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Current-Drive Efficiency in a Degenerate Plasma
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In a degenerate plasma, the rates of electron processes are much smaller than the classical model would
predict, affecting the efficiencies of current generation by external noninductive means, such as by
electromagnetic radiation or intense ion beams. For electron-based mechanisms, the current-drive
efficiency is higher than the classical prediction by more than a factor of 6 in a degenerate hydrogen
plasma, mainly because the electron-electron collisions do not quickly slow down fast electrons.
Moreover, electrons much faster than thermal speeds are more readily excited without exciting thermal
electrons. In ion-based mechanisms of current drive, the efficiency is likewise enhanced due to the
degeneracy effects, since the electron stopping power on slow ion beams is significantly reduced.
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The use of magnetic fields for confining and controlling
plasma is essential in many schemes for achieving ther-
monuclear fusion. These fields may be sustained by the
driving of steady-state electric currents through radio fre-
quency fields. However, whereas the efficient generation of
electric current in low-density plasma has occupied the
attention of the magnetic fusion community for several
decades, relatively little attention has been paid to explor-
ing how the ideas for steady-state current drive might be
carried over to high-density plasma.

In dense matter, or in moderately dense matter, the
plasma can be Fermi-degenerate, strongly affecting elec-
tron collisions. In addition to natural regimes such as
stellar interiors, Fermi-degenerate plasma arises when a
pellet of hydrogen is compressed to many times the solid
density for the purpose of inertial confinement fusion [1].
These plasma conditions are achieved by intense laser
compression using laser power over nanosecond and pico-
second time scales. In these plasmas, whether driven by
intense lasers or ion beams, there might be either inten-
tional or incidental generation of steady-state current.
Since the collision frequencies in these plasmas are high,
any currents generated by the laser radiation would be
steady-state on the time scale of the laser pulse, and very
intense steady-state magnetic fields might result.

The compression by intense laser power might achieve
densities of 1024–1028 cm�3. The Fermi energy can be
written as 36:4 eV� n2=3

24 , where n24 is the density nor-
malized by 1024 cm�3. Over much of the compression, the
plasma temperature can be much less than the Fermi
energy. The plasma can be strongly or weakly coupled,
but the processes that we consider here that affect the
noninductive current-drive effects depend on the degener-
acy and not on the plasma parameter.

Of interest is the efficiency of noninductive current
generation in such matter. By noninductive, we mean that
the current is not generated by a dc electric field with curl,
which would require a time-varying magnetic field. Rather,
the current is generated by wave-particle interactions or
collisions, which selectively accelerate certain resonant
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electrons or ions. Our focus here is on the current-drive
efficiency, assuming that means of selective acceleration
are found.

In Fermi-degenerate matter, electron-electron (e-e) col-
lisions and ion-electron (i-e) collisions [2,3] are much
smaller than the classical prediction, while ion-ion (i-i)
collisions remain classical. This leads to interesting con-
sequences, including higher electrical and heat conductiv-
ity [4,5] than would be predicted from the classical model.
The large reduction of i-e coupling also makes possible
hot-ion regimes suitable for aneutronic fusion [6,7]. The
large reduction in e-e [8] and i-e collisions should also af-
fect the generation of current in Fermi-degenerate plasma.
However, as opposed to the electrical conductivity of
plasma, which is the result of the integrated effect of uni-
form force exerted on all electrons, methods of noninduc-
tive current drive are inherently kinetic effects, where reso-
nance conditions selectively accelerate only certain ions or
electrons [9]. In fact, as we show, degeneracy effects in
plasma significantly enhance the efficiency of noninduc-
tive current generation. In carrying over to degenerate
plasma the mechanisms predicted for classical plasma, it
will be necessary to consider separately electron-based and
ion-based methods of current drive.

The most efficient electron-based methods of current
drive in classical plasma employ radio frequency waves
either to directly push electrons in the direction of the
(electron) current [10] or to select resonantly electrons
already moving in the direction of the (electron) current
and to push them perpendicular to that direction [11].

