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The possibility of efficient ponderomotive current drive in a magnetized plasma was reported
recently in[N. J. Fisch, J. M. Rax, and I. Y. Dodin, Phys. Rev. Lett.91, 205004(2003)]. Precise
limitations on the efficiency are now given through a comprehensive analytical and numerical study
of single-particle dynamics under the action of a cyclotron-resonant rf drive in various field
configurations. Expressions for the particle energy gain and acceleration along the dc magnetic field
are obtained. The fundamental correlation between the two effects is described. A second
fundamental quantity, namely, the ratio of the potential barrier to the energy gain, can be changed
by altering the field configuration. The asymmetric ponderomotive current drive effect can be
optimized, by minimizing the transverse heating. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1787771]

I. INTRODUCTION

An intense electromagnetic field can exert a significant
time-averaged force on a charged particle known as the pon-
deromotive, or Miller, force,1 which plays an important role
for understanding various nonlinear phenomena of wave–
plasma interaction(e.g., self-focusing, filamentation, Raman
scattering). In the presence of a magnetic field, ponderomo-
tive effects are explained in terms of a pseudopotential,
which governs the particle guiding center motion along the
magnetic field. The pseudopotential can be put in the form1–3

C = F + mB0, F = o
n

e2uErf,nu2

4mvsv + nVd
. s1d

HereErf,n is the rf field component with polarizationtn,

t±1 = sx0 ± iy0d/Î2, t0 = z0; s2d

x0 and y0 are the unit vectors in the plane perpendicular to
the magnetic fieldB0<z0B0szd, smooth on the scale of the
oscillations amplitude;v is the frequency of the rf field, and
V=eB0/mc is the Larmor frequency. The quantitym
=mvL

2 /2B0 represents an approximate integral of the particle
motion,2,3 analogous to the adiabatic invariant of free gyro-
motion in a slowly varying magnetic field.(Here vL =v'

−vrf,' is the velocity additional to the velocity of the rf-
driven oscillationsvrf.)

The ponderomotive force plays an important role in the
dynamics of natural(cosmic) plasmas(see, e.g., Refs. 4–6),
yet its properties often come in useful in the laboratory as
well. The practical applications include isotopes separation
in plasmas composed of multiple ion species,7 as well as
stabilization of low-frequency modes8,9 and rf plugging in
magnetic confinement devices(for review, see Ref. 2). For
all of these effects, it is sufficient that drift particle dynamics
follows the “adiabatic” model describable in terms of a re-
versible potential(1). However, for the reversible potential to
establish it is required that rf and dc field profiles vary slowly

compared to the particle oscillations and the beat frequency
v−V changes little in a period. In a certain vicinity of the
cyclotron resonance, whereVszd<v, this condition is vio-
lated and the approximation of a ponderomotive potential(1)
fails. In this case, nonadiabatic effects come into play.

As proposed in Refs. 10 and 11, the ponderomotive force
can be used to drive electric current in a magnetized plasma
through a rf barrier asymmetry: As the potential(1) experi-
ences a singularity at the cyclotron resonance, a resonant rf
field can operate essentially like a Maxwell demon(MD),
reflecting particles incident on one side while transmitting
those incident on the other side of the ponderomotive barrier,
and hence producing a current(see Sec. II for details). Un-
like a true Maxwell demon, particles experience collisionless
heating while passing through the resonance, and the amount
of energy they receive stochastically appears to be linked
tightly with particle acceleration along the magnetic field.
The asymmetric ponderomotive current drive(APCD) effect
has many uses, and could be competitive with other means of
rf current generation.11

The purpose of this paper is to study the conditions un-
der which APCD can be sustained. To explore the basics of
the effect, we consider the simplest analytic model, which
demonstrates the fundamental properties of the asymmetric
barrier operation. In particular, we limit ourselves to the
problem of nonrelativistic single-particle dynamics in given
rf and static fields and neglect the electrostatic field, which
appears in a real plasma due to charge separation caused by
a ponderomotive force. In this case, for studying the current
drive effect, the action of the rf field on plasma particles can
be conveniently described in terms of the mapping between
the particle velocities before and after the interaction with
the rf field: v2=Tsv1d. In the paper, we show how the func-
tion T can be obtained and how these results can be used to
optimize the field configurations for applications like current
drive.

The nonadiabatic dynamics of rf-driven particles in the
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cyclotron-resonance area has been studied in a number of
works,2,5,12–19primarily inspired by interest in rf plasma con-
finement, yet the general analytical treatment, sufficient for
studying the APCD effect, has not been fully put forth. For
instance, weak heating was studied for particles quasiadia-
batically trapped by a rf field within a plasma13–15with little
attention to those transmitting through rf plugs and leaving
the operating volume of the fusion device. The most general
analytic model of transmitting particle dynamics was pro-
posed in Ref. 12, where the major emphasis was made on
particle accelerationfrom the resonance region. In other
cases, effects caused by the inhomogeneity of the dc mag-
netic field were either studied heuristically,5 on the level of
elementary estimates,2 or neglected completely.16,17What re-
mains necessary is a full and general treatment of the prob-
lem. In this paper, we present a comprehensive study of
nonadiabatic particle dynamics for a broad variety of field
configurations. In doing so, we address as well a specific
application of current drive in a magnetized plasma.

The three main results are presented in the paper. First,
we developed a nonlinear analytical model of transverse
heating and longitudinal acceleration of rf-driven nonrelativ-
istic particles near the cyclotron resonance and established
integral equalities showing the fundamental correlation be-
tween the two effects. Second, we estimated the minimum rf
power deposition into a plasma, which would be sufficient to
sustain the asymmetry of a barrier for APCD. Third, we pro-
posed an alternative scheme of the ponderomotive current
drive of substantially higher efficiency than that recently pro-
posed in Ref. 11, yet it remains to identify how the effect
might be implemented in a plasma device in a practical man-
ner.

The paper is organized as follows. The idea of a rf bar-
rier operating in a quasi-MD regime is discussed and funda-
mental limitations on sustaining the asymmetry of the barrier
are considered in Sec. II. Basic equations are introduced in
Sec. III. In Sec. IV, we discuss the simplest approximations
for the rf heating and the height of the ponderomotive barrier
in case of smooth field profiles. In Sec. V, the transverse
heating is discussed for a fairly general field configuration.
In Sec. VI, we introduce the approach for calculating the
average longitudinal force, which is used further in Secs. VII
and VIII for particular cases of interest. In Sec. IX, we dis-
cuss how particle acceleration is connected to resonant heat-
ing and derive restrictions on the energy transfer for a real-
izable asymmetric rf barrier. In Sec. X, we discuss the
possibility of applying a cyclotron-resonant rf barrier with
reduced transverse heating for efficient current drive in plas-
mas, or, for that matter, for other applications as well. In Sec.
XI, we present the results of our numerical calculations, and,
in Sec. XII, we summarize the main results of the work.
Some supplementary calculations are given in Appendixes.

II. ASYMMETRIC BARRIER

Let us consider a standing wave such that the rf energy
densityW;uErfu2 is a function ofz. If the frequency of this
wave is close to the cyclotron frequency, the ponderomotive
force Fpm will be quite large. SinceW=0 outside the inter-

action region, the gradient ofWszd changes sign along the
particle trajectory, and the momentum transfer in the region
dW /dz.0 will be canceled by the interaction in the region
dW /dz,0. Thus, it is impossible to put the ponderomotive
force at work in a homogeneous magnetic fieldB0.

However, one can design a magnetic-mirror field con-
figuration(that is, whereB0 is nonuniform alongz), such that
the sign of the factorsv−Vd−1 in Fpm=−dF /dz compensates
the sign of the energy density gradientdW /dz. In the region
wheredW /dz,0 the rf field frequencyv is below the cy-
clotron frequencyV, and in the region wheredW /dz.0 the
rf field frequency is aboveV. For example, suppose that the
rf electric field envelope has a maximum at the cyclotron
resonance, and thusBrf experiences phases reversal over the
resonance(Fig. 1). The average Lorenz force due to rf-
induced transverse particle oscillations can be put in the form
kDFzl=F1+F2, where

F1 =
1

c
kvrf 3 B0lz, F2 =

1

c
kvrf 3 Brflz. s3d

To get the sign ofF1 and F2 note that the phases of the
particle oscillatory transverse displacementr rfsz,td and oscil-
latory velocityvrfsz,td change over the resonance byp (see
Sec. III). Hence, so does the phase of the small transverse
component of the dc field,B0,r <−1

2r rfB0,z8 , seen by the par-
ticle at r rfsz,td. Thus, at eachz both F1 andF2 are directed
the same way, namely, towards weaker dc magnetic field.
[Note also that the diamagnetic forceF0, due to a nonzero
magnetic momentm of particle Larmor rotation, F0

=−mB08szd, is similarly directed. Hence, if transversely
heated by the rf field(which corresponds to an increase of
m), a particle can also gain longitudinal acceleration by con-
verting its perpendicular energy via a magnetic nozzle, as
proposed in Ref. 20.]

