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The stability of high-n toroidicity-induced shear Alfvén eigenmodes (TAE) in the presence of
fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are
discrete in nature, and thus can easily tap the free energy associated with energetic particle
pressure gradient through wave particle resonant interaction. A quadratic form is

derived for the high-n TAE modes using gyrokinetic equation. The kinetic effects of energetic
particles are calculated perturbatively using the ideal magnetohydrodynamic (MHD)
solution as the lowest-order eigenfunction. The finite Larmor radius (FLR) effects and the
finite drift orbit width (FDW) effects are included for both circulating and trapped

energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two
opposite influences on the stability of the high-n TAE modes. First, they have the usual
stabilizing effects by reducing the wave particle interaction strength. Second, they also have
destabilizing effects by allowing more particles to resonate with the TAE modes. It is

found that the growth rate induced by the circulating alpha particles increases linearly with
the toroidal mode number # for small kg, and decreases as 1/n for kg, > 1. The

maximum growth rate is obtained at kgo, on the order of unity, and is nearly constant for
the range of 0.7 <v,/vs <2.5. On the other hand, the trapped particle response is

dominated by the precessional drift resonance. The bounce resonant contribution is negligible.
The growth rate peaks sharply at the value of kgp,, such that the precessional drift
resonance occurs for the most energetic trapped particles. The maximum growth rate due to
the energetic trapped particles is comparable to that of circulating particles. Finally,

the effect of the two-dimensional wave structure of TAE modes is considered by using the

Wentzel-Kramers—Brillouin (WKB) method.

I. INTRODUCTION

As we are closer to the realization of tokamak plasma
fusion ignition, it is extremely important to understand the
novel behaviors of burning plasma associated with fusion
product alpha particles. One subject, which has received
increasing attention recently, is the alpha particle destabi-
lization of shear Alfvén waves. It has been long
recognized? that shear Alfvén waves can be excited by
tapping the free energy source associated with the energetic
particle pressure gradient through parallel wave particle
interaction. One particular class of shear Alfvén waves
considered in this paper is the toroidicity-induced Alfvén
eigenmode3’4 (TAE). Recently, interest in TAE modes has
surged following theoretical predictions,>'® and subse-
quent experimental evidences!'!? of their excitation by
super-Alfvénic energetic particles. The growth rate y of the
TAE mode induced by energetic particles may be ex-
pressed in a generic local formula,

! =q23h( _— —1)f,— L (1)

H
WTAE WTAE WTAE

where wy,g is the real part of the TAE eigenfrequency, B,
is the energetic particle (alpha particle) beta value, g is the
tokamak safety factor, w, is the diamagnetic drift fre-
quency of energetic particle, f, is related to the fraction of
the number of resonant particles, and finally, y, is the
damping rate of the TAE mode due to core plasma kinetic
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effects and Alfvén continuum damping.'>!” From this
equation, it is clear that three conditions must be satisfied
in order to destabilize the TAE mode. They are (1) the
energetic particle speed must be comparable to the Alfvén
phase speed v, in order to allow the parallel wave—particle
resonance to occur; (2) the energetic particle pressure gra-
dient must be steep enough so that inverse Landau damp-
ing occurs, ie., o /orag>1; and (3) the net energetic
particle destabilizing contribution must overcome the
background damping of the TAE mode. Recent
theory*'®!® and experimental evidences'"'? have shown
that low-n TAE modes can be excited by neutral beam
injected hot ions with a large 3, of the energetic particles.
In an ignited tokamak plasma, the fusion product alpha
particles have a birth velocity comparable or larger than
the Alfvén phase velocity, and have a pressure profile
sharply peaked at the center of the plasma. Therefore, the
first and the second condition for destabilization of the
TAE mode can be easily met. However, the third condition
is not as easily satisfied for low-n TAE modes, since the
alpha particle beta value 3, is relatively low, on an order of
1%.

In this work, we consider the excitation of high-n TAE
modes by energetic ions or alpha particles. High-n TAE
modes are expected to be more susceptible to the destabi-
lization than the low-n modes. Note that, in Eq. (1), the
energetic particle destabilizing term is proportional to w,,
which is, in turn, proportional to the toroidal mode num-
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ber n. Furthermore, recent work'*!® suggests that the

Alfvén continuum damping of the TAE modes tends to
decrease with increasing mode number n. On the other
hand, the finite Larmor radius effects (FLR) and the finite
drift orbit effects (FDW) are stabilizing, and are expected
to increase with the mode number. Balance of these com-
peting effects yields an intermediate mode number n for
which the TAE mode is most susceptible to the energetic
particle destabilization (or the smallest critical beta).

The energetic/alpha particle effects on high-n TAE
modes have been studied previously.®®?! Chen® consid-
ered alpha particle destabilization analytically for large as-
pect ratio low-beta model tokamak equilibria, in the limit
of zero orbit width. Spong et al.'® studied the same prob-
lem for general numerical equilibria, but for trapped par-
ticles only. The finite orbit width was also neglected. Guo,
Van Dam, and Wakatani'® also studied the trapped ener-
getic particle effects on the TAE mode, but for a model
equilibrium of divertor tokamaks. Recently, Rewoldt®
studied the alpha particle effect on high-n Alfvén modes by
using a more comprehensive approach, and found that an
Alfvén branch can be destabilized by fusion alpha particles.
The Alfvén mode had a real frequency o,=~v,/¢qR, and
may be related to the ellipticity-induced Alfvén
eigenmodes.”? More recently, Berk, Breizman, and Ye*!
were first to study analytically the effects of finite orbit
excursion on the linear response of energetic particles to
the TAE modes. It was found?' that the banana orbit effect
reduces the power transfer by a factor of A, /A, When the
banana width A, is much larger than the mode thickness
A,,. This result implies that the growth rate of the TAE
mode induced by the energetic particles is independent of
the mode number. However, our results indicate that the
dependence of the mode number is still significant, even for
large banana width. We find that the growth rate increases
continuously as the mode number increases until it reaches
its maximum and begins to decrease at k40, on the order of
unity. The discrepancy comes from the oversimplification
made in Ref. 21 by neglecting the radial dependence of the
wave—particle resonance condition.

