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The TERPSICHORE three-dimensional linear ideal magnetohydrodynamic (MHD) stability
code [ Theory of Fusion Plasmas, Proceedings of the Joint Varenna—Lausanne International
Workshop, Chexbres, Switzerland, 1988 (Editrice Compositori, Bologna, Italy, 1989), p. 93;
Controlled Fusion and Plasma Heating, Proceedings of the 17th European Conference,
Amsterdam, The Netherlands (European Physical Society, Petit-Lancy, Switzerland, 1990),
Vol. 14B, Part II, p. 931; Theory of Fusion Plasmas, Proceedings of the Joint Varenna—
Lausanne International Workshop, Valla Monastero, Varenna, Italy, 1990 (Editrice
Compositori, Bologna, Italy, 1990), p. 655] has been extended to the full MHD equations. The
new code is used to calculate the physical growth rates of nonlocal low-n modes for / =2
torsatron configurations. A comprehensive investigation of the relation between the Mercier
modes and the low-# modes has been performed. The unstable localized low-n modes are found
to be correlated with the Mercier criterion. Finite growth rates of the low-r» modes correspond
to finite values of the Mercier criterion parameter. Near the Mercier marginal stability
boundary, the low-n modes tend to be weakly unstable with very small growth rates. However,
the stability of global-type low-r modes is found to be decorrelated from that of Mercier
modes. The low-n modes with global radial structures can be more stable or more unstable

than Mercier modes.

I. INTRODUCTION

With the resurgence of interest in stellarator confine-
ment systems, extensive theoretical work has been done on
ideal magnetohydrodynamic (MHD) stability of three-di-
mensional (3-D) stellarator plasmas.'~ One of the main fo-
cuses of the work is to investigate the relation between low-n
modes and Mercier modes,*® where # is the toroidal mode
number. These ideal MHD modes impose a stability limit on
the plasma beta value, where beta is the ratio between the
plasma energy and the magnetic field energy. It is natural to
ask which type of mode gives a more stringent stability limit.

Mercier modes are localized to any magnetic rational
surface within the plasma. Their stability can be determined
by the Mercier criterion® for a given magnetic surface. It is
also known that low-» ideal MHD modes are often fairly
localized around the rational surfaces in stellarators. One
may ask whether low-# modes are unstable when the Mer-
cier criterion indicates instability, or vice versa. For exam-
ple, when the: = 0.5 magnetic surface is unstable to Mercier
modes, is the (n,m) = (1,2) mode unstable, too? Here ¢ is
the rotational transform of the magnetic field line and n/m is
the toroidal/poloidal mode number.

In earlier work, Gruber et al.* and Merkel ef al.> com-
pared unstable regions and beta limits for low-# modes and
Mercier modes for helically symmetric equilibria, using
their helically symmetric version of the ERATO stability
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code,'® namely HERA.!' It was found that when low-n modes
were unstable, the Mercier modes were also unstable at the
corresponding magnetic rational surfaces. Sugama and Wa-
katani® studied the nature of Mercier modes and low-n
modes more precisely, but for a one-dimensional model.
They found that the growth rate of low-n modes approached
the analytic growth rate of Suydam modes (or Mercier
modes) as the mode number increases, with the mode heli-
city fixed. It was also found that the growth rate curves of
both Mercier modes and low-n modes as functions of the
plasma beta were very flat near the critical beta value. More
recently, Dominguez ef al.” extended these comparisons to
3-D / =2 torsatron equilibria. They found that the low-n
modes corresponding to resonant surfaces unstable to Mer-
cier modes were also unstable in most cases studied and that
the Mercier criterion imposes a slightly lower critical beta.
In their calculations, the Mercier criterion was evaluated in
fully 3-D equilibria, but the low-n modes were computed
using the stellarator expansion method,'*'* which reduces
the problem to two dimensions by averaging over the fast
helical variations of the magnetic fields. Nakamura et al.®
applied a more consistent method using the same stellarator
expansion code, STEP,' to calculate both the equilibrium
and the stability of low-n modes and Mercier modes. A more
definite correlation between the low-n modes and Mercier
modes was found. The low-n modes were predicted to be
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unstable whenever Dy, < — 0.2, where D,, is the Mercier
parameter, whose shear-squared term is normalized as 1/4.

Most of the previous work was not fully three dimen-
sional. The stellarator expansion method was used in study-
ing the low-n modes, which is only valid in the limit of large
aspect ratio, large number of field periods, and planar mag-
netic axis. It is of interest to see whether a fuily 3-D calcula-
tion could modify some of the results, Recently, efficient 3-D
ideal MHD stability codes for nonlocal modes have become
available.'>'® A few examples of fully 3-D studies of low-n
modes and Mercier modes have been given.'*?° However, a
comprehensive study of the relation between low-# modes
and Mercier modes is still lacking for fully 3-D calculations.

