the “equivalent path ap-
Flrs_t, note that the obtal_ned expressions reproduce the_ adigroximation” (EPA), by which we will mean that all particles
batic model for smooth fields outside the resonance, as in thgith a given initial velocity follow the same path, irrespec-

limit (10) one has tively of their initial rf phasesr, (and ¢, as also implicitly
2 &2 assumed befojeyet z(7) may be different for different par-
<U>:—m, </\/lrf>:m, (68) ticles. In this case, one can introduce a force acting on an

average particle by averaging ovgyand ¢, the true longi-
so that the ponderomotive for¢g1) is recovered with the tudinal force Fy(z,m, o), Which particles experience at
potential(15) evaluated in the limit1-b|<1. However, an given locationz. While (¥y;) and(AF,) are averaged ovey,
important result can be obtained from EG6) for nonadia-  straightforwardly, it remains to perform the averaging of
batic motion as well. Indeed, the advantage of the represefAF;), for which one gets
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d [hf?

(A]-]):(l—b)d—z?—sRe(éG’} (73

with the rapidly oscillating part o6 given by

oG (74)

4_].'i(h+e—i)(++2i T_ h_e‘iX*‘zi r) )

Expressingh, in terms of y,,

m@wzqfﬂﬁELE?

@ dz 75
2 b(z)+1dZ (75

one can see th&bG) o~ 0 under the RPA. Hence, under the
valid RPA and EPA in abrupt fields, the longitudinal force
averaged simultaneously over the initial rf phageand the
initial gyrophaseg, is given by

d
(Fp=(Fo + d—z[<U> +(1=b)(Mm], (76)

with (U) again given by Eq(67). Note that the forcéF,) no

Dodin, Fisch, and Rax

(A& =(Ap)(1 ~bo) = Apy, (823
(A& ) =(Amwby, (82b)
(AE) = Apr, (820)

where the change of the particle magnetic moment is given
by
(Ap) = App + Apurg,

with Aw, accounting for the dc field inhomogeneity, and
A, accounting for the rf heating. Note that the previously
obtained Eqgs(70) and (71) can be considered as a special
case of Eqs(82) with Au,=0, just as one could expect for a
smooth field configuration.

To calculateA u,s for a case of an abrupt field, suppose
that the particle motion remains adiabatic along the whole
trajectory except for a shoftompared to the oscillation pe-
riod) time when the particle crosses a single “boundary” at
z=0, where the rf field and the dc magnetic field have a

(83

longer remains conservative in this case, since in abrugdiscontinuity:

magnetic fieldu is not a conserved quantity even in the
absence of the rf drive.

The RPA conditiorwithin the resonance region does not
prevent from inertial bunching of particleehind it. It
means that the equalit§76) can be violated after the par-

(84a)

b(z) =b, + 6(2)(b, - by). (84b)

Here ¢ is the Heaviside’s step-functiob; ,=1 (or vice

e(2) =€+ 0(2) (g2~ £7),

ticles have undergone a complete transition through the res¥€rsa, and

nance region. However, in the smooth fields behind the reso-

nance, Eq.(66) becomes valid for theps-averaged force
applied to particles launched at each particutgr Let us

_ 1 _ 1
(1-by?* (1-by?

A (85)

assume again that particles start and finish their motion itis a large number. Then, from Eq#5) and(46), it follows

regions with the same magnetic fiddetby. Then, averaging
the longitudinal force both overy and ¢, and integrating
over the whole trajectory, one gets

(A& = Ap(1 —bg) = Appby, (77)
where we introduced the quantity
1
App== - (Fordz. (78)
)

Outside the rf field, the particle magnetic momemnt

matchesu, and thus
(Apy =AM + Apys. (79

The average transverse energy change is then given by

(A& ) = AMpbg + Auybg, (80)
and the total energy change yields
(AE) = Apys + (A(M) = App) by (81)

For a given trajectory(7), A(M;s) does not depend on the rf
field strength. Thus, from the fact thAt=0 ate=0 (as the
dc magnetic field does not change the particle enengy
follows thatA u,=A{M;). Therefore Ay, stands for the par-

pressed as

that

1

Aug = —
Mrf 8

€1

1_b1

€2
1_b2

2
( y -
As one can see from E¢86), heating does not vanish even
in the limit when the time of crossing the resonance region is
infinitesimally small, which results from a nonzero leap of
the oscillatory velocity[v,] over the resonance. Indeed, to
the leading order, one has

[Val = [V] = [Vir] = Vi1 = Vit 2, (87)

so that, generally, the obtained rf-caused changg,af w
~2([vg]?, is of the order ofs?A, unless the ratio of the rf
field amplitudese,/ e, is appropriately chosen to reduce the
heating. However, if

ﬂ~ 1_bl
1-b,’

(88

€2
A becomes of the order @f, in accordance with Eq50)
obtained under more general consideration.