This prescription permits net thrust from a standing
wave10,11 applied near the cyclotron resonance: while par-
ticles traveling from weaker magnetic fieldsV,vd are de-

FIG. 1. Schematic of an asymmetric ponderomotive barrier with a rf electric
field having a maximum atz=0, where the local cyclotron frequencyV
=eB0/mc equals the rf field frequencyv. Ponderomotive potentialFszd is
singular and changes its sign over the cyclotron resonance. The average
longitudinal Lorentz force is directed the same way to both sides of the
resonance and drags a charged particle towards weaker dc magnetic fieldB0.
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celerated and, in principle, can be reflected by the barrier,
those traveling from stronger fieldsV.vd are automatically
transmitted and accelerated by the rf field. Without resonant
heating, the barrier would operate precisely like a MD,
which would decrease the plasma entropy without energy
deposition into the plasma and whose existence is thus pro-
hibited by the second law of thermodynamics. Hence, the
heating inprinciple cannot be reduced lower than a certain
limit, which then determines the upper bound for a realizable
current drive efficiency.

The same idea can be alternatively explained as follows.
A physically realizable rf gate, which could reflect particles
moving in one direction while transmitting those traveling
the other way, is constrained by the Hamiltonian nature of
the wave–particle interaction. Since collisionless particle
motion under the action of an electromagnetic field is a
Hamiltonian process, the particle phase flow remains incom-
pressible throughout the interaction. Imagine now that we
partition the particlephase space into small cells of equal
volume DGi =DG, and to each cell attach a certain value of
the one-particle distribution functionf i. Then the number of
cells that have a given value off is conserved throughout the
interaction process(and so does the plasma entropyS
=−DGoi f iln f i,

21) as follows from the Liouville theorem. Al-
ternatively, this fact can be expressed as conservation of the
so-called Casimir invariants, or Casimirs, which essentially
determine the distribution of the valuesf i (see, e.g., Ref. 22)
and whose existence is an intrinsic property of any Hamil-
tonian system.

Suppose that plasma particles having an initial phase
space distributionf1 are introduced into an electromagnetic
field for a limited time, which eventually results in bringing
the plasma into some final statef2. Since limited by the
Casimirs conservation, the distributionf2 may not be arbi-
trary but will rather represent a result of “restacking” of the
preserved original phase-space elementsDGi, regardless of
the spatial and temporal structure of the field the plasma has
undergone interaction with. To drive a current as efficiently
as possible, one would need to minimize the energy deposi-
tion into a plasma for a given current produced by the gate.
However, the fact thatf2 is a restackedf1 imposes a limita-
tion on the energy and momentum exchange between the rf
field and plasma particles.23,24

Calculating the absolute limit determined by the Ca-
simirs conservation for a gate of an arbitrary structure repre-
sents a separate problem, which we consider elsewhere(see
Ref. 25). Approaching the absolute minimum in practice is
challenging(if not impossible). However, a matter of practi-
cal interest is how efficiently the power deposition can be
minimized in a technically realizable gate. Here, we estimate
the minimum heating, at which a realizable rf barrier remains
capable of driving a current, and propose a near-optimum
current drive scheme. First we discuss the single-particle dy-
namics in the vicinity of a cyclotron resonance, to which the
next few sections are devoted.

III. BASIC EQUATIONS

To explore the basics of the APCD effect, let us consider
the simplest model, which demonstrates the fundamental
properties of the asymmetric barrier operation. Let us assume
that the motion of a particle(an ion or an electron) can be
adequately described by nonrelativistic equations. Let us as-
sume also that the rf radiation represents a transverse plane
wave of an arbitrary longitudinal structure, while the influ-
ence of the electrostatic field, which can appear in a real
plasma due to charge separation caused by the ponderomo-
tive force, is of minor importance. In this case, the particle
motion is governed by the equation

m
dv

dt
= eSErf +

v

c
3 sBrf + B0dD . s4d

Assume a linearly polarized localized rf field(for alternative
polarizations, see Appendix A) determined by the vector po-
tential (in units mc2/e)

A rf = x0«szdcost, «s±`d = 0, s5d

and thus given by

Erf = x0«szdsint, Brf = y0«8szdcost s6d

in unitsmvc/e. Herev is the frequency of the field,t=vt is
the dimensionless time, andz is the longitudinal coordinate.
The normalized rf field amplitude« is assumed small com-
pared to unity, as it represents the ratio of the momentum
imparted by the wave field in a single oscillation tomc.
Consider also a dc magnetic field determined by the vector
potential, which we approximate by a linear function with
respect to the transverse displacement:

A0sr d = 1
2bszdsz0 3 r d s7d

(in units mc2/e). Then, in unitsmvc/e, the actual fieldB0

==3A0 can be written as

B0 = −
xb8

2
x0 −

yb8

2
y0 + bz0, s8d

where the particle coordinates are measured in unitsc/v.
The dimensionless functionbszd is approximately equal to
the magnetic field strength measured in unitsmvc/e, or the
local ratio of the nonrelativistic Larmor frequencyV
=eB0/mc normalized onv. Thus, bszd=1 at the cyclotron
resonance located atz=0.

In dimensionless notation, when the particle velocity is
normalized on the speed of lightc, the scalar motion equa-
tions can be put in the following form:

v̇x = vyb + yvz
b8

2
+ « sint − vz«8 cost, s9ad

v̇y = − vxb − xvz
b8

2
, s9bd
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v̇z = vx«8 cost + sxvy − yvxd
b8

2
. s9cd

The two types of oscillations are intrinsic to the particle mo-
tion in rf and dc magnetic fields. Those are free Larmor
rotation with frequencybszd and rf-driven oscillations with
unit frequency(in dimensionless notation). If the relative
change in the beat frequency between the two is small over a
period of that frequency and the spatial scale of the rf field
LE is large enough, i.e.,

vz

s1 − bd2

ds1 − bd
dz

! 1, LE @
vz

u1 − bu
, s10d

then the two types of oscillations uncouple,3,13 and one can
solve for the transverse particle motion to get

r ' = r d + r rf, v' = vd + vrf . s11d

Herer d andvd are the drift displacement and velocity under-
going free Larmor oscillations, whiler rf and vrf stand for
rf-driven (to the leading order, purely transverse) velocity
and displacement given by

xrf = −
« sint

1 − b2 , yrf = −
«b cost

1 − b2 , s12ad

vrf,x = −
« cost

1 − b2 , vrf,y =
«b sint

1 − b2 . s12bd

Under the approximation of smooth rf and dc fields(10),
two integrals of particle motion are approximately
conserved:1–3 the magnetic moment of the drift motion

m =
vd

2

2b
s13d

and the so-called quasienergy of the longitudinal motion

E =
vz

2

2
+ mb + F, s14d

where the ponderomotive potentialF is given by

Fszd =
«2szd

4s1 − b2szdd
. s15d

In the vicinity of the cyclotron resonancesbszd<1d, the av-
erage potentialFszd yields a singularity, which is a clear sign
of the ponderomotive approximation failure. To describe par-
ticle motion in this regime, more detailed analysis is needed.

IV. QUASILINEAR APPROXIMATION FOR SMOOTH
FIELDS

First, consider the simplest case when the spatial scale of
the dc magnetic field is large compared to the particle longi-
tudinal gyroradius:

L = LB/vz @ 1, s16d

assumingLE/vz@1 as well. Suppose the rf field amplitude is
approximately constant across the resonance region,«szd
<«0, while the magnetic field strength can be approximated
with a linear function,

bszd = 1 +z/LB s17d

(Fig. 2). Then the dominant heating effect can be calculated
as follows. Consider the general expression for the average
energy change

kDEl =KE
−`

`

vx«fzstdgsintdtL s18d

with expression for the particle velocityvx given by Eq.(12),
which, in dimensional complex notation, is given by

vx =
iv

v2 − V2

eEx

m
e−ivt. s19d

Noting that the linear(in «) response functionvxsvd cannot
experience a singularity in the upper half of thev complex
plane, when integrating across the cyclotron resonance, one
must shift the singularity from the real axis
correspondingly21,26 to get

kDEl =
1

2
Im E

−`

` «fzstdg2

bfzstdg2 − 1 − i0
dt. s20d

With dz=vzdt and assumingvz=const in the resonance re-
gion, one obtains

kDEl =
p

4
«0

2L. s21d

The assumption of constantvz and linear responsevxsvd to
calculate the nonadiabatic heating effect constitute the so-
called quasilinear approximation, which is valid only for fast
particles. Indeed, asvz goes to zero, the expression(21) ex-
periences a singularity being a sign of the quasilinear ap-
proximation failure. Hence, for low velocities, detailed
analysis is needed to calculatekDEl more accurately, namely,
by considering the finite width of the region where a particle

FIG. 2. Ponderomotive potential in a smooth field configurationsLB,LE

@vz/vd: in the resonance region(shaded), where the ponderomotive ap-
proximation does not hold, the rf electric field is approximately constant,
and the dc magnetic field can be approximated with a linear function ofz
sV /v<1+z/LBd. The characteristic width of the resonance region isz̄
=ÎLBvz/v; the characteristic height of the ponderomotive barrier is about
Fsz̄d.
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undergoes resonant interaction with the rf field. The width of
this region13

z̄= ÎLBvz, s22d

can be readily obtained from Eq.(10), which yields the con-
dition uzu@ z̄ for the reversible quasipotential(15) to be es-
tablished. The time scalet̄, over which the particle passes
the resonance region, is then of the order ofÎL. Therefore, a
fast particle does not have sufficient time for being heated,
and thus, energy gain must decrease as its longitudinal ve-
locity is increased, exactly as predicted by Eq.(21). How-
ever, this scaling holds only for magnetic fields(17) smooth
inside the interaction region, unlike abrupt fields, for which
the conclusion must be revised(Sec. VIII).