In this work, we extend previous work to a fully 3-D
calculation and systematically compare the MHD stability
of low-n modes with those of Mercier modes for a sequence
of / = 2 equilibria. The equilibria used were calculated with
the VMEC 3-D code.?"?? The Mercier criterion is evaluated
in Boozer coordinates.?® To facilitate our calculation of low-
n modes, we extend the original version of the TERPSICHORE
3-D ideal MHD stability code'>" to the full MHD equa-
tions. In the previous versions of the TERPSICHORE code, the
incompressibility condition V»£ =0 was imposed, and a
model kinetic energy term was adopted. Another 3-D ideal
MHD code,'®'® namely CAS3D, ' also used the same model.
This model reduces the MHD equations to only two compo-
nents of the perturbed plasma displacement vector. The sta-
bility marginal points are unchanged, but the physical
growth rates cannot be calculated. This limitation is elimin-
ated in our new version of the TERPSICHORE code. Because
we concentrate on the relation between the Mercier modes
and internal low-n modes in this paper, we exclude free
boundary modes from the analysis, which can impose more
restrictive stability limits for global-type modes,?*?*

The paper is organized as follows. In Sec, II, we skeich
the extension of the original version of TERPSICHORE to the
full MHD model and give benchmark results. In Sec, I11I, we
present applications of our code to fully 3-D geometry and
present the numerical methods. Section IV is devoted to the
studies of low-7 modes and Mercier modes. Finally in Sec. V
we give conclusions.

Il. THE TERPSICHORE LINEARIZED FULLY IDEAL MHD
CODE

A. Description of the code

The new TERPSICHORE code solves the linearized ideal
MHD equations in variational form for 3-D stellarator con-
figurations, The linearized MHD equation can be expressed
in the variational form:

SW, + W, — 0*SW, =0, (1)

where W, is the perturbed potential energy of the plasma,
SW, is the perturbed magnetic energy in the vacuum region
that surrounds the plasma, — w’8W, is the perturbed kinet-
ic energy of the plasma, and w is the frequency of the pertur-
bation. These terms can be written as
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sW, __fffdi*x[c2+rplvg[2
— D|£&Vsf’], (2)

5w, _—.f”dmvaP 3
8Wk=?fffd3xm§lz, 4)

with the vector
JX Vs

C=VX(£XB)+ Vs (£+Vs) (5)
and the coefficient
D 2(jXVs)(BV)Vs , (6)
[Vs}*

where p is the plasma mass density, £ is the perturbed plasma
displacement vector, I" is the adiabatic index, p is the plasma
pressure, s is the magnetic flux variable, B is the equilibrium
magnetic field, j is the equilibrium plasma current density,
and A is the potential of the perturbed magnetic field in the
vacuum region. The equilibrium is obtained with the vMEC
3-D code and is mapped to Boozer coordinates, for which
the magnetic field lines are straight and the Jacobian of the

coordinate transformation g is proportional to 1/B2 The
displacement vector £ is decomposed in the following way:

£ =\gE* VO XV + [ (BXVs)/B?] + uB, (N

where £ ¢ = £Vs is the normal component, 7 and g are two
components in the magnetic flux surfaces, and 6 /¢ is the
poloidal/toroidal angle variable. These three components
are expanded in a truncated Fourier series

£°(s0,0) = 3 & (s)sin(m,0 — mé + A), (8)
[}

n(s,8,6) = > n,(s)cos(m,@ — n, + A), (%)
¢

K(6,6) = 3 p,(s)cos(m, 0 — n,¢ + A), (10)
£

where subscript / denotes the / th Fourier componentand A is
an arbitrary phase factor. The boundary conditions at the
magnetic axis s = 0 are regularized by the transformation
£,(s) =5%€,(5). Piecewise linear finite elements are used to
represent £, (s), and piecewise constant elements are used to
represent 77, (s) and u, (). After the integrationin 8, ¢, and s
is carried out, the energy principle reduces to the matrix
equation

Ax = Bx, (1)
where & is the potential energy matrix, ﬁ is the kinetic
energy matrix, x is the eigenfunction, and »? is the eigenval-
ue. In the eigenvalue problem, negative eigenvalues corre-
spond to unstable modes. The matrices « and & have block
diagonal structures. This matrix equation is solved with an
iterative scheme.!®
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B. Benchmark of the code

We first compare the stability results of our code with
those of other known results for two-dimensional (2-D)
analytic Solov’ev equilibria.”® This tokamak equilibrium is
described by the poloidal flux function

v, (R?Z? + (R2—R3)2>
@R*\ E? 4 ’
where WV, is the total poloidal flux within the plasma, R and
Z are the cylindrical coordinates, R, is the radius of the mag-
netic axis, a is a measure of the minor radius, and E is the
elongation of the plasma flux surfaces. The equilibrium is
fully defined by three parameters: the aspect ratio Ry/a,
elongation E, and the safety factor on the axis g(0). Here we
consider the equilibria with Ry/a = 3. Table I lists the nor-
malized eigenvalues ¥/ obtained with our code and two
other codes, ERATO (Ref. 10) and MARS,?® for three Solov’ev
equilibria, where > = — w? and the normalizing Alfvén
frequency w, is defined as w, = V,, /R, with V, being the
Alfvén phase velocity, and n is the toroidal mode number.
Our results were obtained by extrapolating to zero radial
mesh size and by using a sufficient number of Fourier modes.
Fixed boundary conditions were used. We note that our re-
sults agree very well with those of the ERATO and MARS
codes.

