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Abstract

ICROINSTABILITY DRIVEN TURBULENCE IN TOKAMAKS is

studied via numerical simulation of a comprehensive fluid model. For

the 1ons, toroidal gyrofluid equations are derived which contain accu-
rate models of the kinetic effects arising from toroidal VB and curvature drifts,
parallel Landau damping and its inverse, finite Larmor radius effects, and trapped
ion effects. For the electrons, sophisticated bounce averaged trapped electron fluid
equations are derived which model the toroidal precession resonance and use a
Lorentz collision operator for pitch angle scattering. These coupled ion and elec-
tron equations can simultaneously describe the nonlinear evolution of toroidal ion
temperature gradient driven instabilities and trapped electron modes, and provide
realistic nonlinear calculations of ion and electron heat fluxes and particle fluxes.
These equations are solved in a reduced flux tube geometry, formulated in general
magnetic coordinates. This technique exploits the elongated nature of microin-
stability driven turbulence, which has long parallel scales and short perpendicular
scales. The reduced simulation volume allows high resolution simulations in realis-
tic tokamak geometry, fully retaining important toroidal effects such as good and
bad curvature. These toroidal simulations predict much larger thermal transport
than found in simplified sheared slab geometry, bringing the predictions up to ex-
perimentally measured levels. The turbulent fluctuation spectrum is peaked at long
wavelengths compared to the fastest growing linear modes, and the fluctuation spec-
trum is anisotropic in k, and kg, as seen in experimental fluctuation measurements.
The nonlinear generation of sheared E x B flows is found to play an important role
in the development and saturation of this turbulence, and the damping of these
flows is carefully investigated. Finally, the predicted transport from these simula-
tions is compared with experiment. The simulations underestimate the transport
near the plasma edge, but encouraging agreement is found between the predicted

and measured ion and electron heat transport in the core.
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Chapter 1

Introduction

EVELOPING AN UNDERSTANDING of turbulent transport in toka-

maks has been a primary goal of magnetic confinement fusion research for

decades. The main goal of this thesis is to develop techniques for mak-
ing quantitative predictions of tokamak turbulence. These predictions can then be
compared with present experiments, and used to aid in the design of future fusion re-
actors. While much progress has been made in both the theory of microinstabilities
and experimental measurements of turbulent fluctuations in tokamaks, quantitative
comparisons between experiment and non-empirical theories have been unsatisfac-
tory in the past. This thesis presents new toroidal gyrofluid equations and nonlinear
simulations which provide perhaps the most promising direct comparisons between
first principles theory and experiment to date, both in levels of transport and fluc-
tuation spectra, for actual tokamak parameters. Several advances are presented in
this thesis which have been ignored in previous simulations and make these com-
parisons favorable, primarily: the inclusion of destabilizing toroidal effects ignored
in slab theories, the use of an efficient flux tube simulation geometry for three di-
mensional high resolution nonlinear simulations in realistic tokamak geometry, the
self-consistent evolution of small-scale turbulence generated sheared flows and real-
istic damping of these flows, and the inclusion of nonadiabatic electron dynamics

with a sophisticated trapped electron fluid model.



2 Chapter 1. Introduction

1.1 Motivation

In all tokamak experiments, the particle and heat losses greatly exceed the neo-
classical predictions which result from collisional diffusion. However, fluctuation
measurements in tokamaks invariably see small scale (compared to the size of the
tokamak, but large compared to the Debye length, Ap) and low frequency (com-
pared to the plasma frequency, w,. ) fluctuations which apparently enhance transport
above collisional levels. These fluctuations are believed to arise from microinsta-
bilities primarily driven by the temperature and density gradients inherent in any
confinement device.  The fastest growing microinstabilities typically have per-
pendicular scales on the order of the ion gyroradius, kyp; ~ 1/2, where the ion
gyroradius, p; = vy;/§);, and frequency and growth rate scales on the order of the
diamagnetic drift frequency, w. = kgp;vs;/L,. Here vy = T;/m; is the ion thermal
velocity and L, = —(dInng/dr)~"! is the equilibrium density scale length. Based
on mixing length estimates, the simplest description of the nonlinear saturation of
these instabilities, these fluctuations should lead to particle diffusivities, D, and
heat diffusivities, y, which scale as

Ax? 2 1 plog

D,x ~ = ~
AN TR T ks L,

Assuming that the dominant fluctuation scale is set by the fastest growing modes
(kip; ~ 1) yields the “gyro-Bohm” diffusivity, Dgg ~ p?vii/L,. While this leads to
reasonable estimates for global energy confinement times [PERKINS, 1990], it has
several problems. The most striking disagreement is in the variation of fluctuation
levels and diffusivities with minor radius. Experiments show that y and fluctua-
tion levels increase with increasing minor radius, while the gyro-Bohm y decreases,
because of the T%/? dependence. The gyro-Bohm Y is thus too high in the core,
and too low at the edge, see [HORTON el al., 1992]. Additionally, using v and &,
from the fastest growing mode usually predicts diffusivities less than those measured
in experiments. Another problem is that the experimentally measured fluctuation
spectra peak at k;p; &~ 0.1 — 0.2 [FONCK el al., 1993], not at the fastest growing
wavelengths. The mixing length formula above shows that the largest eddies (small-
est k) are the most dangerous and cause the most transport. This emphasizes the
need to understand where the fluctuation spectrum peaks, i.e. why the dominant

scale is at &k, p; ~ 0.1 — 0.2, and not at the fastest growing scales or the longest
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possible scales, k, p; ~ p;/a ~ 0.003. Many versions of this mixing length estimate
have been proposed which compensate for the long wavelength peak in the spec-
trum, for example, using the maximum ~/k? rather than  and &, for the fastest
growing mode. An understanding of the nonlinear dynamics at a level beyond the
simplest mixing length estimates is clearly needed, and nonlinear simulations can

help sort out these various possible scaling relations.

Theoretical predictions of turbulent transport beyond this simple estimate
are quite challenging. The evolution of the turbulence is intrinsically nonlinear and
three dimensional. In addition, microinstabilities are strongly influenced by kinetic
(velocity space) effects, since present day tokamak plasmas are in the long mean
free path regime. Future experiments and reactor grade plasmas will also be in this
regime. Either velocity space effects must be accurately modeled in fluid equations,
or a kinetic approach which resolves velocity space is necessary, making the prob-
lem five dimensional. Our approach has been to develop simplified fluid equations
which retain accurate models of the important physics for tokamak transport; pri-
marily, long mean free path effects leading to Landau damping and its inverse, from
both parallel free streaming and toroidal VB and curvature drifts. These reduced
equations allow the use of high resolution, three dimensional, nonlinear computer
simulations to investigate the turbulent dynamics in realistic tokamak geometry
without further approximation. Most previous theories of tokamak turbulence have
necessarily used either simplified dynamics, simplified geometry, or simplified non-
linear analysis: mixing length or quasilinear estimates, weak turbulence theory, or

lower resolution computer simulations.

The combination of more accurate fluid models and fully nonlinear three
dimensional simulations in toroidal geometry have resolved some of the aforemen-
tioned discrepancies between theory and experiment. In the simulations presented
here, the peak in the fluctuation spectrum is at longer wavelengths than the fastest
growing wavelengths (also seen in full torus gyrokinetic particle simulations [PARKER
et al., 1993]). These toroidal gyrofluid simulations find much higher transport levels
than the simplest mixing length estimates or sheared slab simulations, and bring the
predictions up to the measured levels. Finally, part of the discrepancy in the radial
dependence of y is remedied by our toroidal gyrofluid equations, which give more

accurate linear growth rates than have previous fluid theories. If the instabilities are
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nearly stable in the core and strongly unstable in the edge, or if some dependence
on local parameters causes nonlinear saturation levels to increase near the edge, the
radial variation of predicted and measured transport is in much better agreement.
Recent comparisons between experiment and a transport model based on simula-
tions with our toroidal gyrofluid code and linear fully kinetic calculations indicate
that this is the case in the core (r/a < 0.85) of L-mode type discharges [DORLAND
et al., 1994b; KOTSCHENREUTHER et al., 1994a]. Direct comparisons of the nonlin-
ear toroidal simulations developed here with a TFTR L-mode discharge, presented
in Chapter 6, show reasonable agreement, which encourages us to continue adding

more physics to this code to try to explain a wider range of experimental conditions.

1.2 Brief Historical Review

The host of different of plasma instabilities can make a first foray into the microin-
stability literature quite daunting. An important guide to understanding this zoo
is that all microinstabilities which may be considered relevant for tokamak turbu-
lence are accurately described by the nonlinear electromagnetic toroidal gyrokinetic
equation [FRIEMAN and CHEN, 1982] (with an appropriate collision operator) for
all plasma species: ions, impurities, beams, and electrons (though the drift ki-
netic equation can be used for the electrons since the electron gyroradius is small).
The wide range of instabilities in the literature arises from making assumptions
that simplify this fundamental equation: each simplification generally isolates an
instability, and it is given a new name. Even linearly, the complexity of the gy-
rokinetic equation makes it difficult to solve, and full solutions are only available
numerically [REWOLDT et al., 1987; ICOTSCHENREUTHER et al., 1994b]. Before
proceeding chronologically, it is useful to have the basic results from these com-
prehensive numerical solutions in mind. These kinetic calculations show that for
realistic tokamak parameters (low 3 and low collisionality) the dominant instability
is either the toroidal Ton Temperature Gradient (ITG) driven instability (also called
the 7; mode) or the Trapped Electron Mode (TEM), and that either the toroidal
ITG mode or the TEM is linearly unstable or nearly unstable for measured toka-
mak parameters. Some of the distinction between the ITG and TEM is artificial,
since ion and trapped electron dynamics affect both modes. The distinction arises

because the toroidal ITG mode is primarily driven by the ion temperature gradi-
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ent and the TEM is primarily driven by the trapped electron toroidal precession
resonance. At higher 3, kinetic versions of ideal MHD ballooning modes can be
driven unstable [REWOLDT et al., 1987], but tokamaks usually operate below this
3 limit, and electromagnetic corrections to the basic electrostatic instabilities are
usually small. The toroidal ITG and TEM are thus the most promising candidates
for explaining anomalous transport in tokamaks, and have been the focus of much
work in this area. Variations of these instabilities are the most likely cause of the
observed density and temperature fluctuations in large tokamak experiments, with

the possible exception of the extreme edge.

Some of the major simplifications which have been used in the past are
local vs. nonlocal treatment, simplified magnetic geometry, and fluid vs. kinetic
treatment. In the local approximation, each Fourier harmonic of the perturbations
is assumed to be independent, while physical inhomogeneities may couple these
harmonics. Nonlocal treatment takes this coupling into account, and turns the lo-
cal algebraic dispersion relation (zero-dimensional) into a one- or two-dimensional
differential or integral equation in space. The nonlocal eigenmode is then a super-
position of many coupled Fourier harmonics. The simplest magnetic geometry is an
unsheared slab where B is straight and constant. The next level of complication is
a sheared slab, where B is still constant, but the field lines twist. This couples the
radial and parallel directions (k. and k) and makes the linear problem spatially
one dimensional. In more realistic toroidal geometry where B also varies with ma-
jor radius, toroidal VB and curvature drifts become an important destabilization
mechanism, both through fluid-like and kinetic effects. In addition, the poloidal
variation of the VB and curvature drifts introduce coupling of different poloidal
harmonics (kg’s), making the problem two dimensional. Fully nonlocal investiga-
tions in toroidal geometry awaited the development of the ballooning representation
[CONNOR et al., 1979], which reduces the problem back to one dimension by exploit-
ing the perpendicular scale separation between the equilibrium and the fluctuations.
Finally, to avoid the additional complexity of resolving velocity space, many ear-
lier works were based on fluid equations which did not capture the kinetic effects
of phase mixing and wave-particle resonances. Kinetic effects are often important
for microinstabilities, and accurate stability calculations based on fluid equations

require models of these effects.
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The ITG mode can be isolated from the TEM by assuming that the electrons
are adiabatic, which removes the trapped electron drive. The earliest investigations
of the ITG instability were in simplified magnetic geometry, first in an unsheared
slab [RUDAKOV and SAGDEEV, 1961] and later in a sheared slab [COPPI et al.,
1967]. The magnetic shear and T;/T. dependence of the threshold for instability
was fully treated by [HAHM and TANG, 1989] in the small ion gyroradius limit,
including kinetic effects. In an unsheared or sheared slab, the ITG mode is basi-
cally an ion acoustic wave driven unstable by the ion temperature gradient. Later
investigations revealed that in more realistic toroidal geometry the ITG mode can
be strongly destabilized by VB and curvature drifts, and becomes the interchange-
like toroidal ITG mode [HORTON et al., 1981; CopPPI and PEGORARO, 1977]. The
toroidal I'TG mode is unstable if 7, > T]Z»C‘"it, where 1, = L,;/Ly;. In these early
oversimplified fluid limits 75" ~ —1 [HORTON et al., 1981], although 3¢t also de-
pends on k?p? and ¢, = L,;/R. Later work began including the kinetic effects
of parallel and toroidal drift resonances, usually keeping either parallel or toroidal
drifts, but not both. [GUZDAR et al., 1983] retained the parallel resonance in a
nonlocal treatment, while [TERRY et al., 1982; BIGLARI et al., 1989; ROMANELLI,
1989] retained the toroidal resonance in the local limit. Both of these approaches
show that the kinetic 75" ~ 1, demonstrating the importance of kinetic effects on
the toroidal ITG mode. In the flat density limit where ¢, — oo, the stability cri-
terion actually becomes a criterion on Ly /R instead of n; [TANG et al., 1986], and
L/ R < L%/ R for instability. In the purely toroidal local kinetic limit (ignoring
k, and parallel Landau damping), [BIGLARI et al., 1989; DOMINGUEZ and ROSEN-
BLUTH, 1989] find L /R 2 0.35. The fully toroidal nonlocal kinetic calculations
by [DONG et al., 1992] are very complete within the context of adiabatic electrons
and ignoring trapped ion effects. These results clearly demonstrate inadequacies in
the local approximation. For example, in the local approximation the safety factor,
q, and magnetic shear parameter, s = (r/q)dq/0r, do not enter (although a g de-
pendence can be introduced by assuming k; = 1/¢R in local calculations). Fig. 7
of [DONG et al., 1992] shows a strong dependence of the toroidal ITG growth rate

on §, an effect which is completely missed within the local approximation.

Impurities and beams can also affect the toroidal ITG mode. If the impurity
density is outwardly peaked (inverted), impurities can be strongly destabilizing, as

was first shown in an unsheared slab by [COPPI et al., 1966]. Later nonlocal in-
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vestigations in sheared slab geometry [TANG et al., 1980] confirmed that inverted
impurity density profiles can be strongly destabilizing, and that inwardly peaked im-
purity density profiles are strongly stabilizing. That these trends persist in toroidal
geometry was shown in the fully toroidal kinetic calculations of [DONG et al., 1994].
Thus the radial variation of Z.g is potentially an important stability parameter,
and if Z.g is peaked near the edge, this impurity destabilization may increase theo-
retical transport predictions in the edge, bringing them into closer agreement with
experiment, as pointed out by [DORLAND et al., 1994a]. The effects of impurities
(strongly stabilizing with flat Z.g) and beam ions (weakly stabilizing) have also
been demonstrated in comprehensive toroidal kinetic calculations of the toroidal
ITG mode [ICOTSCHENREUTHER et al., 1993], and the effects of a non-Maxwellian
beam distribution have been investigated by [REWOLDT and TANG, 1990] for both
the toroidal ITG mode and TEM.

Another complication is the effect of trapped ions. When the mode time
scales fall below the ion bounce frequency wy = \/evy/qR, trapped ion effects
become destabilizing. Since the toroidal ITG mode typically has w ~ kgp;vii/ R,
trapped ion effects are important for long wavelengths, kyp; < 1/¢/q. Although the
trapped-ion mode and toroidal ITG mode are often considered distinct, the toroidal
ITG mode gradually evolves into the trapped ion mode at long wavelengths. The
work of [XU and ROSENBLUTH, 1991] includes trapped ions, but assumes adiabatic

electrons.

For more complete instability calculations, the adiabatic electron assumption
must be relaxed. The dominant contribution to the nonadiabatic electron response
comes from the bounce averaged trapped electron response; the passing electrons
and non-bounce-averaged trapped electron response are usually weak [REWOLDT
and TANG, 1990]. The early work on electron driven instabilities usually isolated
the effects of electrons by either assuming cold ions, which considerably simplifies
the analysis but removes the I'TG mode, or by using a fluid ion approximation. The
TEM was first investigated in the local approximation, with fluid ions and kinetic
trapped electrons, with [ADAM et al., 1976] and without [LIU et al., 1976] electron
toroidal precession drifts. The nonlocal calculation with fluid ions, neglecting ion
toroidal drifts, was performed by [CATTO and TSANG, 1978]. A nonlocal calcula-

tion using the ballooning representation including ion toroidal drifts, for small &, p;
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was presented in [CHENG and CHEN, 1981]. There is a somewhat artificial distinc-
tion between the dissipative (DTEM) and collisionless (CTEM) trapped electron
modes, since the transition between them is smooth, and they are slightly different

versions of the same instability.

