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We show how a ratchet effect, generally used in systems with periodic potentials, can also be practiced on
charged particles by an ac field alone, in a background magnetic field near the cyclotron resonance. The effect
relies entirely on the spatial inhomogeneity of the high-frequency drive, which produces a deterministic
asymmetric ponderomotive barrier for undamped particles. Such a barrier can reflect particles incident from
one side while transmitting those incident from the opposite side, hence acting somewhat like a Maxwell
demon. The necessary fields are perhaps most easily realized in a plasma, though the effect is more general.
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I. INTRODUCTION

In spatially-periodic structures, the nonlinear dynamics of
particles under an external ac drive can give rise to uncom-
pensated particle flow in a preferred direction, even without a
biased field. These phenomena, also called ratchet effects,
are of particular interest to the understanding of molecular
motors in biological systems and have been intensively stud-
ied in a variety of models �1–3�. Traditionally, ratchet effects
are attributed to periodic potentials, in which particles ex-
hibit Hamiltonian stochastic dynamics �4,5�, or dissipative,
either chaotic �2,3� or regular �6�, dynamics under ac drive.
However, a class of ratchets apparently escaped consider-
ation. What this paper shows is that, surprisingly, a ratchet
effect can also �i� rely entirely on the spatial asymmetry of a
monochromatic ac force applied over a uniform background
and, simultaneously, �ii� be practiced on particles undergoing
regular Hamiltonian motion in the ac field. Like previously
investigated ratchets �3,4,7�, the scheme produces a rectifi-
cation effect in initially thermal ensembles of particles; it
also can be utilized for particle confinement, separation, and
cooling.

The essence of a ratchet for undamped particles is an
asymmetric barrier. Thermal particles traveling through a
chain of such barriers are transmitted in one direction with
probability p�

1
2 , which is higher than the probability to be

pushed in the other direction, 1− p�
1
2 ; as a result, an aver-

age particle flow is generated. Traditionally, it is assumed
that a combination of corrugated background and spatially
uniform ac field is necessary to drive the effect. However,
uniform �or smooth� background fields together with an in-
homogeneous ac field are as well suitable for this purpose.
The idea can be explained as follows. Under intense ac drive,
a particle undergoes fast oscillations superimposed on the
average drift motion. If the particle drift displacement on a
period of these oscillations is sufficiently small, the average
effect of the ac drive can approximately be replaced by par-
ticle interaction with so-called ponderomotive potential
�8,9�. However, the limitation imposed by this energy-
conservation property of the average ponderomotive force
can be broken if the particle interaction with the ac field is
nonadiabatic. In this case, by adjusting the field structure,
this force can be made different for particles incident on

different sides of the interaction region; hence the ac barrier
can operate as a one-way wall and produce a ratchet effect.

A technique, which effectively amounts to a ponderomo-
tive ratchet, was recently proposed in the optical range of
frequencies to achieve atomic cooling effects �10,11�. The
suggestions require a bichromatic ac field. As a result, a pon-
deromotive force employed is essentially phase-dependent.
This makes the barrier probabilistic even for given velocity
� 1

2 � p�v��1�, which is also usual for other traditional
ratchet-type devices. Strikingly though, a deterministic
�p�v�=1� asymmetric barrier for undamped particles under-
going regular motion can also be produced by a ponderomo-
tive force. A particular kind of such barriers was proposed in
Refs. �12–14�. It was shown that a deterministic one-way
wall can be generated, for selected plasma constituents, by
an ac field at frequency � in an inhomogeneous dc magnetic
field near the cyclotron resonance �=��z�, if �−��z�
changes sign inside the interaction region. Putting aside the
unavoidable resonant heating of transiting particles, such a
barrier acts essentially like a Maxwell demon and can be
employed in various applications, including the selective
separation of plasma species �15�, confinement of one-
component plasmas, enhancement of multiple-mirror plasma
confinement �9,16�, and current drive �12–14,17�.

Remarkably, one can also propose an alternative type of
ponderomotive one-way walls, in which the resonance fre-
quency � does not have to vary in space, so that a determin-
istic ratchet can rely entirely on the ac field inhomogeneity.
The purpose of this paper is to show that an ac drive with a
particular spatial profile in the presence of a uniform �or
quasi-uniform� dc magnetic field is itself sufficient to gener-
ate average flow of particles exhibiting regular Hamiltonian
dynamics in the interaction region. The advantage of the
technique operating at uniform background is that it is more
easily implemented when sustaining a periodic potential to-
gether with the ac field might be difficult. In particular, com-
pared to the previous scheme �13,14�, such a ratchet does not
require sustaining a large ac field amplitude at the cyclotron
resonance, which might be impeded by the collective plasma
response.