We now consider a straight /=2, M =35 stellarator
with helical aspect ratio 4, = 2ur,/L = 1.51,'>*” where r,
is the mean radius of the plasma boundary and L is the length
of the equilibrium period. This equilibrium is nontrivial for
benchmarking of our code since there is mode coupling be-
tween different toroidal mode numbers in Boozer coordi-
nates, just as in fully 3-D equilibria. The stability results of
an n = 1, m = 2 mode have already been computed®’ with
the BETA nonlinear 3-D code, the HERA code, and the STEP
code. Figure 1 shows the normalized eigenvalue — w*/w?
as a function of the rotational transform on the magnetic axis
L, from various codes for a case with volume-averaged beta
B = 3%. We observe that our results agree relatively well
with the others. The small discrepancy in the eigenvalues
may be attributed to the different ways of specifying the
equilibria used in these computations. In our calculation, the
equilibria were computed with the VMEC code with a pres-
sure profile p(s) =p(0)(1 —5s) and a density profile
p(s) = p(O)\/l — s, and the adiabatic index was taken to be
I’ = 5/3. The radial flux variable s was chosen proportional
to the toroidal flux ®. The radial resolution and the number
of Fourier modes were sufficient to obtain converged
eigenvalues.

Y(R,Z) = (12)

TABLE 1. Normalized growth rates ¥/w, from the ERATO, MARS, and
TERPSICHORE codes for Solov’ev equilibria.

n q(0) E ERATO MARS TERPSICHORE
2 0.3 2 1.26 1.26 1.25

2 0.7 2 0.284 0.284 0.284

3 0.75 1 0.0541 0.0533 0.0538
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FIG. 1. Growth rates for an n = 1, m = 2 instability in a straight /=2,
M = 5 helical system obtained with the BETA (dashed line), HERA (broken
line), STEP (solid line), and TERPSICHORE (solid dots) codes as a function
of the rotational transform at the magnetic axis.

Ill. APPLICATION TO FULLY 3-D STELLARATOR
EQUILIBRIA

A. Equilibrium

We consider / = 2 torsatron configurations with zero
net toroidal current. Each equilibrium is specified by the
number of field periods ¥, the plasma boundary, the pres-
sure profile, and the volume-averaged beta 5. We define our
plasma boundary in cylindrical coordinates (R,Z) with a
truncated Fourier series

R(0,¢) =2, R, cos(mB—nN,,qﬂ), (13)
Z(0¢)=2%,,,2Z,,, sin(mf —nN,é). (14)

We note that the zero beta equilibrium is solely determined
by the plasma boundary for fixed V,. The equilibrium can be
varied by changing these boundary Fourier coefficients.
Physically, the coefficient R, is a measure of the radius of
the magnetic axis, R,, is a measure of the plasma mean
radius, R, , and Z| | control the strength of the main helical
field, and R, , and Z,; can control the position of the mag-
netic axis. We define our equilibrium sequence, using the
following set of Fourier coefficients: Ry, R;, = — Z, 4,
andR,, = — Z,,,withR,, =0.22 and Z, , = 0.25 being
fixed. Other coefficients are chosen to be zero. Table 11 lists
the set of Fourier coefficients for the equilibria to be studied.
The pressure profile is prescribed to be p(s)
= p(0) (1 — 35* + 25°) with vanishing gradient ats = O and
s = 1, except when otherwise mentioned. The radial variable
is chosen to be proportional to the toroidal flux.

The VMEC code was used to obtain every equilibrium
used in our calculations. We chose a set of Fourier modes
with O<m<5 and — 3N,<n<3N, and used up to 96 radial
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TABLE II. Plasma boundary Fourier coefficients and number of field per-
tods for our equilibrium sequence.

Equilibrium Roo R, R,, N,
N 2.1 -~ 0.07 —0.01 12
A 1.8 — 0.07 - 0.01 12
B 1.5 ~ 0.07 - 0.01 12
c 2.1 - 0.07 —0.02 12
D 2.1 —0.06 —0.02 12
E 2.1 —0.07 ~0.02 18
F 2.1 — 0.07 — 0,02 10

grid points. We found this resolution to be sufficient to ob-
tain converged equilibria.

B. The tunable integration method

It is well known that the piecewise finite element meth-
od leads to quadratic convergence for the eigenvalue of a
second-order differential equation. Indeed, our code ob-
serves this known scaling. The original version of the
TERPSICHORE code used the so-called finite hybrid element
method (FHM),” where the radial integration was carried
out with a midpoint rule. FHM is very well tailored to ideal
MHD siability problems and has fast radial convergence.
But this method destabilizes the stable shear Alfvén continu-
um, whose eigenvalues often mask the small physical eigen-
values. This destabilization can be solved in a cumbersome
way by adding a large number of grid points or by accumu-
lating grid points around each of the resonant surfaces pres-
ent. We solve this problem with the tunable integration
method (TIM),?® which has been implemented and tested in
our code. TIM only differs from FHM in the way the nu-
merical radial integration is performed. It uses the following
integration scheme:

Sit 1

I(s)ds = (s, -—S,-)[(l —a)I(__Sf +2‘9i+1)

5

+211s) +1(s,-+1)]], (15)

where I(s) represents the integrand in the energy principle,
the subscript s; denotes the value of s at the /th grid, and e is a
parameter to be varied from O to 1. Note that ¢ = 0 (mid-
point rule) corresponds to the FHM, a = 1/3 (Simpson’s
rule) corresponds to the strict finite element method, and
a = 1 (trapezoidal rule) corresponds to the finite-difference
method. The basic ideal of TIM is to control the total discre-
tization error by varying the numerical integration error
through the continuous parameter a.

