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The stability of toroidicity-induced Alfvén eigenmodes (TAE) is investigated in general
tokamak equilibria with finite aspect ratio and finite plasma beta. The finite orbit width of the
hot particles and the collisional damping of the trapped electrons are included. For the trapped
hot particles, the finite orbit width is found to be stabilizing. For the circulating hot particles, the
finite orbit width effect is stabilizing for larger values of v,/v, (> 1) and destabilizing for smaller
values of v,/v, (<1), where v, is the hot particle speed and v, is the Alfvén speed. The
collisional damping of the trapped electrons is found to have a much weaker dependence on the
collision frequency than the previous analytic results. The contribution of the curvature term to
the trapped electron collisional damping is negligible compared to that of the paralle] electric
field term for typical parameters. The calculated critical hot particle beta values for the TAE
instability are consistent with the experimental measurements.

I. INTRODUCTION

As we approach the realization of tokamak plasma
ignition, it is crucial to understand the novel behaviors of
burning plasma associated with energetic alpha particles in
fusion reactors. In particular, the problem of toroidicity-
induced shear Alfvén eigenmode'? (TAE) destabilized by
energetic alpha particles® has recently received a great
deal of attention. It was pointed out in Refs. 1 and 2 that
the TAE modes may be destabilized by energetic particles
through wave particle interaction. Fu,’® Fu and Van Dam,*
and Cheng, Fu, and Van Dam?® showed that the circulating
alpha particles can strongly destabilize the n=1 TAE
mode in an ignited tokamak. Much progress has since been
made on understanding the energetic particle destabilizing
effects on the TAE modes for both the low-n modes,*'?
and the high-n modes.!*'* In particular, the important
effects of finite orbit width of the energetic particles have
been studied.!!

Recent experiments showed that TAE modes can be
indeed destabilized by emergetic circulating beam ions in
the neutral beam injection (NBI) heated plasmas,'®!” and
also by fast minority ions in the jon cyclotron radio fre-
quency (ICRF) heated plasmas,'® and can lead to serious
loss of energetic particles, as shown in a numerical
simulation.!” However, the measured stability threshold
was larger than that of the earlier works. Thus, it is re-
quired to include additional damping mechanisms, such as
jon Landau damping,®® the trapped electron collisional
damping,?**"'® the continuum damping,'®?*% and the
nonperturbative kinetic damping?®?’ due to coupling be-
tween the magnetohydrodynamic (MHD) TAE mode and
the kinetic Alfvén wave.

Most of previous studies made use of simplified large
aspect ratio, low beta plasma equilibria. On the other hand,
a kinetic-MHD stability code”® (NOVA-K) has been re-
cently developed to calculate the stability of low-n TAE
modes by properly taking into account the particle dynam-
ics in general tokamak equilibria. A resistive MHD stabil-
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ity code® (NOVA-R) has also been developed to study the
continuum damping effect for general tokamak equilibria.
However, in the NOVA-K code, the effect of finite orbit
excursion from the flux surface and the collisional damping
of trapped electrons were neglected. In this work, we ex-
tend the kinetic-MHD model of Cheng®?® to include the
effects of finite orbit width (FOW) of the hot particles due
to the magnetic drift and the collisional damping due to
trapped electrons for general tokamak equilibria. The
FOW effect of the hot particles was studied previously for
a model low-n TAE mode structure,'! and subsequently
for high-n TAE modes using ballooning mode
representation.15 Here, we use the exact TAE mode struc-
ture in a general MHD equilibrivm. Both the circulating
hot particles and the trapped hot particles are included.
Likewise, we calculate the trapped electron collisional
damping rigorously by numerically solving the bounce-
averaged drift-kinetic equation in general equilibria, with-
out the usual approximation of model mode structures and
boundary layer analysis.?*!?

We limit ourselves to a perturbative treatment of the
kinetic effects. Thus, the nonperturbative kinetic damping
of the TAE modes is beyond the scope of this work. The
continuum damping is also not considered, since the con-
tinuum damping is zero for the parameters and profiles
used in this work, In other words, for the equilibria used
here, the TAE mode frequency does not intersect with the
Alfvén continuum. For other plasma parameters and pro-
files, the continuum damping may be present, and can be
calculated with the resistive MHD stability code such as
Nova-R.%

The paper is organized as follows. In Sec. II, the for-
mulation of this work is given. In Sec. III, the destabilizing
contribution of the hot particles to the stability of TAE
modes is calculated, including the FOW effects. The
trapped electron collisional damping is considered in Sec,
IV. In Sec. V, the stability threshold of the TAE modes is
calculated and compared with the measurements in the
Tokamak Fusion Test Reactor’® (TFTR) experiments. In

@ 1993 American Institute of Physics 4040



Sec. VI, the parameter dependence of the critical alpha
particle beta is presented. Finally, the conclusion of this
work is given in Sec. VIL

Ili. FORMULATION
A. Equations

We consider an axisymmetric toroidal plasma consist-
ing of thermal electrons and thermal ions and a hot ion
species. We start from the linearized momentum equation,

w*pE=VEP+BXVx5B+5BXVXB, (1)

where o is the mode frequency, p is the total plasma mass
density, & is the usual fluid displacement, 6P is the total
perturbed pressure tensor due to all species, and B and 6B
is the equilibrium and the perturbed magnetic field, respec-
tively. The following ideal MHD relation is assumed:

SB=VX(£XB). (2)