Consider, for either classical or degenerate plasma, the
current generated from pushing an electron from some
velocity space location vA to vB, which over time gener-
ates �j�t;vA; vB� � �e�vB�t� � vA�t��, where vA �
vA�t � 0� and vB � vB�t � 0�. The functions vA�t� and
vB�t�, the probable velocities after time t given initial
positions, reflect the slowing-down physics. This cur-
rent decays over time, and the accumulated current due
to the initial energy expenditure in the push can be writ-
ten as
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0
�j�t;vA; vB�dt � S �

@
@v
��v�; (1)

where we assumed an incremental push, along direction S,
vB ! vA � v, and used ��v� as the Green’s function for
the current, which now contains the details of the colli-
sional slowing-down process [9]. For the classical case, for
example, for resonant velocities much greater than the
electron thermal velocity, we have ��v� �
�e=��vjjv

3=�5� Z�, where � � 4�nee
4 log�=m2

e, where
vjj is the velocity in the direction of the current, and where
Z is the ion charge state. The current-drive efficiency,
defined as current generated J over steady-state power
dissipated PD, is then given as

J
PD
�

S � �@��v�=@v�
S � �@�mv2=2�=@v�

: (2)

These same considerations apply for a degenerate
plasma, where the electrons pushed live in a Fermi sea as
shown in Fig. 1, so that electrons must respect the exclu-
sion principle in the presence of occupied sites, both when
pushed and when decelerated by collisions. As discussed
above, we do not concern ourselves here with the mecha-
nism of the push, which could occur through a variety of
means, including the resonant wakefield of lasers. Here we
consider the electron scattering in pitch angle by ions only,
since the e-e collision frequency is negligible compared to
e-i collision frequency if most of the electrons are
degenerate.

Assume that initially site A in energy shell F is occupied
by an electron and site B in energy shell G is occupied by a
hole. Let f be the electron occupation number of shell F
and, similarly, g of shell G. Consider now an electron
pushed from site A into site B. Given an electron at site
A, the ensemble average current on shell F is given by
hji � �e�1� f�vA. Similarly, the ensemble average cur-
rent on shell G, given that there is a hole at site B, is given
as hji � egvB. The initial current is then ji � �e�1�
f�vA � egvB. Since the current after the push is jf �
efvA � e�1� g�vB, the current produced is

�j � �e	vB�1� g� � vAf� vA�1� f� � vBg
; (3)

or �j � �e�vB � vA� as in the classical case. Similarly, if
an electron at site B is scattered in pitch angle, for ex-
ample, to site C, the current changes initially by �evC �
Site A

Site B

Site C

FIG. 1. Pushing an electron in a partially occupied Fermi sea.
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evB. The ensemble-averaged current on, say, shell G, given
an electron at site B, then decays by

dhji=dt � �e�1� g�vB� � �e�eivB; (4)

where � is the pitch-angle scattering rate, which is simply
the classical rate �ei reduced by the occupation availability
�1� g�. Each electron in partially occupied shells collides
less frequently with ions than classically, but it effectively
carries less charge. Thus, the classical current decay rate is
recovered for electron-ion collisions.

The most important consequence of this calculation is
that J=PD is inversely proportional to Z rather than �5� Z�
as in the classical case [9]. The factor of 5 comes from the
electron-electron collisions, which are negligible in a de-
generate plasma. Thus, for Z � 1, the efficiency is en-
hanced over the classical case by a factor of 6.

