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Abstract

The incompressibility of the phase flow of Hamiltonian wave-plasma interactions restricts the class of realizable wave-driven
transformations of the particle distribution. After the interaction, the distribution remains composed of the original phase-space
elements, or local densities, which are only rearranged (“restacked”) by the wave. A variational formalism is developed to study
the corresponding limitations on the energy and momentum transfer. A case of particular interest is a toroidal plasma immersed
in a dc magnetic field. The restacking algorithm by Gardner [Phys. Fluids 6 (1963) 839] is formulated precisely. The minimum
energy state for a plasma with a given current is determined.
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1. Introduction ments[3]. This limits, for example, the amount of
energy that can be extracted frenparticles in a toka-

The incompressibility of the phase flow of Hamil- mak[4]
. . . . A related problem has also been addressed recently
tonian wave-plasma interactions restricts the class of .

i . . : in Refs.[5,6] in connection with generating plasma
realizable wave-driven transformations of the particle . .
S : : . current by means of an asymmetric ponderomotive
distribution[1]. This restricts the energy in a plasma ) . :

. . barrier for thermal particles. In this case, a one-way
available for extractiofi?]. In the case where the par- L : .
o : : e rf barrier is set up that can reflect particles coming
ticle interactions with waves are diffusive, the energy LT . . .

. S ' from one direction, while being transparent to parti-
available for extraction is further constrained by the

consideration of only diffusive phase-space rearrange- cles coming from the other direction. The barrier must
y of necessity heat the particles that pass through it in

order to conserve the phase space density. This means
— . that the current can be generated by these barriers in
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In general, all these limitations can be attributed
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determine the condition under which a Hamiltonian

to the existence of what can be called the “plasma transformation of the system phase space yields the

ground state” for a given one-particle distributign

By ground state, we mean such a distribution of par-
ticles f>, which minimizes the total plasma energy
on the manifold of all Hamiltonian transformations
f1— f2.Asreported in the pioneering paper by Gard-
ner[1], the ground state plasma enertin is gen-
erally nonzero, which can be explained as follows.

maximum or minimum of a given functional (such
as the plasma energy in Ré¢l]). In the framework

of this formalism, we reproduce the results given in
Ref.[1] and, in SectiorB, solve a similar, yet different
problem of finding the minimum energy state at given
plasma current. In Sectiof) we apply our formalism

to magnetized toroidal plasmas and derive a reduced

Suppose that a bounded plasma particles having thevariational principle. In SectioB, we summarize our

initial phase-space distributiofy are introduced into
an electromagnetic field for a limited time, which
eventually results in bringing the plasma to some final
state f2. Imagine that we patrtition the plasma phase
space into small cells of equal volumel; = AT,
and to each cell attach a certain value of the distrib-
ution function f (I7). As the number of cells that have
a given value off is conserved throughout the interac-
tion (as follows from the Liouville theorem), the dis-
tribution f> may not be arbitrary, but rather will rep-
resent a result of reordering (“restacking”) of the orig-
inal phase-space elememd;, regardless of the spa-
tial and temporal structure of the external fields. Alter-

main ideas.

2. Variational formalism

Let us first restate the Gardner’s problem in its orig-
inal form[1]. Suppose that a bounded plasma with the
initial distribution f(r1, p1) is introduced into exter-
nal fields for a limited time, which eventually results
in bringing the plasma to some final stafér,, p2).
The particle distribution is conservefl(I) = f(I'1),
wherel, = (r, p2) is a single-valued reversible func-
tion of I'1 = (r1, p1). Thus, the total energy left inside

natively, this fact can be expressed as conservation ofthe plasma after the interaction equals

the so-called Casimir invariants, which determine the
distribution of the valueg'(I57) (see, e.g., Ref7]) and
whose existence is an intrinsic property of any Hamil-
tonian system.

The plasma ground state will correspond to the dis-
tribution f>, such that the elementsI; with larger
f(I7) occupy the states with lower particle enegy

@)

where& is the individual particle energy, and where
we made use of phase space conservatibh:=
dI' = dI», dI; = d°; d®p;. Suppose that the par-
ticles initially occupy a nonzero phase volume. In a

W= / E(Iy) f(Idr,

In a bounded plasma, only a finite phase volume is al- bounded plasma, only a finite phase volume is allotted

lotted to the states with below a given value. Hence,
from incompressibility of the phase flow, it follows
that after the interaction the plasma will be left with
the total energW > Wpin, where Wmin is a nonzero
quantity defined as the minimum &f over all possi-
ble ways of restacking the elememtd?;.