The perpendicular electric field 8E, is expressed in terms
of &,

Finally, the perturbed pressure tensor can be written in a
diagonal form,

8P=6P, 1+ (5P, —8P; )bb, (4)

where the equilibrium is assumed to be isotropic, and 5P
and 6P, are obtained from the perturbed particle distribu-
tion function §f as

G)-foufs™, o

where €=Mv?/2 is the particle energy, u=Muv?} /2B is the
magnetic moment, and §/ is given by

8f=—¢ 0B, OF (1_&)\“ (6)
- 1 B a 8

with g being the solution of the drift-kinetic equation,

VF—p——

a . OF i
(8t+v" -V—i—vd.V)g:zeg (w—w*)(—a-; vy OE;

u

In Eqgs. (6) and (7), SB“ is the parallel component of the
perturbed magnetic field, W is related to the perturbed par-
allel electric field 6E = —b+ VY, b is the unit vector along
the magnetic field lines, o, is the diamagnetic drift fre-
quency, and v, is the magnetic drift velocity. Here o, and
v, are defined as follows:

bXVF.y

w*=Mcoc dF /3¢’ (8)

bX (u VB+Mvj k)
Mo, ’

where @, is the particle cyclotron frequency and k=b-Vb
is the magnetic field line curvature.

€))

\F
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It might be useful to explain how Eq. (7) is derived.
Equation (7) is obtained from the standard drift-kinetic
equation by using the following relation:

U" A" i (6<I>

i (d av
== (Z‘ (‘D—-‘I’)+-§;~Vd'v(d)—‘l’))

ird ,
== (E (®—¥)—iwV+v,;°E; )’ (10)

where the perturbed electric field is expressed in terms of
the electric potential ¢ and the magnetic vector potential
A as SE=—V®+4(1/¢)(dA/3t), the parallel component
of A is eliminated in favor of the parallel electric field
potential ¥, the perpendicular component of A is neglected
for low beta plasmas, and the v, VW term is also neglected,
since both the drift velocity and the parallel potential is
small. For MHD TAE modes, the parallel potential ¥ may
be calculated perturbatively using quasineutrality condi-
tion. Following Fu and Cheng,'® the potential ¥ satisfies
the following quasineutrality condition:

3 o Joor e fﬁ 3p(1—J2
;fdquJog, ; 7, w+§) fdu( )
q;

X-T—’jF,-(d)—\I'), (11)
where Jy=Jy(V, v; /w,) is the zeroth-order Bessel func-
tion. It should be pointed out that J; contains the finite
Larmor radius effect (FLR), which is kept for the calcu-
lation of the parallel electric field. Elsewhere, the FLR
effect will be neglected. Furthermore, we note that the non-
adiabatic distribution function g; is needed to obtain an
explicit expression for V. For shear Alfvén wave, the or-
dering of k; v;€<w <k v, is appropriate, where v; and v, are
thermal ion speed and thermal electron speed, respectively.
Thus, the thermal ion contribution to the left-hand side of
Eq. (11) is much larger than the thermal electron contri-
bution, which can be neglected. The hot particle contribu-
tion can also be neglected because the density of the hot
species is much lower than that of thermal species. From
Eq. (7), the leading-order perturbed ion distribution is
given by g;~ (eF/T;)[(i/w)v,*6E; +V]. Plugging g; into
Eq. (11) and expanding the Bessel function to second or-
der in the ion Larmor radius, the leading order W can then
be expressed as

\I/~— psv 6El <vde> °6EJ. y (12)
where p, is the ion Larmor radius defined with electron
temperature, and (v,,) is the electron magnetic drift veloc-
ity averaged over the Maxwellian distribution of electrons.
Equations (1)-~(7) and (12) constitute the kinetic-MHD
model for the stability of the TAE modes. We note that
various kinetic effects, such as hot particle destabilizing
contribution and ion Landau damping, etc., are contained
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in the pressure tensor 6P through g, which is the nonadi-
abatic part of the perturbed distribution function.

B. Quadratic form

In order to calculate the kinetic effects perturbatively,
we construct a quadratic form from the momentum equa-
tion. First, we separate the total perturbed pressure tersor
into two parts: 6P =8P s+ 6Py, where 8P is the fluid part
that comes from the adiabatic response of 8/, and 6Py is
the kinetic part that comes from the nonadiabatic response
g Note that the 8P can be expressed explicitly in terms of
& as 8P ;= — £+ VP, with P being the equilibrium pressure,
assuming that the equilibrium is isotropic. Now we take an
inner product of Eq. (1) with £* and integrate over the
whole plasma volume to obtain a quadratic form,

SW s+ 8W—® 8K=0, (13)

where superscript * denotes complex conjugate and

6K=fd3xpl§l2, (14)

BW ;= fdi‘x £%- (V- 5P+ SBXVXB+ BXVXB),
(15)

SW,= fd3x £*.V5P,. (16)
We remark that 6K and W ; comes from the ideal MHD
equation, whereas 6 W), represents the correction due to
kinetic effects. With aid of Egs. (2)—(5), it can be easily
shown that § W can be written more explicitly as

3 s (1 H *
6Wk=—efdxfdv avd-SEl +;63” g (17)

Finally, we use the quasineutrality condition, i.e.,
Sef dv8f =0, with the subscript j denoting the particle
species, to obtain an explicit quadratic form for §W,