The effective height of the barrier, which determines the
maximum longitudinal energy a particle must have to be re-
flected adiabatically, can be estimated asFmax,Fsz̄d, or

Fmax, «2ÎL, s23d

and thus depends on the particle initial longitudinal
velocity.15 The characteristic of the barrier independent of

the particle initial velocity is the “critical” energyÊ
=«0

8/5LB
2/5, or the critical velocityv̂=ÎÊ,

v̂ = «0
4/5LB

1/5. s24d

Particles withvz! v̂ are reflected adiabatically from the bar-
rier if moving from the weak-field sidesV,vd. Those
which travel in the same direction withvz* v̂ (and all of
those traveling backwards and hence experiencing pondero-
motive acceleration rather than deceleration) penetrate the
resonance region and undergo cyclotron heating.(In this
case, the quantityv̂ equals the characteristic momentum a
particle gains inside the resonance region.12) For particles
havingvz@ v̂ and traveling each way, the longitudinal veloc-
ity change is small compared tovz. For more accurate de-
scription of transverse heating and longitudinal acceleration,
a general model of particle nonadiabatic dynamics is devel-
oped in the next sections.

It must be understood that the presented results remain
applicable only for classical particle motion. Even small rela-
tivistic modification of the Larmor frequency can change the
scalings, which describe the resonant interaction of a particle
with an rf field (see, e.g., Ref. 12). The characteristic time, at
which the particle ceases to interact resonantly with the field
because of relativistic shift of the gyrofrequency can be es-
timated astrel,«−2/3. If trel&t̄, relativistic effects become
dominant, and the spatial scaleLB no longer determines the
amount of energy a particle can gain from the rf field. How-
ever, if trel@t̄, relativistic corrections remain of minor im-
portance, and the assumption of classical particle dynamics
(used in this paper) becomes sufficient for adequate descrip-
tion of the APCD effect. For velocitiesvz, v̂, the latter con-
dition, which we will assume satisfied, can be expressed in
terms of the rf field amplitude«0 and the characteristic scale
of the dc field inhomogeneityLB:

«0
4/15LB

2/5 ! 1. s25d

V. TRANSVERSE HEATING

To solve for the transverse particle motion, let us first
introduce a complex transverse displacement

r = x + iy = reif, s26d

in terms of which the transverse motion equation takes the
following form:

r̈ + ibṙ +
i

2
rḃ = −

d

dt
s« costd. s27d

For given functionsbstd and «std, this equation turns to a
linear ordinary differential equation(ODE), so that one can
write

rstd = rfstd + rrfstd, s28ad

rfst0d = r0, s28bd

rrfst0d = 0, s28cd

whererf stands for the solution of a homogeneous equation
(i.e., describes free Larmor oscillations with initial displace-
ment r0), while rrf stands for the rf-driven oscillations and
vanish if «;0.

In the region of the most efficient interaction with the rf
field, rrf and rf oscillate at approximately equal(unit) fre-
quencies, and the particle orbit is approximately circular. The
latter is also true away from the rf field, where the gyroradius
is inverse proportional tob. Then, in the leading-order ap-
proximation, one can accept the general formula

r = iw/b, s29d

where we introduced a complex velocityw= ṙ,

w = vx + ivy. s30d

Hence, one can rewrite Eq.(27) as a first-order ODE forw:

ẇ + ibw −
ḃ

2b
w = −

d

dt
s« costd. s31d

Supposing the motion starts att=t0 at the locationz=z0, one
can get an exact solution of this equation:

w = wf + wrf , s32d

wf = w0Îbfzstdg
bsz0d

expS− iE
t0

t

bfzst8dgdt8D , s33d

wherew0=vx,0+ ivy,0 is the initial value of the complex ve-
locity, and the rf-driven part ofw is given by

wrf = −E
−`

t Î bfzstdg
bfzst8dg

d

dt8
h«fzst8dgcost8j

3expS− iE
t

t8
bfzst9dgdt9Ddt8. s34d

Near the cyclotron resonance, in the leading-order approxi-
mation one can takeb<1 and replace the full-time deriva-
tive under the integral withf1=−« sint8, as the remaining
term f2= «̇ cost8 is relativistic and represents the higher-
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order correction. Indeed, the termf2 could contribute signifi-
cantly to wrf in abrupt fields, where the magnetic rf field is
large compared to the electric rf component. However, in the
worst case of ad-shaped«8szd, taking a nonzerof2 into
account would yield only a small correctiondwrf ,«, which
is much less thanwrf as can be seen from the following
estimate. Let us put Eq.(34) in the form

wrf =E
−`

t

«fzst8dgexpS− iE
t

t8
bfzst9dgdt9Dsint8dt8.

s35d

To estimatewrf, suppose the simplest case whenvz changes
insignificantly during the interaction, the rf field is approxi-
mately uniform across the resonance region, and the dc mag-
netic field changes linearly in the vicinity of the resonance
(Sec. IV). Applying the steepest descent method to the inte-
gral (35), one gets fort→`

uwrfu = «ÎpLB

2vz
s36d

[in compliance with Eq.(21)], or

wrf , «ÎL. s37d

Despite in abrupt fields the expressions(22) and (36) are
invalid, the scalings(23) and(37) yet hold(see Sec. VIII) if
L is defined according to

L ,
1

s1 − bsz̄dd2 @ 1, s38d

where z̄ stands for the edge of the nonadiabatic region and
can be obtained from Eq.(10). Further, we accept Eq.(38) as
the general definition ofL.

Now considertsz,t0d as the moment of time when a
particle arrives at a given locationz if launched at the mo-
mentt0 from the given locationz0:

tsz,t0d = t0 +E
z0

z dz8

vzsz8,t0d
. s39d

[Note that, generally,vz may represent a multivalued func-
tion, and the integration should be performed over the par-
ticle trajectory including all the branches ofvzszd.] Assuming
Eq. (39), let us rewrite Eq.(35) as

wrf =
1

2i
sh+e−ix++it − h−e−ix−−itd, s40d

where we introduced the quantities

h±sz,t0d =E
z0

z

«sz8deix±sz8,t0d dz8

vzsz8,t0d
, s41ad

x±sz,t0d =E
z0

z

fbsz8d ± 1g
dz8

vzsz8,t0d
. s41bd

The functionsh± approximate the complex amplitudes of the
rf-driven velocities of opposite circular polarizations, and
thush−@h+, as the rf field pumps up primarily the cyclotron-
resonant component of the particle velocity. More precisely,

the functions scale such ash± ,« / s1±bd, meaning that

h−/h+ = OsÎLd. s42d

In terms ofh±, the expression for the rf-produced energy
gain Erf =

1
2uwrfu2 can be put in the form

Erf = 1
8suh+u2 + uh−u2d + 1

8sh+h−
* e2it0 + c.c.d, s43d

or, taking Eq.(42) into account,

Erf =
uhu2

8
, h ; h−. s44d

Then, to the leading-order approximation, one can estimate
the rf-produced change of the particle magnetic moment
Dmrf ;kMrfls`d with the following expression:

Dmrf < 1
8kuHu2l, s45d

whereH;hfzs`dg,

Hst0d =E «szdeixsz,t0d dz

vzsz,t0d
, s46d

andx;x−. As seen from the derivation, the expression holds
for arbitrary(both smooth and abrupt) profiles of the dc mag-
netic field and the rf field. Therefore, studying the properties
of H considered as a functional of the field profiles«szd, bszd
and the particle trajectoryzst ,t0d can yield a complete infor-
mation about the particle transverse heating under fairly gen-
eral conditions.

Thereby, let us ask a question if it is possible to adjust
«szd andbszd to minimize transverse heating for themajority
of particles, whose longitudinal velocities vary in a wide
rangeDvz,vz. To answer that, let us first rewrite the expres-
sion for H in the following form:

H = i E Vszd
deix

dz
dz, Vszd =

«szd
1 − bszd

. s47d

To figure out the physical meaning of the functionVszd, note
that the rf-driven oscillations of the particle transverse veloc-
ity in the adiabatic regime(12) can be expressed as

vrfsz,td < 1
2Vszdustd, s48d

where u=s−cost ,sintd depends entirely ont. Thus, Vszd
can be thought of as the amplitude of adiabatic rf-driven
oscillations. One can see that ifVszd is smooth compared to
eix everywhere along the particle trajectory[which, for trans-
mitting particles, requires also that«szd must be equal to zero
at the resonance], the integral

H = − i E eixdV s49d

is exponentially small irrespectively ofv0. Though trivial for
adiabatically reflected particles, this statement is important
when applied to those which penetrate the resonance region,
as it predicts that a reversible ponderomotive barrier can be
formed even for transmitting particles.

Hence, to ensure that the transverse heating becomes
small for all particles irrespectively of their velocity, the am-
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plitude of adiabatic rf-driven oscillationsVszd must change
little in a period of these oscillations. In other words, one
must have

«szd
1 − bszd

< const s50d

within the whole region of resonant interaction, yet the func-
tions «szd and bszd are not required to be constant or even
continuous by themselves(see Sec. VIII).

VI. AVERAGE LONGITUDINAL FORCE: GENERAL
APPROACH

Now let us calculate the average force accelerating a
particle in the direction parallel to the dc magnetic field. In
this section, we will present the general approach to this
problem, while the calculation of the longitudinal force for
particular cases of interest will be given in Secs. VII and VIII
(see also Appendix A).