In addition to the lack of e-e collisions, several other
effects increase even further the noninductive current-drive
efficiency in the Fermi-degenerate plasma. First, the elec-
trons participating in any current are all near the Fermi
surface. This electron velocity will be proportional to the
Fermi velocity vF � @�3�2ne�

1=3=me. Since, from Eq. (2),
the efficiency is proportional to v2, this means that the
effective collision frequency is small compared to what
would be predicted for classical electrons near the thermal
velocity. Second, because of the exclusion principle, many
electrons will be found at these higher energies; in the
classical plasma, there are exponentially few electrons
much faster than the thermal velocity. Third, since it is
impossible to push electrons below the Fermi surface, it
should be possible to exercise more precise selectivity in
pushing the fastest electrons, which are those near the
Fermi surface. In classical plasma, although fast electrons
may be selected by means of resonance conditions, often
slower, more inefficient, electrons are also resonant. In the
Fermi-degenerate plasma, that there is no option to push
these slow electrons is advantageous. Fourth, in connection
with this increased selectivity, note that it may be possible
to achieve in Fermi-degenerate plasma what could not be
achieved in a classical plasma [12], namely, to push in the
direction of the electron current electrons with small vjj but
with high energy, which, as seen from Eq. (2), optimizes
the efficiency. Although pushing electrons nearly tangent
to their constant energy surface is certainly advantageous
energetically, in classical plasma there are few electrons
that can be exploited this way even if they could be
selected precisely [9]. Degenerate plasma, however, as-
sures not only the selectivity but, due to its high electron
density, also assures copious resonant electrons. Thus, the
electrons pushed tend to be near the Fermi surface rather
than at several times the thermal velocity. Since the effi-
ciency scales as the energy of the pushed electrons, the
efficiency will be further enhanced in the highly degener-
ate plasma by approximately the ratio of Fermi energy to
thermal energy.
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Note that, for a degenerate plasma, the number of ion
scatterers scales with n, while the electron velocities scale
with the Fermi velocity, or n1=3. Hence, the efficiency
scales inversely proportional to n1=3. Thus, the absolute
efficiency is a mildly decreasing function of density.

Note that the single electron approach described above
recovers the electrical conductivity in a degenerate plasma
[4]. For electric field E in, say, the x direction, the steady-
state Boltzmann equation can be written as �eE=me��
�@fe=@vx� � �C�fe�. Using Chapman-Enskog expansion
and assuming a Lorentz collision model, we can obtain
f1 � 	eE=me�ei�v�
�@fe0=@vx� � ��v�fe0, where �ei �
�Z=v3 and ��v� � 	eE=me�ei�v�
�mv

2
x=Te��1� f� and

fe0 (f) is the equilibrium Fermi distribution (occupation
fraction). The current is given as J �

R
d3vevxf1�v�,

which is Lorentz-Spitzer conductivity. The flux S is given
as S � eE=me�1� ��fe0x̂. Note that, by the single-
particle approach, ��v� is proportional to e=�, where the
charge e is reduced to �1� f�e, and the collision frequency
is reduced to ��1� f�, so that ��v� is independent of
occupation fraction. The power dissipated is then given
by PD �

R
d3vS � rv�mv2=2�. Using S � �eE=me�fe0 in

Eq. (2), we recover the current derivable through the
Chapman-Enskog method.

Consider now ion-based methods of current drive, which
rely on directed momentum of a minority ion population B,
which has a different ion charge state Z from the majority
ion population A (which is, say, hydrogen). For charge
neutrality, we have nBZ� nA � ne. Since current in a
neutralized plasma is Lorentz invariant, the current gen-
eration can be considered in the frame of reference in
which the ion current vanishes. Suppose in this frame
minority ions have velocity VB and majority ions have
velocity VA. Electrons, whether classical or degenerate,
collide more often with the beam of the higher ion charge
state and so will drift in that direction, generating current
opposite to the direction of the higher ion charge state ion
drift. In classical plasma, it is the basis for a number of ion-
based methods of generating steady-state current, includ-
ing neutral beam current drive [13] and minority-species
current drive [14].