One can also come to Eq®2) and(86) using an alter-
native approach, which we will further show to yield more
results of interest, and which is hence worth considering in
details here. Applying the quasienergy andconservation

neities of the dc magnetic field. Finally, the longitudinal, the(?a\’vs o the particle motion before and after crossing the reso-

transverse, and the total particle energy changes can be ex-

pance, one gets

Elot mobo =& 1+ by + Dy,
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Ejo+ oy + Py =& 3+ uyby, (89bh) Ap=0, and(Ag)=(Ae )=(Ae)=0, in compiance with Egs.
(97) and(99).
where u,=uo+Au, andd, , are the values of the pondero- The main results we have presented up to this point are

motive potential on each side of the resonance. As the pakyrmulated in Egs(45) and (46) and Egs.(82) and (83),
ticle crosses the resonance, its total energy is approximately,|ig for both transmitted and reflected particles in case of

conserved: smooth and abrupt fields with arbitrary rf polarizatitsee
02 02, also Appendix A. The application of these results to the
&t ? =&t ? (90 ponderomotive current drive problem constitutes the subject

of the second part of the paper.
wherev, stands for the total transverse velocity, including
both the drift and the oscillatory velocities. However, each of
the components o¥ experiences a finite change when the|X. HEATING VS ACCELERATION
particle crosses the resonance, as the transverse magnetic
field (both rf and dgis 5-shaped for abrupt(z) andb(2). To Let us show how our results give the fundamental con-
calculate the transverse velocity change for transmitting paStraints on the extent, to which the asymmetry of the pon-
ticles, consider the motion equatiof® from where one gets deromotive barrier can be sustained. Consider particles trav-

(assumingr]=0) eling from the weak-field side of the barrigh < w, or, for
clarity, z<0) with initial longitudinal velocityv,=v,, and

[vi] = (g1~ &2)cosT—y(b; ~by)/2, (918 magnetic momentu=pu, Suppose these particles are re-
flected adiabatically at some poigt<O0, so that for eaclz
[vy] = x(by = by)/2. (91b)  within the adiabatic region for which < z<0, the following

Using the above expressions, one can calculate the change%qnd't'on is satisfied:

the particle magnetic mome83) averaged over the initial Eot molbo—b(2)] - P(2) <O, (99

cyclotron and rf phases: . I -
whereg, , is the initial longitudinal energy, anloh= b(+»).

A _q,(bl— b,)? (92) Consider now particles traveling from the strong-field side
Mo = 8b,b, ' (2> w, or z>0) with initial longitudinal velocityv,=-v,q
and the same initial magnetic moment . Suppose these
Apyg = %(Vm_vrfyz)z' (93) partic!es tr_ansit through the bgrrier and pgnet.rate the region
of adiabatic motion az<0 with the longitudinal energy
Where\If=<r§’1>b1, andrq ; is the particle drift displacement change given by
just before crossing the resonance.

Further, from the quasienergy conservati@9), it fol- A=Al =bo) +Q. (100
lows that Combining the results of Secs. VII and Viand Appendix
_ A), we interpretQ as any nonadiabatic contribution, or “lon-
A& =Au(l -by) + 4
&= A1 =by) +Q, (94) gitudinal heating,” provided by abrupt variations of a dc
whereAg =g 3—¢ o and magnetic field or a rf field. Using the quasienergy conserva-
) tion together with the above equality, one gets
v
Q= {‘D - e -m}- (99 &+ (o + Awb(2) + (D) = & o+ Ap+ b+ Q. (10D

Since &, is positively defined, one thus may note that the
particle cannot be found at any locatiar: 0, for which the
following sufficient condition is satisfied:

ot tolbo—b(2)] - (2) < Aulb(z) -1]-Q. (102

If Au=0 andQ=0, the conditiong99) and (102 coincide.
Therefore, at any within the adiabatic region for which
(AE) = Ap(1 —bg) = Aupby + O(£?), (97)  z<z<O0, there can be no particles transmitted through the
barrier in this case.
while the transverse and the total energy changes are given T4 ensure that particles traveling from the weak-field
by side do not penetrate further than upztpwhile those sym-
(AE ) =(Awdby, (AE)=Au,+0(sd). (99) metrically traveling from the opposite sidaaybc—_z found qt_
z>z, after crossing the resonance, the following condition
Note that similar expressions can be derived for reflectingnust be satisfied:
particles as well. Indeed, for a reflecting particle one has
[v,]=0, as seen from Eq$91), where one should takie, Aub(@) ~1]-Q <W(2) <0, (103
=b,, as the particle eventually returns to the initial magneticwhereW stands for the left-hand side of Eq99) and(102).
field. (In more details, particle longitudinal dynamics in The necessary condition for the obtained inequality to be
abrupt fields is discussed in Appendix B and Seq.Then, possible is