Figure 2 shows the eigenvalue w?/w? versus the square
of the radial mesh size for different values of the parameter
a, for equilibrium 4 with § = 1.58%. The calculation was
done with uniform radial grid points. It is clear that conver-
gence is quadratic for every value of the parameter «. Note
that the eigenvalue with @ = 0 (i.e., FHM) converges from
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FIG. 2. Eigenvalues of an n = 3 unstable mode as a function of the radial
mesh size squared A ? for three values of the integration parameter ¢, for the
equilibrium A4 at B = 1.58%.

below (the unstable side), and the one with o = 1/3 con-
verges from above (stable side). A smaller value of @ = 0.1
produces the best convergence from above. It should be not-
ed that all the eigenvalues converge to the same value. We
now show an example of destabilization of the continuum
modes by the FHM (corresponding to ¢ = 0). We consider
the equilibrium 4 with 8= 1.02%, for which the n =3
mode is weakly unstable. Figure 3 shows (2) the first most
unstable mode and (b) the second most unstable mode.
Since the mode was localized around the ¢ = 3/4 rational
surface, half of the total 48 grid points were accumulated
around that surface. We see that the first mode has a singular
structure in the eigenfunction around the rational surface
t =1, signifying a continuum mode destabilized by the
FHM. The second mode has a regular mode structure
peaked at the s = 3/4 surface and is physical, with its eigen-
value — w?/w} = 1.12X 10~ * masked by the first unphysi-
cal eigenvalue — w’/w} = 3.05Xx10~* However, when
TIM is applied with « = 0.05, the most unstable mode is
found to be physicaily the same as the second most unstable
mode found with the FHM, but with an eigenvalue
— w*/wh = 7.63X 1073, This means that the numerically
unstable continuum mode is restabilized by our new method.
We conclude that the tunable integration method is useful
for obtaining fast convergence without numerical destabili-
zation of the singular continuum modes.

C. Convergence in the number of Fourier modes

Having considered the convergence in the radial direc-
tion, we now discuss the convergence in the poloidal and the
toroidal domains. Since Fourier decomposition is used in the
angle variables, we discuss the convergence in the number of
Fourier modes. Before going into details, we first discuss the
mode selection. In 3-D geometry, the toroidal mode number
is no longer a good “‘quanium number,” unlike in the case of
axisymmetric tokamak equilibrium. Therefore, modes with
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FIG. 3. The radial displacement functions &,(s) of (a) the most unstable
n = 3mode and (b) the second most unstable » = 3 mode for equilibrium A4
at 8 = 1.02%. Different Fourier components are marked by (#,m), where
n/m is the toroidal/poloidal mode number.

different toroidal numbers n are coupled to each other.
Nonetheless, the stellarator geometry still has some degree
of symmetry, i.e., going around in the toroidal direction, the
configuration repeats itself ¥, times. As a consequence, the
modes with toroidal number 7 are only coupled to modes
with#, n + N,, n +2N,, and n & 3N, etc. There are a to-
talof N,/2 families { (¥, — 1)/2 families] of modes for con-
figurations with even (odd) number of field periods, exclud-
ing the modes that describe the equilibrium state. Each
family has to be computed in order to have a complete pic-
ture of the MHD stability behavior. Furthermore, there is
usually more than one unstable eigenmode with the same or
different dominating Fourier component (#,m) within each
family. For our purpose, we will only consider four families
of the mode with 1<n<4 as the dominating toroidal number.
Once the main 7z is chosen, there is still a question of mode
selection, i.e., how to select the poloidal modes for each .
We have found that, for / = 2 torsatrons, the dominating
poloidal harmonic of an unstable eigenmode is approximate-
ly m + 2k for the toroidal sidebands 7 + kN, where k is an
integer and (7n,/m) is the main component. Thus, we distri-
bute poloidal modes evenly around these dominating
m 1 2k. This way of mode selection was found to be nearly
optimal.