While chopping phase space into discrete elements

is pictorial, it is fairly artificial in case of a continuous
function f1. Hence, solving the “restacking problem”
must be possible in terms of a differential formulation.

to the states witl€ (I2) below a given value. Hence,

from incompressibility of the phase flow it follows that
after the interaction the plasma will be left with the to-
tal energyW > Wpin, Wwhere

)

is a nonzero quantity defined as the minimumvof
over all possible Hamiltonian (canonical) phase-space
transformationgr1, p1) — (rz, p2). Hence, determi-

Wi = min [ £ f(rpar

The purpose of the present Letter is to derive such a nation of Wi, can be considered as a variational

formulation and apply it to a number of cases of inter-
est, not previously considered.

The Letter is organized as follows: in Secti@nwve
generalize the Gardner's problem by putting it into a
variational form for an abstract dynamical system. We

problem of searching for the canonical transformation
I' — I, which minimizes the functiondlL).

Treated like that, the Gardner's problem yields a
natural generalization as follows. Suppose one is given
a function¢ (I1) defined in a &/-dimensional phase
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spacely. Suppose also thaty = (g, p) undergoes
Hamiltonian evolution into some phase spdte=
(Q, P). The generalized Gardner’s problem then con-
sists of determining the connection betweEnand
I», which provides the minimum or the maximum of
the functional
Z/w(l“z)qﬁ(l“l)dﬂ ©))
where I, is considered a function ofy (or vice
versa),yr is a known function of %, andd " =d I =
dI% is a phase space element

drr =dVgd"p=d"Qad"p (4)

conserved by the canonical transformation.
Supposd’ — I3 is an extremizing transformation
and consider a small canonical transformatién—
I; determined by an arbitrary trial Hamiltoniak.
Since ¢ is defined as a given function of the initial

variables, which remain unchanged by the transforma-

tion, one gets

(®)

The change ofy, Ay = ¥ (I)) — ¥ (I2), can be ex-
pressed as

AG = / Ay (I () dIn.

L Iy 1 321/,
21// 1 21//
+AQ- S5 AP+ SAP. S - AP, (6)

where the dot product stands for summation over re-
peating indices. The changes®f and AP are deriv-
able from canonical equations and can be put in the
form

OH  Ar? OH
AQ= Ata_P+7{H aP}+0(At ), (7a)
OH  Ar? aH

where At is the time interval, on which the evolu-

tion generated b¥{ is considered, anfl, -} stands for

Poisson brackets
af og

$=3p 3Q

of g

-8 3Q 9P

(8)
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Substituting the above equations into E&8).and inte-
grating by parts, one gets that

AG =8G +8°G +o(Ar?), (9a)

8G = At/ (¥, p)HdT, (9b)
2

8°G = —ATt (Y, H{¢, H}dT, (9c)

assuming that the surface integrals are equal to zero.
(In case ify or ¢ stands for a distribution function,
the surface integrals vanish, e.g., if the system is lo-
calized within a finite phase volume.) Because of the
invariance of Poisson brackets, the above expressions
equally apply to any spacE canonically obtainable
from I'1 or I (I" may also coincide with one of the
two), if the functions are understood as

p=9¢[I(D)], Y=y[l)] (10)

From Eqgs.(9) it follows that the necessary condi-
tion for an extremizer, that i8G = O for an arbitrary
‘H, can be put in the form

V. ¢} = (11)

In turn, the minimum and maximum @f are realized
whens?G has a definite sign regardlessif Noting
that

8y = At{H, ¢}, 8¢ = At{H, ¢}, 12)
one can rewrite the expression 831G as
8°G = —%/w&pdn (13)

From Eq.(13) it can be concluded that the minimum
of G is achieved if

¢=¢W), v =v(®)

is a single-valued monotonically decreasing function;
the maximum ofG corresponds to a single-valued
monotonically increasing functioifl4). (Note also
that Eq.(14) automatically satisfies E¢11).)