Our formulation retains full FLR effects and the main
FDW effects by employing the gyrokinetic equation.?>?*
We derive a quadratic form for the high-n TAE modes
from the parallel and perpendicular components of Am-
pére’s law and from the quasineutrality condition. We as-
sume that the TAE modes can be described by the ideal
magnetohydrodynamic (MHD) equation. Thus, we treat
energetic particle effects perturbatively. We note that sim-
ilar perturbative methods have been used previously®'© i

calculating the energetic particle effects on low-n TAE
modes. The TAE eigenmode structure is obtained via the
Wentzel-Kramers-Brillouin (WKB) method.'*!® The
lowest-order WKB solution represents the fast radial vari-
ation for each poloidal mode, whereas the higher-order
solution describes the slow radial variation of the ampli-
tude, which naturally includes the physics of Alfvén con-
tinuum damping.'*!> We will first present the results in the
local limit using the lowest-order WKB solution. The non-
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local effects on the energetic particle destabilization will
also be studied.

In Sec. II of the present paper, a perturbative formula
for the growth rate induced by energetic particles is de-
rived. In Sec. III we present numerical and analytical re-
sults for the destabilizing effects in the radially local limit
due to fusion alpha particles, as well as the background
damping effects due to thermal species. The effects of the
nonlocal radial structures of the high-n TAE mode are
considered in Sec. IV. Finally in Sec. V, discussions and
conclusions are given.

1l. FORMULATION

Here we derive a quadratic form for the high-n TAE
modes with kinetic effects of the energetic particle, includ-
ing fusion alpha particles, as well as background plasma
species. We start with the standard gyrokinetic
equation®>?* in terms of the WKB-ballooning formalism:

(a)—a)d—{-im)” b-V)gf Jo(¢ o— A”)

(0—o,)

%aE

v
+fA1A]+KX&L (2)

where g7 is the nonadiabatic portion of the perturbed dis-
tribution function,

fj=fjexp(iS—ia)t), (3)
and is given by
dF; 19F; v“
Ji= (6E+Ba ) g4~ Em —igiexp(il). (4)

In Egs. (2)-(4), J;=J,(|VS|v, /Q) is the /th-order Bessel
function, S is the usual eikonal that describes the fast vari-
ation of the perturbed quantities perpendicular to the mag-
netic field line, and C is the gyroaveraged pitch angle scat-
tering collision operator,” which is given in the zero
Larmor radius limit by

myy 9 dg;

c<g,>-v—,{f’—‘$( nua“’) (5
This collision operator will only be used for electrons.
Thus, it may be justified to adopt this form in the zero FLR
limit. More definitions in Eqs. (2)—(4) are as follows. Here
A) and A, is the parallel and perpendicular component of
the perturbed magnetic vector potential, respectively, ¢ is
the perturbed electrostatic potential,  is the wave fre-
quency, b is the unit vector of the equilibrium magnetic
field, the subscript j denotes the particle species, F, I is the
equilibrium particle distribution function, o is the sign of
the parallel velocity vy, E is the particle energy, p=mvi/
2B is the magnetic moment, ( is the cyclotron frequency,
c is the speed of light, L=bXVS-v/, and v is the particle
collision frequency. Finally, we list the definitions for the
vector field A, the magnetic drift frequency w, and the
diamagnetic drift frequency o,

bXxVs

A=A||b-——l—|‘VT|AJ_, (6)
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mvlzl K+u VB
wg= —bX S.—mﬁ——— , (M
bXVS'VF 8
©+=10 9F/OE (8)

where k=bVb is the magnetic curvature. After substitut-
ing A= (¢/iw)b VO,

dF,
&=—4; 8E(

and the bX VS component of Ampére’s law,

C()
)Jod>+h , 9)

41
Bj=—3 bXVS-VPO B, (10)

B’

into Eq. (2), we obtain a convenient form of the gyroki-
netic equation as follows:

. o aFJ 0)*
(co—wd+zcrvu b-V)hj=—qja—E (I—E-)H", (11)
with Hj being defined as

HGEJ()((I)\P + (l)k(b) —szpq) +lO'U"b'VJO
2

ov]
~30¢ Jot+/2)B1, (12)

where we have made the following definitions:
V=¢—b, (13)

4
a)p=q—B bXVS-VP, (14)
cok=a)d——a)p N (15)
v

=7 S [ dogg Gor iy, (16)

We can now proceed to derive the system of eigenmode
equations from Eq. (11), the Ampeére’s law, and the
quasineutrality condition. After multiplying Eq. (11) with
Jog; on both sides, integrating over velocity space and
summing over all species, we obtain

7

VS 2
—Bv ALl BVO+ Y fd%w(l—Jé) - Fo
J j

47w B

2
ng;

Ly
+§w T,

dF;
-_ 3y o —2
= gfdquaE(l

+ Y f d*v g(Jowa+iov bVJo)AS,
J

Wy
~=* )JOH"
(17)

where we have used the parallel component of Ampére’s
law,
.2
> fd%q W= ——— VS|V (18)
- OV A ire ’
and the quasineutrality condition,
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> fd3vquohj= > 7’?’2w+ 2 fd3 o(1-J5) 7 g Al
J J
" (19)

We then expand the Bessel function J, in the second term
of Eq. (17), by assuming small gyroradius ordering for
thermal ions. Equation (17) becomes

|vs|?

B-V———;—B-V<D+T |vs|2 (<I>+‘I')—~ = (bX VSVP)
X (bXVS«)P
4o
= z 7 d* v g(Jowp—Jow,+iov) b'VJp)h7. (20)

Equatlons (11), (16), (19), and (20) constitute our sys-
tem of eigenmode equations for four unknown fields: hj-’, P
¥, and B,.

We now derive a quadratic form from this set of eigen-
mode equations in order to facilitate our perturbative cal-
culation of the TAE growth rate induced by energetic par-
ticles. To do this, we multiply Eq. (16) with w*B¥/c?, Eq.
(19) with 47w®¥*/c* and Eq. (20) with ®*, add them
together, and integrate along the field line. After integra-
tion by parts, we obtain

dl
[ Fow@wzy=o (21)

where
?

o(P,¥,B,)
8
= |VS|2]b-V<I>|2+F (bX VS-VP) (bXVS«)|®|?
|v3[2 5 |VS|2
- —— |®|?— —— (DY + YY)
A

w? w? ng’
+27 1By~ ;47?721‘ Rk
j

(1]
+ T ars f v g, HOY*H. (22)
J

Our derivation of Eq. (22) is similar to that of Xu and
Rosenbluth,?® but with one important difference: that we
retain full FLR effects. Note the first three terms in Eq.
(22) constitute the ideal MHD equation without compres-
sion effects (i.e., the B, term) and Kkinetic effects (i.e., the
parallel electric field term W and the nonadiabatic 4;).
The kinetic terms in Eq. (22) can be shown to be small
compared to ideal MHD terms as follows. First, we need to
solve for 4; in Eq. (11), and then to solve for ¥ in Eq.
(19). For thermal ions, the lowest-order solution to Eq.
(11) is =g F/T(V+ 0/ oP) for w>w,, where o, is
the ion transit frequency. For thermal electrons, the main
contribution to k, comes from the trapped particles, since
o<o,,, and  the  lowest-order  solution is
h,=(h,) = (gF /T )w,/w{D), where { ) denotes the
bounce average. We can now solve Eq. (19) to obtain W.
We first note that the electron contribution to the left-hand
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side can be neglected because the trapped particle popula-
tion is small. Second, the alpha particle terms in Eq. (19)
can also be dropped, since its density is assumed to be
small. Plugging A; into the equation and expanding the
Bessel function for 1on species, we obtain