The minority ions slow down by dVB=dt � ���Be �
�BA�VB, where �Be represents collisions of minority ions
with electrons and �BA represents collisions of minority
ions with majority ions. The electron current relies only on
the fact that the ion-electron collision rates are proportional
to the ion charge state, so that, in steady state, the electron
drift ve must obey the force balance nA�VA � ve� �
nBZ2�VB � ve� � 0. Using J � e��neve� and charge neu-
trality, we obtain J � enBVB�1� Z�Z. A rough estimate of
the power necessary to sustain the minority beam that
sustains this current is PD � ��Be � �BA�nBMV2

B=2. The
current-drive efficiency can then be put in the form
J=PD � eZ�1� Z�=VB��Be � �BA�. For the case of clas-
sical slowing down on both ions and electrons, a more
accurate current-drive efficiency can be had by including
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kinetic effects of the slowed down beam distribution for
different electron temperature [15]. However, a few obser-
vations can be made at once. First, for a classical plasma,
for a minority ion beam, �BA � V�3

B , whereas �Be �
constant. Thus, the efficiency as a function of minority
injection velocity VB is low at low injection velocities
because of too many collisions with majority ions, while
at high injection velocities, where electron slowing down
dominates, the efficiency goes inversely with the electron
velocity. The maximum efficiency then occurs where the
slowing-down rates are approximately equal. The most
advantageous minority injection energy is about 40ABTe,
where AB is the beam atomic number [16].

The application of these considerations changes consid-
erably in degenerate plasma. The ion-electron collision
frequency in degenerate plasma can be written as

�Be �
8

3�
m2Z2e4

�@3 C���; (5)

where � is the ion mass, m is the electron mass, �2 �
e2=�@vF, vF is the Fermi velocity, and C��� �
0:5� 	log�1� 1=�2� � 1=�1� �2�
 [17], valid for v
vF and rs  1, where v is the ion velocity and rs �
�me2=@��3=4�ne�1=3 [2,3,17]. Because slow electrons are
degenerate, the collisions occur between the ions and the
fastest electrons rather than, as in a weakly coupled hot
plasma, between the ions and the thermal electrons. For
large Fermi energies, C��� scales logarithmically with the
density. The collisional cross section decreases as 1=v4

F.
This strong dependence of the cross section on vF just
suffices to cancel the effect of the greater electron density,
the greater energy loss per collision, so that the stopping
frequency is independent of the electron density. While the
ion-electron and electron-electron collision frequencies are
both considerably smaller than that given by the classical
formula, because the ions remain classical, the ion-ion
collision rate is the same as the classical prediction.

Since the ion-electron collision frequency �Be is so very
much reduced from the classical value, it can be seen that
the ion-beam current-drive efficiency in a degenerate
plasma will optimize for injection velocities much larger
than for a classical plasma. For �Be independent of VB, it
follows that the efficiency is maximized for VB � �

�1=3
Be ,

for both classical electron collisions and Fermi-degenerate
electron collisions, and this maximum efficiency then
scales with ��2=3

Be . The current-drive efficiency for ion-
based methods should, thus, increase by approximately
��CBe=�Be�

2=3 � 2:36� �Ef=Te�n
2=3
24 . This estimation is

valid when Te  Ef � 36:4� n2=3
24 eV.

The ion-electron collision frequency is constant as a
function of ion velocity in Fermi-degenerate plasma if
the ion velocity is small compared to the Fermi velocity.
As the ion velocity approaches the Fermi velocity, the
coupling to the free electrons is largest, and the collision
frequency becomes larger [18]. For ion velocities much
2-3



PRL 95, 225002 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 NOVEMBER 2005
greater than the Fermi velocity, the coupling again de-
creases. Thus, the ion-electron slowing-down rate is not a
monotonically decreasing function of ion velocity, as in
classical plasma. This maximum of the collision frequency
as a function of the ion velocity might be exploited by
matching the velocity of one beam to VB � vF, generating
current even with only one species of ions.