The paper is organized as follows. In Sec. II, we briefly
restate the concept of a ponderomotive potential, in particu-
lar, for a particle in a dc magnetic field. In Sec. III, we
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discuss the operation of a single asymmetric ponderomotive
barrier in a uniform �or quasi-uniform� dc magnetic field. In
Sec. IV, we explain how a ratchet effect can be produced by
means of such barriers. In Sec. V, we summarize the main
ideas of the paper.

II. ADIABATIC PONDEROMOTIVE POTENTIAL

Consider a charged particle driven by an intense ac field
E=Re Ec ,Ec=E0 exp�−i�t�, assuming that the characteristic
scale L of E0�r� is large compared to the amplitude of the
particle quiver motion. In this case, the particle can be
treated as a dipole located at the average position R= �r�
with a dipole moment p generally being a functional of
E�R�t��. The average ponderomotive force on the particle
can then be approximately represented as follows:

�F� = ��p · ��E� +
1

c
�ṗ � B� . �1�

Here �¯� stands for averaging over the ac period, c is the
speed of light, and B=Re Bc is the ac magnetic field; both E
and B are assumed evaluated at location R, and Bc
=−i�c /��� �Ec. At sufficiently small drift velocity �see be-
low�, one can employ the “adiabatic” expression for p, that
is, p=Re��Ec�R��, where ���� is the particle polarizability
tensor. In this case, the average force on the particle can be
approximately represented as F=−��, where the so-called
ponderomotive potential � is given by �18�

� = − 1
4 �E0

* · � · E0� . �2�

Equation �2� can also be represented in an equivalent form

� =
e2

4m�2�
�

���E��2, �3�

where e and m are, respectively, the charge and the mass of
the particle; �� are the eigenvalues of a dimensionless tensor
T=−�m�2 /e2�� corresponding to the eigenvectors ��, and
E�=E0 ·��

*. For a particle in vacuum, T is a unit tensor, and
Eq. �3� yields the well known expression �=�v
	�e2 /4m�2��E0�2 �8,9�. However, in the presence of a dc
magnetic field B0=z0B0, the particle polarizability is modi-
fied, so that T can now be expressed as

T =

1

1 − b2

ib

1 − b2 0

− ib

1 − b2

1

1 − b2 0

0 0 1
� , �4�

where b=� /� and �=eB0 /mc, and thus

�±1 = �x0 ± iy0�/�2, �±1 = �1 ± �/��−1,

�0 = z0, �0 = 1. �5�

Note that for a wave with resonant circular polarization
�=−1 �we assume b�0�, the magnitude of � increases in

comparison with the vacuum case: �
��v, where the en-
hancement factor �	�−1 grows infinitely as the cyclotron
resonance is approached �8,9,19�. A large magnitude of the
resonant ponderomotive potential is useful for plasma con-
finement, employed, for instance, in magnetic mirror devices
�9,20�. The same effect can be used for producing a ratchet
effect, if the ac field is supplied with an appropriate spatial
profile.

III. ONE-WAY WALL

The ponderomotive one-way wall can be explained as fol-
lows. The true average force on a particle �1� is proportional
to the amplitude of the particle oscillation at the frequency
equal or close to �. Then, to actually “see” the potential �,
the particle must first gain energy E
�2�v, which is �	1
times larger than the height of the potential:

E 
 �� 	 � . �6�

For a particle with kinetic energy less than �, to see the
barrier will require receiving the energy �6� from the ac field,
for which process the characteristic time scale is 
t
� /�.
If, in a uniform dc magnetic field, the ac field region has a
width L	
l ,
l=�vz /�, and the particle longitudinal �drift�
and transverse �quiver� energies are less than or comparable
with the height of the barrier �max�0, the particle will be
reflected by the barrier, as if ��r� were a true potential. On
the other hand, if L�
l, the same particle will be transmit-
ted, as its oscillatory motion will have no time to build up,
and hence the repulsive ponderomotive force will have no
time to become established.