Now substitute Eqg83) and(91) into the above expression
to get

(Q)=-Aup+O(e?). (96)

Finally, we obtain for the change of the transmitting particle
longitudinal energy:
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Azxr,
A,LL > - l_—b, (104) 81—7\
an b(z) b
| o . P R
as motion at the weak-field side<1) is consuderedt b174__)|'
Suppose now that the RPA and the EPA are valid, so that = 0 ~
the average rf longitudinal heating is zero in compliance with I e
Eqgs.(829 and(96). Then, for an average particle to be trans- ‘\ L7 €@
mitted, one must have N A g
Hb FIG. 3. Schematic of the abrupt-field configuration with reduced transverse
(Aw) > P (105 heating: the rf electric field amplitude(z) equals zero at the cyclotron

resonance and satisfies E§0) outside the resonance region. The dc mag-
netic field and the rf field change at the scale small compared to the
which means, at least, théhu)>0. Hence, under the RPA longitudinal particle gyroradius, (ry=v, in dimensionless unijs

and the EPA for smooth and abrupt field profiles of arbitrary

polarization, where the average rf-driven longitudinal heat-

ing is always zero, the following statement is true: If par- (Au) = O(e%A). (109

ticlt_as with initial IongitL_Jdina_I velocityv, o and initial mag-  Although Eq.(109 is a necessary condition, the obtained
netic momeniu, are adiabatically reflected from the barrier, s¢ajing simultaneously coincides with the maximum possible

then particles with initial longitudinal velocityv; o and the (Au) a rf barrier can yieldsee Sec. Y. Thus, Eq.(109)

same initial magnetic moment will also be reflected from thergyresents also a sufficient condition for sustaining the asym-

barrier, unless they experience finite rf heating. In othefnery of a rf barrier with zero average longitudinal rf heat-

words, a heating-free barrier is symmetric: If one makes all,,

the particles from one side_to reflect adiabatical_ly, then, to = The only way to avoid strong transverse heating while
ensure that particles traveling from the ot_her side are noﬁaving an asymmetric a barrier is to provide that ®(z.)
r_eflected, onemust heat them. A proper adjus_tment of the -d(z), as Eq.(108 allows reducingAx down to zero in
field structure[see Eq(50)] could reduce heating, but such g case. Thus, in principle, a rf barrier can transmit particles

an adjustment would automatically ruin the asymmetry Ofincigent from the strong-field side, which experience prima-
the barrier. Namely, in this case, the average momentum Mty longitudinal heating

parted by the adiabatic force would be compensated by the _
average momentum nonadiabatically gained by particles Q=0(e?VA) >0, (110

W!:E'?hthe resona?cg regllorg Th'ﬁ facr:]t remains ":j.a?rzime%hile particles traveling backwards with the same initial en-
with In€ argument given in Sec. 1i, where we predicte rornergy and magnetic moment are reflected adiabatically. For
the first principles that a heating-free barrier cannot prOduc%btaining the current drive effect, the conditight0) must

a current. be satisfied imverageover particles interacting with the rf

Let us estimate the minimum heating required for SUS%iald. As under the RPA and the EPA E@.10) cannot be
taining the asymmetry of a barrier. Suppose that a barrie§atisfied one of the two assumptions' must be violated. In
adiabatically reflects particles with longitudinal energies '

. . ; ) Sec. X, we show how the EPA can be broken in an abrupt-
&.0<&«, while particles traveling backwards with the sameg|q configuration and propose a concept of the reduced-
initial parameters are transmitted. Then, for &lh, one has

2(€,0) <2., wherez. = z,(£.) <0. A necessary condition for heating current drive scheme based on this method.

particles traveling from the strong-field side to appeaz @ % ACCELERATION VIA LONGITUDINAL HEATING

Eo+ molbo—b(z)] - P(z) > Au[b(z) - 1] - Q, (106) To see how a nonzero average heating can be achieved
in a simple field geometry, consider an abrupt-field configu-
which can also be put as follows: ration (84), where
1
Ap[b(z) = 1] - Q < d(z) - B(z) +W(7), (107) by=17 iX by =1+ (111
\‘J \’!

where we neglected the termg(b(z)-b(z))=0(s?). By
definition of z, one hasW(z)=0 andb(z) <1, so that the
above condition takes the form

(a>0), and the rf field satisfies the reduced-heating condi-
tion (50): e;=—as, (Fig. 3). Applying the analysis similar to
that given in Sec. V, one gets f@f;-averaged quantities