Under the conditions of adiabatic approximation(10),
the longitudinal forceFz= v̇z can be obtained by differentiat-
ing Eq. (14)

Fz = −
d

dz
smb + Fd. s51d

However, this expression does not adequately describe the
particle motion near the cyclotron resonance, whereF expe-
riences a singularity. However, even in this case, under cer-
tain conditions, one can also derive a relatively simple ex-
pression for Fz, from which fundamental qualitative
conclusions can be made regarding the longitudinal accelera-
tion. Consider the full longitudinal forceFz=F«+Fb where
the force applied to a particle from the rf field isF«

=vx«8 cost, and the one applied from the dc magnetic field
is Fb= 1

2sxvy−yvxdb8. Let us putFz in the form

Fz =
dU

dz
− «

d

dz
svx costd + sxvy − yvxd

b8

2
, s52d

whered/dz stands for the full derivative

d

dz
=

]

]z
+

1

vz

]

]t
, s53d

andU is given byU=«vx cost. In terms ofr andw, one gets

Fb = −
b8

2
Imsrw * d = − Mb8, M = −

r2ḟ

2
, s54d

whereM is the magnetic moment of the particle. In a uni-
form magnetic field without a rf drive, one hasM=v'

2 /2b,
which also yields a good approximation forM if the local
motion is only slightly perturbed from circular by a rf field or
a dc field inhomogeneity.[Note that in smooth fields, when
«szd has a maximum at the cyclotron resonance, one has
F«!Fb in the resonance area, hence a particle is accelerated
toward weaker dc fieldat all z.]

Using Eq. (28), one gets forM averaged over initial
gyrophasesf0

kMlf0
= kMflf0

+ kMrflf0
, s55d

whereMf stands for the magnetic moment of free Larmor
oscillations determined by the particle initial velocity, and
Mrf is the rf-produced part of the total magnetic moment.
Then, if averaged over the initial gyrophasef0, the longitu-
dinal force(52) applied to a particle at givenz can then be
written as

kFzl = kF0l + kFrfl + kDF1l + kDF2l, s56d

where we omitted thef0 subindex for clarity and introduced
the following quantities:

kF0l = − kMflb8, s57ad

kFrfl =
d

dz
fkUl + s1 − bdkMrflg, s57bd

kDF1l = − «
d

dz
kvx costl, s57cd

kDF2l = sb − 1d
dkMrfl

dz
. s57dd

The forcekF0l is the one a particle would “feel” in the same
magnetic field without the rf drive. The other terms stand for
rf-driven forces to be calculated below.

First, let us estimate the order of those. AssumingMrf

,«2L (see Sec. V), one has each of the terms to be of the
same order. However, while the diamagnetic force propor-
tional to the change ofMrf continues to accelerate a particle
in a nonuniform dc magnetic field even away from the rf
field, the termskDF1l andkDF2l disappear as« goes to zero.
To ensure that the expression for the total force will allow
calculating the particle longitudinal energy change

kDEil =E kFzldz s58d

with an errorsmallcompared toF,«2ÎL, one may evaluate
the forceskDF1l andkDF2l in the leading order with respect
to L using Eq.(35) instead of Eq.(34).

Let us put the expressions forkDF1l and kDF2l in the
following form:

kDF1l = − « ReG8, kDF2l = sb − 1dErf8 , s59d

whereG=kwrf costl, and where we took into account that it
is only the rf-driven term that contributes to theG. Using the
results obtained in Sec. V, one gets immediately

kDF2l = − s1 − bd
d

dz

uhu2

8
. s60d

Obtaining a simple formula forkDF1l, in turn, requires re-
writing the expression forG,
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G =
h+e−ix+

4i
s1 + e2itd −

h−e−ix−

4i
s1 + e−2itd. s61d

Making certain assumptions about the fields structure allows
to simplify Eq. (61) and proceed with derivation, as we do
below.

VII. SMOOTH FIELDS

In smooth fields where the spatial scales of a dc field and
a rf field far exceed the particle longitudinal gyroradius
sLB/vz@1,LE/vz@1d, one can average the longitudinal
force over the oscillation period. As the condition(16) pro-
vides that the number of oscillations within the resonance
regionN,ÎL is also large compared to unity, such averag-
ing can be performed not only in the adiabatic region, but
near the cyclotron resonance as well.

By averaging Eq.(61) over the fast particle oscillations,
one gets

«kG8l =
vz

4i
suh+8u2 − uh−8u2d −

1

4
s1 + bdh+h+8

*

−
1

4
s1 − bdh−h−8

* , s62d

where we took into account that

«

vz
e−ix± =

dh±
*

dz
s63d

and denoted averaging overt with angle brackets. Thus, us-
ing Eq. (42), one can write approximately

kDF1l = s1 − bd
d

dz

uhu2

8
, s64d

so that

kDF1l + kDF2l = 0. s65d

Finally, noting that in smooth fieldsm0;kMfl=const,
one can formulate the obtained results as follows: In smooth
fields, the average of the longitudinal force over the fast
particle oscillations and the initial gyrophasef0 simulta-
neously is given by

kFzl =
d

dz
skUl + s1 − bdkMrfl − m0bd, s66d

kUl = −
vz

4
Im Sh

dh*

dz
D . s67d

First, note that the obtained expressions reproduce the adia-
batic model for smooth fields outside the resonance, as in the
limit (10) one has

kUl = −
«2

4s1 − bd
, kMrfl =

«2

8s1 − bd2 , s68d

so that the ponderomotive force(51) is recovered with the
potential(15) evaluated in the limitu1−bu!1. However, an
important result can be obtained from Eq.(66) for nonadia-
batic motion as well. Indeed, the advantage of the represen-

tation (66) is that kFzl can be easily integrated along the
particle trajectory with known boundary conditions

kUls±`d = 0, kMrfls− `d = 0,

kMrfls+ `d = kDml s69d

to obtain the net longitudinal energy change(58) as a func-
tion of the transverse heating

kDEil = kDmls1 − b0d. s70d

For the transverse and the total particle energy changes, one
then gets

kDE'l = kDmlb0, kDEl = kDml, s71d

where the change of the particle magnetic moment yields
kDml=Dmrf and is given by Eq.(45).

The formulas(70) and (71) are analogous to the known
result kDEl=kDml for smoothly inhomogeneous fields(be-
low we will show that this result has a broader region of
applicability), easily derivable(see, e.g., Ref. 27) if the dc
magnetic field local inhomogeneity is totally neglectedsL
=`d. The new result, however, is the accuracy of Eq.(70).
As follows from our analysis, the error of Eq.(70) is of the
order of«2, which is much less thanFmax even for finiteL.
Hence, in case when the condition(50) is satisfied, that is, in
the case of zero transverse heating, particles cannot be accel-
erated along the magnetic field: the average longitudinal mo-
mentum of the order ofv̂, which they gain while being ac-
celerated adiabatically, is compensated by the momentum
gained by particles inside the resonance region. The conse-
quence of this effect will be discussed in the next sections.

VIII. ABRUPT FIELDS

Let us now consider the opposite case of abrupt fields,
where, even if the phase-dependentvelocity modulation by
the rf waves]vz/]t0d is substantial, the region of nonadia-
batic motion is yet short enough to provide that the longitu-
dinal phasemodulation is negligible

]tsz,t0d
]t0

− 1 =
]

]t0
E dz

vzsz,t0d
! 1, s72d

where the integral is taken over the resonance region. This
condition allows us to accept a random rf phase approxima-
tion (RPA) for particles entering the resonance region with a
given longitudinal velocity, under which a simple expression
for Fz can be obtained by averaging over the particle en-
semble.

To proceed, let us also accept the “equivalent path ap-
proximation”(EPA), by which we will mean that all particles
with a given initial velocity follow the same path, irrespec-
tively of their initial rf phasest0 (andf0, as also implicitly
assumed before), yet zstd may be different for different par-
ticles. In this case, one can introduce a force acting on an
average particle by averaging overt0 andf0 the true longi-
tudinal force Fzsz,t0,f0d, which particles experience at
given locationz. While kFrfl andkDF2l are averaged overt0

straightforwardly, it remains to perform the averaging of
kDF1l, for which one gets

Phys. Plasmas, Vol. 11, No. 11, November 2004 Ponderomotive barrier as a Maxwell demon 5053

Downloaded 18 Jan 2006 to 192.55.106.171. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



kDF1l = s1 − bd
d

dz

uhu2

8
− « RekdG8l s73d

with the rapidly oscillating part ofG given by

dG =
1

4i
sh+e−ix++2it − h−e−ix−−2itd. s74d

Expressingh± in terms ofx±,

h±sz,t0d = − iE
z0

z «sz8d
bsz8d ± 1

d

dz8
eix±sz8,t0ddz8, s75d

one can see thatkdGlt0<0 under the RPA. Hence, under the
valid RPA and EPA in abrupt fields, the longitudinal force
averaged simultaneously over the initial rf phaset0 and the
initial gyrophasef0 is given by

kFzl = kF0l +
d

dz
fkUl + s1 − bdkMrflg, s76d

with kUl again given by Eq.(67). Note that the forcekF0l no
longer remains conservative in this case, since in abrupt
magnetic fieldm is not a conserved quantity even in the
absence of the rf drive.