The “ubiquitous mode” of [CoPPI and REWOLDT, 1974; CoPPI and PEGO-
RARO, 1977] is the short wavelength (k. p; & 1) version of the instabilities considered

above.

In toroidal geometry, when full kinetic ions and electrons are both consid-
ered, whether the toroidal ITG mode or TEM will dominate is primarily a function
of the parameters n;, 5. = L,./Lrt., €,, and electron collisionality, 1,.. When
> nf (or Ly/R < LY/ R in the flat density gradient limit), the toroidal ITG
mode dominates, but can be further destabilized by the trapped electron precession
resonance. Below the ITG threshold, the TEM can still exist if v, 1s sufficiently
small. Because electron temperature gradients can destabilize the trapped electron
mode, whether or not the TEM will be unstable below 7"® depends on 7, and ¢,,.
If the electron collisionality is large enough, the TEM drive is removed, and the

plasma can be completely stable for n; < 1.

The nonlinear saturation of these instabilities and the resulting transport is
of great interest and has been considered by many authors. Because of the difficulty
of nonlinear analysis, much of this work has been based on simplified fluid mod-
els and sheared slab geometry, and has focused on the I'TG mode, beginning with
the early fluid simulations by [HORTON et al., 1980]. In an analytic fluid theory,
[LEE and DIAMOND, 1986] calculated the transport expected from ITG turbulence
in a sheared slab, at a much greater level of detail than mixing length estimates.
Later, [TERRY et al., 1988] argued that higher radial eigenmodes strongly increase
the predicted slab ITG ion heat transport, suggesting that ion temperature profiles
would remain close to marginality. These analytic theories required a number of
uncertain assumptions and approximations. The three dimensional direct simula-
tions of [HAMAGUCHI and HORTON, 1990] resolved a number of these uncertainties
and lead to a more reasonable scaling with shear and (1; — 7). However, as a
fluid model, it still neglected some important kinetic effects. The importance of
kinetic effects on microinstabilities stimulated the development of gyrokinetic par-

ticle simulations [LEE, 1983; DUBIN et al., 1983; LEE, 1987], used to investigate
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the sheared slab ITG mode in [LEE and TANG, 1988]. The sheared slab gyrokinetic
particle simulations by [ICOTSCHENREUTHER et al., 1991] showed that fluid simu-
lations without kinetic effects overestimate the ITG driven transport by a factor of
ten. Recent work has focused on including kinetic effects in improved fluid equa-
tions by using closure approximations which model Landau damping [HAMMETT
and PERKINS, 1990] and FLR effects. These slab gyrofluid simulations [DORLAND,
1993] find reduced transport compared to previous fluid simulations, bringing them

into agreement with gyrokinetic particle simulations [PARKER et al., 1994].

These improved slab ITG gyrofluid simulations [DORLAND et al., 1992; DOR-
LAND, 1993] also revealed that turbulence-generated sheared flows play an impor-
tant role in the development and saturation of ITG turbulence, an effect which had
previously been investigated as a mechanism for the H-mode transition [DIAMOND
and KM, 1991; BIGLARI et al., 1990]. This effect had also been seen in simulations
of resistive drift waves [HASEGAWA and WAKATANI, 1987] and resistive pressure
gradient driven turbulence [CARRERAS et al., 1991], which tended to emphasize the
edge. Both slab and toroidal [BEER et al., 1992; HAMMETT et al., 1993] gyrofluid
simulations showed that this is also an important effect in the plasma core, and
for all modes with near-adiabatic electron response. This effect had been missed in
most previous TG simulations because of limitations in the adiabatic response or
in the treatment of the (kg = 0, &, = 0) mode and boundary conditions. Recent
gyrokinetic particle simulations have also seen this effect [COHEN et al., 1993]. The
importance of the generation and damping of sheared flows is even more pronounced
in the toroidal ITG simulations [BEER et al., 1992; HAMMETT et al., 1993; WALTZ
et al., 1994a] than in a sheared slab.

The obvious need to consider toroidal ITG turbulence was addressed with
Braginskii-based fluid simulations first in a local 2D approximation (with &, = 1/¢R
fixed) [WALTZ, 1986], and then in full 3D toroidal geometry [WaLTZ, 1988]. The
latter work used a rough model of Landau damping, rather than collisional based
dissipation, and was one of the first in this regard. Analytic estimates of toroidal
ITG transport were presented in [BIGLARI et al., 1989]. Increasing computational
power allowed full torus [PARKER et al., 1993] and toroidal annulus [DIMITS et al.,
1994] gyrokinetic particle simulations. Meanwhile, the slab gyrofluid equations were
extended to include the kinetic effects of toroidal drifts [WALTZ et al., 1992], and
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later improved to include more accurate models of toroidal drifts and the effects of
trapped ions [BEER et al., 1993]. These toroidal gyrofluid equations are simulated
using a reduced flux-tube simulation geometry described in this thesis, allowing high
resolution toroidal ITG simulations with kinetic effects. These simulations predict
much larger transport than gyrofluid and gyrokinetic sheared slab simulations, re-
viving the notion that profiles may be forced to remain near marginality [DORLAND
et al., 1994b; IKOTSCHENREUTHER et al., 1994a]. Recently, the trapped electron
fluid equations presented in this thesis have been implemented in fully nonlinear

simulations including both the trapped electron drive and the toroidal ITG drive.

A personal and readable perspective on the progress and challenges in under-
standing plasma turbulence through 1986 can be found in [WALTZ, 1989]. A broader
review through 1990 can be found in the U. S. DoE Transport Task Force Reviews

on Anomalous Transport in Tokamaks in the December 1990 issue of Physics of

Fluids B.

1.3 Simple Physics of the Toroidal ITG Driven
Instability

Because the toroidal ITG instability is a likely cause of the observed density and
temperature fluctuations in experiments, in this section the basic mechanism of the
toroidal ITG instability is presented in the spirit of Cowley’s picture of the slab ITG
mechanism [COWLEY et al., 1991]. This rough picture will be based on a simple
fluid model, and later chapters will introduce more physics to make our description
of this instability more complete. Since later chapters will get quite complicated,
it 1s useful to have in mind a rough picture of the structure and dynamics of these

modes, and of the turbulence which ensues.

Before developing our model equations, we begin with a brief outline of the
dynamics. The toroidal ITG mode is primarily driven by bad curvature effects,
while the slab ITG mode is driven by parallel dynamics. Thus the toroidal version
of this instability (the one most relevant to actual tokamak experiments) can be
roughly described by ignoring the parallel dynamics altogether. This simplification
will lead to reasonable estimates for growth rates, but cannot give the correct mode

structure or the nonlinear evolution of the mode, since parallel Landau damping
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is the dominant damping mechanism nonlinearly. The essential difference between
the slab and toroidal I'TG modes is the inclusion of the toroidal VB and curvature
drifts. For low-3 equilibria, the toroidal VB and curvature drifts can be combined

into:
N vﬁ +v? /2
‘T OB

Consider a pressure perturbation with £, < kg on the outer midplane of the tokamak

B x VB. (1.1)

as shown in Fig. 1.1. The toroidal VB and curvature drifts, vy, are down. Because
of the velocity dependence of vy, hot particles will drift down faster than the cold
particles, increasing the density below the hot spots and above the cold spots. The
ion density perturbation produced by v4 in turn causes a potential perturbation via
quasineutrality, producing the electric field as shown. This electric field induces a
radial Ex B drift, which convects hotter plasma into the hot spots and colder plasma
into the cold spots, causing the perturbation to grow. On the inner midplane, where
Vpg is reversed but VB points in the same direction, this feedback mechanism is
shut off. In this case the toroidal drifts produce the same density perturbation and
electric field, but now E x B convection brings hotter plasma into the cold spots

and colder plasma into the hot spots, so the perturbations are damped.

Our derivation of this instability is based on a simplified limit of the gyroki-
netic equation. Setting k; = 0, and ignoring finite Larmor radius effects, the drift

kinetic equation is (the full toroidal gyrokinetic equation is given in Eq. (2.2)):

%(FB) +V [FB(vg+va)] + a%[FBv”(B -Vb) - vig] = 0. (1.2)
Here vg = (¢/B*)B x V® is the E x B drift velocity, and ® is the perturbed elec-
trostatic potential. The gyrokinetic equation is written here in conservative form,
and the combination F'B appears because B is the Jacobian of the transformation
from (v, v,) to the (vy,p) variables used here, where p = v? /2B is the magnetic
moment adiabatic invariant. The d/dv, term conserves toroidal angular momen-
tum: an E x B drift which moves a particle in major radius (B . Vb is in the VB

direction) causes a parallel acceleration.

Simplified fluid equations can be derived by taking moments of Eq. (1.2)

over velocity space. For example, the particle density is:

n=[doF =2n /m dv, /OO duBF (1.3)
—00 0
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Figure 1.1: Simple picture of the toroidal ITG instability mechanism on the outer
midplane of a tokamak. The velocity dependence of the downward V B and curva-
ture drifts cause ion density build-up below the hot spots and above the cold spots.
This produces the electric field, which E x B convects hotter plasma into the hot
spots, and colder plasma into the cold spots. On the inner midplane where Vpy
is reversed with respect to VB, colder plasma is convected into the hot spots, and
this feedback mechanism is shut off.
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ﬁ and v?/2 in v, introduce the parallel

When taking moments of Eq. (1.2), the v
and perpendicular pressures into the density equation, p; = [ d°v mUﬁF and p, =
[ d*v(mv?/2)F. To avoid the complexity of evolving p, and p, separately (as in
Chapter 2), for the present simple model, assume that vﬁ = v?/2 when taking
moments of this term, i.e., the curvature drift is replaced by the VB drift. This
is commonly called the VB approximation [TERRY el al., 1982]. The differences
between the V B model and the constant energy resonance model, Uﬁ—kvi/? = 2(Uﬁ +
v?)/3 [ROMANELLI and BRIGUGLIO, 1990], will not appear within the context of
this simple fluid model. Integrating Eq. (1.2) over velocity space gives the evolution
of the perturbed density:

on 2p

o TV vEt o

B x VB| =0, (1.4)

where the pressure p = [ d*v(mv?)/3 = [ dy, fd,uBFm(Uﬁ +2uB)/3 ~ [ dvy [dp
BFmuB in the VB approximation. Breaking the density into equilibrium and
perturbed parts, n = ng + n:

an

2 R
§+VE'VTL()+VE'VFL+TZOV'VE+WBXVB-VpZO. (15)

The second term is the E X B convection of the equilibrium density gradient, and
the third term is the nonlinear convection of the perturbed density. In the fourth
term, as shown in Chapter 2, V-vg = (2¢/B*)B x VB- V®. This term arises from
the variation of B with major radius in a tokamak; V - vg = 0 if B is constant, as
in a sheared slab model. Also discussed in Chapter 2, V- [(1/2B?)B x VB] =~ 0,
so it comes out of the divergence, leaving the v, term above. The divergence of the
v drift comes from the fact that hot particles VB drift faster than cold particles,
as shown by Ee. (1.1), so pressure perturbations cause density perturbations. The

toroidal angular momentum conserving term vanishes upon integrating over v.
The notation can be simplified by normalizing perturbed quantities to their
equilibrium values, n = n/ng, p = p/po, ® = 6&)/T,-0, where py = ngTy, and

introducing the diamagnetic drift and toroidal drift frequencies:

. cT';
Wy = ﬁB X Vno . V, (16)
T.
iwe= 2B xVB-V. (1.7)

eB3
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In the usual low aspect ratio tokamak geometry, with B = (ByRy/ R)(e;+1/qRoeq),
these frequencies become: w, = —kgp;vsi/ Ln; and wg = —(pive;/ R)(k, sin 0+kg cos §).

In this discussion we will only consider non-inverted profiles, so L} = —dInn;o/dr
and L7 = —dlInTy/dr are positive. The linearized density equation is then:

d . . .

8_7; — 1w ® 4 2000y ® + 2iwyp = 0. (1.8)

To find the evolution equation for the pressure, multiply Eq. (1.2) by mu =

mv? /2B and integrate over velocity to get:

; i 2
—Z 4V [EVE-}-/CF’UF QBJ'VJ:| = 0. (1.9)

The toroidal drift terms now introduce the Uﬁvi and v moments. The simplest

way to evaluate these terms is to assume that F'is Maxwellian:

F _ ——m?;ﬁ/'ZT”——mlll/B/TJ_" (110)

n
€
(2 fm 2T\ [Ty

but with total (equilibrium plus perturbed) n, 7|, and T',. Then

2.2 | 22 /9 . 2
5. UL Y| —}-UL/HB _ PP + 202
R e A R o ) (1.11)

This is effectively a closure approximation for the Uﬁvi and v! moments in terms

of the lower known moments (n and p). Better closure approximations will be
introduced in Chapter 2 which model the phase mixing associated with toroidal

drifts and its related resonances.
Again separating the equilibrium and perturbed parts, and approximating

py = p. in Eq. (1.11), the pressure equation Eq. (1.9) becomes:

. 1 j e
—I-VE-V})O—}—VE-VP—}—pOV-VE—}—pOBVF,-v——l——LBXVB'V(6P—3HTO) = 0.
B ngmQB?
(1.12)

Upon normalizing and linearizing, the V- vg and Bvg - V(1/B) terms combine to

9p
a1

give 31wy ®, and the vg - Vpg term becomes —i(1 4 5;)w,® using n; = L,,;/Lyi. The
pressure equation is then:
dp

g — (1 + ni)w® + 3iwg® + 1wy (6p — 3n) = 0. (1.13)
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For normal modes, the pressure and density are given by:

n=——0 424y 1 2% (1.14)
w w w

—wi(1 4+ 5;)® 4 3wy ® — 3wyn

w—6w.z

Although £, has been ignored so far, in reality these modes have k; ~ 1/¢R.
Because of their fast parallel motion, the electrons are nearly adiabatic (kv ~
Vte /@R > w ~ w,), and the perturbed electron density is given by 7. /n., = e(i)/Tco.
Nonadiabatic electron response, which primarily comes from trapped electrons, can
significantly affect these modes in some regimes, and will be considered in Chapter
3. The perturbed densities are quasineutral, since kAp < 1. Keeping the small
b = k3 p? limit of the polarization density, Eq. (2.9), the perturbed electron and ion

densities are related by:

Ne = Ni — b@mo,
T
Substituting n. = ncoe&)/Tco and again normalizing to n.g = n;, and ¢ = e(i)/Tio,
Log b,
c0
or
(t1+0)® =n, (1.16)

where 7 = T/ T.o.

The dispersion relation for this simple model is quadratic, and is obtained
by combining Ees. (1.14), (1.15), and (1.16):

(T + b)w? + w[—6wa (T + b) + ws — 2we] 4+ 6wWI(1 + 7 4 b) + 2w,wi(m —2) = 0. (1.17)

with roots:

6w (T + b) + 2w, — wi
w =
2(1 4+ b)

(1.18)

N \/[(m(r +b) + 2wy — wi? — 4A(T + B)[6w3(1 + 7 + b) + 2waws (1, — 2)]
2(7 +b)

The growth rate from this simple model is shown in Fig. 1.2 forn;, =2, 7 =1,b =10,

and varying €, = L, /R. Also shown are the fully kinetic and gyrofluid growth rates
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Figure 1.2: Comparison of kinetic, gyrofluid, and simple fluid growth rates of the
purely toroidal ITG mode, for 7; = 2. Including models of kinetic effects signifi-
cantly improves the accuracy of the gyrofluid results.

corresponding to this purely toroidal limit, as found in Chapter 2. Including kinetic
effects brings the gyrofluid results into much better agreement with kinetic theory
than the simple model discussed here, but this simple model captures the gross

features of the instability.

In is instructive to first look at the flat density gradient limit, where L,; —

00, S0 €, and 1; — oo. In this limit Ea. (1.18) reduces to:

B Bwe(T + b) + wy \/?)wg(T +0)2 4 w3 — 2wgw,api(T + b)
B (1+0b) (7 +b)

To get instability, we need 2wgw.n; (T +b) > 3w3(7+b)* +wj. Clearly, wew.n; > 0 is

(1.19)

necessary (but not sufficient) for instability, since the other terms inside the square
root in Ee. (1.19) are positive. From this condition, it can be ascertained from
the definitions of w, and wy in Eqs. (1.6) and (1.7) that Vpy and VB must point
in the same direction for instability (“bad” curvature), and if Vp, and VB are
antiparallel (“good” curvature) the mode is stable. Because w. = —kgp;v¢;/L,; and
wg = —(pivsi/ R)(k, sin 0+ ky cos 0), perturbations on the outer midplane of the torus

(0 = 0) are unstable, while perturbations on the inner midplane (§ = 7) are stable.
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The dispersion relation Ea. (1.19) shows the stabilizing effect of Ty > T.o,
(7 > 1), both in the threshold for instability, because the stabilizing 3w3(7 4 b)?
term increases more rapidly with 7 than the destabilizing —2wqw,n;(7 + b) term,
and in the growth rate, because the (7 + b) in the denominator beats the /7 + b
coming from the drive. This stabilization of the toroidal ITG mode from T;y >
T.o 1s a likely mechanism for improved transport in supershots and hot-ion modes
(in combination with relatively weak electron temperature gradients to keep TEM
driven transport small). The stabilizing effect of T; > T. occurs by reducing the
ion density perturbation produced by ®, weakening the feedback mechanism that
causes instability, as discussed below. In addition, Ee. (1.19) shows some of the
stabilizing influence of finite Larmor radius (FLR) effects through b, though the FLR
corrections in the density and pressure equations have been neglected. Physically,
FLR stabilization occurs because the ions feel the averaged potential around their
gyro-orbits, and this gyroaveraging reduces the response to high &, p; components
of the potential. In the large 7; (strongly unstable) limit, Eq. (1.19) gives a purely

growing root:

. [2wqwan;
Wty ————. 1.20
'\/ T+5b ( )
Since w,,wy o k,, the growth rate stops increasing with b near b = k?p? = 1.