The function (14) can be determined using the
phase-space conservation imposed by the Liouville
theorem. With the density of stateé defined for an
arbitrary functions (I") according to

or (14)

Q@)= / S[E — ()] dr (15)
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the phase-space conservation requires that ing function of&, and satisfy the equation
df (&)
do |  $£2(y) _ — = , (18)
E = m, @ (Yo) = do. (16) dé&> 2(f)

where f(0) = maxf(ri1,p1). The density of states
£2(f) can be calculated knowing the initial distribu-
tion f(r1, p1), and$2(&>) is given by

The sign of the derivative and the constant of in-
tegration must be chosen correspondingly, depend-
ing on whether the maximum or the minimum of

G is reqUIred tak|ngl’¢)/dlﬁ 20 with ¢(‘g/j‘max): (&) =drm /ngz (19)
¢max Yields the maximizer, whilei¢/dy < 0 with o ) o

If ¢(I")) andy (I) are continuous functions, then contains also a potential energy of a particle in a static
the transformation, which yields the absolute min- Packground field/,
imum or the absolute maximum af, is at least p2
piecewise continuous. In this case, the differential E2(r2, p2) = 22 L U(ry), (20)
formulation as presented here is more natural than _ 2m ) N
the “Gardner's restacking algorithm” described in If the density of states2(¢>) is modified correspond-
Ref. [3]. Making use of the differential formulation ~ingly. Hence, one can see that the results of RHf.
in certain cases can yield an analytical solution of the €an be naturally obtained in the framework of the pro-
restacking problem or, at least, allow a solution by Posed formalism. Yet, the latter also yields other re-
quadratures, hence simplifying the numerical proce- Sults of interest, as we show in the next sections.
dure of finding the extremized functional value. On the
other hand, our results can also be formulated in terms o
of reordering of discrete phase space elements as fol-3- Conditional extremum
lows: To obtain an extremizing transformation, first,

chop the phase spade into differentially small ele- The formalism presented in Secti@ryields a nat-
ments with equal voluméI"® = dI", each confined ~ Ural generalization to the case of a conditional restack-
between the neighboring isosurfaces daf Numer- ing problem. Consider finding an extremum of the

ate the elements in ascending order with respect to functional(3) under the condition
¢ (D). Then prepare the new “sites” for these el- o _ RO, R=(R |i=1. .Kl (21)
ements — the phase space bins of the same volume,
dI'') = dr, each located between the neighboring where
isosurfaces ofy. Numerate them in ascending order B .
with respect tay (I"/)) and allocate™® at (). The R = / Vi ()¢ (1) dT, (22)
maximizing transformation requires thatj) be an . .
increasing function, while the minimizing transforma- assuming tha; (1), ¢; (I'1) are given functions, and
tion requires that(j) be decreasing. RO = {Rl.(o) |i=1,...,K}is asetof constants. Con-
Let us apply the obtained results to reproduce the ditional extrema ofG are realized at unconditional
solution of the original Gardner’s problem. To put the extremizers of the functional
energy functiona(l) into the form(3), take .
G=G+\-R, (23)
¢(I') = f(ry, p), Y (I[2) =E&Ar2,p2).  (17) whereAx = {4; | i =1,..., K} are indefinite Lagrange
multipliers to be found. As seen from the previous

If & includes only the kinetic energy of a parti- X ~ .
2 y ay P analysis, the extrema @f are realized under the con-

cle € = p§/2m), then the final particle distribution

f(r2,p2) corresponding to the minimum plasma en- dition
ergy cannot depend orp, as follows already from K o
Eq.(11). From the subsequent arguments, one gets that{¥. ¢} + > _ Ai{¥. ¢} =0. (24)

the final distribution must be a single-valued decreas- i=1
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If ¢; are all equal tap (alternatively, allyy may be
equal toy), Eq.(24)is simplified:

{¥, ¢} =0, (25)
where¥ =y + - ¥. Eq.(25) has the form of Eq(11)

and hence can be solved by the method proposed inG i, = W/oin —

Section2, with A; to be determined from Eq21).
An illustrative example of how this formalism can
be applied is the problem of finding (again, assuming
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Hence, one can see that, to minimige the parti-
cle distribution must become a function of energy in
the frame of reference moving witlhy = —A/me, and
thus