V= (T/T)[—1/2(k, p))*+&/w]®, where the overcaret
denotes the average over the equilibrium particle distribu-
tion function. This expression for ¥ will be used in the
calculation of the electron collisional damping. We can
now proceed to compare the kinetic terms with the MHD
inertial term in Eq. (22). The fourth term of the Eq. (22)
is small, as compared to the MHD inertial term, since
k; p;<1 and wy/w<1. The sixth term is also small due to
the ordering k) p;<1 and w,;<®. Finally, the last term in
Eq. (22) is small since the beta value for each species is
assumed to be small.

The growth rate due to kinetic effects can now be cal-
culated perturbatively. Let o =wy+6w and ®=;+ 5D,
where w, and ®, denotes the ideal eigenfrequency and
eigenfunction, respectively; the § terms are the correspond-
ing small kinetic corrections. Using this ordering, the qua-
dratic form can be expanded and the lowest-order terms
[the first three terms in Eq. (22)] yield the following ideal
MHD equation for d>0:

|vs |2

BY —pr B-vq>0+7 | VS| 2<1>0 (beS-VP)

X (bXVS«)Py=0. (23)

The next-order equation determines 8w, which is given by

P 24
where
27 dl
- f 5 fdf‘v g, (H)*h;, (25)
dl|vs|? »
W= BT o (26)

Here N represents the kinetic contribution due to particle
species j, which includes the energetic particle, as well as
thermal electrons and ions. Note that we have only in-
cluded the contribution of the last term in Eq. (22) to dw
since we are only interested in the growth rate.

We now solve Eq. (11) for h}’. The solution for the
circulating particles is

oF; ®y
k=435 JE (1 co)
+o  Ho(k)explik0,—iol (0)]
X f dk
e gkw.—o

s (27)
where

Ho(k)= f+°° d6, exp[ —ik8.+iol (0) |H"(8), (28)

—_ 00

3725 Phys. Fluids B, Vol. 4, No. 11, November 1992

¢ JB
6C=a)cf = as, (29)
o Y
¢ JB
Ic(e)=f 04— d6, (30)
0 Y

and w, is the transit frequency of the circulating particles.
The solution for trapped particles is

VE O +V] (6) —
h0= 1 — J 1 I 9 —i Vo 9 ]
I 2sin[1,(0,)] explioly(6)] ~iaVi(6)

(31)
where
9, — —
o= [ doyar exp(~iolTy(0) ~Ty(®)),
o (32)
- e JB
T,(8)= f o 40(0—00) (33)
" B T 34
0b=wbj- W -7 (34)

Here, w, is the bounce frequency of the trapped particles,
0,, is the poloidal angle corresponding to the turning point
of the banana orbit, 8, is the bounce angle, and J is the
coordinate transform Jacobian. Finally, we list a useful
formula to be used in calculating the resonant contribution
of the trapped particles:

Res

5{5 d,(H)*h?

2 — —_
=w—cot[1b<em>1’ 3€ d6, Hy cos[Ty(6)]
b

_ 2
+H, sin[1,(6)]

=—2i ), |H}|25(0—pay—i4), (35)
P

where H= H,+ioH,, Res denotes the resonant part of the
contribution and

- 5(5 d0,(H,(0)cos] p(0,+7/2) —I,(8)]
+Hy(0)sin p(85+7/2)—I,()1}, (36)

6 __JB
Ib(6)= f (a)d—cud) U_"de. (37)
Here the bounce integration for H:, is done at the /th
trapped particle region, namely 27w /—0,, <0< 2w I+0,,

After plugging 47 into Eq. (24) for both circulating
particles and trapped particles, the growth rate y= —i éw
can be determined straightforwardly, and is given by

2w 2E dE(—q; OF/9E) (0,/wy—1) (N} +N})

= T I Bug (VSR
(38)

G. Y. Fu and C. Z. Cheng 3725



where J is the coordinate transform Jacobian, N}‘ and N}
represents the contribution due to circulating particles and
trapped particles, respectively, and

A] + o0 1
N;f:f dAf dke— [ |H* (k) |+ | H-(—k)|?]
1] — (oF

X6(ko,—w), (39)
A, e ~
Ni= dAn Y — | H.| %8 (powy+ dg—w).  (40)
! Al 1:P=—°° wb P

In Eqgs. (39) and (40), H*(Fk) is the Fourier transfor-
mation of H’(0) for circulating particles, @, is the bounce-
averaged magnetic drift frequency, and A=uBy/E is the
particle velocity pitch angle variable, with A, correspond-
ing to the trapped and circulating boundary and A, corre-
sponding to the deeply trapped particles.

1ll. NUMERICAL AND ANALYTICAL RESULTS: LOCAL
THEORY

In this section, we evaluate the growth rate of the
high-n TAE mode due to energetic particles and the damp-
ing due to thermal electrons and ions in the local limit. By
the local limit, we mean that the eigenfunction ® is ap-
proximated by the lowest-order WKB solution. In general,
the WKB solution can be written as

O=A(r)P(r,0)exp(inS), 41)

where S=§—¢q(7)0 is the WKB eikonal, 8 and ¢ are the
poloidal and toroidal angle, respectively, and r is the mag-
netic flux variable and is a measure of the mean radius. In
Eq. (41), exp(inS) describes the fast variation of the TAE
mode across the field line, and ®(r,08) describes the slow
variation along the field line and is determined by the
lowest-order WKB equation; whereas A(r) describes the
slow variation of the radial envelope for these poloidal
modes, and is determined by the higher-order WKB
equa’tion.16 In the lowest order, A(r) is constant. In this
section, we calculate the growth rate according to Eq. (38)
in this local limit. The results with correction due to the
nonlocal higher-order terms will be presented in the next
section.

Although our formulation is valid for general noncir-
cular tokamak equilibria, We consider large aspect ratio,
low-beta model equilibria®’ with shifted circular magnetic
surfaces, in order to simplify our problem. For this model
equilibrium, the ideal MHD equation [Eq. (23)] becomes
the well-known high-n ballooning mode equation:?’