With the more complete FLR terms in Chapter 2, the growth rates peak around
kip;i ~ 1/2, and then drop. Though ignored in this simple model, the perturbed
impurity and beam densities can also affect stability, as discussed in the previous

section.

In the slab limit, where €, — 0 so the toroidal terms vanish, the two roots
of Eq. (1.18) are neutrally stable, w = 0 (the ion acoustic wave) and —w, /(T + b)
(the electron drift wave). Parallel dynamics are necessary for instability in the slab

limit.

To see the physical mechanism of this instability, consider a perturbation on
the outer midplane in the large n; limit, where the mode is purely growing (y > w,).
Assuming 7 = 1 and neglecting FLR corrections (b = 0), from Egq. (1.20) we find

v = Niwiws = \2wew.r. Egs. (1.14) and (1.15) become: & = —2wyp/w and
p = —wap®/w. Using ® = ®explikyrol — iwt] and p = pexplikgrold — iwl + ial],
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where ® and p are real,
®(0,1) = R[® + ®*]/2 = ® cos(kgrof) exp(t),

p(0,t) = R[p+ p"]/2 = pcos(korol + c) exp(t).
From Eg. (1.15), taking kg > 0, so w, < 0:

e
pe - = . O =a= —’/T/2,
Y

thus the perturbed pressure will be 7/2 out of phase with the potential, leading to
the density perturbations as shown in Fig. 1.1, and the instability mechanism from

E x B convection of the equilibrium pressure.

Now going back to the general dispersion relation, Eq. (1.17), but assuming

7 =1 and b = 0, the roots are:

w:4wd—%:I:%\/lfiwg—{—wf—éﬂwdw*m. (1.21)
In this more general case, the E x B convection of ng, and V - vg (the first two
terms on the RHS of Eq. (1.14) are not negligible (as they were in the large »; limit),
so the phase shift between the density and pressure perturbations will not be 7 /2.
This makes the mode propagate; it propagates in the ion direction for ¢, > 1/8 and
in the electron direction for ¢, < 1/8. For b = 0 and 7 = 1, the quasineutrality

constraint, Ee. (1.16), gives n = @, so Eq. (1.15) becomes:

p= M@ (1.22)

w—6w¢

When the phase shift between p and ® is large enough (a = 0 or 7 for v = 0), the
feedback mechanism is shut off and the mode is stabilized. For this simple model,

this occurs at:

1+ 1663
Se,

and the mode is unstable for 5; > 7. This is a reasonable approximation to the

crit __
n, =

kinetic n§™

¢t which is a also function of €,, but is always greater than 2/3. In the flat

crit

density limit, ¢, — oo, {™" — 2¢,, so the critical 7; becomes a critical temperature

gradient, [$f /R = 0.5 from this simple fluid model, and instability requires Ly <
Lt.. The toroidal gyrofluid equations in Chapter 2 give L%/R = 0.33, which is a

better approximation to the kinetic LX"/R = 0.36.
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Now consider a mode with k. # 0, so the perturbations pictured in Fig. 1.1
are tilted in the poloidal plane. At the outer midplane, since sinf = 0, wy is
unchanged; also, w, is unchanged. The toroidal drifts still produce density per-
turbations aligned with the pressure perturbations, and E x B convection is along
these tilted perturbations, leading to the same instability. Thus the only effect of

2

k. is to increase b = k% p?, which is stabilizing, so k. = 0 perturbations are the most

unstable.

In a real tokamak these perturbations are aligned with the magnetic field
lines, since parallel Landau damping or phase mixing equickly damps any high %,
components. As a field line rotates around the magnetic axis (from B,), it samples
both good and bad curvature regions. Minimizing £, while simultaneously localizing
the modes in the bad curvature region leads to mode structures with &, ~ 1/¢R, with
large amplitude at the outer midplane and smaller amplitude at the inner midplane
(“ballooning” mode structure). In addition, magnetic shear causes the field lines on
neighboring flux surfaces to rotate at different rates. The perturbations try to follow
this twisting, which increases k. moving along the field line. This increases FLR
stabilization away from the point where k. = 0. Thus the parallel mode structure is
determined by the competition between minimizing %, localizing the mode in the

bad curvature region, and magnetic shear localization through FLR effects.

These instabilities grow until the nonlinear E X B terms in Eqs. (1.5) and
(1.12) become comparable to the linear terms. For radially elongated modes as
pictured in Fig. 1.1, V7 and Vp are nearly perpendicular to vg, so the nonlinearity
is weak, allowing these modes to grow to large amplitude. However, these elongated
modes may be susceptible to “secondary instabilities” [COWLEY et al., 1991], and
are strongly affected by radially sheared perpendicular flows, which stretch and twist
the perturbations, enhancing decorrelation and reducing the fluctuation amplitudes
[BIGLARI et al., 1990]. From this simple picture, we expect these modes to evolve
into turbulent blobs with short perpendicular scales, k,p; <~ 1/2, and long parallel
scales, &y ~ 1/qR (i.e. very elongated along the field line), with ballooning mode
structures. These gross features are in fact observed in the more complete nonlinear

simulations discussed in Chapter 5.
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1.4 Outline

1.4.1 Improved Toroidal Gyrofluid Equations

The inclusion of VB and curvature drift effects is an important destabilization
mechanism for tokamak microinstabilities. The growth rates for the toroidal ITG
mode are typically three to four times higher than the growth rates of the slab ITG
mode. Using models similar to [WALTZ el al., 1992], toroidal gyrofluid equations
with more accurate closure approximations to model toroidal phase mixing are
derived in Chapter 2. These toroidal gyrofluid equations also incorporate models
of parallel phase mixing [HAMMETT and PERKINS, 1990] and linear and nonlinear
FLR effects [DORLAND and HAMMETT, 1993], although the linear FLR terms are
slightly modified by toroidicity. The derivation presented in Chapter 2 is valid for
finite %y, while [WALTZ et al., 1992] focused on the purely toroidal (&, = 0) limit

and a term to remove a singularity for finite k; was added a posteriori.

Slab [DORLAND et al., 1992; DORLAND, 1993] and toroidal [BEER el al.,
1992; HAMMETT el al., 1993] simulations revealed that an important nonlinear sat-
uration process for tokamak turbulence is the nonlinear generation and damping
of radially sheared “zonal” E x B flows (flows which cause flux surfaces to rotate).
These sheared flows are very weakly damped in a sheared slab (via classical viscos-
ity); the dominant damping mechanisms arise from toroidal effects. The mirroring
,uE) - VB term is included in these toroidal gyrofluid equations to provide accurate
models of poloidal flow damping from magnetic pumping, and also to model the
effects of trapped ions, which extend the validity of these equations into the trapped
ion regime at low kgp;. Finally, a Krook collision operator has been incorporated,
important for poloidal flow damping in the Pfirsch-Schliter regime, and for colli-

sional effects on very low frequency modes.

1.4.2 Fluid Models for Trapped Electrons

Trapped electron models developed in this thesis have provided the first high resolu-
tion three dimensional toroidal simulations which simultaneously include trapped-
electron effects as well as the ITG drive, which we presented in [HAMMETT el al.,

1994]. This enables realistic nonlinear calculations of the full transport matrix
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(electron and ion heat fluxes and particle fluxes). Previous ITG simulations us-
ing adiabatic electrons had no electron heat flux or particle flux. A sophisticated
trapped electron fluid model is derived in Chapter 3 which retains the pitch angle de-
pendence throughout, as opposed to more simplified trapped electron models which
assume that the electrons are deeply trapped [IKADOMTSEV and POGUTSE, 1970].
Retaining this pitch angle dependence is potentially important for advanced toka-
mak configurations in the second stability regime or with reversed magnetic shear
[IKESSEL et al., 1994], where a major fraction of the trapped electrons have favorable
toroidal precession drift, stabilizing trapped electron modes. Because these electron
equations are bounce averaged, the fast parallel electron time scale is removed, and
nonlinear simulations with trapped electrons are only about two times slower than
simulations assuming adiabatic electrons. We can now study regimes where the
collisionless or dissipative trapped electron mode (TEM) dominates over the ITG
mode, or in mixed regimes where the TEM drive may double the growth rate of the
ITG mode. These simulations can also investigate why the core of supershots are

convection dominated, or search for “off-diagonal” pinch effects.

1.4.3 Flux Tube Simulation Geometry

Simulation of turbulence in a full tokamak is very challenging since one must simul-
taneously resolve the machine size and the scales of the turbulence. The scale of
the turbulence is on the order of the ion gyroradius, p;, while the size of present day
tokamaks is much larger, a/p; ~ 500 — 1000, where a is the minor radius. This re-
quires a very fine computational grid, and is slightly beyond today’s computational
capabilities for realistic a/p;. In Chapter 4 a reduced simulation geometry is pre-
sented which resolves only a thin flux tube rather than the full torus, exploiting the
elongated nature of the turbulence, which has short perpendicular scales but long
parallel scales. This method allows high resolution simulations in realistic tokamak
geometry, retaining the important toroidal effects of good and bad curvature. It
is also applicable to non-tokamak magnetic configurations, and the formulation in
Chapter 4 is presented in a form applicable to general magnetic geometry. The

material in Chapter 4 is available as a PPPL report [BEER et al., 1994].
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1.4.4 Nonlinear Simulation Results

The toroidal gyrofluid equations and bounce averaged trapped electron fluid equa-
tions derived in Chapters 2 and 3 are solved via direct numerical simulation using
the efficient flux tube geometry in Chapter 4. The most interesting physics results
from these simulations are presented in Chapter 5. The importance of small scale,
turbulence-generated, sheared poloidal rotation, and the damping of this rotation,
is demonstrated. The damping rates of this rotation from magnetic pumping from
the gyrofluid model are calculated and compared with neoclassical theory. The non-
linear fluctuation spectra are peaked at long wavelengths compared to the fastest
growing linear modes, and are anisotropic in k. and kg, similar to BES measure-
ments [FONCK et al., 1993]. The fluctuation energy balance in the simulations shows
that the dominant dissipation mechanism is parallel Landau damping, and that the
dominant drive comes from equilibrium density and temperature gradients. Finally,
nonlinear simulation results with trapped electrons are presented, where it is found
that in moderate or low collisionality regimes, both ion and electron heat transport
are strongly dependent on the electron collisionality and electron temperature and

density gradients.

1.4.5 Comparison with Experiment

In Chapter 6, results from these nonlinear simulations are compared against a TFTR
L-mode discharge, using measured plasma parameters. The predicted transport lev-
els are in reasonable agreement with those calculated from power balance (SNAP).
The central transport is small because the linear drive is weak, and increases to-
ward the edge as the linear drive increases. Near r/a ~ 0.8, the predicted transport
falls off. Possible mechanisms which could increase the predicted transport in the
edge are discussed. This behavior is very similar to that found in [DORLAND et al.,
1994b; KOTSCHENREUTHER et al., 1994a], where a transport model based on our
toroidal gyrofluid simulations and linear kinetic theory was used to predict tem-
perature profiles. The comparison with experiment is presented here to roughly
demonstrate where we stand, and should be considered qualitative. Only one shot
is compared here (though [DORLAND et al.,, 1994b; IKOTSCHENREUTHER et al.,

1994a] looked at many shots), and more detailed investigations are necessary.



Chapter 2

Derivation of the Toroidal
Gyrofluid Equations

HE TOROIDAL GYROFLUID EQUATIONS describe the time evolution

of a few moments of the gyrokinetic equation. We will concentrate on a

set of six guiding center moments: the guiding center density, n, parallel
velocity, u, parallel pressure, p,, perpendicular pressure, p,, and the parallel fluxes
of parallel and perpendicular heat, ¢, and ¢,. The toroidal gyrofluid equations
presented here incorporate reliable models of most of the physics considered impor-
tant for ion dynamics in tokamak turbulence. The moment hierarchy is closed by
approximations which model the kinetic effects of collisionless phase mixing from
parallel free streaming and toroidal VB and curvature drifts, and linear and non-
linear FLR effects. The ,uE) - VB force is included, which recovers some trapped
particle effects and magnetic pumping. Ton-ion collisions are modeled with a simple
Krook collision operator. Since the effects of ion collisions are usually weak, this
should be sufficient. Probably the most significant limitation of these equations
is the electrostatic approximation. This reduced set of nonlinear fluid equations
is simple, yet accurate enough to be used in 3D high resolution direct numerical

simulations of tokamak turbulence.

23
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2.1 The Toroidal Gyrokinetic Equation

The starting point of the derivation of the toroidal ion gyrofluid equations is the non-
linear electrostatic gyrokinetic equation in toroidal geometry [HAHM, 1988; FRIE-
MAN and CHEN, 1982], see also [LEE, 1983; DUBIN el al., 1983; LEE, 1987]. The

usual gyrokinetic ordering is used:

;~%~?~%~%~5<1, kip~1, (2.1)
where w is a typical frequency, Q@ = eB/mec is the cyclotron frequency, k; is a typical
parallel wavenumber, k, is a typical perpendicular wavenumber, p = v;/€Q) is the
gyroradius, v7 = T'/m is the thermal velocity, and L is a macroscopic (equilibrium)
scale length, e.g. the density scale length L' = —(1/n9)Vng. The equations derived
in this chapter will apply to ion species, for which k,p ~ 1 and w ~ w; = v;/qR:
main ions, impurities, or a Maxwellian energetic component (e.g., beam ions). The
ordering k,p ~ 1 is a “maximal ordering” and allows for a subsidiary expansion
k,p < 1 at a later time, although we will assume that £, isn’t too small, i.e.,
we will assume &, L > 1. The gyrokinetic equations (at least the version we are
presently using) may need a generalization to be able to handle the plasma edge
where equilibrium gradients may be short enough that k, L ~ 1 and e®/T ~ 1. In
Chapter 3 we will derive equations for the electrons by a very different approach,
since they satisfy a different ordering: £, p. < 1 and w <« ws.. The gyrokinetic
ordering removes the fast cyclotron time scale, which allows averaging over the gy-
roangle, reducing the velocity space dimensions from three to two. It also retains
the physics of strong turbulence even though the fluctuating quantities e® /T and
Fy/Fy are ordered small, since VF} /VFy ~ 1. Thus the dominant E x B nonlin-
earity is retained, and other nonlinearities are O(e) smaller. In conservative form,

the resulting equation is:

o o
S BV FBub+ve +v.)|
+8ﬂ [FB(—EB Vo — b - VB +u(b-Vb)-vp)| = BO(F),  (2.2)
U" m

which is valid up to O(¢e). This equation describes the evolution of the gyrophase

independent part of the guiding center distribution function F' = F(R, v, u, 1),
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where 1 = v? /2B, v, is the parallel guiding center velocity, and R is the guiding
center position. This form is valid for a general magnetic field, and b is the unit
vector in the direction of the magnetic field, B = Bb. The combination F B enters
because B is the Jacobian of the transformation from (v, v,) variables to (v, ).
Because finite Larmor radius effects are retained (k p ~ 1), the particles feel the
gyroaveraged E x B drift, v = (C/B)E) x V.Jo®, where .Jy is the linear operator
that carries out the gyroaveraging of the electrostatic potential. In Fourier space,
this operator is the Bessel function Jo(k v, /Q), where %k, is the perpendicular

wavenumber of ®, not of F'.
The VB and curvature drifts have been combined in
2
_ Yy N N H
Ve = ﬁ—b X (b-Vb) + ﬁ-b x VB. (2.3)

Using the equilibrium relations Vp = (1/¢)J x B and (47 /¢)J = V x B, and the
identity b-Vb = (V x B) X E), this can be written:

By gp gt

0B Qsz x Vp, (2.4)

V4

where the Vp term is negligible for 3 = 87p/B* < 1, i.e. b-Vb ~ VB. (For
larger 3, or stongly rotating plasmas where nm;v - Vv is not ignorable in the
equilibrium pressure equation, one simply needs to keep the curvature and VB
drifts separately. Thus instead of wy in Eq. (2.10), one would use two operators:
wyp and w,.) Toroidicity enters in Ea. (2.2) through the VB and curvature drifts,
the v”(B . VB) - vg toroidal angular momentum conserving term, through the non-
zero divergence of vg in toroidal geometry, toroidal FLR effects, and the ,uE) -VB
mirroring force. All these terms arise because B is not constant in general, in

contrast to a sheared slab model.