®(z) - P(z)-Q (Au)g,= B+ O(e%), (112
>—— T x
Au b (108
. lta., 2
Under the RPA and the EPA, one h)=0 in case of (Qg,= £ 1g U cos - A+ O(e%), (113

negligible Auy,. Then, taking for the majority of particles _
z. -z, of the order ofz, one obtains the following restriction where v?=|e;e,|VA. The moment7, at which a particle
on the minimum transverse heating: passes the resonance, is given by
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0 dZ 1 2
- T0+f _ys (114 R = —f 0<cos I+ - B)d?— (120
27T 0

o
022 21+a)

where the second term is approximatelyindependent, as under the assumption of uniform distribution of initial
particles move adiabatically before reaching the “boundary’phases. Hence, the transmission coefficienl —R equals
(z=0).
Assumepuy=0 and negleci\ u,, for clarity. All particles T=1m arccos( L . ,8).
incident from the weak-field side are reflected by the pon- 21+a)

deromotive force az<0 if v,o<30. Also, if <-C0S %,  For < a/[2(1+a)] (which matches the condition of adia-

(122)

where batic reflection of particles symmetrically incident from the
20 (1..)2 weak-field sidg one gets
B:1+a<%o> ! (119 1 { a ) 1
— arcco =7< —, 122
T 21+ a) 2 (122

a particle is reflected nonadiabatically, while its transverse
energy is still conserved. While the energy of a reflectedrom where it follows that%sTs%. For =1, Eq. (122
particle is preserved, the longitudinal energy of a transmittegields 0.42<7< 0.5, which means that, roughly, a half of all
particle after the interaction with the rf field is changed ac-particles incident from the strong-field side is transmitted.
cording to Let us address the question if the current drive can be
practiced alternatively through violation of the RPther
1 (116) than the EPAin more complicated field configurations. To
o B break the RPA, one needs the inertial phase modulation

i within the resonance region
(v,050), as follows from Eq.(113. If v,o>3v and

B>-cos Zr, a particle traveling from the weak-field side is _ Z Av,

: : _ L . Ar=A (123
transmitted automatically. To derive the transmission condi- v,

tion for a particle traveling from the strong-field side, note
that a substantial contribution into the energy chafide®) is
provided by the reversible ponderomotive force alreafigr

to be of the order of unity, wherav, stands for the phase-
dependent rf velocity modulation, andg-z/v, is the time a

the particle has passed the nonadiabatic region. In oth article needs to pass the resonance region. In plasmas with

words, after a transmitted particle leaves the rf field, its Ion_thermvalrvelo?ltz Sitprc?iimljf vttlhn @;sle rr:")r(]mg_i"T ider;?ress
gitudinal energy is always larger thab,, yet the particle € average fongitudinal heating 1, hencer= 1 1S nec

velocity immediately after crossing the boundary is given byessary. Th_us, for efficient particle b“.”Ch"Fg within the_ reso-
nance region one needs,/v,=1, which, in turn, requires

(V) =0 1 v~ 0. As the phase-dependent part of the longitudinal force
Voo =1 By cos Zr+ : (117 can both accelerate and decelerate partithsswe showed
Z,

above, a significant part of those traveling from the strong-

2(1+a)

Thus, the transmission takes place if field side will be reflected from the barrier in this case. It
means that the violation of the RPA in a plasma would auto-
B> +cos &, (118 matically lead to the violation of the EPA, which will make
2(1+a) the current drive scheme similar to the one proposed above.

What we have shown here is that by abruptly modifying
the phase of the electric fields, it is possible to heat electrons
3a+2 longitudinally with an energy gain proportional to\, rather
= 21+a) (119  than in transverse direction with an energy gain proportional
to A. SinceA>1 is contemplated, the rearrangement in ve-
The above calculation shows that, in abrupt fields, thdocity space with less heating has three advantages: First, it
EPA is violated for sufficiently low velocities. Hence, the can avoid relativistic effectgwhich limit the current drive
proposed configuration can operate as an asymmetric barriesfficiency particular for longitudinal heatipgSecond, by
which adiabatically reflects all particles incident from the limiting the energy of the affected particles it keeps the dis-
weak-field side withﬁ’nvo<§62, while transmitting[with A&, tribution function closer to Maxwellian, thereby leaving less
given by Eq.(116)] some of those traveling backwards with- free energy for unwanted instabilities. And, three, heating
out substantial transverse heating. The outcome of the waveaarticles in the longitudinal rather than the transverse direc-
plasma interaction will be an uncompensated current ofion allows avoiding production of the unwanted Ohkawa
transmitted particles through the resonance region, as thoseirrent in toroidal plasma&, which otherwise is generated
which are reflectedon any sidg will preserve their energies by transversely heated particles trapping in local “magnetic
and, by their own, will produce no current whatsoever. Themirrors” formed because of the system geometry.
fraction R of reflected particles with a given initial velocity One can compare to LHCRef. 29 and to ECCO(Ref.
among those, which are incident from the strong-field side30) or to other means of driving rf currentsIn both LCCD
can be written as and ECCD, electrons are moved to higher energy, thereby

and no particles are reflected on the strong-field side if
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TABLE |. Parameters for numerical calculations of particle motion in
smooth fieldg124) and (125 1
0.8
Lg 100
LE 10 °'< 0.6
a 1078 3 0.4
H=a%s 15 0.01 W'
A=Lgl0 10t 0.2
=\l
0 0
Ho -30 -20 -10 0 10 20 30