A2e2

o
Here W/, is the minimized energy in the moving

frame, where the particle distribution must be isotropic

(30)

phase-space conservation) the minimum energy state(as follows from Sectior), i.e., carry no current. The

of a plasma with a given current. The problem has a
definite practical value, as its solution determines how

much energy is required for generating a given amount

of plasma current. (Note, however, that this is not the
problem that determines the “efficiency” of maintain-
ing a current, since the maximum efficiency may not
occur for the minimum energy distributi¢d].) To get
the minimum energy current, consider the frame of
reference moving with the velocityg = j /en, where
j is the current density is the charge of an indi-
vidual particle, and: is the particle number density.
Solve the unconditional energy minimization problem
for the new frame, as shown in SectidnThe absolute
minimum of the total particle energy is achieved at
an isotropic distribution, which carries no current. On
the other hand, in the moving frame, the current den-
sity must be zero by definition. Thus, the solution of
the unconditional problem in the new frame satisfies
the requirements of the original conditional problem.
Hence, the minimum energy state at given current is
realized at particle distribution isotropic and monoton-
ically decreasing with energy in the frame of reference
where the net current is zero.

Note that the same result can be obtained formally
as follows. Consider the functional

G=W+2xr-j, (26)

where the plasma current, assuming given initial dis-
tribution f(p1), equals

J Ze/V2f(p1) d3p1. (27)

Rewrite Eq.(26) as

- [ (p2+1e)? 3 222

G_/ 2 P (28)

where the value of the second term is fixed, and take
+ Ae)?

$r) = fpn. Wy =22 o)

2m

total current then equalsivg, hence

A= —mj/ne. (31)
On the other hand, by definition,
émin = Wmin+ A -]. (32)
Using Eqs(30)—(32) one has
2
m
Whin = ZnLez + Whins (33)

where the first term represents the energy of the av-
erage flow, while the second term stands for the
minimum thermal energy of the original distribution
f(p1), which cannot be reduced further by Hamil-
tonian transformations of the original particle distri-
bution.

4. Restacking algorithm for magnetized toroidal
plasmas

Consider now the formalism developed in Secon
in application to magnetized plasmas. Assume that
a plasma has a toroidal geometry, so that inhomo-
geneities along the magnetic field are smoothed out
and the plasma becomes uniform along a flux surface
on time scales large compared to the period of parti-
cle rotation along the torus. Similarly, assume uniform
distribution over gyrophases, plus assume homoge-
neous plasma profile across flux surfaces.

Suppose now that the plasma, having an initial
distribution f (r1, p1), undergoes Hamiltonian interac-
tion with an electromagnetic field for a limited time,
which eventually results in bringing the plasma to
some final statef(rp, p2). The number of particles
within each phase space element is conserved:

fnydrn= f(Iz)dr, (34)
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as well as conserved is the distribution function itself, 5. Conclusions
as follows from the Liouville theorem. Assuming spa-
tially uniform both initial and final distributions and We developed a variational formalism to study the
neglecting the dependence on the gyrophase, obtain phase space limitations on the Hamiltonian interac-
tion between plasmas and electromagnetic fields. The
flea, uz) = f(ex, u1), (39) solution of the so-called Gardner's restacking prob-
lem [1] was given a precise mathematical formula-
tion over a class of piecewise continuous phase space
transformations. The analysis was extended to the
conditional restacking problem, through which we
found the minimum energy state of a plasma with
a given current. We also showed how the formalism
dusdes = duy dey (36) ?ollijld be applied to toroidal plasmas in a dc magnetic
ield.

wheree is the energy of the particle motion transverse
to the dc magnetic field, andis the particle velocity
along the field. Sincél; = m?du; de; d6; dV;, where

6; is the gyrophase andlV; is the element of a spatial
volume, from Eqs(34), (35)one has

after integrating ovep and V. Eq. (36) can be con-
sidered as the requirement of space conservation on
an effective phase plang, ¢), whose evolution can
hence be considered a Hamiltonian process with a sin- Acknowledgement
gle degree of freedomN\ = 1).
A variational formalism, like in Sectiof, can be The work is supported by DOE contract DE-
readily restated for the reduced system. Hence, the nc0276-CHO3073.
absolute maximum and the absolute minimum of the
functional
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