9 0)[1+H*(O aq>‘2G(914e 6
%G()[-i-()]% +w*G(0)(1+4€ cos 9)

X [14+k2(8) 1@+ A [cos 8+A(H)sin ]®=0, (42)

where h(0)=s(0—0,) —A,sin 6, G(8)=1+2A"cos 6, s
=qdg/qdr, A,=—2¢"R(dP/dr)/B* A’ is the radial de-
rivative of the Shafranov shift, e=#/R, and 6 =w/w,, with
@, =05/qR being the Alfvén frequency. Finally, 6, is the
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FIG. 1. Growth rates induced by circulating alpha particles as a function
of v,/v, for s=0.6, A,=0, and kg, =1.0.

radial wave number that describes the slow radial varia-
tion. For our local limit assumed here, 9, is chosen to be
Zero.

In this work, we mainly consider fusion alpha parti-
cles. The particle distribution function is described by a
slowing-down energy distribution with uniform pitch an-
gle. We will consider the contributions from circulating
particles and trapped particles separately. The key param-
eters are v,/v, (the ratio of alpha birth speed to Alfvén
phase velocity) and kg, (the finite orbit width parame-
ter), where the Larmor radius is defined with the birth
alpha velocity. Finally, we model the alpha particle density
profile as n,(r)=n,(0)exp[—(r/L,)*], where L, is the
density scale length. To obtain the alpha particle induced
growth rate, we first obtain the numerical solutions of Eq.
(42) for @ by shooting method. The boundary conditions
are ¢( = 00)=0. After we obtain ¥, we plug it into Eq.
(38) to calculate the growth rate perturbatively. For cir-
culating particle contribution, we perform numerical inte-
gration in 6, k, and A; the energy integration can be done
analytically due to the resonant & function. For the trapped
particle contribution, we first carry out integration in 8, for
the /th trapped region, then sum up / and the bounce har-
monic p, and finally carry out the pitch angle integration.

In Sec. IIT A, we will calculate the destabilizing con-
tribution of the circulating alpha particles, while in Sec.
II1 B, we will consider the destabilizing contribution of the
trapped alpha particles. Section III C is devoted to the
damping rates of the TAE mode due to thermal particle
species. Finally, in Sec. III D, we evaluate the critical beam
beta value for the excitation of the TAE mode in the Tok-
amak Fusion Test Reactor (TFTR) neutral beam injection
(NBI) experiment.'!

A. Circulating particle contribution

We first consider the destabilizing contribution of cir-
culating alpha particles. The parameters of €=0.1, g=1.0,
L,/R=0.1, and B,(0)=2% are chosen. Figure 1 shows
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FIG. 2. Function H(k) for s=0.6, AI,=0, v,/Ua=1.0, and kgp,=1.0.

the growth rates induced by circulating alpha particles as a
function of v,/v, for parameters of s=0.6 and A,=0.0 and
kgp,=1.0. The dashed curve is obtained in the limit of zero
orbit width [i.e., the FLR and the FDW effects are turned
off in Eq. (39), but w, < kg, is kept finite]. The solid
curve corresponds to the results with finite orbit width
effects. We see that the finite orbit effects are stabilizing for
v/va> 1.1 and destabilizing for v,/vs < 1.1. This exhibits
two opposite influences of finite orbit size. On one hand,
finite orbit width has a stabilizing effect by reducing the
wave-particle interaction strength; on the other hand, this
orbit width effect has a destabilizing effect by bringing
more particles into resonance with the waves. Figure 2
shows function H* (k) with and without orbit width ef-
fects at the resonant energy. Physically, H(k) is related to

the work done on the resonant particles by the perturbed .

electrical field, and k is related to the radial variable ng—m
for the poloidal mode number m. Thus, H(k) is a measure
of the strength of the wave-particle interaction as a func-
tion of the radius. Figure 2 shows that, in the limit of zero
orbit width, H(k) peaks sharply at k=3 and k=3, reflect-
ing the fact that the TAE mode peaks at ng—m==x1/2
magnetic surfaces with a radial localization width on the
order of € r/n. However, with finite orbit width effects,
H(k) is shown to have a much broader peak, with a
smaller amplitude near k=3 (Note that an additional peak
appears at k=3 due to the poloidal mode coupling induced
by the magnetic drift orbit.) Physically, these broader
peaks mean that particles away from where mode localizes
can still interact effectively with the mode due to the finite
orbit width effects. It is clear that the destabilizing effect of
the finite orbit width is a direct consequence of the radially
localized structure of the TAE mode.

We now study the variation of the growth rate as a
function of kgo,. It is known that without orbit width ef-
fects, the growth rate is a linear function of kgo,. However,

3727 Phys. Fluids B, Vol. 4, No. 11, November 1992

ya/ 0,

2,5

FIG. 3. Growth rate induced by circulating alpha particles as a function
of kep,, for s=0.6, A,=0, and v,/v,=2.0.

this linear dependence is expected to be modified by the
finite orbit width. Figure 3 shows the growth rate as a
function of kgo,, with orbit width effects for parameters of
s=0.6, A,=0, and v,/v,=2.0. We observe that as kg,
increases, the growth rate first increases linearly, then sat-
urates at kg,=0.8, and finally decreases for kg0, > 1.0.
Note that the value of kg, that maximizes the growth rate
is on an order of unity. Naively, one would expect that
(k,pa) max is on the order of unity and (kg0,) max is On the
order of e=r/R. We note that our numerical results differs
significantly from that of Ref. 21. First, our results show
that the growth rate is maximized at kg, on an order of
unity instead of kg, <1, as implied in Ref. 21. Second, we
have shown that the growth rate eventually decreases as a
function of kgp,, for kgo,> 1, whereas the results of Ref. 21
imply a constant growth rate for kg,»T. Next, we con-
sider the variation of (Kkgo,)max @and the corresponding
(Yo/©A) max With v,/Va, as shown in Fig. 4, for parameters
of s=0.6 and A,=0. We see that (kgo,)ma, decrease as
V,/Va increases, and (¥,/@a)max is nearly constant in the
range of 0.7 <v,/v, <2.0.