For ion species, collisional effects will be modeled with a particle, momen-
tum, and energy conserving BGK operator [GROSS and KKROOK, 1956] (ion-electron

collisions are negligible):
C(Fy) = = Y _vin(Fyj — Farji), (2.5)
k

where vjy, is the collision rate of species j with species k. Collisions between species j

and k cause Fj to relax to a shifted Maxwellian, Fas;,, with the appropriate density,
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velocity, and temperature to conserve particles, momentum, and energy. Because

Fy is small, Fiarjx can be linearized. For a single ion species plasma, this leads to:

v o w03
ClFy=—-vi<Fi—|—+—4+=|=—=—=|| Fo;. 2.6
(F)=—v { 1 [nn—+ o T (zvz 5 )| o (2.6)
where v? = vﬁ +v% and Ty = (Ty1 + 2T11)/3. The generalization for multiple ion
species can be found in [GROSS and IKROOK, 1956; STRINGER and CONNOR, 1971].

Since the perturbations of interest satisfy kAp < 1 (Ap < p; for typical
tokamak parameters), we will assume quasineutrality, n. = > Z;n;, where n. is the
electron density, n; is the ion particle density (not the guiding center density) of
the j’th species, and Zje is the species charge. The ion particle density is related
to the guiding center density by [LEE, 1983; DUBIN el al., 1983; LEE, 1987]:
Zied

T,

nj =n; —njo(l —TYo) (2.7)
where To(b;) = exp(—b;)Io(b;), Io is a modified Bessel function, b; = k¥v7 /02 =
k% p;, and vf,; = Tyij/m;. The second term on the right hand side of Ee. (2.7) comes
from the gyrophase dependent part of the distribution function, and is usually called
the polarization density. The &, in the polarization density term comes from ®.
The contribution to the particle density from the gyrophase independent part of the

distribution function, n;, is
m:/ﬁ%ﬁ:/ﬁﬂ%+%ﬂ) (2.8)

Here .Jy operates on Fi, i.e. k, comes from Fj. For a pure ion-electron plasma, with

hydrogenic ions (Z = 1), the quasineutrality constraint then becomes:

¢
Ne = ﬁl' — nio(l — Fo)%, (29)

The equations derived in the remainder of this chapter are applicable for each ion
species, but for simpler notation, we will drop the species index j and set Z; = 1. To
incorporate multiple ion species, one simply evolves the moments for each species
independently. Different species are coupled together through the quasineutrality

constraint and through inter-species collision terms.

We will now manipulate Eq. (2.2) into a form convenient for deriving fluid

equations. All of the toroidal effects except the ,uB - VB terms can be written
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compactly using the notation:
iwe = (V] /OB*)B x VB - V. (2.10)

Let us first look at the VB and curvature drift terms. For example, pulling
(QB*)7'B x VB out of the divergence:

1 1
V- [FBvi] = 5B x VB V[FB(v] + pB)] + FB(v} + uB)V - [QBZB X VB]

the second term becomes:

VB-VxB~)0

v[ BVB]

O B? Q32

which is small for low 3 since the toroidal component of V B is zero and the current,

J, is mostly toroidal. Thus, for low 3:

V- (FBvy) = B x VB - V[FB(vi + uB)] = (1/v})iwd FB(v] + pB)]. (2.11)

QB2

In toroidal geometry, FLR effects are complicated by the fact that the ar-
gument of .Jy depends on B. When deriving fluid equations by taking moments of
FEa. (2.2), it is easiest if ' and .Jy appear together, i.e. on the same side of spatial
gradient operators. We now manipulate the terms in Eaq. (2.2) involving Jo® so
gradients only act on the combination F.Jy or F.J;. Defining o = kv, /9, and

recalling that the spatial gradients are taken holding v, and p fixed, we can write:

VJod = JoVd + dV.J,,

0.J, «
Vo(kov, /Q) = Vo(a) = a—O?Voz = Ji(a)55VB.
The E x B term becomes:
V- [FBvg| = [FBJOEB ><V<I>—|—FB<I)J1—B§B x VB.

The divergence of the E x B drift can be written in the same form as the VB and

curvature drift terms:

2¢

V- 53

2B><T<I>] —T<I>><(T><B)

2z (BxV®) - VB ~2(e/T)iw®,

[B
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since again, V® is mostly perpendicular, and J is mostly toroidal. Writing ve =

(¢/B)b x V®, we have:

kv,
QQ)

V- [FBvg] = vg - V(FBJo) + 2F BJy(e)T)iwy® + (¢ T)iwy( FBJ, ®

The first term on the RHS includes the usual linear w, terms (from Fp) and the
E x B nonlinearity (from F}), with FLR corrections as discussed in [DORLAND and
HAMMETT, 1993]. The linear pieces of the second and third (toroidal) terms (o< Fp)
are of the same order as the slab E x B nonlinearity in the gyrokinetic ordering (we
keep B7'VB ~ F;'VF,). The nonlinear pieces in the toroidal terms (ox F}) are

higher order in the gyrokinetic ordering, and can be ignored.

Performing similar manipulations on the toroidal angular momentum con-
serving term, using the identity (b-Vb) - vy = —(¢/B*)(B x VB) - V.Jy®, leads

to:

0 . . %)
5o P BB VB) - vi] = aU”(Fv") B XxVB.-VJd
J
= ayll(FU”)BQB x VB (JOV(I) + ]1@VB)

The Jy term again has the wy form, and the J; term vanishes leaving:

d - - 0
——[FBvy(b-Vb)-vg| = ———(FBJyvy)(e/T)iw;®.
dl I a’U”
Since kyp ~ ¢, the only contribution from the E| term is linear, so in this
term we only need Fy. Using the notation V, = b - V, and a Maxwellian Fy:
. no —v3 /202 —puB 12 9
Fy = 7(%%2)3/26 I , (2.12)
we have vIllvll*,,,B(aFo/aU") = (0Fy/0v))B(1 — uB/v?)V,In B, so this term be-

comes:

(b VJ()(I))%B = ——V,l(Joch%) + 3%@32—2(”3/@3 — 1)V, In B.

m v, dv, m

Combining all these terms, Eq. (2.2) can be written:

) FBv
=B+ BY, ”

+vo - V(FBJy) + 2F BJy(e/T)iw,® (2.13)



2.2. General Toroidal Gyrofluid Equations 29

F
+ (e/T)iwi(FBJ, Ok, v, /29) + [FB(U +uB) - =V (JOQB%)
m Y
oFy (B d
—J B2 (= 1 —
+ 0 Do) ( o7 ) VilnB — [LBaU" (FB)V,In B
a
- B —(FBJoyvy)(e/T)iwe® = 0.

This form is messy, but most suited for taking moments, because velocity dependent
terms (such as F, Jy, p, etc.) are grouped together on the same side of spatial

gradient operators.

2.2 General Toroidal Gyrofluid Equations

We are interested in deriving evolution equations for velocity space moments of

Eq. (2.13), defined by:

n=[Fdv nuy = fFv"dU
pr=mJ F(oy—uy)’ d’v po=(m/2) [ Fold’v
G =m [ Floy —uy)’ dv gu = (m)2) [ Foi(vy—uy)d’v
i =m [ F oy —uy)* dPo e = (m)2) [ Fol(vy —uy)? d’v
rye = (m/4) [ Fo! v s = (m/4) [ F(v,— uy)vidPo
s = m [ Foy —wy)d®v sp = (m/2) [ Fvy— “n)SUEdSU

It will often be convenient to use temperature instead of pressure, where the parallel

temperature is defined by p; = nT and perpendicular temperature by p, = nT',

We now proceed to derive moment equations by integrating Eq. (2.13) over
velocity space. These equations express exact conservation laws of the gyrokinetic
equation, e.g., conservation of particles, momentum, etc., in the collisionless limit.
However, because of the velocity dependence in the parallel free streaming term,
kyvy, the toroidal drift terms, wy(vi +v?/2), the mirroring terms v?Vn B, the FLR
terms, Jo(k, v, /), etc., higher moments are introduced into each of these equations,
leading to the usual problem of the coupled moments hierarchy. These equations are
not useful until closure approximations are made for the highest moments (which
are not evolved), as discussed in following sections. Taking integrals of the form
[ dv, dp Uﬁ/ﬂ“ ... of Eq. (2.13) leads to the following exact moment equations, using
the notation: n(A) = [d*v FA = 27 [ dvydu FBA:

an

N + BV, (nuy/B)+ ve - V(n(Jo)) + 2n{Jo)(e/T )iws® (2.14)
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+  (e/T)iwg(Pn(Sr1a)/2) + (1/T)iwa(p, + pL + nmuﬁ) =0,

d :
gnu" + BVy(py/m+ nuﬁ)/B +ve - V(n(Jovy)) + 2n(Jovy)(e/T)iwg® (2.15)
+ e/ T)iwa(@n(Jrvja)/2) + (1) T )iwa(qy + qu + 3pyuy + pruy + nmuy)
e e IR
+ EV,m(JO)(I) + En(Jo(vi/Qv? — 1))V, In B + EV" In B
+ n(Jovy)(e/T)iwe® = 0,

0
5 (py + nmuﬁ)

+ 2n(Jov;)(e/T)iwe® + (e/T)iwa(dn(Jiv]a)/2)

+ (L TYiwa(ryy + rye +Agyuy + quuy + 6pyuy + puuy + nmuy)
+ 2

_l_

<

Q(QJ_ + pJ_U“)v” In B + 2”<JOUﬁ>(€/T)?U)Jq) = O,

dp n(Jov? n(Jov? .
af + BV,(q. —I—pLu")/B2 +ve -V <2OBL> + 2 <2OBL> (e/T)iwe® (2.17)
+ (e/T)éwd@n(Jwia)MB) + (1/T)ewa(ry,. + 7o + quuy + pluﬁ)/B =0,
0
+ Vg - V(n(JOUi?)) + 2n<JOUﬁ>(e/T)iw.l(I) + (e/T)éwd@n(lei’a)/Z)
+ (1 Tiwa(syy + syo + Sryguy + 3y, ey + 10qpug + 10pyuy + pruy + nimuy)
+ 3%V”n(ngﬁ><I) - S%MJOUﬁ(Ui/Qvf — 1))V, In B
+ 3(ry + quuy + ‘pJ_U,ﬁ)v” In B + 3n<ngﬁ)(e/T)?ﬁw,l(I) =0,
dq,+pu n{Jovv?)
ELTL”—F BV (7,0 + quuy +PJ.Uﬁ)/B2 + Ve 'VTJL (2.19)
J 2 1 .
+ QM—%)M(G/T)ZUJ,[(I) + (6/T)zw.l(<bn<J1v"via>/4B)
n{Jov?)®

. . c
+ (1T )iwa(syn + 50,0+ 3wy + rowy + pouy) /B + e -y

v S0 /2B)(v? /202 — 1))0V, In B
m

—I' %v” ln B ‘I’ n<JOU||Ui/B>(e/T)deq) — O
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Before proceeding to discuss closure approximations, it is useful to note that many
of these terms are higher order in the gyrokinetic ordering, and can be neglected.
By separating the moments into equilibrium and fluctuating parts, e.g., n = ng+ny,
where ny /ng ~ O(e), the parallel nonlinearities drop out, since they are higher order

in ¢. In addition, we assume Fj is an unshifted Maxwellian, so the equilibrium parts

2
I

nonlinearities (the vg - V terms), which are leading order.

of odd moments are zero, and terms like u; are higher order. We retain the E x B

2.3 Finite Larmor Radius Effects

In [DORLAND and HAMMETT, 1993], accurate models of FLR effects were devel-
oped by carefully approximating velocity space averages of .Jy which appear in the
dynamical equations and in the quasineutrality constraint, Eq. (2.9). As they did,
we choose to evolve moments of the guiding center distribution function, not real
space moments, to provide a better description of linear FLR effects (including the
“Bakshi-Linsker” effect [BAKSHI el al., 1977; LINSKER, 1981]) and additional FLR
nonlinearities. For simplicity, we will not incorporate the nonlinear FLR phase
mixing model in [DORLAND and HAMMETT, 1993], specifically because we do not
see large fluctuation levels at high £, p; in our toroidal nonlinear simulations, where
these terms become important. In addition to approximating (Jo), (Jovy), (Jov;),
(Jov?), (Jmfﬁ), and (Jovv?), which appear in the slab limit, we also need to ap-
proximate (Jovt), (Jia), (Jivja), and (Jivia), which arise from toroidal terms.
Linearly, these terms involve only Fj, and could be evaluated exactly. However, in
the quasineutrality constraint we have to approximate n;, which comes from £, see
Eq. (2.8). F} is not Maxwellian, so the (JoF7) term in 7i2; needs to be approximated.
As discussed in [DORLAND and HAMMETT, 1993], the best agreement with linear
kinetic theory is obtained by approximating both the (J) terms and 7;. In the
linear kinetic equation, the Jy in Eq. (2.8) combines with the Jy in the E x B drifts
in the gyrokinetic equation, Eq. (2.2), so the average of JZ over a Maxwellian enters
the dispersion relation (in the slab limit), not the average of Jy. These are quite
different, since (JZ) = To(b) and (Jo)* = exp(—b) behave quite differently for large
b. This motivated the (J3) ~ Féﬂ approximation introduced by [DORLAND and
HAMMETT, 1993], which is more robust and more accurate for linear dispersion

relations. With the inclusion of toroidal effects, the v, in Jo(k v, /) couples with
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the v? in the toroidal drifts, so it is no longer simply Ty(b) that enters the linear
kinetic equation, see Eq. (2.56) and Eq. (2.62). We have not found a completely
satisfying replacement to (.Jo) ~ FO/ for the general toroidal case, but (Jy) ~ F1/2
continues to work reasonably well. Therefore, we will use the results of [DORLAND

and HAMMETT, 1993] to approximate:

(Jo) =T3¢, (2.20)

(Jovy) = v: T8, (2.21)

(Jov?) = 02Ty, (2.22)

(Jov?) = 20} gb(bl“é/z) = v}(2Iy* + V2) (2.23)
(Jov?) = o3y, (2.24)

(Jovyv?) = 207 aab(br”?) w3 (2T87 + V2). (2.25)

”l 22
The modified Laplacian operators V2 and V  are defined by:

1., arL/?
5“1‘1’ =b a% P, (2.26)
N 2 82 1/2 9

where ¥ = Fé/ D is the approximation to the gyroaveraged potential.

There are four new terms due to toroidicity that need approximating: (Jyv?),
(Jia), (Jiviar), and (Jyvia). Several techniques could be used to approximate these
terms; one is to follow the approach and rationale in [DORLAND and HAMMETT,

1993]. For example, the (Jia) term can be rewritten using the following trick:

0
<Jla> ~ — —

(Jo(3a)) . (2.28)

Thus the approximation for (.Jy) is the fundamental one, and all other FLR terms
can be derived from it. Using (Jy) ~ Fé/Z leads to:

1/2

0 1/2 al'g
(3°0) = =20

9 = V2, 2.29
8’8 5 L ( )

(Jia) ~ —
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and
1/2

( .. Ol N
<-]1'Uﬁ()z> RY —-‘Z'Ufbaa—(;) = —vai. (2.30)

For the (J;v? ) term, we will assume that F is approximately Maxwellian, so that

vViF & 20}0(T, F)/0T,, and:

<leia> ~— %

P , g (,,0r" 22
20 g (Tu (Do(3e))) = —dv/ (b2 | = iV

8=1
(2.31)

The final toroidal FLR term is:
2
(Jov}) ~ 4o} [ba—

862(

N 22
)+ o) =t (20 94 9L) L )

These approximations remain first order accurate in b to those obtained using the

Taylor series expansion Jy &~ 1 — k2 v? /402,

While the above represents one consistent way to approximate all of the
toroidal FLR terms, we empirically find that the agreement with kinetic theory
near marginal stability for some parameters can be slightly improved by using the

following FLR approximations for the toroidal terms:

. 52
(ha) = (V2 —2V,), (2.33)
- 52
(Jivia) = v}(V2 =2V ), (2.34)
A A2
(Jivia) = vi(2V2 +4V ). (2.35)
(Jov?) = 8vf(Fé/2 + V). (2.36)

The third of these, Eq. (2.35), is not first order accurate in b. This appears to
compensate for errors in the linear response of T, in the toroidal case, whereas
the linear response of T, in the slab limit is equite good. The FLR closures in
Fas. (2.33)-(2.36) were used in the nonlinear runs in Chapter 5 and 6, and in the
trapped electron mode comparisons in Chapter 3. Far from marginality, these terms
give very similar results to Eqs. (2.29)-(2.32) (for example, in Fig. 3.4, the difference
in the linear growth rates is less than 5%). The approximations Ees. (2.29)-(2.32)
are more consistent and rigorous (they are O(b) accurate), so in the derivation

that follows we will use Eqs. (2.29)-(2.32) instead of Eqs. (2.33)-(2.36). We do



34 Chapter 2. Derivation of the Toroidal Gyrofluid Equations

not recommend using Eqs. (2.33)-(2.36), since they may actually do worse than
Eaqs. (2.29)-(2.32) in some regimes, but include them here for completeness. With
these closures, the toroidal FLR terms in Eqs. (2.91), (2.93), (2.94), and (2.96) are

modified as follows:

1 3. 22
()—{-EV?_)?LQJ\II — (2+§ /i—Vl) ’I:u)[\p
1 o2 3e0 &Y.
( 5 )Zw.l\ll — 4+§fL—VL wwog ¥
N R a2
(3+ V2 V)zwd\ll — (3+2Vi+3VL) twg W,
1.
( —v2 )v B —s (§vixp> ¥, Iu B.