We now discuss the behavior of the convergence in the
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number of Fourier modes. We consider the n = 3 family for
our standard equilibrium S. Figure 4(a) shows the rota-
tional transform profile ¢ (s) at 8 = 2.36%. Since the ration-
al surface ¢ = 3/4 is in the magnetic hill region for the corre-
sponding vacuum state, we expect the n = 3 family of the
eigenmodes to be unstable, with (3,4) as the dominating
Fourier component. Indeed, it was found to be unstable,
with its eigenmode structure localized around the ¢ = 3/4
rational surface as shown in Fig. 4(b). Figure 5(a) shows
the eigenvalue — w?/w? as a function of 1/N, where N is
the number of Fourier modes used. Recall that the conver-
gence depends on ways of selecting Fourier modes for a
given N. Our selection for N = 24is — I<m<10forn =3,
0<m<S5 for n= —9, and 4<m<9 for n=15. From 24
modes to 36 modes, we increased NV by adding two modes to
each n, and from 36 modes to 54 modes by adding three
modes to each of the toroidal sidebands n + 2. The result
was obtained with 48 uniform radial grid points and with the
integration parameter @ = 0 for two different values of the
adiabatic index I'. We observe in Fig. 5(a) that the conver-
gence with I = 5/3 is slower than with I" = 0. In particular,
the eigenmode is stable for 24 modes. A more dramatic ex-
ample is shown in Fig. 5(b) for equilibrium C. The unstable
eigenmode is very global with strong poloidal mode cou-
pling, as shown in Fig. 6(a), in contrast with the less global

(@)
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] 1 1 1 1 ] 1 L

0 01 02 03 04 05 06 07 08 09 10
S

~0.10

-015

radial displacement

-0.20

! 1 Il I 1 s

0 0102 03 04 05 06 07 08 09 10
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FIG. 4. The equilibrium rotational transform profile and the corresponding
n = 3 unstable mode: (a) profile of the rotational transform ¢(s) and (b)
the radial displacement functions of an unstable » = 3 mode for the equilib-
rium A4 at 8= 2.36%.
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FIG. 5. Eigenvalues of unstable # = 3 modes as functions of 1/N for two
values of the adiabatic index I” = 0 and " == 5/3, where N is the number of
Fourier modes: (a) the eigenvalues obtained with the equilibrium A4 at
[ =2.36% and (b) the eigenvalues obtained with the equilibrium C at
B =3.48%.

mode of Fig. 4(b). The corresponding rotational transform
profile of the equilibrium is shown in Fig. 6(b). For I" =0,
the eigenvalue is nearly converged, but for I = 5/3 there is
no sign of convergence up to 66 modes, The reasons for the
different convergence behavior are twofold. First, the mode
spectrum is broadened by the coupling of shear Alfvén
waves and sound waves due to nonzero I'. Second, the V£
term in the energy principle cannot be made as small as it
should be owing to the insufficient number of modes result-
ing from mode coupling. Stated more explicitly, the com-
pression term cannot be made zero for a finite number of
Fourier modes. As a consequence, unstable modes may be
stabilized numerically, as shown in Figs. 5(a) and 5(b). In
order to show the size of the error in the compression term,
we have calculated the correction of the eigenvalue due to
the compression term by dropping the u component in the
kinetic energy term. The V- should then be zero since now
only this term contains the component x. Numerically this
term is not exactly zero for a finite number of Fourier modes.
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FIG. 6. (a) The radial displacement functions of an unstable n = 3 mode
obtained with 36 Fourier mades for the equilibrium C at 8 = 3.48% and
(b} the corresponding rotational transform profile of the equilibrium,

Figure 7 shows the correction of the eigenvalue as a function
of 1/N for the equilibrium of Fig. 5 with T" = 5/3. We see
that the correction decreases by two orders of magnitude
when A increases from 24 to 60. Therefore, it is extremely
important to have a sufficient number of Fourier modes in
order to obtain convergence in 3-D MHD stability calcula-
tions for stellarator plasmas. For this reason, we choose
I' = 0 for all our subsequent calculations to save computa-

O5F

Q I} i ] 1
0 10 20 30 40

N (x1072)

FIG. 7. Correction to the eigenvalue w?/w} due to the nonzero compres-
sional term being a function of 1/N for the same # = 3 unstable mode as in
Fig. 5.
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tional time, since then fewer Fourier modes are needed for
convergence. We note the growth rates obtained with ' = 0
are somewhat larger than with I’ = 5/3.

D. The Mercier criterion in Boozer coordinates

The Mercier criterion is a sufficient condition for modes
localized around a rational flux surface. We use a convenient
form derived by Bauer ef al.*® In Boozer coordinates, this
form of the criterion reduces to

Dy >0
for stability, where

(¥"®')2D,, =(ﬂ_<\/§j-B>)2_\/§Bz< 1 >

2 |Vs|? Vs|?

X(-—P'V” +p12<%>

+— < (Jgi'B)? ))
VgB? \ |Vs|?

where the flux averageis (-**) = ff(--*)d0 d¢/47*, ¥ and
@ are the poloidal and toroidal magnetic flux function, re-
spectively, Vis the volume of the plasma enclosed by the flux
surface labeled with s, and a prime denotes the derivative of a
flux surface quantity with respect to s. Note that we have
normalized the Mercier parameter D, in such a way that the
shear-squared term is 1/4. We have also imposed the condi-
tion of zero net toroidal current and chosen the radial vari-
able s to be proportional to ®. Finally, the parallel current
term can be evaluated through the quasineutrality condition
and the MHD equilibrium force balance equation:

BV(gi'B) = —p'(BXVs):Vifz. (18)
This form of the Mercier criterion, which has been imple-
mented in our code, is equivalent to a form derived from the
ballooning mode equation.?® It would be instructive to com-
pare the stability of the Mercier modes with that of balloon-
ing modes, but this is beyond the scope of our paper.