The RPA conditionwithin the resonance region does not
prevent from inertial bunching of particlesbehind it. It
means that the equality(76) can be violated after the par-
ticles have undergone a complete transition through the reso-
nance region. However, in the smooth fields behind the reso-
nance, Eq.(66) becomes valid for thef0-averaged force
applied to particles launched at each particulart0. Let us
assume again that particles start and finish their motion in
regions with the same magnetic fieldb=b0. Then, averaging
the longitudinal force both overt0 and f0 and integrating
over the whole trajectory, one gets

kDEil = Dmrfs1 − b0d − Dmbb0, s77d

where we introduced the quantity

Dmb = −
1

b0
E kF0ldz. s78d

Outside the rf field, the particle magnetic momentM
matchesm, and thus

kDml = DkMfl + Dmrf . s79d

The average transverse energy change is then given by

kDE'l = DkMflb0 + Dmrfb0, s80d

and the total energy change yields

kDEl = Dmrf + sDkMfl − Dmbdb0. s81d

For a given trajectoryzstd, DkMfl does not depend on the rf
field strength. Thus, from the fact thatD«=0 at «=0 (as the
dc magnetic field does not change the particle energy), it
follows thatDmb=DkMfl. Therefore,Dmb stands for the par-
ticle magnetic moment change caused by abrupt inhomoge-
neities of the dc magnetic field. Finally, the longitudinal, the
transverse, and the total particle energy changes can be ex-
pressed as

kDEil = kDmls1 − b0d − Dmb, s82ad

kDE'l = kDmlb0, s82bd

kDEl = Dmrf , s82cd

where the change of the particle magnetic moment is given
by

kDml = Dmb + Dmrf , s83d

with Dmb accounting for the dc field inhomogeneity, and
Dmrf accounting for the rf heating. Note that the previously
obtained Eqs.(70) and (71) can be considered as a special
case of Eqs.(82) with Dmb=0, just as one could expect for a
smooth field configuration.

To calculateDmrf for a case of an abrupt field, suppose
that the particle motion remains adiabatic along the whole
trajectory except for a short(compared to the oscillation pe-
riod) time when the particle crosses a single “boundary” at
z=0, where the rf field and the dc magnetic field have a
discontinuity:

«szd = «1 + uszds«2 − «1d, s84ad

bszd = b1 + uszdsb2 − b1d. s84bd

Here u is the Heaviside’s step-functionb1,2+1 (or vice
versa), and

L ,
1

s1 − b1d2 ,
1

s1 − b2d2 s85d

is a large number. Then, from Eqs.(45) and (46), it follows
that

Dmrf <
1

8
S «1

1 − b1
−

«2

1 − b2
D2

. s86d

As one can see from Eq.(86), heating does not vanish even
in the limit when the time of crossing the resonance region is
infinitesimally small, which results from a nonzero leap of
the oscillatory velocityfvrfg over the resonance. Indeed, to
the leading order, one has

fvdg = fvg − fvrfg < vrf,1 − vrf,2, s87d

so that, generally, the obtained rf-caused change ofm, Dmrf

< 1
2kfvdg2l, is of the order of«2L, unless the ratio of the rf

field amplitudes«1/«2 is appropriately chosen to reduce the
heating. However, if

«1

«2
<

1 − b1

1 − b2
, s88d

Dmrf becomes of the order of«2, in accordance with Eq.(50)
obtained under more general consideration.

One can also come to Eqs.(82) and(86) using an alter-
native approach, which we will further show to yield more
results of interest, and which is hence worth considering in
details here. Applying the quasienergy andm conservation
laws to the particle motion before and after crossing the reso-
nance, one gets

Ei,0 + m0b0 = Ei,1 + m0b1 + F1, s89ad
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Ei,2 + m2b2 + F2 = Ei,3 + m2b0, s89bd

wherem2=m0+Dm, andF1,2 are the values of the pondero-
motive potential on each side of the resonance. As the par-
ticle crosses the resonance, its total energy is approximately
conserved:

Ei,1 +
v',1

2

2
= Ei,2 +

v',2
2

2
, s90d

wherev' stands for the total transverse velocity, including
both the drift and the oscillatory velocities. However, each of
the components ofv experiences a finite change when the
particle crosses the resonance, as the transverse magnetic
field (both rf and dc) is d-shaped for abrupt«szd andbszd. To
calculate the transverse velocity change for transmitting par-
ticles, consider the motion equations(9) from where one gets
(assumingfr g=0)

fvxg = s«1 − «2dcost − ysb1 − b2d/2, s91ad

fvyg = xsb1 − b2d/2. s91bd

Using the above expressions, one can calculate the change of
the particle magnetic moment(83) averaged over the initial
cyclotron and rf phases:

Dmb = C
sb1 − b2d2

8b1b2
, s92d

Dmrf < 1
2svrf,1 − vrf,2d2, s93d

whereC=krd,1
2 lb1, andr d,1 is the particle drift displacement

just before crossing the resonance.
Further, from the quasienergy conservation(89), it fol-

lows that

DEi = Dms1 − b0d + Q, s94d

whereD«i ;«i,3−«i,0 and

Q = FF −
v'

2

2
− ms1 − bdG . s95d

Now substitute Eqs.(83) and(91) into the above expression
to get

kQl = − Dmb + Os«2d. s96d

Finally, we obtain for the change of the transmitting particle
longitudinal energy:

kDEil = Dmrfs1 − b0d − Dmbb0 + Os«2d, s97d

while the transverse and the total energy changes are given
by

kDE'l = kDmlb0, kDEl = Dmrf + Os«2d. s98d

Note that similar expressions can be derived for reflecting
particles as well. Indeed, for a reflecting particle one has
fv'g=0, as seen from Eqs.(91), where one should takeb2

=b1, as the particle eventually returns to the initial magnetic
field. (In more details, particle longitudinal dynamics in
abrupt fields is discussed in Appendix B and Sec. X.) Then,

Dm=0, andkD«il=kD«'l=kD«l=0, in compiance with Eqs.
(97) and (98).

The main results we have presented up to this point are
formulated in Eqs.(45) and (46) and Eqs.(82) and (83),
valid for both transmitted and reflected particles in case of
smooth and abrupt fields with arbitrary rf polarization(see
also Appendix A). The application of these results to the
ponderomotive current drive problem constitutes the subject
of the second part of the paper.

IX. HEATING VS ACCELERATION

Let us show how our results give the fundamental con-
straints on the extent, to which the asymmetry of the pon-
deromotive barrier can be sustained. Consider particles trav-
eling from the weak-field side of the barrier(V,v, or, for
clarity, z,0) with initial longitudinal velocity vz=vz,0 and
magnetic momentm=m0. Suppose these particles are re-
flected adiabatically at some pointzr,0, so that for eachz
within the adiabatic region for whichzr,z,0, the following
condition is satisfied:

Ei,0 + m0fb0 − bszdg − Fszd , 0, s99d

whereEi,,0 is the initial longitudinal energy, andb0;bs±`d.
Consider now particles traveling from the strong-field side
(V.v, or z.0) with initial longitudinal velocityvz=−vz,0

and the same initial magnetic momentm=m0. Suppose these
particles transit through the barrier and penetrate the region
of adiabatic motion atz,0 with the longitudinal energy
change given by

DEi = Dms1 − b0d + Q. s100d

Combining the results of Secs. VII and VIII(and Appendix
A), we interpretQ as any nonadiabatic contribution, or “lon-
gitudinal heating,” provided by abrupt variations of a dc
magnetic field or a rf field. Using the quasienergy conserva-
tion together with the above equality, one gets

Ei + sm0 + Dmdbszd + Fszd = Ei,0 + Dm + m0b0 + Q. s101d

Since Ei is positively defined, one thus may note that the
particle cannot be found at any locationz,0, for which the
following sufficient condition is satisfied:

Ei,0 + m0fb0 − bszdg − Fszd , Dmfbszd − 1g − Q. s102d

If Dm=0 andQ=0, the conditions(99) and (102) coincide.
Therefore, at anyz within the adiabatic region for which
zr,z,0, there can be no particles transmitted through the
barrier in this case.

To ensure that particles traveling from the weak-field
side do not penetrate further than up tozr, while those sym-
metrically traveling from the opposite sidemaybe found at
z.zr after crossing the resonance, the following condition
must be satisfied:

Dmfbszd − 1g − Q , Wszd , 0, s103d

whereW stands for the left-hand side of Eqs.(99) and(102).
The necessary condition for the obtained inequality to be
possible is
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Dm . −
Q

1 − b
, s104d

as motion at the weak-field sidesb,1d is considered.
Suppose now that the RPA and the EPA are valid, so that

the average rf longitudinal heating is zero in compliance with
Eqs.(82a) and(96). Then, for an average particle to be trans-
mitted, one must have

kDml .
Dmb

1 − b
, s105d

which means, at least, thatkDml.0. Hence, under the RPA
and the EPA for smooth and abrupt field profiles of arbitrary
polarization, where the average rf-driven longitudinal heat-
ing is always zero, the following statement is true: If par-
ticles with initial longitudinal velocityvz,0 and initial mag-
netic momentm0 are adiabatically reflected from the barrier,
then particles with initial longitudinal velocity −vz,0 and the
same initial magnetic moment will also be reflected from the
barrier, unless they experience finite rf heating. In other
words, a heating-free barrier is symmetric: If one makes all
the particles from one side to reflect adiabatically, then, to
ensure that particles traveling from the other side are not
reflected, onemust heat them. A proper adjustment of the
field structure[see Eq.(50)] could reduce heating, but such
an adjustment would automatically ruin the asymmetry of
the barrier. Namely, in this case, the average momentum im-
parted by the adiabatic force would be compensated by the
average momentum nonadiabatically gained by particles
within the resonance region. This fact remains in agreement
with the argument given in Sec. II, where we predicted from
the first principles that a heating-free barrier cannot produce
a current.