. o o FIG. 4. Normalized transverse enerdy /a’A of particles incident on a
becoming less collisional and thus realizing greater currenémooth rf barrier from the strong-field sid€ > w) vs z for v,/6=0.5,

before slowing down. In the case of the less efficient asym?9.75, 1, 1.5, 2, 3, 4, $(2) andz(2) yield Eq.(124) with parameters given
metric ponderomotive current drivéthe effect of reflection ™ Table I. Larger energy gain corresponds to smallgg|.
(which is most efficient was mitigated by being averaged
with the effects of current drive through heating longitudi-
nally (LCCD) or transverselfECCD). In the case of the All particles are seen to transmit through the resonance re-
optimized APCD, the reflection current is accomplished, bugion, experience transverse cyclotron heating e, and
the mitigation effects are less, because there is less heating agdergo adiabatic diamagnetic acceleration afterwards. The
described above. less is the initial longitudinal velocity, the more time a par-
The ability to change fields abruptly will be easier in ticle spends near the resonance. Thus, the more transverse
feflecting ions rather than electrons, because of the larger io@nergy it gains, and the stronger diamagnetic acceleration
gyroradius. In particular, the minority species current drivefollows the resonant interaction. The asymptotic analytic ap-
effect? operates similarly to the ECC[Ref. 30 effect, ex-  proximation forA€, is found to be in reasonable agreement
pect that the effect is practiced in minority ions rather thanwith numerical results even far,,~v (Fig. 6).
electrons. Thus, reflecting minority ions through a one-way  Consider now particles, which travel from the weak-field
ponderomotive well similarly drives current with potentialy side of the barrief() <w). The numerical results are shown
higher efficiency. in Figs. 7 and 8. Particles with, <0 adiabatically reflect
It remains, however, to identify how the effect might be from the barrier without substantial gain of transverse en-
implemented in a plasma device in a practical manner. Firsgrgy. Others penetrate the region of resonant interaction and
it remains to identify suitable plasma waves that can be exexperience transverse heating nea0. Since they gain a
cited in confinement devices of interest, producing a venyfinite magnetic moment, behind the barrier these particles
localized, intense rf field, so that nearly all particles in a fluxcontinue to “feel” decelerating diamagnetic force. To clarify
tube can be reflected. Second, the fields must change sharglje heating process for reflecting particles, we also present
enough compared to the thermal gyroradius, which makethree-dimensionaBD) figures, which show both particle tra-
the proposed scheme more suitable for operating on heaygctory z(7) and the evolution of transverse enegy (Fig.
ions rather than electrons. However, note that the optimize8).
arrangement tolerates largdr, and so operates with more The energy constraint, which connects the longitudinal
easily implementable magnetic field gradients. Nonetheles§nd transverse energy gain, has also been checked numeri-
we expect that the new method is more likely to find use orcally. The erroré€= A&, —(1-bg)Au was found to be less
linear and, perhaps, nonfusion plasma devices.

XI. NUMERICAL RESULTS

-1
In this section, we present the results of numerical cal- -2
culations of single-particle orbits for various field profiles
and show that these calculations support our theoretical pre-
dictions.

~
S -5
A. Smooth fields with even &(2) %
Particle orbits were traced for the fields -7
z 2 -30 -20  -10 0 10 20 30
bz)=1+—, s(@=aexp-—|, (129 z
Lg Lg

: : : O =T : FIG. 5. Phase portrait for the longitudinal motion of particles incident on a
with parameters given in Table | amg’o v. First, consider smooth rf barrier from the strong-field sid@ > w): normalized longitudinal

particles which trave_| from the strong-field S_ide _Of the barrieryejocity v,/5 vs z (same parameters than for Fig. 4arger acceleration
(2> w). The numerical results are shown in Figs. 4 and 5.corresponds to smallép, -
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& laPA

A
v/ v

FIG. 6. Normalized transverse energy g&in/a?A of particles incident on
a smooth rf barrier from the strong-field sid@ > w) vsv,o/0 (same pa-

rameters than for Fig.)4numerical(solid) and asymptotical analytical ap-

proximation(dashedl for v, /0> 1.

than 103 in units a2VA. Thus, 5 <®,, for all (both for
reflected and transmittg¢gbarticles, as predicted.