Now we look at linear FLR effects in the E x B terms. For example, in the

density equation, following [DORLAND and HAMMETT, 1993]:
vo - Vn(Jy) ~ vg - V(noFéﬂ) + nonlinear terms (2.37)

Since b = k2v} /Q? depends on both B and T, (through v? = T, 3/m), gradients
acting on functions of b (FLR modified terms), introduce pieces proportional to VB

and VT o: , ,
2

Vb= —VT,— —=VB,
T, B
ar/?
Vnolt/? = TY*Vng + no a% vb.
We now introduce the diamagnetic frequency iw, = —(cT'/eBng)Vng - bxV, =

Ln/LT", and n, = L,/Lr,, where LT" and L7, are the equilibrium scale lengths of
parallel and perpendicular temperature, which can be different in general. When
they are assumed to be the same, we drop the subscripts, and write . With these
definitions, Eq. (2.37) becomes:

c® ary? e ary* o
vo - Vn(Jo) = —noLw*F(l) & To — non.b 8?) zw*?o 4 2n0b 3% zwi?o,
since vg - (1/B)VB = —iwy(e®/T). For a general function of b,
) d ) J o
vo - Vnof(b) = —nof(b)iw*(;—o — non b aézw*e— + 2noba—£1w4€
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This form will be used to evaluate terms like vg - V{n.Jyv?).

In the linear part of the (¢/27T )iwye(Pn(Jic)) terms, we need to evaluate

d(Jia)

wa(Pn(Jia)) = ng (J1a) wg® 4+ Ong———+ 5

——Lwab + @ (Jia) wyng,

The last two terms are higher order in ¢, so the (J;a) terms only contribute:

. . o ed
(/2T Yiwg(Pn(Jia)) = ing <J1—> Wg—.
2 To

Because the final equations will get rather complicated, for the moment, we

will treat the linear and nonlinear terms separately. We normalize time, parallel

lengths, and perpendicular lengths as

tv
Ry ky) = (L—t Ry Loy kop), (2.38)

and fluctuating quantities as

c® ny oy P1 41 T 51

(___

(('Dvnv“’vpvqa".vs) = T T 3 ’ 29 39 47 5)? (239)
in 0 Mo Yy NoMNUy Notnvy Nolnvy Nothty

where normalized quantities are on the left hand side and dimensional quantities
are on the right. With these normalizations, the characteristic drift wave time
and space scales are O(1), and the perturbed quantities will be O(1) at the gyro-
Bohm saturation level. In this chapter, all equilibrium quantities are ion parameters,
re. Ty = To, vy = vy;. For the equilibrium Fy we use a Maxwellian, so the normalized
equilibrium values of the moments are py, = 1, pro = 1, 70 = 3, 7y, = 1, and
71,1, = 2. With the linear FLR approximations discussed above, the moment

equations are:

on . Ty . .
S+ BV - ( +7“v2>w*\1;+(2+;v3> iwaW + iwy(py +pu) = 0, (2.40)
O g P gy (pr L) B b duy) =0, (2.41
it ”B+ Y+ }h+§ i 1 In B 4-iwa(qy + qo 4+ 4uy) =0, (2.41)
) + 3u
51” % +2(q. +u))VyIn B — (1—}—r]” % >Lw (2.42)

1~ ) .
+ (4 + §V2L) twg W+ wq(ryy +ry,) =0,
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dp, ao Gu Ty
\v4
ol I p2

1. lay A2V .

3 AZN .
+ (3 + §V2L + Vl) 1wgW 4 2wy (ry, 4 r) =0,

dq
8t| + V(g = 3p) + (= +3py + 3y —3p)VIn B (2.44)
Fiwi( sy + sy, — 3 — 3. + 6uy) =0,

dq.

1 -
2 Vi (’n Lt §V2ﬂ1’> +(=2ry+ri +p—p)VyInB (2.45)

22 1. )
+ (VL\I; — §Viq;) v” hlB + 'I/UJC[(S”A_ +SJ—J— — 4 — 4. +U“) = 0.

If we had evaluated the velocity space averages using a Maxwellian F', giving (.Jy) =
exp(—b), the n, uy, py and p, equations above would be equivalent to those derived in
[BRIZARD, 1992] (in the electrostatic limit of his equations). The g equations would
also be equivalent if [BRIZARD, 1992] had proceecded to higher moment equations,
but he stopped at p. This equivalence can be verified by replacing Féﬂ — exp(—b/2)
and evaluating the derivatives with respect to b in Eqs. (2.26) and (2.27). These
eequations require closure approximations for ry , ry ., 7. 1, 5y, S,., and s, , which

[BRIZARD, 1992] did not address, and will be discussed in following sections.

For the nonlinear terms, we follow [DORLAND and HAMMETT, 1993]. Thus,
to each of the equations above we add the usual E x B nonlinearities plus additional

FLR nonlinearities, as follows:

5} 1.
d—:‘ Ve V4 [GVivel VT4 - (2.46)
a?l,”
§+v@-vu”+[ V2 “vg| Vg, +--- (2.47)
on Vpy+ [5Vive] - VT :
5 TV P||+[§ Vel VT - (2.48)
5}& l e 2 22
T + vy - Vp, + [§Vlv\p] Vp+ [V, ve] - VT +--- (2.49)
Y|y, 9.50
ey Vg - Vgt (2.50)
an_ 14 9 22 -
T +vy-Vg, + [EVLV\I,] “Vuy+ [V, ve] - Vg, + - (2.51)
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In these terms, vy is the approximation to the E x B drift in the gyroaveraged
potential, vy = (¢/B)b x ¥, where ¥ = F(l)/Q(I). There is a typological error in
Eq. (59) of [DORLAND and HAMMETT, 1993], where the nonlinear term involving

¢, should be dropped.

Now let us return to the quasineutrality constraint, Eq. (2.9). Here we have
to approximate the real space density. Because of the Jy which acts on F}, n; will
involve the guiding center density and all higher perpendicular moments, but we
only evolve up to T,. Thus we need another closure approximation which relates
n; to n and T,. The approximation for n; in [DORLAND and HAMMETT, 1993]
was taillored to fit the local kinetic dispersion relation in the slab limit. In the
toroidal case, because of the v, dependence of the toroidal drifts in the resonant
denominator of the toroidal response function, Eq. (2.56), following such a procedure

is more complicated, so we simply use

1 2
B I Y R I AT

(2.52)

This is first order accurate in b for both the n and T, terms, and behaves appropri-
ately (n; — 0) in the b — oo limit. The FLR approximations used here and above
provide a reasonably accurate fit to the kinetic FLR behavior in the local kinetic
dispersion relation, and continue to perform well nonlocally, as demonstrated in
Section 2.8 of this chapter. Note that the FLR models described in this section can
also be used with a simpler Padé approximation, by substituting F(l)/Z — (1+b/2)71
in Eas. (2.26) and (2.27), as discussed in [DORLAND and HAMMETT, 1993].

2.4 Local Linear Toroidal Response Function

Our closure approximations for 7y, 7y, 71,1, Sy Sy, and s, ,, will be chosen to
provide accurate models of the kinetic effects of parallel and toroidal drift phase
mixing. Ultimately, we choose the closure coefficients to provide an accurate fit to

the local linear toroidal response function, which is derived in this section.

We begin by transforming the linearized gyrokinetic equation to (£, i) vari-
ables, so F' = F(R, E, 1), where E = t:ﬁ/‘l + pB. Then breaking F' into adiabatic
and nonadiabatic pieces, F' = ¢ — Fy.Jo e® /Ty, the equation for the nonadiabatic
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piece is found to be:
w—wl e®
= F - Jo— 2.53
9 OUJ - k”'U” — Wy 0 TO ( )
where wg, = wa(v} + pB)/v} and W' = w.[l 4+ y(vi/2vf + pB/v} —3/2)]. In the

local approximation, we treat wy, w,, and k; as constants, using wg = —kgpvy/R

and w, = —kgpvs/ Ly, so wg/w. = L,/R = ¢,. The total distribution function in
guiding center coordinates, f = f(R, E, u) is:

ed(x) Byt FOJOE(I)(R)-

JR)=F+[=FR)-— T

(2.54)

where F'is gyrophase independent, and fis the gyrophase dependent part. The first
piece of f is in real space, x. To obtain the real space ion density (not the density of

gyrocenters), only the parts in guiding center space need to be gyroaveraged (acted

on by Jy):

ed(x) By 4 B2 2R e®(R)

— 2.
T T, (2.55)

n(x) = / o f(x) = / & [JOF(R) _

ed
= _nOE + /dSUJOJJ

since the JoF and FyJ3 e® /T, pieces combine to give Jyg. Inserting the solution for

9, Eq. (2.53), the ion density response function is:

T
n w—w
R (R 1——/d3F = 2k, /O 2.56
i —noe® /Ty v Ow—k”v”—wa o(kLvL/9), ( )

which is the usual linear form. Trapped particle effects appear in the variation of

vy along a particle’s orbit. We will neglect trapped particle effects in this section,
and treat v, as a constant.
For Im(w) > 0, the resonant denominator can be written:
1 0

__ " dr T @mhv —wan) fwa 2.57
w— kv — wey we Jo Te ’ (2.57)

and now the v and v, integrals can be evaluated. Normalizing w and %jv; to the
toroidal drift frequency by introducing @ = w/wy and z; = kjv;/we, and using a

Maxwellian Fy, Eq. (2.12), the response function becomes:

1 vi ol 3
_1—|——;/ dT/ d'UJ_UJ_/ dl)”{l—;[l‘}‘ ( QU? _5)
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o @ Tz /v o =L (2] = (v L) /20 T2k vy /)

The v, integrals are:

e N ) —b/(1+44T) b
/ dvoyo e UFDA2E 2 (Vb fo) = 021 — |, (2.58)
0 147 147

and
/ dvlvie_(l"'”)”i/%? JE(Nbo, Jvs) = (2.59)
0
QUze—b/(Hi") / b b b L(b/1 +i7)
t(l—}—ir)? 0 147 L4+ 147 Io(b/1 +17)

where [y and [; are modified Bessel functions. The v, dependence in the resonant

denominator was neglected in the numerical evaluation of the v, integrals of J; in
[WALTZ el al., 1992] (although it was retained everywhere else), and thus [, and
I, had real arguments, instead of the complex arguments in the expressions above.
This produces differences in the local dispersion relations at large b. The response
function in [IKIM el al., 1994] correctly retains the v, dependence of the resonant
denominator while integrating over v,. The local kinetic response function described
here, and the local kinetic eigenvalues calculated using this response function in

Section 2.8, were carefully checked against the results of [IXIM el al., 1994].

The v, integrals are:

—ngﬁ/2(1+2i7)

oo do _(1+2i7)1/'ﬁ/21/';2—i72||L‘”/L‘t _ \/2—‘ € 9 60
Jy o T g (2:60)
and
o —7222 [2(1+42¢7)
a2 —(12iryod [l —ira oy fue _ ‘36 H - 2 92
/0 dfb"fbne I = V2mv; —(1 oy (1427 — 7 2’”). (2.61)

Putting it all together:

ce ) - - , _ (1 — 3.
R: = 1—|—-Z/ dr ™7 Z||/2(1+22‘)€—b/(1+z7)10 b : £ (1 2772)/6.71 (262)
0 147 (1—|—zr)\/1+2z7'

i I - 1-|1-)i7 + 1_1132'7 [1(1_:.)2"—,)/[0 (1_&2'7) i [ L+ 2e7 — TQZﬁ_
(1 +im)2V/T + 2ir en [2(1 +a7)(1 4 267)5/2 | [7

Thus, the local toroidal response function is a rather complicated function, R, =

€n

Ri(z, z,b, €n,m). We are looking for closure approximations so the fluid equations
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will closely match this response function. In this form (a one dimensional integral)
the response function is easy to evaluate numerically, which we will be forced to
do to find the optimal closure coefficients and to solve the local dispersion relation.
The response function can be factored into three pieces, the first independent of ws,
the second proportional to 1/¢,, and the third proportional to /¢,. Since we will
be interested in matching this kinetic response for all 5 and ¢,, we need to fit each

of these pieces independently:
IRi=Ro+ R/, + Ryn/e,, (2.63)

where Ity, I?;. and Ry are independent of 7 and ¢,:

do'el

. S _ . ) .
Ro= 141 / dr 7T A AT~/ in) _ ﬂ
L) JO C 0 1 + 1T (1 + IT)\/W d

(2.64)

o o , l
Ry — —i | dre™e 7 AP0 =0 4in) | 2.65
1 Jo 0 1_|_“_ [l+17)m ( )))
R2 _ L/m dr eira:e—r?zﬁ/2(1+2i7)6_b/(1+i7)[O b ' . 3/2 _ (266)

’ Uo7 ) L (T +m)/1T + 2ir
o mrtnEhER)/bEE) L2 -
(1 —I-iT)?\/l + 2ur 2(1+i7)(1+2@'7)5/2

The response function of the fluid equations will also naturally factor into these
three parts. In the purely toroidal limit (&, = 0), neglecting FLR (b = 0), these
expressions simplify considerably, and can be written in terms of the usual plasma

dispersion function [BIGLARI et al., 1989]:

Ro = 1-27° (@) (2.67)
R = })Z? (\ﬁ) (2.68)
we GeDEWDBD e

The resonant denominator in Eq. (2.56),
w = kyoy — walv) +v1/2)/v = 0,

can be written, by completing the square:

L2q)2 L 2 v?
S :<ﬁ+ﬂ) + L. (2.70)

2wy Vg QUt
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The left hand side of Eq. (2.70) is negative, but the right hand side is positive for all
v. Thus along the real w axis, no particles are in resonance for w < —kﬁvf /4wy, and
R; is purely real, as shown in Figs. 2.1 and 2.2. As & — oo, this cutoff frequency

moves to —oo, and R; approaches the slab limit response function.

We will also use the kinetic response function of other moments (not just

density), which can be written in the following compact form in the b = 0 limit:

‘m{j,k = /dsvaﬁ(Ui/Q)k = —novzk-}_j%ff[j,k (271)
My = Mﬁ} + M](,lk}/en + Mfk)n/en (2.72)
Vi =~k D) 2 N{/dre x (2.73)

{[ ! 31 n k41 ] i n i } I'(k+ 1)6—723ﬁ/2(1+‘2i7)

T TR e T M (U a1 4 2ir )il

- i/2 VL2 . 00 . NN
R—j _ 2 (1 ;‘ 21]:)1 o7 2”/2(1-}-217) / dvuvﬁe—(l-l-ZzT)vll/Qvt =iz /e (274)
Uy —oo

For the lowest few j’s, we have:

Ky = 1,
Ky = —irz,
Ky = 2(1+2i7)— 222,
Ky = 72[=6i(1+2i7) +ir*2))],
Ki = 1201 +2ir)" —127%0(1 + 2ir) + 7',
The odd K’s are proportional to odd powers of z, (or k), while the even K’s are

proportional to even powers of z;. This will guide our choice of closure approxima-

tions in the next section.

2.5 General Closure

There are three places in the moment equations Eaqs. (2.42)-(2.45) where closure
approximations are needed (in addition to the FLR closures in Section 2.3): in the

parallel terms V|, and Vr; ,; in the toroidal terms wy(r 4+ ry,.), we(ry, L +7.,1),
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wa(Sy+sy,.), and wg(sy, +5,,,); and in the mirroring terms r,,\V, In B, r| .V In B,
and r, V) In B. For each, we make closure approximations designed to model the

physical processes these terms represent.

The velocity dependence in the kv, parallel term introduces parallel phase

mixing, leading to linear Landau damping. Consider a simple 1D kinetic equation

with no E field:
or o1
ot Y 0z

The solution is simply f(z,vy,t) = f(z—vyt, vy, t = 0). If we start with a Maxwellian

= 0. (2.75)

perturbation in f,

Jo =€ far = eik”zgioe—vﬁm?a (2.76)

free streaming will cause moments of f to phase mix away. For example, the density

n—/d‘jvf

To model this process, we need to introduce damping proportional to |k |v; into our

is:

D) U etz TR, (2.77)

fluid equations. Thus, for the parallel closures, we choose [HAMMETT and PERKINS,
1990; DORLAND and HAMMETT, 1993]:

r = 3(2p) —n) + 8Ty —ivV2D, |k”|qnv (2.78)

P = pitpe—n—iV2D, |k_”| (2.79)
I
where 3, = (32 — 97)/(37 — 8), Dy = 2y/n/(37 —8), and D, = /7 /2. With this
closure, the fluid equations reproduce the linear kinetic behavior quite well in the
slab limit, as shown in [HAMMETT and PERKINS, 1990; DORLAND and HAMMETT,
1993].

Similarly, the velocity dependence of the VB and curvature drifts introduces
phase mixing. In this case the damping rate is different, since the toroidal drifts

depend on Uﬁ and v? /2. Now consider only the phase mixing due to the toroidal

drifts:
af 8 f

ot 8y

=0, (2.80)
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2 2 "
Vg = 01071)” /2 vdo = P
‘ v? ’ R

The solution is f(y,vy,v.,t) = f(y — vat, vy, v.,t = 0). Starting with a Maxwellian
perturbation in f,

: ihyy [ ik, "o —(ui4e? ) 20}
Jo =" [y = MWG (vy+vi)/ ‘i (2.81)

free streaming will again cause moments of [ to phase mix away. For example, the
density is:
o

n = / B f = Gt / dvyd v, ¢ vl /=2 = () 20

noetFvy

Ut ik vaot (1 + ik vaot/2)

To capture this toroidal phase mixing, damping proportional to

(2.82)

ky|veo = |we| must

be introduced into the fluid equations, but with complex closure coefficients to get
the phase shift in Eq. (2.82).