Let us estimate the minimum heating required for sus-
taining the asymmetry of a barrier. Suppose that a barrier
adiabatically reflects particles with longitudinal energies
Ei,0,E* , while particles traveling backwards with the same
initial parameters are transmitted. Then, for allEi,0, one has
zrsEi,0d,z* , wherez* ;zrsE*d,0. A necessary condition for
particles traveling from the strong-field side to appear atz* is

Ei,0 + m0fb0 − bsz*dg − Fsz*d . Dmfbsz*d − 1g − Q, s106d

which can also be put as follows:

Dmfbsz*d − 1g − Q , Fszrd − Fsz*d + Wszrd, s107d

where we neglected the termm0sbszrd−bsz*dd=Os«2d. By
definition of zr, one hasWszrd=0 andbsz*d,1, so that the
above condition takes the form

Dm .
Fsz*d − Fszrd − Q

1 − bsz*d
. s108d

Under the RPA and the EPA, one haskQl=0 in case of
negligible Dmb. Then, taking for the majority of particles
z* −zr of the order ofz̄, one obtains the following restriction
on the minimum transverse heating:

kDml = Os«2Ld. s109d

Although Eq. (109) is a necessary condition, the obtained
scaling simultaneously coincides with the maximum possible
kDml a rf barrier can yield(see Sec. V). Thus, Eq.(109)
represents also a sufficient condition for sustaining the asym-
metry of a rf barrier with zero average longitudinal rf heat-
ing.

The only way to avoid strong transverse heating while
having an asymmetric a barrier is to provide thatQ.Fsz*d
−Fszrd, as Eq.(108) allows reducingDm down to zero in
this case. Thus, in principle, a rf barrier can transmit particles
incident from the strong-field side, which experience prima-
rily longitudinal heating

Q = Os«2ÎLd . 0, s110d

while particles traveling backwards with the same initial en-
ergy and magnetic moment are reflected adiabatically. For
obtaining the current drive effect, the condition(110) must
be satisfied inaverageover particles interacting with the rf
field. As under the RPA and the EPA, Eq.(110) cannot be
satisfied, one of the two assumptions must be violated. In
Sec. X, we show how the EPA can be broken in an abrupt-
field configuration and propose a concept of the reduced-
heating current drive scheme based on this method.

X. ACCELERATION VIA LONGITUDINAL HEATING

To see how a nonzero average heating can be achieved
in a simple field geometry, consider an abrupt-field configu-
ration (84), where

b1 = 1 7
a

ÎL
, b2 = 1 ±

1
ÎL

s111d

sa.0d, and the rf field satisfies the reduced-heating condi-
tion (50): «1=−a«2 (Fig. 3). Applying the analysis similar to
that given in Sec. V, one gets forf0-averaged quantities

kDmlf0
= Dmb + Os«2d, s112d

kQlf0
= ±

1 + a

4a
v̂2 cos 2t̂ − Dmb + Os«2d, s113d

where v̂2= u«1«2uÎL. The momentt̂, at which a particle
passes the resonance, is given by

FIG. 3. Schematic of the abrupt-field configuration with reduced transverse
heating: the rf electric field amplitude«szd equals zero at the cyclotron
resonance and satisfies Eq.(50) outside the resonance region. The dc mag-
netic field and the rf field change at the scaleDz small compared to the
longitudinal particle gyroradiusrg (rg=vz in dimensionless units).
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t̂ = t0 +E
z0

0 dz

vzszd
, s114d

where the second term is approximatelyt0 independent, as
particles move adiabatically before reaching the “boundary”
sz=0d.

Assumem0=0 and neglectDmb for clarity. All particles
incident from the weak-field side are reflected by the pon-
deromotive force atz,0 if vz,0,

1
2v̂. Also, if b,−cos 2t̂,

where

b =
2a

1 + a
Svz,0

v̂
D2

, s115d

a particle is reflected nonadiabatically, while its transverse
energy is still conserved. While the energy of a reflected
particle is preserved, the longitudinal energy of a transmitted
particle after the interaction with the rf field is changed ac-
cording to

DEist̂d
Ei,0

= ±
1

b
cos 2t̂ s116d

svz,0+0d, as follows from Eq. (113). If vz,0.
1
2v̂ and

b.−cos 2t̂, a particle traveling from the weak-field side is
transmitted automatically. To derive the transmission condi-
tion for a particle traveling from the strong-field side, note
that a substantial contribution into the energy change(116) is
provided by the reversible ponderomotive force alreadyafter
the particle has passed the nonadiabatic region. In other
words, after a transmitted particle leaves the rf field, its lon-
gitudinal energy is always larger thanF1, yet the particle
velocity immediately after crossing the boundary is given by

svzdz=0−

vz,0
=Î1 −

1

b
Scos 2t̂ +

a

2s1 + adD . s117d

Thus, the transmission takes place if

b .
a

2s1 + ad
+ cos 2t̂, s118d

and no particles are reflected on the strong-field side if

b .
3a + 2

2s1 + ad
. s119d

The above calculation shows that, in abrupt fields, the
EPA is violated for sufficiently low velocities. Hence, the
proposed configuration can operate as an asymmetric barrier,
which adiabatically reflects all particles incident from the
weak-field side withEi,0,

1
8v̂2, while transmitting[with DEi

given by Eq.(116)] some of those traveling backwards with-
out substantial transverse heating. The outcome of the wave–
plasma interaction will be an uncompensated current of
transmitted particles through the resonance region, as those
which are reflected(on any side) will preserve their energies
and, by their own, will produce no current whatsoever. The
fraction R of reflected particles with a given initial velocity
among those, which are incident from the strong-field side,
can be written as

R =
1

2p
E

0

2p

uScos 2t̂ +
a

2s1 + ad
− bDdt̂ s120d

under the assumption of uniform distribution of initial
phases. Hence, the transmission coefficientT=1−R equals

T = 1p arccosS a

2s1 + ad
− bD . s121d

For b,a / f2s1+adg (which matches the condition of adia-
batic reflection of particles symmetrically incident from the
weak-field side), one gets

1

p
arccosS a

2s1 + adD ø T ø
1

2
, s122d

from where it follows that1
3 øTø

1
2. For a=1, Eq. (122)

yields 0.42,T,0.5, which means that, roughly, a half of all
particles incident from the strong-field side is transmitted.

Let us address the question if the current drive can be
practiced alternatively through violation of the RPA(rather
than the EPA) in more complicated field configurations. To
break the RPA, one needs the inertial phase modulation
within the resonance region

Dt = DS z̄

vz
D ,

Dvz

vz
t̄, s123d

to be of the order of unity, whereDvz stands for the phase-
dependent rf velocity modulation, andt̄= z̄/vz is the time a
particle needs to pass the resonance region. In plasmas with
thermal velocity spreaddvz,vth, phase mixing will depress
the average longitudinal heating ift̄@1, hencet̄&1 is nec-
essary. Thus, for efficient particle bunching within the reso-
nance region one needsDvz/vz*1, which, in turn, requires
vth, v̂. As the phase-dependent part of the longitudinal force
can both accelerate and decelerate particles(as we showed
above), a significant part of those traveling from the strong-
field side will be reflected from the barrier in this case. It
means that the violation of the RPA in a plasma would auto-
matically lead to the violation of the EPA, which will make
the current drive scheme similar to the one proposed above.

What we have shown here is that by abruptly modifying
the phase of the electric fields, it is possible to heat electrons
longitudinally with an energy gain proportional toÎL, rather
than in transverse direction with an energy gain proportional
to L. SinceL@1 is contemplated, the rearrangement in ve-
locity space with less heating has three advantages: First, it
can avoid relativistic effects(which limit the current drive
efficiency particular for longitudinal heating). Second, by
limiting the energy of the affected particles it keeps the dis-
tribution function closer to Maxwellian, thereby leaving less
free energy for unwanted instabilities. And, three, heating
particles in the longitudinal rather than the transverse direc-
tion allows avoiding production of the unwanted Ohkawa
current in toroidal plasmas,28 which otherwise is generated
by transversely heated particles trapping in local “magnetic
mirrors” formed because of the system geometry.

One can compare to LHCD(Ref. 29) and to ECCD(Ref.
30) or to other means of driving rf currents.31 In both LCCD
and ECCD, electrons are moved to higher energy, thereby
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becoming less collisional and thus realizing greater current
before slowing down. In the case of the less efficient asym-
metric ponderomotive current drive,11 the effect of reflection
(which is most efficient) was mitigated by being averaged
with the effects of current drive through heating longitudi-
nally (LCCD) or transversely(ECCD). In the case of the
optimized APCD, the reflection current is accomplished, but
the mitigation effects are less, because there is less heating as
described above.

The ability to change fields abruptly will be easier in
feflecting ions rather than electrons, because of the larger ion
gyroradius. In particular, the minority species current drive
effect32 operates similarly to the ECCD(Ref. 30) effect, ex-
pect that the effect is practiced in minority ions rather than
electrons. Thus, reflecting minority ions through a one-way
ponderomotive well similarly drives current with potentialy
higher efficiency.