B. Smooth fields with odd £(2)

Particle orbits were traced for the fields

b2 =1+, s(z):azexp<—£2>, (125
Lg L

E

with parameters given in Table | amg,~0. From our ana-

lytical model, it is expected that in such a field configuration

particles should not get heated, as the condife®) is sat-

isfied within the resonance region with good accuracy. It is
also predicted that such a heating-free barrier must yield
completely reversible particle motion and have symmetric

reflecting properties.

Ponderomotive barrier as a Maxwell demon 5059
4
2
ol ———
» T—="
~
N -
o -2
-4
-6
-30 -20 -10 0 10 20 30

FIG. 8. Phase portrait for the longitudinal motion of particles incident on a
smooth rf barrier from the weak-field sid€ < w): normalized longitudinal
velocity v,/0 vs z (same parameters than for Fig. 4

sides is small. In general, such a rf field behaves as an adia-
batic barrier, as the rf field has a small amplitude close to the
cyclotron resonance.

C. Abrupt fields

Particle orbits were traced for the fields

1 Z
b(z)=1+—t — |,
(20=1+ 7 anr<A2>

v
e(2)= aexp(— L_§>

(1263

(126b

These expectations are confirmed by our numerical rewith parameters given in Table Il ang,~ v, which simu-
sults. In Fig. 10, the phase portrait of the longitudinal particlelates a single-boundary field configuratitid) with a con-
motion shows that the established ponderomotive potential ihuouse(z) anda=1 (see also Fig. 20 The following the-
indeed reversible at alt. The reflection properties of the oretical predictions (see Appendix B were validated
barrier are symmetric, meaning that if a particle travelingnumerically: The minimum particle velocity sufficient to al-

with initial velocity v, is transmittedreflected through the
barrier, a particle with initial velocity v, o would also be
transmitted(reflected by the barrier, assuming equa}, for

low a particle to reach the boundaryig,~0.5% [Eq. (B3)
yields Uz,o:%f)]' to transmit through the boundaryvsy
~0.8% [Eq. (B7) yieldsv,=(V3/2)5], to transmit through

the two. In Figs. 11-13, it is shown that the energy gain forthe whole barrier v, o~0v [Eq.(B8) yieldsv,=0v], see Figs.
both transmitted and reflected particles incident from bothl4 and 15. The transverse energy of transmitted particles is

-10 0 10 20 30

FIG. 7. Normalized transverse enerdy/a’A of particles incident on a
smooth rf barrier from the weak-field sid& < w) vs z for v,,/0=0.2, 0.5,
1, 2, 3, 4, 5(same parameters than for Fig. 4

approximately the same for all initial conditiorfisompare
with Eq. (86)], see Fig. 16. Minor variations in final values
of £, for differentv,q result from weak nonadiabaticity of
the particle motion afz|= Az. [Despiteb(z) is uniform far
away fromz=0, the rf field inhomogeneity is sufficient to
cause nonadiabatic effects, as longasemains close to
unity. The effect is discussed in details in Refs. 16 and 17.
The proportionality(82a between the changes in the longi-
tudinal and the transverse energies has also been checked
numerically, and the erroA&,—(1-by)Au was found to be
much less tham,,,.

Particle orbits were also traced in abrupt field profiles
with an odde(2):

1 z
b(z)=1+—t — 127
(2) n anf( AZ>, (1274
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(@ i

=30 =20 =10 0 10 20 30

FIG. 10. Phase portrait of a cyclotron-resonant rf barrier produced by the
fields given by Eq.(125 with parameters given in Table I: normalized
longitudinal velocityv,/o vs z. Established potential is reversible for all

Z z
e(z):—aexp<— L—é)tam(A—Z), (127b

with parameters given in Table Il ang y~ 0, which simu-
lates a single-boundary field configuratiohll) and (84)
with an abrupte(z) yielding the condition(88) and a=1
(Fig. 3). As predicted analytically, the transverse heating is
seen to be of the order dfu<a’ The theoretical predic-
tions on the longitudinal momentum gaj&q. (116)] also
coincide with the results of numerical computations shown
in Fig. 17.