SW,=4i | d°x | & 62?5 )G*z v
"”’f "f b€ g (=0 )G¥ g+

—1 F
+vd-V) G—-fd3xfd3ue2%;|\ll[2, (18)

where the superscript —1 denotes the inversion of the
propagator, and the function G is defined as

e (i I

In deriving Eq. (18), we subtract and add ¥ in the paren-
theses of Eq. (17), and then use the quasineutrality con-
dition to eliminate the [d°»vWg term in favor of the
[d® AF/3¢|¥|? term. We note that the inversion of the
propagator can be accomplished by solving the drift-
kinetic equation. This will be done in Sec. III for hot par-
ticles and in Sec. IV for trapped electrons.
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C. Perturbative calculation of kinetic effects

Before going into detailed solutions of the drift-kinetic
equation for each species, we first consider here the per-
turbative method used to calculate the kinetic effects. We
assume that the kinetic effects are sufficiently small so that
they do not change the basic ideal MHD mode structure.
Qur goal is to calculate the kinetic contribution to the
eigenfrequency in order to determine the stability of the
TAE modes. To this end, we expand the eigenfrequency
and eigenfunction order by order in terms of a small pa-
rameter related to the weak kinetic effects. The zeroth-
order equation is then

SW (¥ £o) —wf SK (X £0) =0, (20)

which is just the ideal MHD energy principle. Here the
subscript 0 denotes the zeroth order. To the first order, we
obtain

BW ((£8 &1) — ) BK(E¥ &) — 2wqw) BK(E £0)

+6Wk(§o*,§o,wo)=0. (21)

The first two terms of Eq. (21} cancel due to the self-
adjointness of the ideal MHD equation, and the remaining
two terms yield a quadratic expression for the kinetic cor-
rection to the eigenfrequency,

Wy 5Wk(§g,§o,wo)

o 200 6K(E¥ £ (22)

Hi. ENERGETIC PARTICLE CONTRIBUTION

Here, we compute the energetic particle contribution
to 6 W The derivation presented here extends the work of
Cheng® to include the finite orbit width due to the mag-
netic drift. In the following, we will derive separately the
circulating particle contribution and the trapped particle
contribution, and then give numerical results.

A. Circulating particle contribution

To begin with, we solve Eq. (7) by integrating along
the unperturbed particle orbit. For simplicity, we rewrite
Eq. (7) as

ditg":H(r,G,d;‘,t)‘: > H, (r0)exp[i(mO—np—wt)],
(23)

where d/dt denotes the total time derivative along the un-
perturbed particle orbit, the function # is the righti-hand
side of Eq. (7), o is the sign of the parallel velocity, r is the
poloidal flux variable, 8 and ¢ are the generalized poloidal
and toroidal angles, respectively, and m and » are the po-
loidal and toroidal mode numbers, respectively. In Eq.
(23), we have expanded the function H in terms of poloi-
dal Fourier components of the perturbed fields. Note that
the poloidal dependence of H,,(r,8) comes from the equi-
librium quantities. The solution of Eq. (23) is then

4

g7 = ZHm(r’,e')exp[i(me’—-mﬁ'—wt')]dt’,
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where r'=r'('), '=0'(¢"), and ¢'=¢’(¢’) are the tra-
jectory of the unperturbed particle orbit with boundary
conditions at ¢’ =¢: ' (¢)=r, 0'(t)=06 and ¢’ (2)=¢.

At this point, it is appropriate to determine the particle
orbit in an equilibrium magnetic field of an axisymmetric
tokamak. First, we note that the radial flux variable 7 is no
longer a constant of motion due to the magnetic drift.
Instead, the toroidal angular momentum P, is conserved,
ie.,

py=r 25
s=r——vsR=const. (25)
Thus, the orbit equation for 7’ is
_ Mc
r'=?'+“e— (vy R—{(y R)), (26)

where 7= (r), { ) denotes averaging over the entire orbit.
Also, we have used the parallel velocity v to approximate
V4, the toroidal component of the particle velocity. To con-
tinue, we define the instantaneous drift frequency w, to be

d __d
wd=—”(_d‘i¢'—q(_1_t )

=—n[vg* (V-3 V0)+(g—3)vy; b-VO],  (27)
and make use of the following definitions:
S,=m—ng, (28)
t
W(t)= fo dt' (0g—{wa)). (29)

The exponent in Eq. (24) can now be written explicitly,
mb’ —nd’' —owt’' =(mb—np—owt) —[w—{(wy)
—~0Spo(t' —1)]1+[S5,,(6"—6)
—0S,0,(' -+ W) —W(1)],
(30)

where w,=2m/1, is the transit frequency with 7, being the
transit period of the circulating particles. Note that the
third term in Eq. (30) is a periodic function of ¢’ with the
period ,, and so is H,,(#',0"). Thus, we can make Fourier
expansion in the following manner:

H,.(r',0)exp{i[S,,0 —o0S,0t+W(')]}

= 2 Hy, ,exp(ipod’), 31)
p

where 7’ is given by Eq. (26), p is an integer to be summed
from — o to + 0, and Hy, , is given by

1
H‘,’n,p(F) =

Tt
+oS,0)t' +W(t')]1}.