It remains, however, to identify how the effect might be
implemented in a plasma device in a practical manner. First,
it remains to identify suitable plasma waves that can be ex-
cited in confinement devices of interest, producing a very
localized, intense rf field, so that nearly all particles in a flux
tube can be reflected. Second, the fields must change sharply
enough compared to the thermal gyroradius, which makes
the proposed scheme more suitable for operating on heavy
ions rather than electrons. However, note that the optimized
arrangement tolerates largerL, and so operates with more
easily implementable magnetic field gradients. Nonetheless,
we expect that the new method is more likely to find use on
linear and, perhaps, nonfusion plasma devices.

XI. NUMERICAL RESULTS

In this section, we present the results of numerical cal-
culations of single-particle orbits for various field profiles
and show that these calculations support our theoretical pre-
dictions.

A. Smooth fields with even «„z…

Particle orbits were traced for the fields

bszd = 1 +
z

LB
, «szd = a expS−

z2

LE
2D , s124d

with parameters given in Table I andvz,0, v̂. First, consider
particles which travel from the strong-field side of the barrier
sV.vd. The numerical results are shown in Figs. 4 and 5.

All particles are seen to transmit through the resonance re-
gion, experience transverse cyclotron heating nearz=0, and
undergo adiabatic diamagnetic acceleration afterwards. The
less is the initial longitudinal velocity, the more time a par-
ticle spends near the resonance. Thus, the more transverse
energy it gains, and the stronger diamagnetic acceleration
follows the resonant interaction. The asymptotic analytic ap-
proximation forDE' is found to be in reasonable agreement
with numerical results even forvz,0, v̂ (Fig. 6).

Consider now particles, which travel from the weak-field
side of the barriersV,vd. The numerical results are shown
in Figs. 7 and 8. Particles withvz,0! v̂ adiabatically reflect
from the barrier without substantial gain of transverse en-
ergy. Others penetrate the region of resonant interaction and
experience transverse heating nearz=0. Since they gain a
finite magnetic moment, behind the barrier these particles
continue to “feel” decelerating diamagnetic force. To clarify
the heating process for reflecting particles, we also present
three-dimensional(3D) figures, which show both particle tra-
jectory zstd and the evolution of transverse energyE' (Fig.
9).

The energy constraint, which connects the longitudinal
and transverse energy gain, has also been checked numeri-
cally. The errordE;DEi−s1−b0dDm was found to be less

TABLE I. Parameters for numerical calculations of particle motion in
smooth fields(124) and (125).

LB 100

LE 10

a 10−3

v̂=a4/5LB
1/5 0.01

L=LB/ v̂ 104

z̄=ÎLBv̂ 1

m0 0

FIG. 4. Normalized transverse energyE' /a2L of particles incident on a
smooth rf barrier from the strong-field sidesV.vd vs z for vz,0/ v̂=0.5,
0.75, 1, 1.5, 2, 3, 4, 5:bszd and«szd yield Eq. (124) with parameters given
in Table I. Larger energy gain corresponds to smalleruvz,0u.

FIG. 5. Phase portrait for the longitudinal motion of particles incident on a
smooth rf barrier from the strong-field sidesV.vd: normalized longitudinal
velocity vz/ v̂ vs z (same parameters than for Fig. 4). Larger acceleration
corresponds to smalleruvz,0u.
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than 10−3 in units a2ÎL. Thus, dE!Fmax for all (both for
reflected and transmitted) particles, as predicted.

B. Smooth fields with odd «„z…

Particle orbits were traced for the fields

bszd = 1 +
z

LB
, «szd = azexpS−

z2

LE
2D , s125d

with parameters given in Table I andvz,0, v̂. From our ana-
lytical model, it is expected that in such a field configuration
particles should not get heated, as the condition(50) is sat-
isfied within the resonance region with good accuracy. It is
also predicted that such a heating-free barrier must yield
completely reversible particle motion and have symmetric
reflecting properties.

These expectations are confirmed by our numerical re-
sults. In Fig. 10, the phase portrait of the longitudinal particle
motion shows that the established ponderomotive potential is
indeed reversible at allz. The reflection properties of the
barrier are symmetric, meaning that if a particle traveling
with initial velocity vz,0 is transmitted(reflected) through the
barrier, a particle with initial velocity −vz,0 would also be
transmitted(reflected) by the barrier, assuming equalm0 for
the two. In Figs. 11–13, it is shown that the energy gain for
both transmitted and reflected particles incident from both

sides is small. In general, such a rf field behaves as an adia-
batic barrier, as the rf field has a small amplitude close to the
cyclotron resonance.

C. Abrupt fields

Particle orbits were traced for the fields

bszd = 1 +
1

ÎL
tanhS z

Dz
D , s126ad

«szd = a expS−
z2

LE
2D , s126bd

with parameters given in Table II andvz,0, v̂, which simu-
lates a single-boundary field configuration(84) with a con-
tinuous«szd anda=1 (see also Fig. 20). The following the-
oretical predictions (see Appendix B) were validated
numerically: The minimum particle velocity sufficient to al-
low a particle to reach the boundary isvz,0<0.5v̂ [Eq. (B3)
yields vz,0= 1

2v̂], to transmit through the boundary −vz,0

<0.87v̂ [Eq. (B7) yields vz,0=sÎ3/2dv̂], to transmit through
the whole barrier −vz,0< v̂ [Eq. (B8) yieldsvz,0= v̂], see Figs.
14 and 15. The transverse energy of transmitted particles is
approximately the same for all initial conditions[compare
with Eq. (86)], see Fig. 16. Minor variations in final values
of E' for different vz,0 result from weak nonadiabaticity of
the particle motion atuzu*Dz. [Despitebszd is uniform far
away fromz=0, the rf field inhomogeneity is sufficient to
cause nonadiabatic effects, as long asb remains close to
unity. The effect is discussed in details in Refs. 16 and 17.]
The proportionality(82a) between the changes in the longi-
tudinal and the transverse energies has also been checked
numerically, and the errorDEi−s1−b0dDm was found to be
much less thanFmax.

Particle orbits were also traced in abrupt field profiles
with an odd«szd:

bszd = 1 +
1

ÎL
tanhS z

Dz
D , s127ad

FIG. 6. Normalized transverse energy gainE' /a2L of particles incident on
a smooth rf barrier from the strong-field sidesV.vd vs vz,0/ v̂ (same pa-
rameters than for Fig. 4): numerical(solid) and asymptotical analytical ap-
proximation(dashed) for vz,0/ v̂@1.

FIG. 7. Normalized transverse energyE' /a2L of particles incident on a
smooth rf barrier from the weak-field sidesV,vd vs z for vz,0/ v̂=0.2, 0.5,
1, 2, 3, 4, 5(same parameters than for Fig. 4).

FIG. 8. Phase portrait for the longitudinal motion of particles incident on a
smooth rf barrier from the weak-field sidesV,vd: normalized longitudinal
velocity vz/ v̂ vs z (same parameters than for Fig. 4).
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«szd = − a expS−
z2

LE
2DtanhS z

Dz
D , s127bd

with parameters given in Table II andvz,0, v̂, which simu-
lates a single-boundary field configuration(111) and (84)
with an abrupt«szd yielding the condition(88) and a=1
(Fig. 3). As predicted analytically, the transverse heating is
seen to be of the order ofDm&a2. The theoretical predic-
tions on the longitudinal momentum gain[Eq. (116)] also
coincide with the results of numerical computations shown
in Fig. 17.

Particle motion was also computed in a circularly polar-
ized rf field with field profiles(127). The phase portrait for
the longitudinal motion is shown in Fig. 18. As predicted for
this case(see Appendix A), the transverse heating is damped
(Fig. 19), and, correspondingly, the established ponderomo-
tive potential appears to be completely reversible for allz.

XII. SUMMARY

In this paper, we showed that the action of a rf field on
particles traveling along a dc magnetic field near the cyclo-
tron resonance is similar to what essentially constitutes an
operation of a Maxwell demon. Namely, a rf field can adia-
batically reflect particles incident on the weak-field side of
the ponderomotive barriersV,vd, while transmitting those
incident on its strong-field sidesV.vd. Unlike the true

FIG. 9. Particle motion near a smooth cyclotron-resonant rf barrier. Axes:
normalized transverse energyE' /a2L of a particle, its longitudinal location
z, and timet. Separately shown is the projection of the 3D plot on the plane
st ,E'd (same parameters than for Fig. 4). (a) vz,0/ v̂=0.2, adiabatic reflection
by the rf field;(b) vz,0/ v̂=0.5, slightly nonadiabatic reflection by the rf field;
(c) vz,0/ v̂=2, adiabatic diamagnetic reflection after nonadiabatic resonant
heating.

FIG. 10. Phase portrait of a cyclotron-resonant rf barrier produced by the
fields given by Eq.(125) with parameters given in Table I: normalized
longitudinal velocityvz/ v̂ vs z. Established potential is reversible for allz.

FIG. 11. Normalized transverse energyE' /a2L of particles incident on a
smooth rf barrier with an odd«szd from the weak-fieldsV,vd side vsz
(same parameters than for Fig. 10): vz,0/ v̂=3 (for other values ofvz,0/ v̂,
plots are virtually congruent with the shown one, as motion is reversible).
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Maxwell demon(prohibited by the second law of thermody-
namics), an asymmetric barrier unavoidably heats particles,
as they transit through the cyclotron resonance. Under fairly
general assumptions about the field structure and polariza-
tion, an analytical model of transverse heating and longitu-
dinal acceleration of particles shows fundamental correla-
tions between the two effects.