Particle motion was also computed in a circularly polar-
ized rf field with field profiles(127). The phase portrait for
the longitudinal motion is shown in Fig. 18. As predicted for
this casdsee Appendix A, the transverse heating is damped
(Fig. 19, and, correspondingly, the established ponderomo-
tive potential appears to be completely reversible forzall

Xll. SUMMARY

In this paper, we showed that the action of a rf field on
particles traveling along a dc magnetic field near the cyclo-
tron resonance is similar to what essentially constitutes an
operation of a Maxwell demon. Namely, a rf field can adia-
batically reflect particles incident on the weak-field side of
the ponderomotive barridf) < ), while transmitting those
incident on its strong-field sidé€()>w). Unlike the true

FIG. 9. Particle motion near a smooth cyclotron-resonant rf barrier. Axes: -30 -20 -10 0 10 20 30
normalized transverse enerdy /a?A of a particle, its longitudinal location zZ

z, and timer. Separately shown is the projection of the 3D plot on the plane

(7,€,) (same parameters than for Fig. @) v,,/0=0.2, adiabatic reflecton ~ FIG. 11. Normalized transverse energly/a?A of particles incident on a
by the rf field;(b) v,,/0=0.5, slightly nonadiabatic reflection by the rf field; smooth rf barrier with an odé(z) from the weak-field(() <w) side vsz
(©) v,0/0=2, adiabatic diamagnetic reflection after nonadiabatic resonantsame parameters than for Fig.)10,,/0=3 (for other values ofv, /0,
heating. plots are virtually congruent with the shown one, as motion is revejsible
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@
_ &la’A

FIG. 12. Particle motion near a smooth cyclotron-resonant rf barrier with al
odd profilee(z). Axes: normalized transverse eneigy/a’A of a particle,

its longitudinal locatiore, and timer. Separately shown is the projection of
the 3D plot on the planér,£,) (same parameters than for Fig.)10a,b
v,0/0==+0.85, adiabatic reflection by the rf field of particles traveling from
the weak- and the strong-field) s w) sides.

rlZIG. 13. Particle motion near a smooth cyclotron-resonant rf barrier with an
odd profiles(z). Axes: normalized transverse ener§ly/a?A of a particle,

its longitudinal locatiorg, and timer. Separately shown is the projection of
the 3D plot on the planér,£,) (same parameters than for Fig.)10a,b
v,0/0=+0.9, adiabatic transmission of particles traveling from the weak-
and the strong-fieldQ) = w) sides.

configuration, energetically expensive transverse heating is

replaced by a less energy-consuming heating of particles in
e longitudinal direction. The method of optimization

a§_hould be applicable to other applications of the asymmetric

Maxwell demon(prohibited by the second law of thermody-
namicg, an asymmetric barrier unavoidably heats particles
as they transit through the cyclotron resonance. Under fairl
general assumptions about the field structure and polariz
tion, an analytical model of transverse heating and longitu-

dinal acceleration of particles shows fundamental correlatagLe i1 Parameters for numerical calculations of particle motion in

tions between the two effects. abrupt fields(126) and (127).

A major result of this work is that we showed how to
optimize the asymmetric ponderomotive current drive effect Az 10
(APCD) for allowable transformations of a charged particle L 10
velocity by a rf field. In particular, we showed that an abrupt a 103
phase change in the rf field, coupled with an abrupt inhomo- A 100
geneity of a dc field near the cyclotron resonance, gives a S=aAle 0.01

much higher efficiency for the APCD effect than that calcu-

0
lated in Ref. 11. The latter is due to the fact that in such a o
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FIG. 14. Phase portrait of a cyclotron-resonant rf barrier produced by the

fields given by Eq.(126) with parameters given in Table II: normalized
longitudinal velocityv,/v vs z (solid, v,,>0; dashedp,,<0). Particles
traveling from the strong-field sidg) > w) are all transmitted. Those, which
travel from the weak-field sid&) < w), are reflected adiabatically without
reaching the boundary if;z,0<%{;, are reflected from the boundary—if
%13<Uz,o<(\53/2)13, transmit through the whole barrier—if, ;> 0.

ponderomotive barrier as well, where the amount and direc-
tion of unavoidable heating of the transiting particles may be

important.
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APPENDIX A: EFFECT OF POLARIZATION

To study how the rf polarization affects Eqel5) and
(46) and EQgs.(82) and (83), let us first consider the case
when particles are driven by a rf field of circular polarization
with the vector potential

As=e(2)(x°cosr-y°sin 7). (A1)
Since the rf field is then given by

Es=e(2(x°sinr+y°cosm), (A2a)

By=¢'(2)(x°sinT+y®cos7), (A2b)

the motion equations can be put in the following form:

) b d

Ux=vyb+ ysz - E-(s cos7), (A3a)

i)y:_vxb_xvz?"' d—(s sin7), (A3b)
T

. b’ .

v, = (Xvy = yUX)E +&' Rewe"). (A3c)

The average longitudinal force now vyields E§6), with
(Uy=¢ReG, G=(wé",
<Af1> =—-& REG’, <A.7:2> = (b_ 1) tff’

where averaging is performed only over the initial gyrophas
¢o- In the leading-order approximation, one gets