Equation (24) can now be integrated to give

§ dr' H,,(r',0")exp{i[S,,0' — (po,

(32)
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5 iH,, ,exp{i[ (p+0S,) 0" —S,0—W(1)]}

mp w"(“’d)"(]"{‘asm)wt
Xexpli(m@—nd—owt)], (33)
where we have defined a time-like variable °(8),
9 jB
°(0) =af T db. (34)
0 |U|1 l

It should be pointed out that the symmetry relation
Hy, ,=H,? , found in Ref. 8 is broken due to the finite
orbit width, since ' depends on o in Eq. (32). Given Eq.
(33), the circulating particle contribution can be derived
straightforwardly to obtain

sW W%fd‘f"“d (0—0y)
=— Fl| we€der(o—w
ML B t *

dF (G, )*G,
X B 0— g —opt Sy,

(35)

where A=pBy/€ is the pitch angle variable and Gy, , is
defined exactly the same way as Hy, ,, with function G in
Eq. (19) replacing function H in Eq. (32). In the limit of
zero orbit width, Eq. (35) reduces to Eq. (3.74) in Ref. 8.

B. Trapped particle contribution

The solution of Eq. (7) for trapped particles can be
similarly derived, but some care must be taken of the fact
that the trapped particle orbit samples only a part of a field
line and that the parallel velocity changes sign at the turn-
ing points. The solution is

iH,, , exp{i| pwpt®—S,,0—W(t)]}

0 —(0g) —pwy

g£=2
mp

Xexpli(mO—nd—wt)], (36)

where we have defined the time-like variable for trapped
particles,

o jB

)= [ e, (37
o |yl

for 7,/4>t">—7,/4 and ¢ (0)=7/2—1t"(6) for

31,/4>t" >1,/4, and H,, , is given by

1
H (A== 3@ dr' H,(r,0")

X exp{i[S,.0' —powyt’+W(t')]}
1 J‘er jBdo’

—— H,(r.,0')
—op Iyp | 7

T
X exp{i[S,0' —po,t®+W(t') ]}, (38)
where the subscript o in 7’ denotes the sign of v; and 7, is
the orbit period of the trapped particles. Note that
(vy RY=0 for trapped particles; thus r;=F
+ oMc|vy |R/e. The corresponding trapped particle con-
tribution to 6 W is
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FIG. 1. The surface component of the MHD plasma displacement vector
as a function of the radial variable x for the n=2 TAE mode in the TFTR
NBI experiment.

8 L dA
SW,=— > fd? — der(w—w,)
M B b *

OF (G p)*Gp

9 o— {0z —pay’ (39

where G,, , is defined the same way as H,, ,in Eq. (38). In
the limit of zero banana width, Eq. (39) reduces to Eq.
(3.72) of Ref. 8.

C. Numerical results

Here we present the numerical results for the FOW
effects obtained by using Egs. (22), (35), and (39). Since
we are interested in stability, we calculate only the reso-
nant contribution of §W) or the imaginary part of ,. We
consider the parameters of the TFTR neutral beam injec-
tion (NBI) experiments'®: the major radius R=240 cm,
the minor radius a=75 cm, the toroidal magnetic field
B=1.0 T, the central temperature T,(0)=7,(0)=1.2
keV, the central plasma density #,(0)=2.7X 108 em—3,
the effective thermal ion mass m.z=2, the effective charge
Z.5=2.5, the beam particle mass m;,=2.0, and beam injec-
tion energy E,=110 keV. The plasma pressure profile is
P=P0(1—x2)3/ 2, the density profile is ne=n0(1~—0.8x4),
where x is the square root of the normalized poloidal flux,
the safety factor g is specified by four parameters, as in Ref.
8, the central go=1.0, the edge ¢,=3.5, gy = 1.2 and ¢
= 3.5, where the prime denotes the derivative with respect
to the normalized poloidal flux. The beam density profile is
ny=n,(0)exp[— (x/L;)?] with L,=0.44. Note that for
this beam density profile, the absolute density scale length
at x=0.5 is 18 cm, which corresponds to the experimental
measurement %, Finally, the beam distribution function F,
is assumed to be a slowing down with a single pitch angle,
ie., Fyle,A) xe™¥28(A—A,), with Ay=0 for tangential
injection.

Figure 1 shows the surface component of the MHD
plasma displacement vector £ of a n=2 TAE mode as a
function of radial variable x. A total of four poloidal har-
monics are plotted. We note that the m=2 and m=3 har-
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FIG. 2. The circulating beam particle driven growth rates of the n=2
TAE mode versus the ratio of the beam particle speed and the Alfvén
speed with and without the finite orbit width effects.

monics dominate over others and peak at x=0.41, where
g=1.25, It is instructive to compare the orbit width of the
energetic beam particles with the radial mode width. The
orbit width due to the magnetic drift can be derived from
Eq. (25) and is on order of A,=2gv/w,. For the parame-
ters considered here, A,= 16 cm, which is ; the minor ra-
dius and is somewhat larger than the radial mode width of
Fig. 1. Therefore, we expect the FOW effects to be signif-
icant. This is confirmed in Fig. 2, which shows the growth
rate of the same mode due to the circulating beam particles
as a function of the ratio of the beam speed and the Alfvén
speed. The solid line is calculated with the FOW effects
and the dashed curve is obtained by turning off the FOW
effects. We observe that the FOW effect is stabilizing for
larger values of v,/vs, but it is destabilizing for smaller
values of v,/v, due to the resonance broadening. This fea-
ture exhibits two opposite influences of FOW: on one hand,
FOW is stabilizing due to the usual orbit averaging of the
localized wave; on the other, FOW is destabilizing due to
the resonance broadening. The same feature was previously
found for the high-» TAE modes.'’ For the particular case
considered in Fig. 2, the primary wave—particle resonance
v =V, is satisfied for v,/v,>1.15 at ¢=1.25, where the
mode peaks and the effect of the orbit averaging is domi-
nating; on the other hand, for smaller values of
vp/v, <1.15, the primary resonance is only satisfied away
from where the mode peaks and the effect of the resonance
broadening is dominating.