Next, we study the effects of the magnetic shear s and
the curvature-pressure-gradient parameter A, on TAE sta-
bility. For s=0.6 and A,=0, the high-n TAE mode fre-
quency is about at the center of the Alfvén continuum
gap,® which corresponds to the most global radial wave
structure. As s and Ap varies, the eigenfrequency shifts
toward either the bottom or the upper edge of the contin-
uum gap, and its eigenfunction becomes more localized in
the radial space28 (or more extended in the Fourier 8
space). Figure 5 shows (Kg0g)max and (¥o/@a)max 28 2
function of s for A,=0. First, it is evident that (kgo,) max is
not sensitive to the magnetic shear. Second, the maximum
growth rate peaks at s=0.6. It has been shown® for the
A,=0 case that as the magnetic shear decreases (in-
creases) from s=0.6, the mode frequency decreases (in-
creases) toward the bottom (top) edge of the continuum
gap and the eigenfunction becomes increasingly localized
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FIG. 4. The maximized growth rate induced by circulating alpha parti-
cles and the corresponding kgp, as a function of v,/v, for s=0.6 and
A,=0.

4

in the real space. Physically, Fig. 5 indicates that the
growth rate becomes smaller as the mode becomes more
localized. This tendency is confirmed by the result of Fig.
6, which plots (V./@a), and (kgo,)may as a function of A,
at s=0.6. We see that the growth rate decreases as A,
increases, whereas (kgp,)max i nearly constant. This is
related to the fact®® that the TAE eigenfrequency shifts
downward to the bottom edge of the continuum gap as A,
increases. In particular, the TAE mode merges into the
continuum and becomes singular when A,> (A,)qn
=0.225, where (A,). is the critical value for the existence
of the discrete TAE mode. It can be analytically shown
that the growth rate tends to zero as A, approaches
(Ap)crit'

L — I
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FIG. 5. The maximized growth rate induced by circulating alpha parti-
cles and the corresponding kg, as a function of magnetic shear s for
A,=0.0 and v,/v,=2.
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FIG. 6. The maximized growth rate induced by circulating alpha parti-
cles and the corresponding kg, as a function of the pressure gradient
parameter A, for s=0.6 and v,/v,=2.

The numerical results shown above for the circulating
particles can be understood analytically in certain asymp-
totic limits. To simplify our analytic derivation, we nor-
malize function H(8) into a dimensionless form, such that

gBR
H(0)= H (6). (43)
The function H (k) and H’ is normalized in the same way
as H (k) and HI respectlvely To make analytic progress,
we consider the case of zero pitch angle. Also, we use an
asymptotic form*?® to approximate the high-n TAE solu-

tion:

®0(6) = cos(68/2)+A sin(6/2) (—T6) (44)
0 J1+ (s6—a sin 9)* °xp ’
where A=0,/Q_~0(1), T=0,0_~0(e), and

Q. = =[&*(14€) —1], with €=2.5¢ in the low beta limit.
We can then compute H(k) in the limit of zero orbit size,
and obtain

_ Al +i—k  —Al43-—
H(k)=

+ : 45
G—k)2+T2 G—k)2+T2 49

where we have made use of the fact that the secular term s8
makes a dominating contribution in the limit of " ¢1. Note
that H(k) peaks at k=1 and k=3 with a narrow width of
I'~O(e). This analytic result agrees with the numerical
result shown in Fig. 2 (dashed curve). Using Eq. (45), the
growth rate can be written into a simple form as

) el (s o35 )

where © is the Heaviside step function. This result is sim-
ilar to the results obtained by Chen.®

v 3

L g,
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We now consider the case with finite orbit width ef-
fects. We note that the gyroradius is zero for the zero pitch
angle assumed here, but the particles can deviate from
magnetic field lines due to the finite radial magnetic drift.
This drift effect is contained in the secular term of the drift
phase I.(0) in Eq. (30). To make analytic progress, we
take the asymptotic limit 1> kg, >»T and A<1. In this
limit, the secular term in (&) dominates the contribution
to the integral H(k). We may then take the asymptotic
form of I,(6) for large 6 and expand in Bessel functions:

exp[i.(0)] =Jo(20) +2 2 (—i)Ti(z8)cos(10), (47)
)

where z=0 kgp, With o =1, /v,<1. By keeping only the
principle resonance term (i.e., for k near 1y, the integral
H(k) then reduces to

o= o)

for |k| <z, where k=i—k and

H(k)=-sgn(k)|——| =} —1{,
z z z

for | k| > z. Equations (48) and (49) show that the peak of
H(k) at k=1 now has a width on an order of kgp,>T.
Thus the width of the peak is broadened by the finite orbit
width effects. This result agrees with the numerical result
shown in Fig. 2. In the limit case of 1»kg,>T, the k
integration in Eq. (38) can be carried out analytically, and
the resulting growth rate is independent of kg, or the
mode number.?! However, for finite kgo, on an order of
unity, the k integration has to be done numerically due to
the energy dependence in z and H (k). Our numerical re-
sult in Fig. 3 indicates that, as kg, increases from zero, the
growth rate first increases linearly as a function of kg, for
small kgo,, then it reaches its maximum at kg, on the
order of unity, and finally decreases for kg, > 1. The de-
crease in the growth rate for kg,>1 can be understood
analytically in the following way. After integrating in en-
ergy, the growth rate given by Eq. (38) is proportional to
the following k integral: kgo,f ,‘f’m(k,,,/k)“[H (k)T? dk. Since
H(k) scales as 1/kg, in the limit of kgp,> 1 due to the fast
drift phase 7.(0), the growth rate scales as 1/kgo, asymp-
totically for kgoo> 1.

(48)

(49)

B. Trapped particle contribution

Here we consider the trapped energetic particle contri-
bution to the growth rate of the TAE mode. As in the last
section, we study the finite orbit width effects and the de-
pendence of the growth rate on v,/va, Kgpy 5, and A, The
same fixed parameters of ¢, g, LP/R, and $,(0) are used.
First, we demonstrate the finite orbit width effects. Figure
7 shows the growth rates as a function of v,/v, with or
without orbit width effects, for 5=0.6, Ap=0, and
kgo,=1.0. In the limit of zero orbit width, we turn off the
FLR term contained in the Bessel functions and the finite
banana width term contained in the drift phase term 1,;(8)
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without orbit effects
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FIG. 7. Growth rates induced by trapped alpha particles as a function of
/vy for s=0.6, A,=0, and kg,=1.0.

in Eq. (40), but we still keep the w, and &, terms. We see
that the growth rate is always reduced by the finite orbit
width effect, in contrast with that of circulating particles.
Furthermore, there is a sharp transition in the growth rate
at v,/v, = 1.0. Physically, the transition occurs at the pre-
cessional drift resonance @,~ . Note that the precessional
drift resonance condition for deeply trapped particles is
given by kg, E=v,/v,, where E<I1 is the particle energy
normalized to the birth energy of the alpha particle. Thus,
for the parameters of Fig. 7, the precessional resonance can
be satisfied for v,/v,>1.0. We also find that the bounce
resonance contribution is much smaller than the preces-
sional resonance contribution. This result has been con-
firmed in Ref. 29. It is also borne out by the result of Fig.
8, which shows the normalized growth rate as a function of
kgp, for parameters of s=0.6, A,=0, and v,/v,=2.0. We

0.05 per

ya/ o,

o.02 [ b ]

0.01 | ]

FIG. 8. Growth rate induced by trapped alpha particles as a function of
kgp, for s=0.6, A,=0, and v,/v,=2.0.