Consider now a ponderomotive barrier in a plasma with
temperature T��max, with ac field having a profile depicted
in Fig. 1. Suppose that the left slope of the field has a scale
L1, which is large compared to the characteristic value of 
l
for thermal particles. The barrier will then reflect particles
incident from the left, preserving both their longitudinal and
transverse energies. Suppose now that the right slope has the
scale L2�
l, so that each particle incident from the right is
transmitted through the thin region of repulsive force without
substantial energy change. After that, a particle finds itself on
the top of the potential hill, from which it further slides off
adiabatically, so that the resulting longitudinal and transverse
energy changes are given by

FIG. 1. An ac field profile producing asymmetric ponderomotive
barrier in a uniform dc magnetic field: L1	
l	L2, where 
l
=�vz /�.
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E = �max, 
E� = ��max. �7�

The ponderomotive barrier in Fig. 1 is then asymmetric and
acts essentially like a Maxwell demon �21�, except that it
increases the energy of transiting particles, as required by
laws of thermodynamics. Note also that the contemplated
effect is robust and can be achieved at finite ratio L2 /
l as
well. The results of our numerical simulations �Fig. 2� for

B0�z� = z0�1 −
1

�
� , �8a�

E0�z� = x0a

2
exp�−

z2

L1
2��1 − tanh� z

L2
�� �8b�

�field amplitudes are measured in units m�c /e�, indicate that
the effect persists up to L2 /
l
1, whereas at L2 /
l
1 the

barrier loses the asymmetry. Asymptotic values for L2 /
l
�1 and L2 /
l	1 have also been checked numerically and
have been found in agreement with our analytic predictions
given in Eq. �7�.

To demonstrate the action of a barrier on a particle en-
semble, we also calculated a sample velocity mapping pro-
duced by this barrier on a thermal distribution with T
=0.3�max �Fig. 3�. As predicted, at these parameters, the ma-
jority �about 80%� of the particles incident on the barrier end
up on its left side with vz�0, whereas few �about 20%�
particles are reflected by the abrupt slope of the ac field and
get vz�0. The nonvanishing percent of the latter is due to
the fact that a thermal distribution always contains particles
with sufficiently small initial vz. Such particles have enough
time to develop oscillatory motion even in abrupt fields and
actually see the abrupt slope as a repulsive ponderomotive
barrier. Some of these particles exhibit deterministic adia-
batic reflection, and only those with vz
�L2 /� are scattered
probabilistically, depending on the phase of the field. Except

FIG. 2. Longitudinal velocity change 
vz and transverse energy gain 
E� vs L2 for a particle after scattering off a barrier depicted in
Fig. 1 �results of numerical simulations�: B0 and E0 given by Eqs. �8�; 
l=�vz /�. The particle initial velocity is vz,0=−v̂ /2�2; v̂
= �eEmax/m����
��max/m�1/2 ; Ê=mv̂2
��max; and �=100. To compare, analytic predictions according to Eq. �7� for L2 /
l�1 and

L2 /
l	1 yield respectively: 
vz / v̂�−0.26,0.71,
E� / Ê�0.125,0. Particles incident with the same �vz,0� but from the left are reflected
adiabatically, as also checked numerically.

FIG. 3. Velocity mapping produced by a single ponderomotive barrier �8�: �a� original near-Gaussian distribution f1�v�; �b� distribution
after scattering f2�v�; �c� distribution over longitudinal velocities vz �dashed is their difference and the exact Gaussian distribution�. Velocity
is measured in units of thermal velocity vth ; �=100; a=0.001; L1=4c /� ; L2=0.02 �v̂ /� ; T=0.3�max; and 720 points used. For most of
thermal particles the mapping is deterministic, except for a small fraction of those nonadiabatically scattering off an abrupt slope of the
barrier.
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for the latter, the probability for the barrier to scatter a par-
ticle to the left is only a function of velocity: p= p�v�, hence
the barrier can be considered as deterministic.

IV. PONDEROMOTIVE RATCHET

To see how the barrier can be employed for producing a
ratchet effect, consider a chain of barriers, as depicted in Fig.
4. Assume that the distance between the barriers 
L is large
compared to the mean free path lmfp, on which the particle
energy dissipates. The actual dissipation mechanism is not
important. In the simplest case, one can assume collisional
decay due to the presence of a background medium, such as
gas or plasma; however, the effective dissipation can as well
may be due to stochastic interactions with waves, emittance
of the cyclotron radiation, etc. The ratio L1 / lmfp is as well
unimportant, but we will require that L2� lmfp, which pro-
vides that each barrier still operates as a one-way wall.