The toroidal closure terms enter in the combinations r + ry ., . + 7.1,
Sy + Sy, and sy, + s, ,. Expanding the general moment response functions
Eq. (2.73) for small &, all the odd j moments have O(k,) corrections, while the
even j moments have O(kﬁ) corrections. Thus in our closure approximations for the
toroidal terms, we close the even moments ry, + . and r, +r, , in terms of the
lower even moments (n, p;, and p, ), and the odd moments s, + sy, and sy, +s, ,
in terms of the lower odd moments (u, g, and g,), to preserve this small k; be-
havior. At large k; (the slab limit) the response function is primarily determined
by the parallel closures, and the toroidal closure approximations are subdominant.
In addition, we break the r and s closures into dissipative and Maxwellian pieces

(the terms that would arise if F' was exactly Maxwellian). The Maxwellian parts

. _ a2 . o — 92 _ _ _ .
are vy = 3p;/n, ry. = pypu/n, vy = 2pi/n, and sy = s, = s, = 0. Lin-
earizing and normalizing, these become r| = 6p, — 3n, r|,. = p; + p. — n, and
ri,. = 4p,. — 2n. Guided by the discussion above, we choose dissipative pieces

proportional to |wg|/wg. Thus in the toroidal terms, combining the Maxwellian and

dissipative pieces, we choose:

. |V
T'”’” —|— T”,J_ = 7p|| + PL— 4n — QLM (I/ITH + I/QTJ_) (283)

wd
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TH,J- —I_ T.L,_L — P|| _I_ 5])J_ - Sn - 25 (V3T” ‘|‘ V4TJ_) (284)
Wq
e ,
S = 1 9 (vsuy + veqy + 17q.) (2.85)
d
e ,
Spet S, = —1 - (vsuy + vogqy + v109.) (2.86)
d

Each closure coefficient has both a dissipative and non-dissipative piece, v = v, +
tV;|w¢|/wa. This choice is motivated by [WALTZ el al., 1992]. Making the dissipative
parts of the r closures only depend on 7} and 7', ensures that the fluid response

will match the kinetic response at w/wg¢ = 0 in the k; = 0 limit.

The toroidal closure coefficients 1y — 119 are chosen so the response function
of the fluid equations closely approximates kinetic response function, Eq. (2.62). In
the local limit with b = 0 and VB = 0, and inserting the closure approximations
above, the fluid equations Eqs. (2.40-2.45) can be written in matrix form, using

9 =w,/w=1/z and k = kj/w, and assuming wy > 0 to simplify notation:

1 —k —9 —9
0 | — 4q —k 0
V- 9(4 — 2iy — 2u1n) -3k —o(7T—2ivy)  —a(1 —2i)
’ 9(3 — 2iv3 — 2u1y) —k 5(1 — 251/3) 1 — ¢(5 — 2ivy)
(34 )k —9(6 — i) —(3+ 3k 0
i k —o(1 —115) 0 —k
0 0 ]
—9 —9
—k 0
0 —k
1+iv2Dyk + o(3 + ive) o(3 +ivr)
o(1 +ivo) L +iv2D.k + ¢(1 + i) |
[ n ] [ 2 ] [ —1] 0 ]
y k/q 0 0
AR NPT Loy - o (2.87)
a 0 0 0
| 4L ] U U | 0 ]

Thus, the response functions of the fluid equations also naturally factor into
the form Eaq. (2.63). Because this set of equations is rather complicated, to de-

termine the toroidal fluid response functions we solve for n and p, by numerically



2.5. General Closure 45

row reducing the matrix M. In [WALTZ el al., 1992], the fluid and kinetic response
functions were compared only in the w. = 0 and 5 = 0 limit. In the slab limit,
determining the closure coefficients in the w, = 0 and 1 = 0 limit (Ry) also gave an
equally good fit for the w, and 1 pieces (R; and R3), but in the toroidal case this is
not automatic. In addition, in [WALTZ el al., 1992] the toroidal closure coefficients
were matched at &k = 0, and good agreement for &, # 0 is not guaranteed (although
as ky — oo the slab limit is recovered and the agreement will again be good). In
fact, if the toroidal terms are closed in the purely toroidal limit (£, = 0), the toroidal
closure terms in the odd moment equations drop out. This led to singular behavior
of the response function for the closure in [WALTZ el al., 1992] at some non-zero
ky, since the wy(q) + ¢q.) term in the parallel velocity equation was dropped. This

was corrected in the addendum to that paper.

Therefore, special care must be taken find toroidal closure coefficients which
simultaneously provide a good fit to the kinetic response function for all three
parts of the response function, for all k. Because both fluid and kinetic response
functions are complicated with finite k;, we choose the closure coefficients numer-
ically, by minimizing the difference between the kinetic and fluid response func-
tions over a range of k’s simultaneously, but in the b6 = 0 limit. We use Powell’s
method (an efficient multidimensional minimization method) [PRESS el al., 1986]
to adjust the coefficients 11 — 19 until the error between the kinetic and fluid
response functions along the real = axis is minimized. If R has no poles in the
upper-half = plane, matching along the real axis guarantees that the fluid R will
also match the kinetic R in the upper-half = plane. Since we are primarily in-
terested in accurately modeling the growth rates of unstable modes, the errors in
the lower half plane are probably not important, as long as we do have damped
modes in the system. The best fit between the kinetic and fluid R’s was found
using 12 k;’s evenly spaced from z; = 0 to 4.2, over the range of z where the
kinetic response function is changing most rapidly, —8 < = < 16 at z; = 0 and
—14 <z < 22 at z; = 4.2, with 100 grid points in z. To the error in the den-
sity response function, we also add 1/100 the error between the kinetic and fluid
p, responses, since n is most important for the local dispersion relation, but p,
enters the linear dispersion relation from FLR effects. While an excellent fit to n

is obtained, it is difficult to simultaneously match the p, response for intermediate

ky’s. We find vy = (2.019, —1.620), v, = (0.433,1.018), v5 = (—0.256, 1.487), vy =
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2|||||\\\||‘\\\\‘\\\|| L B Y
i kHVt/wd:O ] - k”Vt/OJd:O -

- — kinetic - 1 - kinetic —
2~ - fluid -

71Illlll\‘\\ll‘\\\\‘\\\ll 72II|III\‘\\II‘\\\\‘\\II|_
-5 0 5 10 15 -5 0 5 10 15

w/wq w/wq

2 T T T 177 T 1T ‘ T 17 ‘ T TT |
I~ k”Vt/wd:O N
- —— kinetic

II;(Rz)

71Illlll\‘\’\ll‘\\\\‘\\\ll
-5 0 5 10 15

w/wd

Figure 2.1: Kinetic and fluid toroidal response functions in the purely toroidal limit,

Ro, Ry, and Ry, with b = 0 and k; = 0.
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Figure 2.2: Kinetic and fluid toroidal response functions in the mixed toroidal /slab

limit, Ry, Ry, and Ry, with b =0 and kv, /wy = 2.7.
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(—0.070, —1.382), vs = (—8.927,12.649), vs = (8.094,12.638), v = (13.720, 5.139),
vs = (3.368, —8.110), vy = (1.974,—1.984), and v19 = (8.269,2.060). These are an
improvement over the closure coefficients in [HAMMETT el al., 1993]. The fit be-
tween the kinetic and fluid response functions is excellent, as shown in Figs. 2.1 and
2.2. The fluid equations give a rational function approximation (a ratio of poly-
nomials) to the kinetic response function, and cannot capture the branch cut at
wjwe = —kivi/4w; exactly (sce Eq. (2.70)), but this set of closure approximations

provides a reasonable fit to this sharp transition.

Finally, we have to close the mirroring terms, introduced by the lulA) - VB
terms in the gyrokinetic equation. These terms incorporate trapped particle effects,
reproducing the CGL [CHEW el al., 1956] pressure balance equation. They are also
important to model the damping of poloidal flows by magnetic pumping. Since

these terms introduce no new dissipative processes, we take Maxwellian closures:

e = Py+DPL—n, (289)
r.,. = 4p, —2n. (2.90)

While this is not the ultimate set of closure approximations, the resulting
fluid equations provide a very accurate model of the physics underlying ion dynamics
in toroidal plasmas. More complicated closure approximations could certainly be
developed which are more accurate, but the relative simplicity of the closures used

here afford a tractable and sufficiently accurate model.

2.6 Final Equations

We arrive at the six moment toroidal gyrofluid equations by inserting the closures
discussed in the previous section into the moment equations, Eqs. (2.40)-(2.45), with
the nonlinear terms given by Eqs. (2.46)-(2.51). Specifically, we use the parallel
phase mixing closures in Eas. (2.78)-(2.79), the toroidal phase mixing closures in
FEas. (2.83)-(2.86), and Maxwellian closures for the mirroring terms, Eqs. (2.88)-
(2.90). In addition, we add the collision terms obtained by integrating Eq. (2.6)

over velocity space. We will also refer to this set of equations as the “44-2” model,
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since it evolves 4 parallel moments and 2 perpendicular moments.

dn 1= u N ,
E + [Eviv'l'] VT, + BVIIEH - (1 + §Vi> wo, ¥ (2'91)
1 . .
+ (2 + §Vi> twg\W + ZWJ(PH + Pl) =0,
di I ; 1.~
—dut” + [EVZLVLIJ] Vg, + Bvll% + VU + (PL + ?VZL\I’) ViinB (2.92)

iwi(gy + . + duy) = 0,

d 1.
I 5Vival- VT, + BY,

qy + 3u 9 0
i "T” +2(q +uy)VyIn B (2.93)

T , 1~ . .
- (1 + oy + %Vi) tw ¥+ (4 + §V2L) twgV + twe(Tpy + pL — 4n)

2
+ 2|°’-’-l|(’/1T|| + 1/271) = —§Vz‘z‘(P|| - Pl),

dpJ_ q. + Uy

1~ A2
di + [§viv‘1’] ’ vpL + [VJ_V‘I’] ’ VTJ- + BZV" B2 (294)
les les, 27 : ‘ 3 & 27
— 1+§vL+7]J- 1—}-§VL-|-VL 1w,V + 3—}—§VL+VL 1wgV
) 1
+ iwa(5py +py = 3n) + 2lwe| (15T 4+ vaTy) = gVié(Pu — Pu),
dgq . = . , ‘
Tt” + B+ 30T+ V2D |kylgy + iwe(—3q — 3q. + 6uy) (2.95)
|wal (vsuy + veqy + vrq) = —vigy,
d 1. 22 1.
3; [§vivw] Vuy+ [V, ve] - Vg, + Y, (TL + §vi\p> (2.96)

— 22 1.
+ V2D.[kylq. + (PL -+ VY- §v2ﬂ1’> Vyln B

+ ??w.z(—q” —q, + Uu) + |w-{|(1/8u|| + Vgq) + VIOQJ_) = VgL

The main E x B nonlinearities have been absorbed in the total time derivative
d/dt = 0/0L + vy - V. In the slab limit (wq = VInB = 0) these equations
reduce to Egs. (56)-(61) of [DORLAND and HAMMETT, 1993]. The quasineutrality

constraint is:

_ n bT',
1 4b/2  2(1 +b/2)?

When the electrons are assumed to be adiabatic,

+(To — 1)9. (2.97)

Ne

ne = 7(® — (), (2.98)
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where 7 = Tjo/T.o and (®) is a flux surface average. This will be discussed in
Section 5.3.

This constitutes a fairly complicated set of fluid equations compared to those
usually used in plasma physics. A somewhat simpler four moment model is described
below, and it is worth justifying the complication of the six moment model. In
principle, the six moment model is more appealing because as more moments are
retained, more details of the distribution function are accurately described. On
more pragmatic grounds, the six moment model provides a significantly improved
fit to the kinetic response function, and is necessary for quantitative accuracy in
linear growth rates and mode structures, especially near marginal stability. The
six moment model is also required to capture the destabilization from trapped
ion effects, which become important in the long wavelength regime. Finally, six
moments may be required to obtain accurate damping rates of poloidal flows from
magnetic pumping. Magnetic pumping arises from parallel low damping, and since
no closure approximations appear in Eq. (2.92), the u equation is an exact moment
of the gyrokinetic equation to O(b). This is not the case for the simpler four moment
model discussed below. Magnetic pumping rates from this six moment model are

calculated in Section 5.3.

A variation of these equations was used in [HAMMETT et al., 1993] where
|kylqy in Eda. (2.95) was replaced by B|k|(q,/B) and where |k|g, in Eq. (2.96) was
replaced by B?|ky|(q./B?), i.e.

found that this leads to a weakly growing mode even in the wy = w. =5 = 0 limit

k| acted on q,/B?, not just ¢,. However, it was

which should be stable (a bumpy cylinder limit). Switching to the present form of

the parallel closures removed this spurious instability.

2.7 Four Moment Model

We present here a simpler and slightly less accurate gyrofluid model which only
evolves four moments: n, uy, p;, and p,. We will also refer to this set of equations
as the “34+1”7 model, since it evolves three parallel moments and one perpendicular
moment. In this case, since we are not evolving ¢, and ¢,, instead of closing the

toroidal s terms with Ees. (2.85) and (2.86), we need to close the wy(g; + q.) term
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in the parallel velocity equation:
L |Wd
i+ = -2, (2.99)
wd

We still use the toroidal r closures in Eqs. (2.83) and (2.84), but with new closure
coefficients. In addition, we use the parallel closures of [HAMMETT and PERKINS,
1990; DORLAND and HAMMETT, 1993], extended to include collisions as well as

collisionless phase mixing:

3+ 3 .
- ’ vhy T 2.100
qi \/§D”|k”|—|—1/,;?;l (R ( )
1 | &
- iy (7 + 5720 2.101
T \/§DJ_|k”|—|_I/7:?:I ! L+ 2 + ( )

These are essentially the high £, and/or high v;; limit Ees. (2.95) and (2.96), keeping

only the slab terms.

We again use the method described in Section 2.5 to minimize the error
between the fluid and kinetic local response functions to determine the toroidal
closure coefficients 14 — v5. The best fit is 1y = (1.232,0.437), v, = (—0.912,0.362),
vy = (—1.164,0.294), v4 = (0.478,—1.926), and vs = (0.515, —0.958).

Inserting these ¢ closures into Eqs. (2.40)-(2.43), using the nonlinear FLR
terms in Eqs. (2.46)-(2.49) without the ¢, part of Eq. (2.47), and dropping the g,

and ¢, mirroring terms (¢; = ¢, = 0 for a Maxwellian), the dynamical equations
are:
dn le, ) N
T4 [Vhve] VTL4 BV - (1 + ?VJ o (2.102)
T,y . . i
+ (2 + §Vi> w4 twa(py + pL) =0.
W e (p L) T B 4 i (2.103
L 15 TV pat Vi I A 2.103)
+ 2|wqlysiy =0,
dpy le, (3 + Bk,
= 4 [=Vivy] - VT, : +3Vyuy — ) VyIn B 2.104
dl [2 Vol + V2D, k| + v 1 = UV ( )

- ) 1= . )
_ (1 +ny + %Vi) 10, U+ <4 + 5V2L> wwg U + zw¢(7p” +p, —4n)

2
+ 2|w4|(1/1T” + I/QTL) = —gl/z‘z‘(Pn - pL):
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e Lrvy] Vps 4 (Y vel VT 4 By Lo
f— V . 9 V . J—
dt 2 LY Ps Ly * \/ﬁDLVCH' + Vi . 2 +
| S 1 AN
+ BZV"% — [1 + svi + . (1 + §vi + v)] tw, U (2.105)

3., a2\ |
+ (3 + EVQL + VL) tweV + twi(5pL + py — 3n) + 2|wa| (3T + vaT))

1
= gvilp = po).

The aquasineutrality constraint, Ea. (2.97), is unchanged for this model.

2.8 Linear Benchmarks

In this section the accuracy of the toroidal gyrofluid equations is demonstrated by
comparing with linear kinetic theory, using adiabatic electrons. We first test the
toroidal gyrofluid equations against kinetic theory in the local limit, where %k, and
wy are treated as constants. The eigenfrequencies are determined by finding roots
of the local dispersion relation with adiabatic electrons, R; = —7, where the kinetic
R; is calculated by numerically evaluating the integrals Eq. (2.63) and the fluid R;
is calculated by numerically row reducing the matrix equation in Eq. (2.87), with
additional FLR terms on the right hand side if b is non-zero. In the local limit, we
ignore the V| In B terms in the gyrofluid equations and ignore the modulation of v,

along a particle’s orbit in the kinetic response.

Fig. 2.3 shows the kinetic and gyrofluid growth rates in the purely toroidal
limit (k; = 0), with b = 0, for the parameters of Fig. 5a of [WALTZ el al., 1992],
where 7 =1, 5, = 1, 1.5, 2, and 3, varying ¢,. The four moment model in Section 2.7
reproduces the stable low ¢, regime better than the four moment model presented
in [WALTZ el al., 1992] (which used different closure coefficients). The six moment
equations provide much better agreement with kinetic theory, but are slightly off

for low 7;, near marginal stability.