A major result of this work is that we showed how to
optimize the asymmetric ponderomotive current drive effect
(APCD) for allowable transformations of a charged particle
velocity by a rf field. In particular, we showed that an abrupt
phase change in the rf field, coupled with an abrupt inhomo-
geneity of a dc field near the cyclotron resonance, gives a
much higher efficiency for the APCD effect than that calcu-
lated in Ref. 11. The latter is due to the fact that in such a

configuration, energetically expensive transverse heating is
replaced by a less energy-consuming heating of particles in
the longitudinal direction. The method of optimization
should be applicable to other applications of the asymmetric

TABLE II. Parameters for numerical calculations of particle motion in
abrupt fields(126) and (127).

Dz 10−4

LE 10

a 10−3

L 104

v̂=aL1/4 0.01

m0 0

FIG. 12. Particle motion near a smooth cyclotron-resonant rf barrier with an
odd profile«szd. Axes: normalized transverse energyE' /a2L of a particle,
its longitudinal locationz, and timet. Separately shown is the projection of
the 3D plot on the planest ,E'd (same parameters than for Fig. 10). (a,b)
vz,0/ v̂= ±0.85, adiabatic reflection by the rf field of particles traveling from
the weak- and the strong-fieldsV+vd sides.

FIG. 13. Particle motion near a smooth cyclotron-resonant rf barrier with an
odd profile«szd. Axes: normalized transverse energyE' /a2L of a particle,
its longitudinal locationz, and timet. Separately shown is the projection of
the 3D plot on the planest ,E'd (same parameters than for Fig. 10). (a,b)
vz,0/ v̂= ±0.9, adiabatic transmission of particles traveling from the weak-
and the strong-fieldsV+vd sides.
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ponderomotive barrier as well, where the amount and direc-
tion of unavoidable heating of the transiting particles may be
important.
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APPENDIX A: EFFECT OF POLARIZATION

To study how the rf polarization affects Eqs.(45) and
(46) and Eqs.(82) and (83), let us first consider the case
when particles are driven by a rf field of circular polarization
with the vector potential

A rf = «szdsx0 cost − y0 sintd. sA1d

Since the rf field is then given by

Erf = «szdsx0 sint + y0 costd, sA2ad

Brf = «8szdsx0 sint + y0 costd, sA2bd

the motion equations can be put in the following form:

v̇x = vyb + yvz
b8

2
−

d

dt
s« costd, sA3ad

v̇y = − vxb − xvz
b8

2
+

d

dt
s« sintd, sA3bd

v̇z = sxvy − yvxd
b8

2
+ «8 Resweitd. sA3cd

The average longitudinal force now yields Eq.(56), with

kUl = « ReG, G = kweitl,

kDF1l = − « ReG8, kDF2l = sb − 1dErf8 ,

where averaging is performed only over the initial gyrophase
f0. In the leading-order approximation, one gets

FIG. 14. Phase portrait of a cyclotron-resonant rf barrier produced by the
fields given by Eq.(126) with parameters given in Table II: normalized
longitudinal velocityvz/ v̂ vs z (solid, vz,0.0; dashed,vz,0,0). Particles
traveling from the strong-field sidesV.vd are all transmitted. Those, which
travel from the weak-field sidesV,vd, are reflected adiabatically without
reaching the boundary ifvz,0,

1
2v̂, are reflected from the boundary—if

1
2v̂,vz,0, sÎ3/2dv̂, transmit through the whole barrier—ifvz,0. v̂.

FIG. 15. Particle motion near a single-boundary abrupt cyclotron-resonant rf
barrier. Axes: normalized transverse energyE' /a2L of a particle, its longi-
tudinal locationz, and timet. Separately shown is the projection of the 3D
plot on the planest ,E'd (same parameters than for Fig. 14). (a) vz,0/ v̂
=0.5, adiabatic reflection by the rf field of a particle traveling from the
weak-field sidesV,vd without reaching the boundary;(b) vz,0/ v̂=1, par-
ticle reflection by the decelerating ponderomotive force behind the barrier;
(c) vz,0/ v̂=1.5, particle transmission.
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ẇ + ibw −
ḃ

2b
w = −

d

dt
s«e−itd, sA4d

and thus, approximately,wrf = ihe−ix−it. ExpressingErf andG
in terms ofh andx, one obtains

Erf =
uhu2

2
, G = ihe−ix, sA5d

and thus

«kG8l = ivzuh8u2 − s1 − bdhh8* . sA6d

Consequently,

kDF1,2l = ± s1 − bd
d

dz

uhu2

2
, sA7d

which yields Eq.(65). One can see that, in case of circularly
polarized field, the derivation of Eq.(65) does not require
averaging over the rf phases of particles and thus automati-
cally applies to both smooth and abrupt fields.

Finally, one can formulate the obtained results as fol-
lows: In case of an rf field with circular polarization(A1),
the average of the longitudinal force over the initial gy-
rophasef0 is given by Eq.(76), whereDmrf ;kMrfls`d and
kUl are given by

Dmrf <
1

2
kuHu2l, kUl = − vzJshh8*d sA8d

both for smooth and abrupt fields. This statement is true for
a rotationally symmetric dc magnetic field(8), but is violated
for an asymmetric field(e.g.,B0=−xb8x0+bz0). In the latter
case, Eq.(76) can still be derived, yet that requires additional
averaging over the rf phase, as discussed in Secs. VII and
VIII.

One can see that, with minor reservations, the cases of
linear and resonant circular polarization are equivalent, and
thus the proposed calculations cover all imaginable cases of
interest. Namely, in the general case of an elliptically polar-
ized rf field, particles would primarily interact with the reso-
nant circularly polarized harmonic, for which the presented
analysis remains fully applicable.

APPENDIX B: REFLECTION AND TRANSMISSION IN
ABRUPT FIELD WITH STRONG TRANSVERSE
HEATING

Consider an abrupt-field configuration(84) with b1,2

given by Eq. (111) and smooth rf field profile«;«1=«2

(Fig. 20). Using the expressions forf0-averaged quantities

kDmlf0
=

s1 + ad2

8a2 «2L + Dmb + Os«2d, sB1d

FIG. 16. Normalized transverse energyE' /a2L of particles incident on a single-boundary rf barrier(a) from the weak-field sidesV,vd and (b) from the
strong-field sidesV.vd vs z (same parameters than for Fig. 14). (a) vz,0/ v̂=1.1, 1.5,(b) vz,0/ v̂=0.3, 0.5, 0.7, 1. In wide range of initial velocities, particles
gain approximately equal transverse energyE'< 1

2a2L, regardless of the sign ofvz,0.

FIG. 17. Normalized longitudinal velocityvz/vz,0 of particles incident on a
single-boundary heating-free rf barrier from the strong-field sidesV.vd as
a function of their initial rf phaset0: analytical(solid) and numerical(dot-
ted) results;bszd and«szd yield Eq.(127) with parameters given in Table II,
vz,0

2 = 1
4v̂2, the reflection coefficient isR= 1

2. Observed transverse heating is
Dm&a2.

FIG. 18. Phase portrait of a cyclotron-resonant rf barrier produced by the
fields given by Eq.(127) (circular polarization) with parameters given in
Table II: normalized longitudinal velocityvz/ v̂ vs z. Established potential is
reversible for allz.
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kQlf0
= − Dmb + Os«2d, sB2d

one can obtain the condition for particle transmission
through the resonance. Assumem0=0 for clarity. A particle is
reflected purely by the ponderomotive force before reaching
the resonance region if

vz,0

v̂
,

1

2Îa
, sB3d

wherev̂2=«2ÎL. A weaker condition is imposed onvz,0 for
reflection by the boundary itself: At location close toz=0
before colliding with the boundary, the particle longitudinal
energy is given by

Ei = Ei,0 − F1, F1 = ±
v̂2

8a
. sB4d

The transmitted particle energy changes over the boundary
according tofEig=−fE'g, where

fE'g = ±
1 + a

8a2 v̂2, sB5d

as one can obtain straightforwardly from Eqs.(91). Since
Ei .0, for a transmitted particle one must have

Svz,0

v̂
D2

. ±
2a + 1

4a2 . sB6d

Particles traveling from the strong-field side are always
transmitted, as seen from Eq.(B6) with the minus sign.
Those, which travel backwards, are reflected if

vz,0

v̂
,

Î2a + 1

2a
. sB7d

Note also that the violation of inequality(B7) does not nec-
essarily prevent a particle from reflection by the decelerating
ponderomotive forcebehindthe resonance. To eliminate this
possibility, it is necessary to have

vz,0

v̂
.

a + 1

2a
. sB8d
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FIG. 19. Normalized transverse energyE' /a2L of particles incident on an
abrupt rf barrier with an odd«szd from the weak-field sidesV,vd vs z
(same parameters than for Fig. 18): vz,0/ v̂=3 (for other values ofvz,0/ v̂,
plots are congruent with the shown one, as motion is reversible).

FIG. 20. Schematic of the abrupt field configuration with strong transverse
heating: the rf electric field amplitude«szd changes little over the resonance
region. The dc magnetic field changes at the scaleDz small compared to the
longitudinal particle gyroradiusrg (rg=vz in dimensionless units).
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