A particle will arrive at each subsequent barrier with 
E�

and 
E� both of the order of T, since the energy gain in Eq.
�7� dissipates as the particle travels from one barrier to an-
other. Hence, each next barrier will have the same effect on
the particle, which is then propelled by the ac field in a
certain direction �Fig. 4�. On a distribution of particles, such
a field will generate an average particle flow without a bias,
entirely due to the asymmetric ponderomotive acceleration,
thus producing a ratchet effect. Employing the random-walk
approximation and taking p�1, the average drift velocity vd
can be estimated as

vd 
 vth
lmfp


L
, �9�

where vth is a thermal velocity.
To simulate particle motion in a ponderomotive ratchet,

we use a hybrid numerical scheme. For particle interaction
with ac field inside an individual barrier, we assume Hamil-
tonian dynamics and employ precise velocity mapping �Fig.
3� to describe particles scattering off a barrier. This mapping
links random-walk trajectories between the barriers, which
are calculated by model �Langevin� equations with delta-
correlated stochastic force obeying Gaussian statistics.
Sample trajectories are shown in Fig. 5 and demonstrate the
predicted nonzero drift in −z direction.

If employed particularly for driving a current, such a cur-
rent source would exhibit the efficiency close to that by bar-
riers in non-uniform magnetic field �13�. However, in con-
trast to the rf field arrangements considered in Ref. �14�, the

ratio 
E� /
E� �i.e., that of amounts of ac energy spent on
particle longitudinal acceleration and transverse heating, re-
spectively� is fixed. In this case, the particle transverse heat-
ing cannot be reduced in comparison with longitudinal accel-
eration. Nevertheless, practicing asymmetric reflection and
transmission in a uniform magnetic field could be favorable
compared to the previously proposed techniques �13,14�, as
it does not require precise cyclotron resonance at the maxi-
mum ac electric field, and hence is more accessible techno-
logically. Also, it may not be easy, in some cases, to produce
magnetic field gradients. Hence, although not more efficient,
the constant field ratchets may be more easily realized in
practice.

In addition to current drive, the proposed technique can
also be used for selective separation of plasma constituents,
as the ratchet effect strongly depends on resonant properties
of the particles. For example, a noticeably different contribu-
tion to the overall ion flow will be provided by different
isotopes having slightly different resonant frequencies �, if
the ac field is tuned to the resonance of one of these species.
It is then possible to separate isotopes in space. Related cool-
ing mechanisms also become possible when the height and
the location of ponderomotive walls are varied in time
�10,22�.

Due to the universal nature of resonant ponderomotive
interactions, we anticipate that the effects contemplated here
are quite general and could be practiced also on neutral par-
ticles, possibly, including atoms. If so, these results could
supplement the existing techniques of particle manipulation
by laser radiation pressure, which broke important ground in
atomic physics �23�.

V. CONCLUSIONS

In summary, we demonstrated that a ratchet effect can
be practiced on particles exhibiting regular Hamiltonian dy-
namics through the interaction with a high-frequency field.
An asymmetric ponderomotive barrier can be produced by
inhomogeneous ac drive, in a uniform dc magnetic field

FIG. 4. Chain of asymmetric ponderomotive barriers pro-
ducing average flow velocity vd : L1	
l	L2 ,
L	 lmfp	L2; and

l=�vz /�.

FIG. 5. Sample trajectories of particles moving through a pon-
deromotive ratchet potential depicted in Fig. 4 �arbitrary units�. The
location of individual barriers is shown by dashed lines �
L
	L1 ,L2�.
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near the cyclotron resonance for selected charged-particle
constituents. Such a barrier can reflect particles incident from
one side while transmitting those incident from the opposite
side, hence acting somewhat like a Maxwell demon. Unlike
the methods contemplated in Refs. �13,14� for the case of
essentially nonuniform magnetic field, the proposed tech-
nique is technologically more accessible, as it does not

require precise cyclotron resonance at the maximum ac elec-
tric field, nor does it require magnetic field gradients.
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