Fig. 2.4 shows a comparison in the local limit for & # 0, the the mixed
toroidal/slab limit. We use the parameters of [DONG el al., 1992] Fig. 3, where
ni = 1.5,2,3, ¢, = 0.2, and we choose kL, = L,/qR = 0.1, using the normal

connection length for the mode width L ~ ¢, and ¢ = 2. The linear growth rates
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Figure 2.3: Comparison of local linear growth rates from the (4+2) and (3+1)
toroidal gyrofluid equations vs. kinetic theory in the toroidal limit, with k; = 0

and b = 0. The four moment equations in Section 2.7 reproduce the stable low ¢,
regime better than the four moment model in [Waltz et al., 1992] but is slightly less
accurate at large ¢,. The six moment equations are much more accurate, and are
quite good for n; > 1, away from marginal stability.
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Figure 2.4: Local growth rates from the six moment toroidal gyrofluid equations
compared with kinetic theory, now in the mixed toroidal/slab limit with &k, = 0.1
and ¢, = 0.2. The toroidal gyrofluid equations again provide a very accurate model
of the fully kinetic results.

from the six moment toroidal gyrofluid model and kinetic theory are shown vs.
kgp;. The six moment toroidal gyrofluid equations provide an accurate description
of the full kinetic behavior. Both the growth rate and real frequency of the toroidal
ITG mode vary roughly as v,w, o kgp; at long wavelengths. As kgp; decreases,
lw| = /7% + w? decreases, and the stabilizing effect of parallel Landau damping
becomes more important. When |w| ~ kv, the mode is stabilized, producing the

long wavelength cutoff at kgp; < kL, o< L,/qR.

Now we move on to nonlocal comparisons with kinetic theory. We will com-
pare with fully kinetic calculations in the circular flux surface equilibrium, as de-
scribed in Section 4.6. Linearly, the coordinate system in Chapter 4 is equivalent
to the ballooning representation, so we compare with the ballooning calculations of
[DONG el al., 1992] and [XU and ROSENBLUTH, 1991]. Nonlocally, we evolve the
eigenmode structure along the field line coordinate 6, so a range of £;’s are cou-
pled for each eigenmode. The 6 coordinate described in Chapter 4 is the “extended

ballooning angle” in the ballooning representation. In these nonlocal calculations,
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Figure 2.5: Linear nonlocal eigenfunction comparison with the fully kinetic calcu-
lations of [Dong el al., 1992]. The coordinate along the field line, 0, is equivalent to
the “extended ballooning angle.”

both wy and k, vary along the field line, as given by Eqs. (4.44) and (4.42). The 6
dependence of wy describes the effects of the good and bad curvature regions, and
the 6 dependence of k, comes from the fact that as one moves along the field line,
the mode twists, and k, increases. For the comparison with [DONG el al., 1992],
we neglect trapped particle effects by turning off the V| In B terms. In circular flux
surface geometry, B = ByRo/R = By/(1 + ecos ), so setting ¢ = 0 removes the
V,ln B mirroring terms. As in [DONG el al., 1992], we also neglect collisions and
assume adiabatic electrons. All of the results compared in this section will only look
at modes with 6y = 0, i.e. those centered in the bad curvature region, since they
are typically the most unstable and most kinetic calculations only focus on these
modes. The growth rate spectrum for 6y # 0 is discussed in Chapter 5, and has
important implications for the anisotropic fluctuation spectra seen in our nonlinear
simulations and in experimental fluctuation measurements in tokamaks. Fig. 2.5
shows the eigenfunction from the fully kinetic integral calculation of [DONG el «l.,
1992] and from the 442 toroidal gyrofluid equations for the parameters in Fig. 2(c)
of [DONG el al., 1992], n; =3, ¢, =02, g =2, 5 =1, kgp; = 0.53, and 7 = 1. The
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Figure 2.6: Nonlocal linear growth rate and real frequency comparison between
the toroidal gyrofluid equations and kinetic theory, for the four moment and six
moment models. The six moment model provides excellent agreement with fully
kinetic theory, especially for kgp; < 1/2.

“ballooning” mode structure along the field line shown in Fig. 2.5 is determined by
the 0 dependence of both wy and k,. The mode is primarily localized near # = 0 in
the bad curvature region. Landau damping is strongly stabilizing for high k, so the
the most unstable modes have broad mode structures along the field line. Minimiz-
ing k; while simultaneously localizing the modes in the bad curvature region leads
to mode structures with & ~ 1/¢R, with large amplitude at the outer midplane
and smaller amplitude at the inner midplane. Further along the field line (i.e. away
from 6 = 0), magnetic shear causes k, to increase, which leads to FLR stabilization
at large 6 — 0. This magnetic shear stabilization through FLR effects keeps the
mode amplitude small in bad curvature regions further along the field line, e.g. at
0 = 27. When § or kyp; are small, this magnetic shear effect is weaker, and the

eigenfunctions get broader.

Fig. 2.6 compares the kinetic and fluid growth rates and real frequencies
for the parameters of Fig. 3 in [DONG el al., 1992]: n; = 1.5, 2, and 3, ¢, = 0.2,

g=2,53=1, and 7 = 1. The agreement between the 442 gyrofluid equations and
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Figure 2.7: Comparison of linear growth rates from kinetic theory and the six
moment model. Again, the agreement is quite good except for ¢, = 0.45, where
§=1/3.

kinetic theory is quite satisfactory, especially for kgp; < 0.5 where our models of
FLR effects are very accurate. This level of agreement is a substantial improvement
over previous fluid theories, and is more accurate than the four moment gyrofluid
model of [WALTZ el al., 1992]. As kgp; decreases, the mode width increases and £
becomes smaller, which shifts the long wavelength cutoff to lower kyp; than in the
local limit, where £ is held fixed. In other respects the fully nonlocal results seem

to follow the local trends fairly closely.

Fig. 2.7 shows a comparison with [DONG el al, 1992] Fig. 4 parameters:
n = 2.5, ¢, = 0.2, 0.3, 0.45, ¢ = 1.5, and § = 0.1 X g/¢,. The toroidal gyrofluid
and kinetic results are not in terribly good agreement for low §. At low §, shear
localization is weak, and the eigenfunction becomes more extended along the field
line. For the ¢, = 0.45, § = 1/3 case, the eigenfuction extends out to 6 &~ 8, roughly
twice as broad as for ¢, = 0.2 and § = 0.75. It may be that the kinetic calculations

were not resolving this broad eigenfunction.

To test of our models of trapped ion effects, we compare with the linear

gyrokinetic particle simulations of [XU and ROSENBLUTH, 1991], and the gyroki-
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netic “Vlasov” simulations of [LIU and CHENG, 1993] which both include trapped
ion effects. Fig. 2.8 shows a comparison of nonlocal linear eigenfrequencies from
all three approaches, in the flat density limit, ; — co. The other parameters are:
Lr/R =01,qg=2,5=1,7 =1, and ¢ = 0.3, in the collisionless limit, as in
Fig. 6 of [XU and ROSENBLUTH, 1991]. All three calculations assumed adiabatic
electrons. The gyrofluid and Vlasov results are shown with (¢ = 0.3) and without
(e = 0) trapped ion effects, to show the destabilizing effect of the trapped ions
for very long wavelengths. Since the V| In B mirroring terms are proportional to
€, setting € = 0 turns off these terms. Without the mirroring terms, all modes
are stable below kgp; ~ 0.04. With the mirroring terms, the toroidal I'TG mode
gradually evolves into a trapped ion mode. Trapped ion effects become important
when the mode time scales are comparable to or less than the ion bounce frequency,
| Sy = Vevii/qgR. For these parameters wy;Lr/vy; = /eLr/qR = 0.03, so
trapped ion effects become significant for kgp; ~ 0.1. The six moment toroidal
gyrofluid equations model this effect with reasonable accuracy. In particular, the
gyrofluid model shows that trapped ions can remove the long wavelength cutoff

which exists when trapped 1ons are ignored, in agreement with fully kinetic theory.

In Fig. 2.9 we show the same results as in Fig. 2.8, but now normalized to
vs;/ L, which is independent of kg, and is thus proportional to the growth rate in
physical units. This demonstrates more clearly than in Fig. 2.8 that the growth
rates of the trapped ion modes are much less than those of the fastest growing
modes near kygp; ~ 1/2, and suggests that our models of trapped ion effects are

probably adequate.

For the measured parameters used in [XU and ROSENBLUTH, 1991], p; ~
0.13cm and rg = 50cm; so kgp; = 0.01 = ng/ro impliesn & 2, where n is the toroidal
mode number. Thus, the ballooning approximation (and in the representation in
Chapter 4, the neglect of radial variations in the equilibrium) is definitely breaking

down at these very long wavelengths. This issue is discussed in Section 4.8.
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Figure 2.8: Comparison of linear growth rates and real frequencies normalized to
w, T from fully kinetic calculations and the six moment toroidal gyrofluid equations
with trapped ion effects. Including trapped ions (¢ = 0.3) further destabilizes the
toroidal ITG mode at long wavelengths, which gradually evolves into a trapped ion
mode for kgp; ~ 0.1,
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Figure 2.9: Linear growth rates and real frequencies normalized to v¢/Ly. In physi-
cal units, the growth rates of the trapped ion modes are much less than those of the
fastest growing modes near kgp; ~ 1/2, which suggests that our models of trapped
ion effects are probably adequate.



Chapter 3

Bounce Averaged Electron Fluid
Equations

EW FLUID EQUATIONS FOR TRAPPED ELECTRONS are developed

in this chapter. The fluid equations for the ions derived in Chapter 2

can accurately describe the dynamics of the toroidal ITG and (somewhat
less accurately) trapped ion modes when the electrons are adiabatic, but for re-
alistic tokamak parameters, the nonadiabatic electron response, which primarily
comes from trapped electrons, is often important. Proper treatment of the nona-
diabatic electron response is essential to describe electron heat transport and par-
ticle transport. When the electrons are purely adiabatic, there is no net particle
transport, since the E x B convection of the perturbed electron density is zero
(ExB- Vi, x VO x B- VO = 0). Quasineutrality then implies no net ion
transport. In addition, in the adiabatic limit there are no electron temperature
fluctuations, so there is no electron heat transport. Trapped electrons are a well
known important destabilization mechanism; the drive from the trapped electron
toroidal precession resonance can double the growth rate of the I'TG mode in some
regimes, and can also destabilize the trapped electron mode (TEM). In this chap-
ter, a sophisticated bounce averaged trapped electron fluid model is derived which
retains the pitch angle dependence of the trapped electron response, as opposed
to more simplified trapped electron models which assume the electrons are deeply
trapped [KADOMTSEV and POGuUTSE, 1970]. Retaining this pitch angle dependence
is potentially important for advanced tokamak configurations in the second stabil-

ity regime or with reversed magnetic shear [KESSEL el al., 1994], where a major

61
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fraction of the trapped electrons have favorable toroidal precession drift. It also
allows use of a full pitch angle scattering collision operator for electron collisions
(and not a Krook-type algebraic approximation), so these equations are continu-
ously valid from the collisionless regime, where the trapped electron response is
driven by the toroidal precession resonance, to the dissipative regime, to the very

collisional regime where the trapped electrons become adiabatic.

Since their fast parallel motion allows bounce averaging of the electrons, the
fast parallel time scale is removed, and these trapped electron fluid equations are
not numerically stiff. Coupled with the ion equations derived in Chapter 2, these
equations can be used efficiently in high resolution 3D toroidal simulations which
simultaneously include trapped electron effects as well as the ITG drive, and enable
calculation of the full transport matrix: electron and ion heat fluxes and particle

fluxes.

3.1 Nonlinear Bounce Averaged Kinetic Equation

The electron dynamics are actually simpler than the ion dynamics in two respects,
because m. < m;. Firstly, since the turbulent scales are on the order of the ion
gyroradius, k,p. < 1, so we can neglect FLR effects for the electrons and use the
drift kinetic equation instead of the gyrokinetic equation. Secondly, the turbulent
time scales (on the order of the ion transit frequency, wy = vy /qR, or the dia-
magnetic frequency, w. = kypivy/Ly,) are long compared to the electron bounce
frequency, w < wp. = v4./qR. (This ordering breaks down for barely trapped parti-
cles, where wy. — 0, but only over a very small region of velocity space.) Thus we
can average over the fast electron bounce motion, so the trapped electron dynamics
are described by the nonlinear bounce averaged drift kinetic equation [GANG and
DiaMOND, 1990]:

J 7e € 9 T in

e : . - e : — qg P
(G + iwie = O, = = Fulgy + i) (e7™'®,) + N, (3.1)
This equation is four dimensional (two velocity space and two configuration space
dimensions), since the variation along the field line has been removed by bounce
averaging. Before deriving the trapped electron fluid equations, it is useful to rewrite

this equation in a form more suitable for taking moments.
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In Eq. (3.1), /;; is the nonadiabatic part of the electron distribution function,
foe=F.e® /T, + h.. This equation was derived for axisymmetric circular concentric
flux surfaces, and the perturbed distribution function and potential were written
using:

(r,0,() = Zh (r,0)e™", (3.2)
=@, (r,0)e . (3.3)

To lowest order in w/wy., the fast parallel motion causes h. to be constant along
the field line, so

h;(O) — ]li(_l‘)ﬁmqé), (3.4)

and h, is zero to lowest order in w/wy. for passing electrons. Thus Eq. (3.1) describes
the evolution of the bounce averaged part of the nonadiabatic electron distribution

function. The bounce average is defined by:

§ dl/|vy|A(r,0,()
$dl/|v ’

where the integration is along a field line, and [ is the distance along the field line.

<A(T‘,f), C))b = (35)

The nonlinear term N,, describes convection by the bounce averaged E x B drift:

- C nagic 0 7 g 1Y [ —inaq0 9.

N,=—i—= > ( b, (€770 ) — —— (7D, —h . (3.6)
Bn1+n2:n r "2 0r < >b r < > b dr

Using a field-aligned coordinate system, as described in Chapter 4, this equation

can be cast in a simpler form. Specifically, if we use the transformation Ee. (4.36),

where x is the radial variable, y is perpendicular and mostly poloidal, and z = 4 is

the coordinate along the field line, we can rewrite Eqs. (3.2) and (3.4):
he(r,0,¢) = he(x,y, 2) Zhe Ne~e=ao) Zh (1, Ky )€y, (3.7)

so to lowest order in w/wy., h. is independent of the coordinate along the field line,
z. At fixed z, the y variable is simply the toroidal angle, so h. can be thought of
as the distribution function of banana centers at minor radius = and toroidal angle
y. It will be most convenient to use the velocity space variables v and x, where v is
the total velocity (£ = v?/2) and & is a pitch angle variable defined by:

2 1 — uBmin/F

263 ’ (38)
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where €5 = (Bmax — Bmin)/2Bmax. This is the pitch angle at the outer midplane
normalized to unity at the trapped-passing boundary, and is a constant of the
electron bounce motion. For deeply trapped electrons (with £ = pBpyw), &£ = 0;
and the maximum & for passing particles (where = 0) is 1//2eg. At the trapped-
passing boundary (where F = pBuax), £ = 1. For trapped particles (k < 1), the

poloidal angle of the banana tip or turning point, 6;, is related to x by:
k = sin(6;/2). (3.9)

This can be seen by using £ = ;B where B at the turning point is By = By /(1 +
ccos 0y). If we expand for small ¢ = 1/ Ry, the definition for x, Eq. (3.8), becomes:

K = [v*/2 — uBo(1 — &)] /e’ (3.10)

This pitch angle variable differs slightly from the one used in [GANG and DIAMOND,
1990], x? = [v?/2 — pBo(1 — ¢)]/2¢11 By, but for trapped particles the difference is
negligible since v &~ v,. So to lowest order in w/wy., the nonadiabatic distribu-
tion function is a function of two spatial coordinates (z and y) and two velocity
ingf

space coordinates, (v and ). The eikonal e~ appears inside the bounce average

¢, and

both sides of (0h./dl + - --) have been multiplied by e=™%. Using Eq. (3.8) to write
loy| in terms of v and «: |v)| = v\/l — B/Bmin(1 — 2egx?), the bounce time is

<(Dne_m’9>b since Eq. (3.1) has been written as an evolution equation for he

K) :?{dl/|’v||| = %R/_Q;t \/'l = B/B’d9 o (3.11)

min(l - 2&,3/{,2)

and the bounce average becomes:

(@), (2, y,r) = DY) 0] qf?/gt e € (z,y,0) (3.12)

§d0/|v)] B/ Bmin(1 — 2¢5£?) ’

Bounce averaging turns functions of § into functions of pitch angle, because of the
x dependence of the turning point, |v;|, and 7. Our derivation is correct for general
magnetic geometry, but from time to time it is instructive to look at the large
aspect ratio (small ¢) limit to relate to previous work. Using B = By/(1 + e cos 8)

and expanding for small ¢ leads to the more standard form:
/ df ‘I)(fr y,0)
L 0 \/ — sin*(0/2) 4K (° )

(3.13)
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where K (x?) is the complete elliptic integral of the first kind,

/2 dt

_/] dl B
Tho Um0 e b VT

(3.14)

The bounce averaged VB and curvature drift frequency, wq., is the toroidal

precession frequency. For small e, this is [KADOMTSEV and POGUTSE, 1966]:

Tk, v?

e = EE?’U?@ G(3. %), (3:15)
. E(k?) . E(r?) 9
(s,K) = — —14+x
i) = (2 1) +4 (50 -1 )

where F(x?) is the complete elliptic integral of the second kind,
,/1 —
N th diy/1 — k2sin* ¢ (3.16)

It is important to keep the pitch angle dependence of wg. to describe the stabilization
of trapped electron modes in reversed shear configurations (5§ < 0). The limiting
values G(5,k = 0) = 1 and G($,k = 1) = —1 are independent of shear, but as
§ decreases, more trapped particles precess in the favorable direction, G < 0, as

shown in Fig. 3.1.