(16)

(17)

IV. IDEAL MHD STABILITY OF LOW-N MODES AND
MERCIER MODES

A. Numerical results

In this section, we compare the stability of low-n modes
with that of Mercier modes. The Mercier stability is deter-
mined at each flux surface according to Eq. (17). The stabil-
ity of low-n modes is determined by our new TERPSICHORE
3-D stability code. Note that in this section, we have chosen
I" = 0 to calculate the eigenvalue. Consequently, the values
of w*/wi are somewhat larger than the magnitudes that
would result from the conventional definition with I' = 5/3.
In the computation of low-n modes, small growth rates of
w?/wi ~107* were obtained by extrapolating to zero grid
size. Up to 96 radial grid points were used. For the poloidal
and toroidal resolution, we chose 36 Fourier modes, of
which there are 16 poloidal modes for the main n, and ten for
each of the two toroidal sidebands n + N,. We found this
mode selection to be sufficient for the accurate determina-
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FIG. 8. Mercier stability boundary (dashed line) and unstable range of low-
n modes (solid line) for equilibrium S. The Mercier modes are unstable
inside the dashed line. The position of each solid line or dotted line indicates
the corresponding rational flux surface at which ¢ = n/m, where n and m
represent the dominating toroidal and poloidal mode numbers of the low-n
instability, respectively.

tion of the eigenvalues (to within 10% of the converged val-
ues) for our purpose. The results were spot-checked by using
60 Fourier modes.

Figure 8 shows the Mercier stability boundary (dashed
line) and unstable range of low-n modes in (f3,s) space for
our standard equilibrium S. Inside the dashed line, the Mer-
cier criterion indicates instability. The unstable ranges of
for low-n modes are indicated by solid lines. The positions in
s of the solid lines and the dotted lines indicate the corre-
sponding rational magnetic surfaces. We approximate the
marginal points of low-n modes by the condition — w?/w?

= 10~*. This may be justified because the numerical resolu-

tion is limited and because unstable MHD modes with
smaller growth rates can easily be stabilized by various ki-
netic effects neglected in the ideal MHD model. We see in
Fig. 8 that when the low-n modes corresponding tothe n = 3
family and n = 4 family are unstable, the Mercier modes are
also unstable at the corresponding rational surfaces ¢ = 3/4
and 4/5. However, there are gaps between the stability limits
of the low-rn modes and the Mercier modes. For
0.4% <3<0.8%, the Mercier modes are unstable while the
low-n modes are stable (or marginally unstable with
— /0 <107%),

We now look at the stability results of equilibrium 4.
The equilibrium has a smaller aspect ratio compared with
the standard equilibrium .S and is obtained by changing the
plasma boundary Fourier coefficient R, from 2.1 to 1.8.
Figure 9 shows a pattern similar to that of Fig. 8. As R, is
further decreased to 1.5, the resulting equilibrium B has an
even smaller Mercier unstable region, as shown in Fig. 10,
while the stability of low-# modes becomes somewhat com-
plex. First, the n = 2 family is unstable for 5>2.0% as usual,
and there still exists a gap between the marginal point of the
n = 2 mode and that of the Mercier mode. Second, then = 3
family corresponding to the ¢ = 3/4 surface is only unstable
with a very small range of 2.4%<<2.8% [i.e., the n =3
eigenmode with the dominating Fourier component (3,4)
has a second stable region]. Third, the n = 3 mode becomes
unstable again for £>2.86%, but with a different dominat-
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FIG. 9. Mercier stability boundary and unstable range of low-n modes,
same as in Fig. 8, but for equilibrium 4.

ing Fourier component (3,5) corresponding to the ¢t = 3/5
surface. Notice that near £ = 2.90% the (3,5) mode is un-
stable, but the corresponding ¢ = 3/5 surface is Mercier sta-
ble, i.e., the mode is more unstable than the Mercier mode.
This discrepancy may be explained by the fact that the main
(3,5) component has a sizable sideband (3,4), as shown in
Fig. 11. Presumably, the stability of this multihelicity-type
eigenmode cannot be adequately described by the Mercier
criterion, for which the eigenmode is constrained to be local-
ized around a single resonance surface.

Figure 12 shows the results for equilibrium C, whose
magnetic axis is shifted outward compared with the stan-
dard equilibrium S. We see that the ¢ = 3/4 and 4/5 rational
surfaces are Mercier stable, but the n = 3 family is unstable
with a dominating (3,4) component, and so is the n =4
family with (4,5) as the main Fourier component. Thez = 3
and 4 modes are both fairly global, as shown in Fig. 6(a) for
the n = 3 mode. From Figs. 6(a) and 6(b), we note that
these global mode structures concentrate in the region of
tokamaklike shear that is induced at finite /8 in torsatrons
with zero net toroidal current. Rewoldt and Johnson®* iden-
tified this type of global mode and its implications on beta

(%)
40K

30F

20+

FIG. 10. Mercier stability boundary and unstable range of low-n modes,
same as in Fig. 8, but for equilibrium B.
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FIG. 11. Radial displacement functions of an unstable n = 3 mode for equi-
librium B at = 2.75%.

limits for the Advanced Toroidal Facility (ATF) (Ref. 30)
using the stellarator expansion method. The fact that these
modes have strong poloidal mode coupling with global mode
structures explains the discrepancies between their stability
and that of Mercier modes. In contrast, Mercier modes are
typically very localized with very weak poloidal mode cou-
pling, as shown in Fig. 3(b).

Figure 13 shows results for equilibrium D with small
shear, The n = 2 family is stable despite the corresponding
¢t = 2/3 surface being Mercier unstable. The plasma remains
stable to both the low-n modes and Mercier modes for
B> 2.3% up to the equilibrium limit. For equilibrium E with
18 field periods, the low-n mode n = 1 family is again unsta-
ble as it is for the Mercier mode at the: = 1 surface, shown in
Fig. 14. Likewise the # = 2 family is unstable. There is still a
gap between the low-n marginal stability point and the Mer-
cier limit. We have also studied the MHD stability for equi-
librium F with ten field periods. Both the low-n modes and
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FIG. 12. Mercier stability boundary and unstable range of low-n modes,
same as in Fig. 8, but for equilibrium C.
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FIG. 13. Mercier stability boundary and unstable range of low-n modes,
same as in Fig. 8, but for equilibrium D.

the Mercier modes were found to be stable up to the corre-
sponding equilibrium limit.

We now study the effects of pressure profiles on the sta-
bility of low-n modes and Mercier modes. It is generally
agreed that the pressure profile has significant effects.
Shown in Fig. 15 are results for the same equilibrium as that
of Fig. 12, but with a more peaked profile of
pla) = p(0)(1 — 5)2. We see that Mercier modes have only
a much smaller unstable region, as compared with that of
Fig. 12, and the n =4 mode is unstable at higher beta
B>2.8%. The eigenmode is very global and the: = 4/5 reso-
nant surface of its main Fourier component is located far
away from the small Mercier unstable region. Next, we show
the results for the standard ATF equilibrium. For our stan-
dard pressure profile, there is a narrow Mercier unstable
region shown in Fig. 16(a). The n == 2 and 3 modes corre-
sponding to the unstable Mercier rational surfaces were
found to be stable. Again a global n = 2 mode is unstable
with its main resonant : = 2/4 iota surface outside the Mer-
cier unstable region. In contrast, Fig. 16(b) shows that Mer-
cier modes are stabilized for peaked pressure profile with
B<4.3%, because the pressure gradient is concentrated in

(%)
40|
1
3.0} \ ’|
B \ /
2.0f \ /
\ /
\ /
20r N
0 i 1 ] 1

FIG. 14. Mercier stability boundary and unstable range of low-n modes,
same as in Fig. 8, but for equilibrium E.
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FIG. 15. Mercier stability boundary and unstable range of low-n modes,
same as in Fig. 8, but for equilibrium C with peaked pressure profile
p(s) =p0)(1—s)%

the region where a magnetic well exists in the vacuum state.
The global-type # = 1 mode was found to be most unstable.
It should be noted that for this particular case the n =1
mode imposes a lower stability beta limit than that of Mer-
cier modes. This feature was previously found in a free
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FIG. 16. Mercier stability boundary and unstable range of low-# modes as
in Fig. 8: (a) obtained with the ATF standard equilibrium with bell-shaped
profile and (b) obtained with the ATF standard equilibrium with peaked
pressure profile.
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boundary calculation for a similar ATF equilibrium.2® The
critical beta value of 3.0% obtained in Fig. 16(b) is similar
to that of Cooper ez al.,*' where a critical beta value of 3.5%
was obtained by iterating the pressure profile to reach an
optimal equilibrium stable to both the Mercier modes and
ballooning modes.

In summary, two kinds of low-n modes are found. The
first kind is very localized around some rational surface with
a single Fourier mode strongly dominating. When a low-n
mode of this kind is found to be unstable, the Mercier mode
is also unstable at the corresponding rational surface. The
critical beta given by the Mercier criterion is always lower
than that of a localized low-n mode. The second kind of low-
n mode has very global mode structures with multiple heli-
city. The Mercier criterion cannot adequately describe these
types of modes.

B. Discussion

We have shown that gaps exist between the marginal
stability boundaries of Mercier modes and those of low-n
modes. Recall that we have defined marginal stability of low-
r modes to correspond to the point that — w?/wi = 1074
It is of course possible that there exist marginally unstable
low-r modes inside these gaps with very small growth rates,
as shown by Sugama and Wakatani,® for a one-dimensional
model. Qur fully 3-D results indicate the same feature. Fig-
ure 17 shows the growth rate of an » = 3 mode as a function
of volume-averaged plasma beta S for the equilibrium A.
The eigenvalue of a global-type n = 2 mode for the ATF
equilibrium is also shown for comparison. We see that the
growth rate for the localized n = 3 mode is very flat near the
critical beta value, whereas the growth rate for the global-
type # = 2 mode is almost a linear function of £. The same
tendency was also obseved for other equilibria considered in
this paper. Thus, it is reasonable to assert that weakly unsta-
ble low-n modes exist near the Mercier marginal stability
boundary.

Since the growth rates of Mercier-type low-n modes are
largely determined by the values of the Mercier parameter
Dy, <0, we plot in Fig. 18 the growth rates of an # = 3 mode
as a function of — D), evaluated at the rational surface

i3
(x107) n=2
60F n=3
sl
Wy
40¢
20
0 ] )
0 05 10 1.5 20

B- Bc (e}
FIG. 17. Eigenvalues of the unstable # = 3 mode and n = 2 mode obtained

with equilibrium 4 as functions of B — B,, where B, denotes the critical
beta value of marginal stability for each unstable mode.
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FIG. 18. Eigenvalues of the unstable # = 3 mode of equilibrium 4 versus the
Mercier criterion parameter — Dy, evaluated at the ¢ = 3/4 rational flux
surface.

t = 3/4, for the equilibrium 4. Again we see that the growth
rate is very small and flat near the Mercier marginal limit
— Dy = 0. The eigenvalue is 10~* for — Dy, = 0.3. Kuls-
rud® derived an analytic expression for the growth rates of
Mercier modes. The growth rate varies as — o?/0?

«exp( — ¢/yf — Dy ) for small — D,;, where c is a con-
stant. From this expression, it is evident that the growth
rates of low-n modes can be extremely small near the Mer-
cier stability limits — Dy, = 0. Qur fully 3-D results also
indicate this tendency.

It is now clear that finite growth rates of localized low-~
modes correspond to finite values of the Mercier parameter
— Dy, at the unstable rational surfaces. In the cases shown
in Figs. 13 and 16, where the Mercier modes were unstable
but the corresponding low-# modes were either stable or
weakly unstable with — w?/@} < 107%, the values of — Dy,
are found to be relatively small. For the ¢ = 2/3 surface in
Fig. 13, the maximum is — D,, = 0.14, and in Fig. 16(a) it
is — Dy = 0.18 for the : = 2/3 surface and — Dy = 0.33
forthe: = 3/5 surface. In order to quantify the magnitude of
— Dy that is required to yield finite growth rates, we plot in
Fig. 19 the values of — Dy, at which the growth rates are
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FIG. 19. Values of — Dy, versus the dominating poloidal mode number i
of various low-n instabilities at a fixed growth rate corresponding to

— @@l = 1074,
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— w?/w?% = 10~*for the low-n modes studied, as a function
of the main poloidal mode number. We see that the value of
— D,, varies from 0.25 to 0.47. Therefore, if one can neglect
marginally unstable modes with very weak growth rates, the
stability limit of localized low-n modes is more accurately
modeled with the condition — D,;~0.35 rather than
— Dy =0, at least for the torsatron configurations studied
here. We note that this full 3-D result is similar to that found
by Nakamura et al® using the stellarator expansion
approximation.

V. SUMMARY AND CONCLUSIONS

We have extended the TERPSICHORE incompressible 3-
D MHD code to incorporate the full ideal MHD model, in
order to calculate physical growth rates. The tunable inte-
gration method has been implemented and shown to stabi-
lize the numerically unstable continuum modes induced by
the finite hybrid method. The new code has been bench-
marked and used in the computations in this paper.

We have performed a comprehensive fully 3-D investi-
gation of ideal MHD stability of Mercier modes and nonlo-
cal low-n modes with fixed boundary conditions. The stabil-
ity of internal low-n modes were compared with those of
Mercier modes for / = 2 torsatron configurations.

Our results show a definite correlation between the lo-
calized low-n modes and the Mercier modes. When the lo-
calized low-n modes are found to be unstable, the Mercier
modes are also unstable at the corresponding rational mag-
netic surfaces. On the other hand, when the Mercier crite-
rion indicates instability at some rational surfaces, the corre-
sponding low-n modes can also be considered unstable.
More precisely, finite values of the Mercier criterion — D,
>0.35 are correlated with unstable low-n modes with finite
growth rates — w?/w3 »107% Near the Mercier stability
limits or — Dy, <0.35, the unstable localized low-# modes
tend to have very small growth rates. These marginally un-
stable modes are likely to be stabilized by various kinetic
effects or the presence of magnetic islands neglected in the
ideal MHD model.

Another type of low-# mode also exists that is very glo-
bal radially and displays strong poloidal mode coupling.
These global modes tend to concentrate in the region of toka-
maklike magnetic shear induced by relatively high beta
(B> 2%). Their stability cannot be described by the Mer-
cier criterion which applies only to modes localized around a
single rational surface. They may be more stable or unstable
than Mercier modes. For these internal global modes, a free
boundary analysis may yield more restrictive stability limits,
as previously demonstrated for the ATF device.?>**

We conclude that the stability of both the Mercier mode
and low-n modes must be determined in order to have a
complete MHD stability picture of a stellarator device. The
Mercier criterion can only indicate the stability of low-n
modes localized around a single resonant magnetic surface.
Three-dimensional nonlocal MHD codes are indispensable
tools for computing the stability of global-type low-n modes
in stellarator configurations.
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