Figure 3 shows the growth rate of the n=2 TAE mode
due to the trapped beam particles with single pitch angle
A=1.0. We observe that the FOW effect is always stabi-
lizing. For these parameters, the trapped particle contribu-
tion is reduced by almost a factor of 10. It is instructive to
note that the banana width of the trapped particles is on
order of 50 cm and is much larger than the mode width.

In summary, the finite orbit width effect can be either
stabilizing or destabilizing for circulating particles, de-
pending on the ratio of the hot particle speed and the
Alfvén speed. For trapped particles, the FOW effect is
found to be always stabilizing.
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FIG. 3. The trapped beam particle driven growth rates of the n=2 TAE
mode versus the ratio of the beam particle speed and the Alfvén speed
with and without the finite orbit width effects.

IV. COLLISIONAL DAMPING OF TRAPPED
ELECTRONS

Here we consider the collisional damping of the TAE
mode due to trapped electrons. Gorenlenkov and Sharapov
showed that the dominant electron damping comes from
the collisional trapped electrons.”® Rosenbluth?! included
parallel electric field term, in addition to the curvature
term considered in Ref. 20. Fu and Cheng'® further
showed that the contribution of the curvature term to the
collisional damping vanishes as the real frequency of the
TAE mode approaches the bottom edge of the continuum
gap. All these previous results were obtained by solving the
bounce-averaged drift-kinetic equation approximately as a
boundary layer problem for a model TAE wave structure.
In this work, we extend previous work to general equilibria
by solving numerically the bounce-averaged drift-kinetic
equation, which is

(—iw—(C))g=(H), (40)

where (C) is the bounce-averaged pitch angle scattering
operator given by

e\~ I(e/T,)
<C>=2"e(‘fe) [7B(v/0 )d0

9 (a (i as)2 41
xéx( [i84 )aA, (41)

with the function I1(z) being defined as

N(z)=Z.o+ ! e‘22+1 2 fe-'zdt (42)
LI = e =INR :

Here, v, is a normalized electron collision frequency and is
given by v,=4mne* In(A,)/(m*}), where n, is the elec-
tron’s density, m, is the electron mass, v, is the electron
thermal speed, and In(A,) is the Coulomb logarithm. Note
that on the left side of Eq. (40), we have neglected the drift
term, which is small for electrons. For convenience of solv-
ing Eq. (40), we make the change of variable
7= (Apax—A)/ (Amax— Amin)» Where A, and A, is
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the lower bound and the upper bound of the pitch angle
variable A=puBy/€ for trapped particles. Then, Eq. (40)
becomes

19 a\ i
(I_ZCE%; D(n) gﬁ)g=5 (H), (43)
with
Dy =22 (1-AB), (44)
=372
cF%% (Ti) T {e/T), (45)

where A=A, —Apn. The boundary conditions are
g'(0)=0 and g(1)=0. We solve Eq. (43) by expanding g
in terms of an orthogonal set of basis function g, defined as
the eigenfunction of the collisional operator. Thus, g, is the
solution of the following equation with eigenvalue 4,,

1 9 D(m) d 1
Tbﬂa"] n angl_ 48

where / is a positive integer with /=1 and denotes the
smallest eigenvalue. Thus, we can write g=23ag; with the
coefficient g; determined by Eq. (43), and is given by

_ ifonm(H)gidy
~o(1+iCA) [gnmgi dn”
The collisional contribution to 6W; can be derived
straightforwardly using Eq. (17) and (47) to give

(46)

a (47)

Wi== 2 37 5

‘f(l)ﬂ”'b(G>gzd77|2
(14+iCgh)) fonmigl dn’

Note that we have neglected the @, term since o, €w for
electrons. From Eq. (48), it is easy to show that the imag-
inary part of W, is negative, which implies damping.
Before going into detailed numerical results, it is ap-
propriate to discuss the relative contribution of the parallel
electric field term and the curvature term in the function H
[i.e., the right-hand side of Eq. (40) or Eq. (10)]. Recall
that H=~ie dF/9¢e(ivy*SE; +o¥). We found numerically
that the curvature term is usually much smaller in com-
parison with the parallel term. The numerically calculated
collisional damping rate due to the curvature term alone
agrees with that of the analytic results,’ i.e., the second
term of Eq. (67) in Ref. 15. The smallness of the curvature
term is due to the fact that the contributions of the two
dominating poloidal harmonics of the TAE mode nearly
cancel when the mode frequency is close to the bottom
edge of the continuum gap. This near cancellation is man-
ifested as the dependence on the mode frequency through
the parameter A in Eq. (67) of Ref. 15. For a typical case,
the mode frequency is near the bottom edge of the contin-
uum gap and A2~0.1. As a result, the curvature contribu-
tion to the the collisional damping is reduced by an order
of magnitude, in comparison with that of the previous

I=1
_OF 3
X fdréze de (48)
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FIG. 4. The surface component of the MHD plasma displacement vector
as a function of the radial variable x for the n=2 TAE mode in the TFTR
ICRF experiment.

work.?® This near cancellation in the curvature term can be
shown more explicitly as follows. To begin with, recall that
the TAE mode is localized radially near the continuum
gap, where a pair of neighboring poloidal harmonics, m
and m+-1, dominate over the other harmonics (see Fig. 2,
for example). Thus the curvature term
v OE, o« & k=Ex, comes mainly from the surface com-
ponent of the plasma displacement vector (since the radial
component £,~¢c£; is much smaller than £). Recall
that « is the magnetic field line curvature. Now, £,
can be expanded explicitly as £,=~£I"(r)sin[(m —ng)0]
+§§"“(r)sin[(m+ 1—ng)0] for its variation along the
field line, exploiting the fact that only two harmonics are
important. Near the continuum gap location where g= (m
+3)/n, & reduces to E£=[EM(r)—&7(r)]sin(6/2).
Looking at Figs. 1 and 4, we observe that the difference
between £7(r) and £7!(r) is small. Numerical results
show that this difference becomes even smaller as the TAE
mode frequency approaches the bottom edge of the contin-
uum gap (when the plasma beta increases). Therefore, the
contributions of the two poloidal harmonics to the curva-
ture term nearly cancel when the mode frequency is close
to the edge. In Ref. 15, this cancellation was shown ana-
lytically in the high-» limit.

We now present numerical results for the collisional
damping rate obtained from Eqs. (22) and (48). Since the
curvature term is usnally much smaller than the parallel
electric field term, we will only compare the numerical
results and the analytic results for the parallel electric field
term alone. We consider the parameters of the TFTR
ICRF experiments'®: R=260 c¢m, =96 cm, B=3.26 T,
T, (0)=T;(0)=4.5 keV, 7,(0)=4.8x10"* cm™3, the ef-
fective mass m =2, the effective charge Z,;=2.5, the
pressure profile P=Py(1—x?)% the density profile
n,=n,(0) (1—0.8x>%), and the  safety profile
g=exp[ln(q,)x*] with the edge g=g,=>5.6. Figure 4 shows
four poloidal harmonics of the surface component of the
MHD displacement vector as a function of the radial vari-
able x for the n=2 TAE mode. This eigenmode is com-
puted for the equilibrium considered here and is similar to
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FIG. 5. The collisional damping rate due to trapped electrons as a func-
tion of the effective collisional frequency.

that of Fig. 1. Figure 5 shows the collisional damping rate
as a function of the normalized effective collisional fre-
quency ver/w for the correspending n=2 ecigenmode,
where vg=2Zzv./6A is evaluated at x=0.35. The solid
curve shows the analytic results obtained from Eq, (67) of
Ref. 15 and the circle line is obtained numerically using
Eq. (48). We see that, for small collisional frequency of
veg/® < 10~} our numerical damping rate exhibits nearly
the same scaling with v.¢/e and is about a factor of 2
smaller as compared to the analytic result. This difference
of a factor of 2 is reasonable considering that how many
approximations have been made in obtaining the analytic
results.'” However, for a not very small collisional fre-
quency of vg/w> 107}, the dependence of the collisional
damping rate on the collisional frequency is much weaker
for the nuinerical results than for the analytic one. This is
due to the factor that the analytic scaling is only valid for
very small v.g/w. For typical parameters, the collisional
frequency ranges from v,g/w~ 107! for the TFTR ICRF
experiments'® to v./w~1 for the TFTR NBI
experiments.'® This indicates that a numerical calculation
of the collisional drift kinetic equation must be employed
to obtain an accurate collisional damping rate due to the
trapped electrons.

Before ending this section, it is instructive to discuss
the convergence of the collisional damping rate with the
number of the basis functions g;. The first four eigenfunc-
tions g; are shown in Fig. 6 for the parameter of Fig. 5. For
the range of v,/ considered here, we find that a summa-
tion up to /=8 is sufficient for good convergence. This
result is not surprising, since we expected the convergence
to occur when Cpd;~O(1) or l2veﬁv/co~0(1). Note that
the eigenvalue is roughly A;~ 7. Then we would expect a
number of /~6 is needed for convergence for
Veg/@~3X 1072,

V. STABILITY THRESHOLD: COMPARISON WITH
TFTR EXPERIMENTS

Here, we calculate the critical hot particle beta for the
TAE instability by balancing the hot particle destabilizing
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FIG. 6. The first four eigenfunctions of the collisional operator.

contribution against ion Landau damping, electron Landau
damping, and trapped electron collisional damping,

A. The TFTR NBI experiments

We consider the TFTR NBI experiments by Wong
et al.'® in which the n=2 and n=3 TAE modes were ex-
cited by the tangentially injected neutral beam ions. The
parameters and profiles are given in Sec. III. The beam
particle driven growth rates are given in Fig. 2 for the n=2
mode. The ratio of beam particle speed and Alfvén speed is
v/upa=1.1 for the plasma density of 7,(0)=2.7x 10"
cm ™3, Thus, the finite orbit width effect is destabilizing.
The FOW effect is also destabilizing for the n=3 mode.
Table I lists the critical beam beta values at the radius
x=0.4 for the n=1, n=2, and n=3 TAE modes. We see
that the calculated critical beam beta values agree well
with the experimental measurements. It is instructive to
compare the size of various damping mechanisms. For the
n=2 mode, the ion Landau damping is comparable to the
electron’s collisional damping. For the n=3 mode, the
electron collisional damping is much larger than the ion
Landau damping. The electron Landau damping is negli-
gible for both modes. It should be pointed out that both the
FOW effect of the beam particle and the trapped electron
collisional damping are crucial for good agreement be-
tween the theory and the experiment. Without these two
effects, the predicted threshold would be a factor of 5 lower
than the experimental measurement for the n=3 mode.
Finally, it should also be pointed out that the hot particle
contribution is sensitive to the pitch angle, at least for the
parameters considered here. We find that the hot particle
drive increases by a factor of 6 when the pitch angle varies
from A=0to A=0.75A,;,. This large change comes from

TABLE I. Comparison of the theoretical critical beam ion beta with the
experimental measurements in the TFTR NBI-heated plasmas.

Critical beta n=1 n=2 n=3
Br)exp stable 0.5% 0.5%
(Bh) theory 1.2% 0.47% 0.38%
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TABLE II. Comparison of the theoretical critical fast ion beta with the
experimental measurements in the TFTR ICRF-heated plasmas .

Critical beta n=2 n=3
(Bhexp 2.7%10* 2.7x10™*
{Bh) theory 0.74x10* 35X 1074

the pitch angle dependence of the parallel wave—particle
resonance condition, o= {(w,) +k" v » Where the transit-
averaged magnetic drift frequency {w,) is not zero for
passing particles due to toroidicity and magnetic shear. For
the parameters considered here, the primary resonance
va={wgz)/ky +vy is not satisfied at the mode peak. Thus,
the main hot particle contribution comes from the side-
band resonance, uA:;(a)d)/k“ + 3y, . This sideband reso-
nance increases strongly as A increases. Therefore, one
should be very careful in choosing the fast particle pitch
angle distribution. Here, we use a single pitch angle at
A =0 for simplicity. In reality, the pitch angle distribution
has a finite spread, even for the case of parallel injection of
neutral beam particles. In this case, the calculated critical
beam beta would be somewhat higher.

B. The TFTR ICRF experiments

Here, we consider the TFTR ICRF experiments'® in
which the TAE modes were excited by the fast minority
ions heated by ICRF. Some parameters and profiles for the
core plasma have been given in Sec. IV. The fast ion dis-
tribution is chosen to be a Maxwellian with single pitch
angle Ay=1.0 and the profile of the fast ion temperature is
chosen to be T,=T,(0)(1—2x/L,+x*/L3) for x<L,
and T,=0 for x> L,, where T,(0)=500 keV and the
radial scale length L,=0.55 corresponding to 40% of the
whole minor radius. The fast ion density profile is assumed
to be constant. Our choice of the fast particle distribution
may be justified as follows. First, the energy distribution of
the fast particles heated by ICRF is approximately Max-
wellian due to the balance between the ICRF heating and
slowing down by electron collision, as shown by Stix.>!
Second, the fast particles are heated predominantly in the
perpendicular direction during the ICRF heating. Further-
more, the ICRF heating is very localized near the magnetic
axis. Thus the corresponding pitch angle of the fast parti-
cles is approximately A=1.0. Table II lists the critical
volume-averaged fast ion beta values for the n=2 and the
n=3 TAE modes. We see that the calculated stability
threshold agrees well with the experiment for the n=3
mode, but for the #=2 mode, the theoretical critical beta is
about a factor of 3 lower than the experimental value. We
find that for both modes, the trapped electron collisional
damping is the dominating damping mechanism. The ion
Landau damping is negligible due to low thermal ion beta.
Several reasons may be speculated to explain the discrep-
ancy between the theory and the experiment for the n=2
mode. First, some additional damping mechanisms that are
neglected here may be important, such as the nonpertur-
bative kinetic damping. Second, we find that the calculated
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FIG. 7. The critical volume-averaged alpha particle beta as a function of
v,/vy for the n=1 TAE mode with the FOW effects (solid dots) and
without the FOW effects (circles).

fast ion drive is quite sensitive to the fast ion temperature
and its profile. For example, raising the central ion tem-
perature from 500 to 700 keV would reduce the fast ion
contribution by a factor of 2.2, and changing the temper-
ature profile to 7,=7,(0)(1—x/L,) would reduce the
fast ion drive by a factor of 7.7! Therefore, one needs an
accurate experimental measurement of the fast ion param-
eter and profile to make a more conclusive calculation of
the fast ion contribution. All these issues must be dealt
with before a better comparison between theory and exper-
iment can be made.

Vi. PARAMETER DEPENDENCE OF STABILITY
THRESHOLD IN AN IGNITED TOKAMAK

Here, we study the parameter dependence of the crit-
ical alpha beta for TAE stability in an ignited tokamak. We
consider the following parameters: the major radius
R =250 cm, the minor radius =80 cm, the toroidal mag-
netic field B=5 T, the central electron temperature
T,(0)=10 keV, the ion temperature T,(0) =20 keV, the
effective ion mass mgy=2.5, and the effective charge
Z4=2.5. The plasma pressure profile is P=Py(1—x2)?,
the density profile n,=ny(1 —0.8x?), where x is the square
root of the normalized poloidal flux, the safety factor q is
specified by four parameters as in Ref. 8, go=1.1, g,=5.5,
go = 1.0, and g| = 5.5, where the prime denotes the deriva-
tive with respect to the normalized poloidal flux. The alpha
particle density is given by n,=n,(0)exp( —x%/ Lf,),
where L, is the normalized density scale length. The alpha
particle distribution function is assumed to be a slowing
down in energy and uniform in pitch angle. It should be
noted that these parameters and profiles are similar to
those expected in the planned TFTR D-T experiments.*?
For these parameters, the trapped electron collisional
damping is very small. On the other hand, the FOW effect
is important and will be discussed below.

A. Dependence on v,/v,
Figure 7 shows the critical volume-averaged alpha par-
ticle beta values as a function of v,/v, for the n=1 TAE
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FIG. 8. The critical volume-averaged alpha particle beta as a function of
v,/Vs for the n=2 TAE mode with the FOW effects (solid dots) and
without the FOW effects (circles).

mode, where v, is the fusion alpha particle speed at birth
and v, is the Alfvén phase speed evaluated at the magnetic
axis. The solid dots in Fig. 7 are computed with the finite
orbit width (FOW) effects of alpha particles due to the
magnetic drift, whereas the circles are computed without
FOW effects. A similar plot for the #=2 mode is shown in
Fig. 8. In these figures, we vary v,/v, by varying the
plasma density, while keeping all other parameters fixed.
Since the equilibrium beta is proportional to density, each
dot (or circle) is computed with the self-consistent equi-
librium at the corresponding beta value. We see that the
FOW effects are stabilizing for larger values of v,/v, and
destabilizing otherwise. The minimum of {B,) occurs at
Vo/va=1.0. The critical beta increases rapidly as v,/v,
increases for v,/v, > 1.0 due to increasing ion Landau
damping, On the other hand, for v,/v, < 1.0, the critical
alpha beta increases as v,/v, decreases due to increasing
electron Landau damping and weakening alpha particle
drive. For a value of v,/vs=~1.4 corresponding to the
TFTR D-T experiments,®* the critical alpha beta is
{B.) =6x 107" which is close to the expected alpha par-
ticle production in the TFTR D-T experiments.

B. Dependence on equilibrium beta

The results shown in Figs. 7 and 8 are obtained with
self-consistent equilibrium at finite plasma beta. Here, we
show what will result if the zero beta equilibrium is used.
Figure 9 compares the critical alpha beta values obtained
using the self-consistent equilibria (solid dots) with thati of
zero beta equilibrium (circles) for the n=1 mode. As ex-
pected, for small values of equilibrium beta or v,/v,, the
critical alpha beta values are nearly the same for the two
cases. However, for the larger values of v,/v,, the critical
alpha beta with zero beta equilibria is much smaller than
that with finite beta equilibria. We find this large difference
comes mainly from the dependence of the real mode fre-
quency on the equilibrium beta. As the equilibrium beta
increases, the real frequency becomes smaller. As a result,
the ion Landau damping is enhanced strongly by the finite
beta effects. On the other hand, the alpha particle drive is
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FIG. 9. The critical volume-averaged alpha particle beta as a function of
v/, for the n=1 TAE mode obtained with self-consistent finite beta
equilibria (solid dots) and the zero beta equilibrium (circles).

found not sensitive to the equilibrium beta. Thus, the crit-
ical alpha beta is enhanced by the finite equilibrium beta
effects for v,/vs > 1.1. (For v,/v, <1.1, the critical alpha
beta is enhanced slightly by the finite equilibrium beta due
to the increased electron Landau damping.)

C. Dependenceon T, /T,

Figure 10 shows the critical alpha beta of the n=1
TAE mode as a function of the ratio of ion temperature
and electron temperature for T,+7,=30 keV and
v,/va=1.38. We see that (B,) increases rapidly as T/T,
increases. This strong dependence is due to the fact that the
ion Landau damping is sensitive to the ion beta. For the
parameters considered here, the ion Landau damping is
found to be the dominating damping mechanism.

D. Dependence on alpha particle density scale length

Figure 11 shows the critical alpha beta as a function of
the alpha density scale length L, with FOW effects (solid
dots) and without FOW effects (circles) for the n=1TAE
mode. Recall that the alpha density profile is chosen as
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FIG. 10. The critical volume-averaged alpha particle beta as a function of
T/T, for the n=1 TAE mode.
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FIG. 11. The critical volume-averaged alpha particle beta as a function of
the alpha density scale length L, for the n=1 TAE mode.

n,=n,(0)exp(—x>/L%), where x is the square root of the
normalized poloidal flux and L, is the normalized alpha
density scale length. In Fig. 11, we see that the critical
alpha beta increases as L, increases for both cases. The
effects of FOW enhances the dependence of alpha critical
beta on L,, especially near L,=0.3. This can be under-
stood physically as follows. The dependence of the alpha
particle drive on L, comes from the combination of two
opposite effects. For smaller L,, the destabilizing pressure
gradient term is larger. However, the location of the largest
pressure gradient of the alpha particles is farther away
from where the mode peaks. This shift of maximum gra-
dient surface as L, becomes smaller, which is stabilizing, is
weakened by the FOW effects. As a result, the critical
alpha beta is more sensitive to L, with FOW effects than
without FOW effects.

VIi. CONCLUSIONS

We have presented a comprehensive analysis of the
stability of the TAE modes in general tokamak equilibria,
including the finite orbit width of the hot particles due to
the magnetic drift and the collisional damping of trapped
electrons, in addition to the Landau damping of the ther-
mal ions and electrons. For the trapped hot particles, the
finite orbit width is found to be stabilizing. For the circu-
lating hot particles, the finite orbit width effect is stabiliz-
ing for larger values of v,/v, and destabilizing for smaller
values of v,/v, . The collisional damping of trapped elec-
trons is found to have a much weaker dependence on the
collision frequency than the previous analytic results for
veg/@> 107", The contribution of the curvature term to
the collisional damping is negligible compared to that of
the parallel electric field term for typical parameters. The
calculated stability thresholds agree reasonably well with
the TFTR experiments.
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