Finally, w;, is the bounce averaged diamagnetic frequency:

r Tk, v? 3
= e (S22,
YT B L, l i <vt2c 2

To derive electron fluid equations, it is more convenient to write Eq. (3.1) in

terms of (f.}, instead of iL; Writing Ee. (3.1) in terms of A, instead of iL; removes
the eikonal from inside the bounce average. Then the 9/dt term can be removed

from the right hand side of Ea. (3.1) by evolving (f.), instead of A., using:

<f€>b = <h€>b (xv y,v, ’{) + Fe <%>b ('7/'7 Y, k) (3'17)

Since h. is independent of z to this order in w/wy., (h.), = h.:

e® e® e ed
. =h,+ F. ={(h), + F.— =1{f.), — F. <—> + F.—. 3.18
f Te < >b Te <f >b Te . Te ( )
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Figure 3.1: Pitch angle dependence of the toroidal precession frequency in the
function G(8, k).

Then Eq. (3.1) becomes:

(54w ) Uy = (0, Uy — @)+ K =) (0. (19

The nonlinear term has been absorbed in the total time derivative d/dt = 3/0t +

b x (®), - V, and ® has been normalized to ¢/T..

Before taking moments of this equation, let us calculate the total electron
density, which we break into separate integrals over passing and trapped particles.

Since the passing particles are adiabatic:
ne(z,y,z) = /JS’U®F5+/J3U_fC
P i
— /al3'{;<'DFc—|—/cl:3v((fc>b—<¢)ch+®Fc)
p i

The last line made use of Eq. (3.18). The adiabatic pieces for trapped and passing

particles can now be combined:

ne(x,y,z) =ne® + /td";v ((fe), — (@), FL). (3.20)
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As in the purely adiabatic limit, special treatment is required for components which
are constant on flux surfaces, i.e. with k, = 0. Treatment of this subtlety is post-
poned until Section 3.5. The velocity space integral over trapped particles in v and

Kk variables is

/.l o () b_/ Ardoo? / 2Bcpr {fe)y d . (321
sin(6/2) Bmm\/l B/Bmm (1 - 2(B/f )

where the £ integral is limited to the range sin(6/2) to 1, since at a given 6, only
particles with turning points beyond 6 will contribute to the local density, and

k = sin(6;/2). Expanding for small ¢, this takes the more familiar form:

/dgv fe y = \/_/ drdv v? / dr v <fe>b .
in0/2) | /w2 — sin(0/2)

We introduce the following shorthand notation for the pitch angle integration:

1 2BegrA(x)dr
(A(K))s = / _ ( )_ . (3.22)
i0(0/2) Buyiny/1 — (B/ Buin) (1 — 2¢552)

Averaging in pitch angle turns functions of x into functions of 8, because of the 8
dependence of the Jacobian and the turning points. The electron density in real
space is just the & average of the v-averaged (f.},. Defining a pitch angle dependent

trapped electron “density” by integrating only over v:
o) = [ dmdoo? (1),
the total electron density in real space is:
105 2) = 10® + {10(, 92 ) — 0B, (2, 9, (3.23)

The £ average of (®}), which appears here is analogous to the polarization density
in the ion real space density, Eq. (2.9), and comes from the z-dependent part of the

total electron distribution function.

3.2 Bounce Averaged Fluid Equations

As seen in the previous section, the pitch angle dependence of the electron distri-

bution function enters the kinetic equation in a fundamentally different way than
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the v dependence. Firstly, the « dependence of the toroidal precession drift is sep-
arable from the v dependence, and secondly, the bounce averaged potential which
enters the kinetic equation is pitch angle dependent, since deeply trapped particles
only respond to the potential on the outer midplane, while barely trapped particles
respond to the potential averaged over the entire poloidal angle. This suggests a
significantly different approach for deriving trapped electron fluid equations. For
the ions, we take moments over v, and v, of the five dimensional f;(z,y,z,v,v,)
to obtain three dimensional ion fluid equations. For the electrons, we start with
the five dimensional f.(x,y, z,v, k) and bounce average, which removes the parallel
coordinate. Then we only need to take moments over v of (f.}, (z,y, v, %) to obtain
three dimensional pitch angle dependent “fluid” equations for the electrons, which
are functions of z, y, and k. These moments can be thought of as the electron den-
sity, pressure, etc., of banana tips, since k is directly related to the turning point
by & = sin(#;/2). The resulting trapped electron fluid equations look similar to the
3D fluid equations derived in Chapter 2, with the parallel coordinate replaced by
the pitch angle variable, x. Retaining the pitch angle dependence of the electron
moments allows us to keep the full pitch angle pitch angle dependence of the to-
roidal precession frequency and the bounce averaged potential. It also allows the
use of a full pitch angle scattering Lorentz collision operator for electron collisions.
When the real space electron density is necded in the quasineutrality constraint, we

perform the & average in Eq. (3.22).

We derive trapped electron moment equations by averaging in v over the
bounce averaged electron distribution function, (f.},. Since only even powers of v

appear in Eq. (3.19), we will only need even moments:

Y

nt(wayv‘%) = E o dvv? <f6>7)7

, 4 oo ,
P,y . Kk) = Sig0? /0 do vt {f), .

. A - 5
el y. v) = Brgc? /0 dvo® (),

A 00

blr.y.w) = W/O dvv® (f.),
4 00

vilw,y. k) = 77T/0 deo'®(f.), .

8
945ngvs,

where the electron moments have been normalized to their Maxwellian values. The
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v? dependence of the bounce averaged precession frequency, Eq. (3.15), brings the
next higher even moment into each dynamical equation, introducing the usual clo-

sure problem of the coupled moments hierarchy. Performing the v integration, we

have:

an 3. 3. . .
al—tt + o 1Wde Pt — 5 1Wde (D) + iwse (D) = (O, (s — (D)) (3.24)
dl + o !WleT't ™ 5 1de (@), +i(1 + ne)wee (D), = (C)y (pe — (®),)  (3.25)
dr 7. 7. .

d—; gl = Juwee (D), +i(1 + 2w (D), = (C), (re = (9),) (3.26)
dl 9. 9. .

cl_tt + §Wnlcvt - §Mdc <‘D>b +¢(1 + 3190 Jwwe <(D>b = <C>b (re — <(D>b) (3-27)

The collision terms will be discussed in Section 3.4. We require a closure approxi-
mation for the highest moment which models toroidal precession drift phase mixing.
By analogy with Chapter 2, we use an extension of the method of [HAMMETT and

PERKINS, 1990]. For a 3-moment electron model (evolving ns, p, and r¢) we choose:

|wie|

1y = —1 (vane + vope + very), (3.28)

Wie
and in the 4-moment electron model (also evolving ¢;), we choose:

l""del

Wie

(vars + vsps + very + vaty). (3.29)

Ut:—Z:

As in Chapter 2, each closure coefficient has both a dissipative and non-dissipative
piece, v = v, + tv;|wee | /wee , but now wy. is pitch angle dependent. We choose these
closure coefficients to closely approximate the bounce averaged kinetic response

function, derived in the next section.

3.3 Electron Closures

From the linearized bounce kinetic equation, we can derive the response function
for the pitch angle dependent electron density:
—Wde + (.03;

47T/d’l) I (3.30)

W — Wye

ns(K)

noe(®), (x)/T.

R, =
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which can again be factored into the form:

Wie Wyelle

Re = ReO + Rel +

Wie Wie

Res. (3.31)

These integrals can be performed analytically, and are functions of z, = w/wy,. and
& (through wy.(x)) [TANG, 1974].

R = 1 4 2u, + 2452 Z(\ /), (3.32)

Ry = —2[1 + V7 Z(/2), (3.33)
Rey = —[1 4 2z, + 2222 Z(\Jz.)] + 3[1 + Vz. Z(\/x.)], (3.34)
where Z is the usual plasma dispersion function.

Choosing wy. > 0 to simplify the notation in the following expressions, the

response functions from the 3-moment electron equations are:

1222 —42v.2, — 1050, + 302, — 105w, + 105

Ry = — , - : 3.35
v Sa? — 28v.a? — 0. — 105y, ( 5)
8z? — 28v.2. — 70 122, — 42v, + 30
Ry = 2fe— 280ete = 100 + 120 : (3.36)
8z2 — 28v.2? — 10z, — 1050,
122, — 42v,. + 60
Rey = — — : (3.37)
8x3 — 28,22 — 10z, — 1050,
and for the 4-moment electron equations:
R - 2423 — 108v422 — 378vex, — 945(vp + ve + va — 1) + 6022 — 270v42 + 210z, (3 38)
0T —1624 + 720423 + 2520,22 4 630vy 2, + 9450, P
P 1623 — T2042? — 25200 — 6300 + 2422 — 108vaze — 3780 + 60z, — 27004 + 210
el — )

1624 — T2v922 — 252v.22 — 63002, — 9451/,

(3.39)
no_ —24:1:3 + 108vx. + 378v, — 120z, + 540y — 630 (3 40)
= —1622 + 720022 4 252v,.22 4 630wz, + 9450, '

Powell’s method [PRESS el al., 1986] is again used to determine the closure co-

efficients by minimizing the error between the fluid and kinetic response func-
tions, R.q, R.;, and R.y, along the real z. axis for —3 < x. < 8. The best fits
are v, = (—.071,—.290), v, = (—.689,1.102), and v, = (1.774,—.817) for the 3-
moment model, and v, = (.073,.038), v, = (—.060, —.657), v. = (—1.085,1.522),
and vg = (2.073,—-.905) for the 4-moment model. The response functions for the

4-moment model are shown in Fig. 3.2.
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Figure 3.2: Kinetic and fluid bounce averaged response functions, R.p, R.;, and
R.s, for the 4-moment electron model.
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3.4 Bounce Averaged Lorentz Collision Operator

Since the pitch angle dependence is retained in the trapped electron fluid moments,
it is possible to use a Lorentz collision operator (a differential operator rather than a
Krook algebraic model) for pitch angle scattering by electron-electron and electron-

ion collisions: (v) 8 af
v.(v
= ° —(1 — 2 = 4
o 3 af( ¢ )_857 (3.41)

where the pitch angle, £ = v;/v. The energy dependent collision frequency is:

drn.etn A

l/e('l/’) = W(Zeﬁ‘ + Hee(v/vte)), (342)

me

where the Z.g part accounts for electron-ion collisions (assuming v >> vy;) summed
over ion species (Zeg = 3, Z}nj/nc), and the H..(z) part is from electron-electron
collisions, where H..(z) = \/%exp(—mz/Q)/x +[1 - l/(12)]ﬂf($/\/§) This col-
lision operator conserves particles and energy, but not momentum. FElectron-ion
collisions do cause a loss of electron momentum, which is transferred to ion momen-

tum, but is usually ignorable since m. < m,;.

The bounce average of this collision operator enters Eq. (3.19), and is calcu-
lated in [CORDEY, 1976; HAMMETT, 1986):

_ v O g ey [ B\ ) OF ,
)= g jo-d (B —a-e) 2L e

where &y is v /v at the midplane, £ = /1 — gBmin/F. Transforming to s using
£o = V2¢prk, using Eq. (3.18) for f., and the fact that the adiabatic piece F.e®/T.

is independent of pitch angle, we have:

(C), = —" 0 [('l — 2epr?) L {<Bmi“>b —1 +263ﬁ2} X (3.44)

- 86_]23|H|7'ba K B

d
e (a2 = @),

This collision operator must be integrated over velocity, v, to find the collision terms

in the trapped electron fluid equations. This leads to two complications: the 1/v?
dependence of the electron-ion term is singular in the electron density equation, and

the other integrals do not lead to simple combinations of the electron moments we
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evolve. For example, the collision term in the trapped electron pressure equation

couples different moments together:

8pt 47r oo
o= e’ /0 dv vt (C), —I/eg/d’l) v {fe) (3.45)

te

x —veolan: + Bp: + -+ ),

where in the last step, (f.), has been expanded using the electron moments as
a basis set, with as yet undetermined coefficients. To avoid solving the closure
problem again, at this point we assume v. = constant, using:

AN 2mneetIn A

g Ze 4 1), (3.46)

3me:

Ve R2 Veg =

Integration over v then leads to the collision terms in Eas. (3.24-3.27). A better
approximation, which we leave to future work, would lead to weaker coefficients
in the higher moment equations to model the velocity dependence of v., but the
present approximation captures the essential feature of the collision operator, which

is primarily the pitch angle scattering process.

3.5 Evolution of Trapped Electron Moments

This section describes how these electron moment equations are solved. The empha-
sis 18 on numerical solution, but analytic solution would follow conceptually similar

procedures.

In the numerical simulations described in later chapters, the ion gyrofluid
moments are stored and evolved i (z,y, z) space. The parallel grid points are
evenly spaced in z = 0 from — N7 to N7, where N > 1, as discussed in Chapter 4.
This parallel coordinate is linearly equivalent to the extended poloidal angle in the
ballooning representation. The electron moments are stored and evolved in (z,y, k)
space. The pitch angle grid points are at x = sin(#)/2 to provide more resolution
near the trapped-passing boundary where wg. is varying rapidly. Separate electron
moments are independently evolved in each magnetic well along the parallel co-
ordinate, i.e., the moments for —7 < § < 7 are separate from the moments for
m < 0 < 37. The bounce averaged (®), (z,y, x) is calculated from ®(z,y, z) by

numerically integrating Ea. (3.12), and then used to advance the electron moments
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in time. Special care must be taken at the turning points, where Eq. (3.12) has
integrable singularities. Choosing the x spacing k£ = sin(8/2) so that the turning
points lie exactly on a 6 grid point simplifies this integration. The electron nonlin-
earities are evaluated in a manner completely analogous to the ion nonlinearities,
but in s rather than in z. The electron collision terms are evaluated implicitly.
The x dependence in Eq. (3.44) and the boundary condition that (f.), = (®), at
the trapped-passing boundary automatically incorporates the strong effects of pitch

angle scattering near the trapped-passing boundary.

Only the electron density moment ever needs to be evaluated in real space.
To solve the quasineutrality equation, Eq. (2.9), the real space electron density,
n.(z,y,z), is calculated by performing the x averages of ni(z,y,x) and (®), as
given by Ees. (3.22) and (3.23). Again, special care must be taken at the turning
points where Eq. (3.22) contains integrable singularities. Then the quasineutrality

equation is solved for @, and this entire process is repeated for the next time step.

As in the adiabatic limit, special treatment is required for perturbations
with &, = 0, which are constant on flux surfaces. When k, # 0, trapped electrons
scattered onto passing orbits quickly become adiabatic, but this is not true if £, = 0.

When k, =0, wg. = w,. =0, so the bounce averaged kinetic equation reduces to:

d .
— (Jedy = (), ((fe)y — (@) (3.47)
dt

The k£, = 0 electron moments for passing particles are separately evolved, and

interact with the trapped electron k, = 0 moments through collisions. We need to
extend the k variable to include passing particles, which occupy the range 1 < k <
1/7/2¢p, and extend the definition of the bounce average for k > 1:
(@), = JI. dz®(z,2)/|v]
b T
JIpdz]|v)]

for modes which are independent of y. For modes with &k, # 0, (®), = 0 for passing

(3.48)

particles. Including nonadiabatic passing particles for k, = 0, the generalization of

FEe. (3.23) is:
ne(z,y,2) = /J%fﬁf.z%fc _ /al%((f,)b (B, F. + OF,), (3.49)
4 t
which can be written in the same form as Eq. (3.23),

ne(z,y,2) = ng® + (ne) — no({®), ), (3.50)
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if we extend the x average to include passing particles:
/1/v253 2Bepr A(k)dr
in00/2) By /1 — (B/ Bin) (1 — 2e2)

(A(R)) = (3.5)
When ny = 0, Eq. (3.50) becomes n. = ng(® — ((®),).). That this is the proper
adiabatic density response, Ea. (2.98), can be seen by using the identity ((®},}. =
[dz®(x,y,2)/B.

3.6 Comparison with Linear Kinetic Theory

We first test these trapped electron fluid equations by comparing the local linear
growth rates and frequencies with kinetic theory. In the local limit, we choose
k, = 1/qR, and ignore the bounce averages, i.e. we approximate ® = (®),. We also
evaluate wy. in the deeply trapped limit, at £ = 0. The local dispersion relation with
trapped electrons is R; = —7 R., where the fluid and kinetic R;’s are given in Chapter
2 and the fluid and kinetic R.’s are given by Ee. (3.31) and Esg. (3.35)-(3.40).
Fig. 3.3 shows the growth rates and real frequencies vs. kgp; for the parameters
=1 =3, ¢q=15 ¢ =1/3, ