Existence of core localized toroidicity-induced Alfvén eigenmode
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The core-localized toroidicity-induced Alfvén eigenmode (TAE) is shown to exist at finite plasma
pressure due to finite aspect ratio effects in tokamak plasma. The new critical beta for the existence
of the TAE mode is given by a~3e+2s?, where e=r/R is the inverse aspect ratio, s is the
magnetic shear and a= —Rq?dB/dr is the normalized pressure gradient. In contrast, previous
critical e is given by a~s2. In the limit of s<€ \/;/_E , the new critical « is greatly enhanced by the
finite aspect ratio effects. © 1995 American Institute of Physics.

The toroidicity-induced Alfvén eigenmode (TAE)'? ex-

ists in a tokamak plasma due to toroidal mode coupling and

finite magnetic shear. The mode frequency is located inside a
continuum gap induced by toroidicity. Recently, it has been
shown®~> that there is a critical pressure gradient above
which the TAE mode no longer exists. In the limit of small
shear, the critical value is given by a=a,=s*(1+s), where
s=rdql/qdr is the magnetic shear, a=—Rq*dB/dr repre-
sents the product of magnetic field curvature and plasma

pressure gradient with R being the major radius, r being the -

plasma radius, ¢ being the safety factor and B being the
plasma toroidal beta. This result implies that the TAE mode
should not exist in the core of tokamak plasma where the
values of @ and s are comparable and small for typical pa-
rameters. In particular, /s> 1 asymptotically when r goes
to zero. However, recent numerical results® indicate that a
TAE mode, which is localized at a single gap, does exist in
the core of the tokamak plasma, where e=r/R~0.1 and
s~a~¢€. We call this type of TAE mode the core-localized
TAE mode. These core-localized modes are particularly sus-
ceptible to destabilization by fusion alpha particles in a tok-
amak plasma since the density profile of the alpha particles is
sharply peaked at the center of plasma.’®

In this work, we will show that the effects of finite as-
pect ratio change the critical « qualitatively using the high-n
ballooning mode equation. The previous results,>* based on
the standard s— & model ballooning mode equation,’ is only
valid in the limit of e<€s%. We will show that our new criti-
cal o reduces to @,=3¢€ in the limit of s<€ \/2<1. In the
following, we will derive an analytic expression for critical
a by taking into account the effects of finite aspect ratio.

We start with the following ballooning mode equation:
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X(1+4€ cos )P+ afcos 8+A(H)sin 6]P=0 (1)

where h(@)=s0—asin 8, G()=1-2(e+A") cos 6, G,(b)
=14+2A" cos 6, a=a+2e-2(1—s)A’, A'=¢(1/4+j,) is the
radial derivative of the Shafranov shift, and () is the mode
frequency normalized to the Alfvén frequency. The poloidal
beta is defined as ,8,,=8fn'((p)-—p)/Bf7 where ( ) denotes a
volume average.
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Equation (1) is derived for a large aspect ratio, low-beta
tokamak plasma by using the Shafranov shifted circle flux
coordinates.®? We note that the previous work>* neglects the
€ term in G,(6) and G,(0) and assumes &> €. In this limit,
the Eq. (1) reduces to the standard s—« model ballooning
equation:”

i[1+hz(f))]i O+ Q2 1+42(6)](1 4}46 cos 6)®
30 30

+ afcos 6+ h(8) sin 619 =0. )

Comparing Egs. (1) and (2), the new terms in Eq. (1), of
order O(e€), come from the intrinsic toroidicity and pressure-
induced Shafranov shift. We will show below that these e
terms in G; and G, can not be neglected when € is compa-
rable or larger than 5.
To make analytic progress, we make the following trans- -

formation ®— (1/JF)® with F=G1(8)+ G,(0)h%(8), Eq:
(1) then becomes

2 F" (FI)2
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W¢+Q(1+460089) 2F+—'41—F_'2_

. a(cos (0) +Fh(0) sin 6) e
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where the prime denotes the derivative with respect to 6.
Assuming e<€1 and s~ a~0(¢€), we expand Eq. (3) to the
second order of e. The resulting equation is given by

82
T D+ O?*(1+4E cos 9)P

Hy(0) _ H,(6)
1+s26>  (1+5%6%)

5| ®=0 )
where the functions H ; and H, are defined as

Hi(8)=(a— ) cos —2aA’ cos?d
+(286A" + aa— &?)sin%6, (5)
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FIG. 1. The critical « value, &,, as a function of shear s obtained with
€=0.1 near the center of plasma.

Hy(8)=(s—a& cos 8)*>+28(5— a) cos’f
—(6*+2a*—2aa) sin*d (6)

with é~e+A’ and §=€+2A".

Following Fu and Cheng,® a dispersion relation for the
TAE mode frequency can be derived by solving Eg. (4)
asymptotically. The result is given by

02-Q2

W=4—Z(l+e+s)(ac—a) )

where £} and ., are the lower bound and the upper bound
of the Alfvén continuum gap respectively. The critical o for
the existence of TAE mode, «a,, is given by

(1+€)(e+2A")+s2—2(e—A’ )s
l+e+s

®)

a.=

In the limit of €—0 and A" —0, the critical value given in
Eq. (8) reduces to the previous results.>~ It should be noted
that A’ is dependent on the poloidal beta which is propor-
tional to . This implicit dependence can be made explicit in
the core of plasma where we can expand the plasma pressure
near r=0. Thus, we have the following relations near the
center of plasma for typical pressure profile of form
px(1—r?)? with b being a constant: a=4€epB, and
a=8=3¢/2+ a/2. The critical a then reduces to

3e(1+e)+2s%—3es

G I+e+s ’ ©)

It is instructive to note that in the limit of zero shear, the
critical alpha is simply given by a.=3¢ which corresponds
to B,.=3/4. Thus, the finite aspect ratio effects greatly en-
hance the critical beta for small shear. It is also interesting to
note that in the limit of e—0, the critical « is a factor two
larger than the previous results,>® This factor of 2 comes
from the pressure-induced Shafranov shift.
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FIG. 2. The critical & for the TAE as a function of shear s from both the
previous results (solid line marked with r/R=0) and the new results (solid
line marked with r/R=0.1). The balloonmg first stability boundary is also
shown (dotted line),

The critical e, given by Eq. (9), has been confirmed by
solving Eq. (1) numerically, Figure 1 shows that the analytic
results for the critical @ (solid line) agree well with the nu-
merical results (solid dots). For comparison, we have shown
in Fig. 2 both the previous results (solid line marked with
r/R=0) and our new results (solid line marked with
r/R=0.1), As a reference, the ballooning mode first stability
boundary is also shown (dotted line). We observe that the
effects of finite aspect ratio makes the critical & much closer
to the first stability boundary for small value of shear. (It was
shown previously® that the critical ¢ for TAE mode ap-
proaches the first stability boundary asymptotically for large
values of shear.) Although our results are based on shifted-
circle model equilibria, we conjecture that the critical o for
TAE mode is also close to the ballooning first stability limit
in general equilibria, and that the TAE can generally exist as
long as the tokamak plasma is ballooning stable,

Finatly, the analytic critical @ in the limit of s?<e,
a.=3¢, has been confirmed in both magnitude and scaling
by numencal calculations using a global stability code
NOVA.®

After this work was completed, we learned that another
core localized mode also exists near the upper tip of the
continuum gap.” The critical beta value for this mode is ap-
proximately given by a,.=3e—2s%. It should be pointed out
that this mode exists purely due to the finite aspect ratio
effects.

In conclusion, we have shown that the core-localized
TAE mode exists at finite plasma pressure in tokamaks due
to finite aspect ratio effects. The critical beta for the exis-
tence of TAE mode in the core region of plasma is given by
B,=3/4 in the limit of s<\r/R<1.
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