G. Y. Fuand C. Z. Cheng 3729



2 PrrrrrTTTTrerTrrrr g 0.05
3 o o
-
e - Cd L
i » \ ]
= ” -
1.5 - 0.04
[ ,,( (Ya CoA)max 1
e 7 o
3 5 / 4
Q. <
1 k 4 0.03
& I (kepa)max ] §d
8 o -
0.5 - 0.02
[/ ]
L 4 ]
0 .. il s 3 L il a2 x 21 4 5 3 .. 0.01
0.5 1 1.5 2 2.5 3
vm/vA

FIG. 9. The maximized growth rate induced by trapped alpha particles
and the corresponding kg, as a function of v,/v, for s=0.6 and A,=0.

notice from Fig. 8 that the sharp transition occurs at
kgp,=0.5, precisely when the precessional drift resonance
begins to occur. We also see that the growth rate then
decreases rapidly due to the finite orbit width effect. The
maximum growth rate is comparable to that of circulating
particles, as shown in Fig. 3, but the growth rate is much
more narrowly peaked at kg,~0.6.

We now study the dependence of (kgo,)max and
(Yo/ @A) max ON U, /U5, as shown in Fig. 9, obtained for
parameters of s=0.6 and A,=0. We observe that the max-
imum growth rate increases with v,/v,, and the increase is
more gradual for larger values of v,/v,. On the other hand,
(kP ) max decreases with v,/v,, which agrees with our an-
alytic result of (kg0.)ax=0a/V, Finally, their depen-
dence on the magnetic shear s and the curvature-pressure-

1.0 r—rr——rr—r—r—r—r—r-r-r-r——r-r-r— 0.05
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<
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S

FIG. 10. The maximized growth rate induced by trapped alpha particles
and the corresponding kg, as a function of magnetic shear s for A,=0.0
and v,/vp=2.
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FIG. 11. The maximized growth rate induced by trapped alpha particles
and the corresponding kg, as a function of the pressure gradient param-
eter A, for s=0.6 and v,/v,=2.

gradient parameter A, are shown in Figs. 10 and 11.
Overall results are similar to those for circulating particles.

Next, we derive analytic results for trapped particle
contribution. We will demonstrate that the bounce reso-
nance contribution of the trapped alpha particles is much
smaller than the precession resonance contribution. We
first consider the limit of zero orbit width. For even bounce
harmonic p (including p=0), we obtain

T 6
ﬁgzcos(ip) § dB,,cosE[cose—{—(sG

—a sin 8)sin 8] cos(pd,), (50)
— T
H:?&oz/l exp( —2171"l)cos(5p)
.6
X § do, sin031n—2~cos(p9,,); (51)
while for odd p, we obtain 172=0 and
— T
Hfﬁozexp( —2171"1)sin(5p)
g
X 4)‘ d6, sin 6 cos 2 sin(pwy). (52)

__ It is then straightforward to demonstrate that
(H8)2>221(H1#0)2 (i.e., the precessional drift resonance
contribution is much greater than the bounce contribu-
tion) for the deeply trapped particles. For finite pitch angle
and very small T', the bounce contribution may be compa-
rable to that of precessional drift resonance. However, the
bounce contribution can be dramatically reduced by the
effect of finite banana width. Therefore, the precession res-
onance dominates for all pitch angles.
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We now consider the case with a finite orbit width
effect. To make analytic progress, we examine the limit of
deeply trapped particles. In this limit, we have shown that
Féﬂ% thus we may keep only the contribution from
the /=0 trapped particle region. After some algebra, we
obtain

[(00/@gm) *(04/©0) ] — 30/ D)
w02 {7 7P 5§ dOL1+H*(6)19}

(Ho)%,
(53)
for @4,,»wq, Where @, is the maximum precessional drift

frequency. Here Hp can be straightforwardly calculated to
obtain

‘%ZWJO( \kﬁpa 20 )
Odm

After calculating the 8 integration in the denominator by
using the asymptotic form for the eigenfunction d, Egq.
(53) becomes

Ya ZG{;) ﬂlqzﬁa( ){Jo[m]}z

(kWa)max

kepo
where  (kg0y)max=Va/qV, and G(@)=(1421%)/(4€l)
~Q(1). This analytic result for the trapped particle con-

tribution agrees very well with our numerical results [e.g.,
Fig. (8)].

(54)

, (55)

C. Damping due to thermal particle species

Here we consider the stabilizing effects due to thermal
particle species. We first consider the damping rate due to
thermal ions. We note that the thermal speed v, is, in gen-
eral, much smaller than v,, thus the vy =v,/3 sideband
resonance is dominating over the principle resonance.
Also, the finite orbit effects may be neglected since kg0,<1.
Using the results of Eq. (45), the damping rate can then be
straightforwardly derived to obtain

wl(’)N VT B(1 +x)x* exp(—x2), (56)
where x=v,/3v,. Note that we have used the Maxwellian
distribution for ions. This analytical expression agrees very
well with our numerical results. We observe that the damp-
ing rate increases rapidly with ion beta due to the expo-
nential dependence. For ¢g=1, we find y/wy>1% for
B:»2%. Therefore, the ion damping could be substantial
for moderately high ion beta value.

Next, we consider the damping rate of high-n TAE
mode due to thermal electrons. It has been shown that the
usual eleciron Landau damping is very small, since ther-
mal electron velocity is much larger than the Alfvén veloc-
ity for typical tokamak parameters. Mikhailovskii and
Shuchman,® and also Gorelenkov and Sharapov,31 showed
that the dominating damping mechanism due to thermal
electrons is the collisionality of trapped particles. Here, we
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derive the damping rate of the high-» TAE mode induced
by the collisionality of trapped electrons. We start from
Eq. (11) for electrons. After neglecting small electron gy-
roradius and substituting ¥ in terms of ¢ using the
quasineutrality condition, Eq. (11) becomes

F,
(0 —iovbV —iC)h=q, = H., (57)
with
©|VS|*m
( 200 Te+wk—wk)‘1’ (58)

where @ is the electron curvature drift frequency averaged
over the Maxwellian distribution function. Note that in Eq.
(58), the thermal ion FLR effect is kept to include the
finite parallel electric field. To solve Eq. (57), we expand 4,
in terms of the small parameter w/w,<1. The zeroth-order
equation reads as b*V4,,=0, which implies that A is con-
stant along the field lines, whereas the next-order terms
yield
F,
(w_i(m)heor“qu(He)r (59)
e

where { ) denotes the average over the banana orbit and
{C) is the bounce-averaged collisional operator, given by25

_(E\"¥?Zs+TI(E/T,) 8
<C>=2V(Te) ¢Ze/ 1_AB §d9“ BA’
(60)
with the function I1(z) being defined as
(z) =— e-zz+(1— : ) z fze-'zdt, (61)
mz 22/ Jr Jo

where v is a normalized electron collision frequency, and is
given by v=4mne*1n A/(m%?). Following Rosenbluth
et al.,25 we solve Eq. (59) in the limit of v/ <1 and obtain
an approximate solution, given by

F,

ho=a. 57 (1—¢"PE(H,), (62)
with
Deit. (—E—)m S (63)
Tos\T,)] Zg+I(E/T,)’

where §=(A—1+4€)/2¢ is the normalized pitch angle
variable and @, is the normalized bounce frequency, such
that @,=1 at £=1. In general, D is a slowly varying func-
tion of £ through &,. In the small & limit, &,=7/In(16/£).
Plugging Eq. (62) into Eq. (24), we obtain the frequency
shift due to the nonadiabatic response of trapped electrons
with collision:

B _16me zvizlnFe/w,,)E dE dg(1—¢"D5) ((H,),)?

o m2*RqT S+ < dO| VS |2®? ’
(64)

where the subscript / denotes the /th trapped region in the

infinite Fourier 9 space. Note that, in the limit of v/we<1
considered here, the dominating contribution to the damp-
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ing rate (or the imaginary part of w) comes from a small
integration region in £«1. Thus, in the integration in £, we
may treat @, as a constant and take a characteristic value
of £=£; such that Re( \/5)50—1 which gives approxi-

mately &y ~ \/v/coe The bounce-average term (H,),can be
likewise calculated asymptotically to give
H 20,(1) m JB df Ho (0)—Ho.o (
( e>1—m [Heven(6) — Heyen() ]
+Heyen () (65)

and

— ) 1
S1EO o =23 iy te) (60

where H,,., denotes the even part of H, as a function of
0=0—2ml, the subscript curv denotes the curvature part
of H and cg is a constant that depends on the value of the
magnetic shear s. For typical parameters, the first term in
Eq. (66) is greater than the second term, since I' ~e<1.
Thus we may neglect ¢, for simplicity. The corresponding
contribution from the parallel electric field term can be
similarly calculated. After integrating over £ and E and
taking the imaginary part of 6w, we finally obtain an ex-
plicit formula for the damping rate y, induced by trapped
electrons:

2 ) v

)

where I; and I, are two energy integration factors defined
as follows:

(67)

o P

Ii= J.o dZ;m VZeg+1I1(2), (68)
© e %

12=f dz 73 (2—2)* Zeg TG, (69)
0

It is instructive to note that the first term in Eq. (65)
comes from the parallel electrical field, and is proportional
to (kaos)z, whereas the second term comes from the cur-
vature drift of trapped electrons, and is independent of the
mode number. This damping rate given by Eq. (65) is
similar to that of Rosenbluth,*? and also Gorelenkov and
Sharapov.’! However, the logarithm scaling is different
from that of Ref. 31. The difference comes from how the
bounce-average term (H,(0)) is calculated. Gorelenkov
and Sharapov’! obtained a § logarithm scaling by dropping
the first term in Eq. (66), and keeping only the second
term. Our —3 scaling is obtained by keeping the first term
in Eq. (66), which is larger than the second term for typ-
ical parameters.

D. Application to the TFTR NBI experiment
Here we apply our formulation to the TFTR experi-
ment by Wong et al.'' Parameters for this experiment are
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FIG. 12. The critical beam beta value versus kg, for two values of A, at
r=30 cm for the TFTR TAE experiment.

R=240 cm, a=75 cm, B=1.0 T and injected beam parti-
cle energy E,=110 keV. We consider the stability of the
TAE modes at r=30 cm, where ¢=1.32, 5=0.48,
n,=27%x10"% cem~% T,=1.1 keV, B,=B=12%,
Zg=2.5, beam density scale length L,=18 c¢m, and
vp/va=1.1. For the beam particle distribution, we take a
slowing-down energy distribution with zero pitch angle.
Thus, only circulating energetic particles are considered.
Figure 12 shows the critical beam beta values versus
kg, for two values of A, The results are obtained by
balancing the growth rate induced by beam particles with
the sum of ion Landau damping and collisional trapped
electron damping. The continuum damping is assumed to
be negligible. We find that the collisional trapped electron
damping dominates over the ion Landau damping due to
relatively small ion beta and large electron collisional fre-
quency. The ion damping rate is calculated to be
v/@=0.1%, while the electron damping rate is
Yo/ 0=[3.9(kgo,)*+1.45]1%, where we have converted
kgps into kgp;, for A,=0. This collisional electron damping
is much larger than the usual collisionless electron damp-
ing of /0 =¢’Bwa/v,=0.27%. We note that the electron
damping increases quadratically as a function of the mode
number. On the other hand, the beam-induced growth rate
increases initially for small kg0, but saturates at finite
value of kgo,=1.0. Thus, the critical beam beta increases
as a function of mode number for a finite value of kgp,. In
particular, for a toroidal mode number n=2 that corre-
sponds to kg,=0.6, the critical beta is 0.11%. The effect
of the finite pressure gradient (A,=0.07) increases the
critical beta to 0.2%. This range of the critical beta value is
consistent with the experimental estimate of 8,~0.5%.

IV. NONLOCAL THEORY

Here, we consider the energetic particle effects in the
nonlocal limit and take into account the slow variation of
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the envelope function A(r). We start from a quadratic
form expressed in the real space. Equation (11) becomes,
in the real 8 space,

bw 2wSJ dO dp difdvg(H)*H?
o ocfJdodpd| VP

where ~ denotes functions in the real space and t=ng is
the radial variable. Note that in the real space the mtegra-
tion domam 1n 8 is 2. Following Zonca and Chen,'® we
write ®= 3 5d (t)exp(ing—ij@) and assume the poloi-
dal harmomcs 5 (2) to have the form 5D (£)
—A(t)6¢>(tt—j), where <I>(t t—j) is a function of a fast
variable t—j and a slow variable ¢, while A(#) is an enve-
lope function of the slow variable only. In the spirjt of
ballooning representation, the fast varying function 6P (¢,¢
—J) is written in terms of its Fourier transform,

(70)

A + o . ot
8P (tt—j)= f do’ e~ =D (1,0"). (71)
After summing over j, we obtain an alternative expression
for @, given by

O= 3 2me™=10+2m) 4( 1) (1,0+27p), (72)

p

where p is an integer to be summed from — o to - 0.
After plugging Eq. (70) into Eq. (68) and summing over
p, we obtain a formula for the nonlocal growth rate %,
induced by energetic particles:

P _f§j|A (1) |%dt No(1,6;)
@ S2|A()|2dt W(86,)

(73)

where N, and W are given in Egs. (25) and (26). Note
that in Eq. (71) the integration domain in 8 is infinite due
to the summation of p, and 6, is a function of ¢ to be
determined. To solve A(t), we express A(?) in the eikonal
form A(t) =exp(if6,dt). Zonca and Chen'® found that the
zeroth order 0, satisfies the local dispersion relation as
follows:

F(0,64,5,4,) =0, (74)
whereas the next order of 8, determines 4(#) to be
1 t - T
A(t)=msin< | ek(a),t')dt'—i—z), (75)

where ¢, is one of the two turning points of the local dis-
persion. It is instructive to make Eq. (59) more transpar-
ent by exploiting the relation W (z,0,) < dF/3a°, Eq. (59)
then becomes

w
?azl f dek?a(t,ekL (76)
T Jo
where v,(,6;) is the local growth rate given by Eq. (24).
Note that we have considered the sin? term in Eq. (71) has
fast variation in 0, as compared with that of y,(¢,6;) in the
limit of #€> 1, so that the sin’ can be effectively replaced by
1/2. From Eq. (74), we see that the nonlocal growth rate
equals the local growth rate averaged over 6,. Numeri-
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cally, we find that the nonlocal growth rate induced by
fusion alpha particles is smaller than the local growth rate
evaluated at 6,=0.

V. DISCUSSIONS AND CONCLUSIONS

We have developed a perturbative formulation for the
stability of a high-n TAE mode in the presence of Alfvénic
energetic particles and fusion alpha particles in tokamak
plasmas. Our formulation includes the destabilizing effects
of energetic particles and stabilizing effects of thermal elec-
tron collisional damping and thermal ion Landau damp-
ing. The continuum damping can also be self-consistently
included by taking into account the two-dimensional wave
structure of the TAE mode. For energetic particles, full
finite Larmor radius effects and the main drift orbit width
effects are retained by employing a gyrokinetic equation,
whereas for thermal ions, the lowest-order FLR terms are
kept in the calculation of the parallel electrical field which
is important for the collisional electron damping. The con-
tinuum damping can also be self-consistently included, by
taking into account the two-dimensional wave structure of
the TAE mode.

We have studied extensively the parameter dependence
of the growth rate of the TAE mode induced by fusion
alpha particles in the local limit (i.e., in the limit of trans-
lational invariance in the ballooning representation). In
this local limit, the growth rate induced by circulating al-
pha particles is found to increase linearly with the toroidal
mode number #n for small kg ,<1, and decrease as 1/n for
large kgo,> 1. The maximum growth rate occurs at kgp, on
an order of unity, and is nearly constant for the range of
0.7 <v,/vas <2.5. The value of the maximum growth rate
due to the circulating alpha particles is approximately
given by (Yo/®) max =~ — 3¢°rB., where the prime denotes
the derivative with respect to the plasma radius ». On the
other hand, the trapped alpha particle contribution to the
growth rate is dominated by the precessional drift reso-
nance. The bounce resonance contribution is negligible.
The growth rate induced by the trapped alpha particles
peaks sharply at kgp, ~vs/qv,, Where the precessional drift
resonance occurs for the most energetic particles. The
maximum growth rate due to the trapped particles is given
BY (Va/@) ax = 26T G 1B I3 (0a/ q00)-

The effects of the finite plasma beta are considered. We
find that the alpha particle destabilizing contribution is
reduced by the effects of finite pressure gradient. In partic-
ular, the growth rate induced by alpha particles vanishes as
the pressure gradient parameter A, approaches the critical
value (A,).y, where the TAE mode begins to merge into
the Alfvén continuum.

The global wave structure is taken into account. In the
global theory, the growth rate induced by alpha particles
equals the O -averaged local growth rate, and is usually
smaller than the local growth rate evaluated at 6,=0. Fur-
thermore, the continuum damping can be included in the
global theory. In order to drive the TAE modes unstable,
the destabilizing contribution of energetic particles must
overcome the thermal ion Landau damping, the electron
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collisional damping, and the continuum damping. As an
example, we consider the critical alpha beta for the Inter-
national Thermonuclear Experimental Reactor®® (ITER)
parameters, taking all the damping mechanisms into ac-
count. We take the parameters of B=4.85 T, R=600 cm,
and a=215 cm, and consider the following local values:
r=60 cm, g=1.0, s=0.6, n,=10" cm™3, T,=10 keV,
T;=10 keV, Z4=1.0, and the alpha particle density pro-
file is na(r)=na(0)exp[—(r/La)2] with the scale length
L,=90 cm. Using Eq. (56), we find the ion Landau damp-
ing due to deuterons and tritons is ¥/ =0.71%. The elec-
tron collisional damping is evaluated using Eq. (65) and is
Yo/ (%) =0.33 (kaoa)2+0.23, where we have assumed
zero pressure gradient. In the Jocal limit, we find the crit-
ical alpha beta for excitation of the high-n TAE mode is
B,:(0)=0.5%, and the most probable mode number to be
excited is n=~6. In the nonlocal theory, the critical beta
value is increased to 8,.(0) =1.0% for the local parame-
ters used here. The critical beta value will be further in-
creased due to the finite pressure gradient effect and the
continuum damping.

In conclusion, we have presented a comprehensive for-
mulation for the stability of high-n TAE modes by taking
into account the destabilizing effects of energetic particles
or fusion alpha particles and the stabilizing effects of ther-
mal ion Landau damping, electron collisional damping,
and the continuum damping. The alpha particle contribu-
tion to the growth rate as a function of kg, has a maxi-
mum at kg, on an order of unity. For ITER-like param-
eters, the critical alpha beta 3,,.(0) is on an order of 1%.
The detailed parameter studies of the TAE stability for the
planned TFTR deuteron-triton (DT) experiment** and
for the ITER will be the subject of a future paper.
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