One way to producing counterstreaming ion beams is by
heating ions of the minority species that are traveling in the
direction of the current, even if the heating is transverse to
the direction of the current [14]. The heated ions, being
more energetic, collide less with the majority-species ions
and, thus, retain their directed momentum for longer. The
current-drive efficiency is given as in Eq. (2) with ��v� �
eZB�1� ZB=ZA��vjj=��, where ZB and ZA are the charge
states of the minority and majority ions, respectively, MB
and MA the mass of the minority (majority) ion, and � �
�Be � �BA. The ion-electron collision frequency �Be is
given in Eq. (5), and the ion-ion collision frequency is
given as �BA � �1�MB=MA��4�Z

2e4 log���nA=M
2
BV

3�.
For ions pushed in the direction perpendicular to the
current, the efficiency can be simplified to J=PD��ZB�
Z2
B��3e=MB�Be��VzVB=V

3
S�	1=�1�V

3
B=V

3
S�

2
, where Vz is
the component of the ion velocity VB in the direction of
the current, and we define VS � vF	me�1�MB=MA�=
MBC���
1=3. Assuming Vz � VB, the above equation at-
tains a maximum J=PD � �4=3��e=M��1=�ie��1=22=3VS�
when VB � �1=2�1=3VS. This maximum is larger than in
the classical case by the factor ��CBe=�Be�

2=3 as in the case
for injecting this current directly. In classical plasmas, the
optimum ion velocity in minority-species current drive is
less than the electron thermal velocity by a factor of sev-
eral. However, in a degenerate plasma, it is considerably
less than the Fermi velocity. Thus, compared to injecting
ions, it will be less efficient. Also note that, for ion tem-
peratures much smaller than the Fermi temperature, it will
not be possible to accelerate very many minority ions to
take advantage of the small collision rate at high ion
energies.

To generate extremely large magnetic fields with laser
power, consider a torus-shaped current, with major radius
R and minor radius r, and suppose that energy E is ab-
sorbed by electrons over time �. To reach steady state, � is
chosen greater than the L=R time. For degenerate plasma,
neglecting corrections to the conductivity (which would
somewhat lengthen this time) due to the concomitant ex-
ternal wave heating [19], we have L=R � 44� n24r2

10 ps,
where r10 is the minor radius normalized to 10 microns.
The current generated by pushing electrons in the direction
of the current can be written as I10 � 168��vz=vF��

�E100=�psR40n
1=3
24 �, where I10 is the current normalized by

10 MA, R40 is the major radius normalized by 40 �m, �ps

is the duration of the energy input in picoseconds, and E100

is the energy input normalized to 100 kJ. The function
��vz=vF� � vz=vF � vF=3vz is maximized for small vz,
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where vz is the velocity component of the pushed electron
in the direction of current. The magnetic field generated is
then B � 2I10=r10GG. For example, for an L=R time of
0.5 ns, pick n24 � 10 and r10 � 1. Then for R40 � E100 �
1, and for vz � vF, we have I10 � 0:15, and B � 300 MG.
For vz � 0:1vF, a GG is generated. Suppose now National
Ignition Facility (NIF) parameters [1]. Since NIF delivers
2 MJ over 5 ns, there remains the possibility to compress
this gigagauss field using the remainder of the NIF pulse
energy. Once the magnetic field is impressed in it, if the
plasma is compressed within the (new) L=R time of the
plasma by a factor of, say, 10 in minor radius, a 100 giga-
gauss field might be generated.

In summary, we obtained the current-drive efficiency in
a degenerate plasma for several methods of driving current.
For electron-based methods such as wave heating of elec-
trons, we showed that, since e-e collisions can be negli-
gible, the efficiency is, further, higher than the classical
prediction by at least a factor of �5� Z�=Z. The electron-
based methods also facilitated selecting resonant electrons
with advantageously high velocity. This high efficiency
may permit the generation of extreme magnetic fields in
very dense plasma. Although the considerations here show
that, in principle, extreme magnetic fields might be gen-
erated with high efficiency in very dense plasma, what
remains to be proposed is a specific practical means
through which this possibility might be realized.
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