Dodin, Fisch, and Rax

FIG. 15. Particle motion near a single-boundary abrupt cyclotron-resonant rf
barrier. Axes: normalized transverse enefgy @A of a particle, its longi-
tudinal locationz, and timer. Separately shown is the projection of the 3D
plot on the plane(7,£,) (same parameters than for Fig.)14a) v,o/v
=0.5, adiabatic reflection by the rf field of a particle traveling from the
weak-field side(Q) <w) without reaching the boundaryh) v,o/v=1, par-

8icle reflection by the decelerating ponderomotive force behind the barrier;

(¢) v,0/0=1.5, particle transmission.
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1 (a) 1 (b)
0.8 0.8
bl< 0.6 < 0.6
3 =
oy 0.4 0\5' 0.4
0.2 0.2
0 0
-30 -20 -10 0 10 20 30 =30 -20 -10 0 10 20 30
z z

FIG. 16. Normalized transverse ener§y/a?A of particles incident on a single-boundary rf barriey from the weak-field sidé() < w) and (b) from the
strong-field sidgQ)> w) vs z (same parameters than for Fig.)1¢8) v,o/0=1.1, 1.5,(b) v,,/0=0.3, 0.5, 0.7, 1. In wide range of initial velocities, particles
gain approximately equal transverse enefgy= %aZA, regardless of the sign af .

. b d _
w+ibw 2bW— dT(.sse M,

and thus, approximatelyy,;=ihe x7'". ExpressingS; and G
in terms ofh and y, one obtains

(A4)

1 *
Apr = (H[%), (U)=-vz3(hh') (A8)
both for smooth and abrupt fields. This statement is true for
a rotationally symmetric dc magnetic figld), but is violated
for an asymmetric fielde.g.,Bo=-xb'x°+bz°). In the latter

2
- u — e case, Eq(76) can still be derived, yet that requires additional
&r=—, G=ihe™, (AS) : . :
2 averaging over the rf phase, as discussed in Secs. VIl and
and thus Vil
. One can see that, with minor reservations, the cases of
&(G') =iv,Jn'[? = (1 -b)hh"". (A6) linear and resonant circular polarization are equivalent, and
thus the proposed calculations cover all imaginable cases of
Consequently, . . .
X interest. Namely, in the general case of an elliptically polar-
dilh ized rf field, particles would primarily interact with the reso-
(AF )= +(1- ) LI (A7) : el d

dz 2’

which yields Eq(65). One can see that, in case of circularly
polarized field, the derivation of Eq65) does not require

averaging over the rf phases of particles and thus automa

cally applies to both smooth and abrupt fields.

nant circularly polarized harmonic, for which the presented
analysis remains fully applicable.

t1’3_\PPENDIX B: REFLECTION AND TRANSMISSION IN

ABRUPT FIELD WITH STRONG TRANSVERSE
HEATING

Finally, one can formulate the obtained results as fol-

lows: In case of an rf field with circular polarizatiqi1l),
the average of the longitudinal force over the initial gy-
rophaseg, is given by Eq(76), whereA u;= (M )(«) and

Consider an abrupt-field configuratio@®4) with b, ,
given by Eg.(111) and smooth rf field profilee=¢,=¢,
(Fig. 20). Using the expressions faf,-averaged quantities

(U) are given by (1+a)?2
(Apygy= g7 &N +Aup +O(6?), (B1)
3
2 — ]

FIG. 17. Normalized longitudinal velocity,/v, of particles incident on a
single-boundary heating-free rf barrier from the strong-field §{dle- w) as

a function of their initial rf phasey: analytical(solid) and numericaldot-
ted) results;b(z) ande(z) yield Eq.(127) with parameters given in Table I,
v§0=;11f)2, the reflection coefficient iR=%. Observed transverse heating is
Ap= a.

A
v, /v

-1

-2

-3 1

10 15

FIG. 18. Phase portrait of a cyclotron-resonant rf barrier produced by the
fields given by Eq.(127) (circular polarizatiop with parameters given in
Table II: normalized longitudinal velocity,/v vs z. Established potential is
reversible for allz.
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FIG. 19. Normalized transverse ener§ly/a?A of particles incident on an  FIG. 20. Schematic of the abrupt field configuration with strong transverse
abrupt rf barrier with an odd(z) from the weak-field sidéQ<w) vs z heating: the rf electric field amplituddgz) changes little over the resonance

(same parameters than for Fig.)18,,/0=3 (for other values of,o/?, region. The dc magnetic field changes at the saalsmall compared to the
plots are congruent with the shown one, as motion is revejsible longitudinal particle gyroradius, (ry=v, in dimensionless unijs

(Qg, =~ A+ O(e?), (B2)
one can obtain the condition for particle transmission  Uzo - +1 (BS)
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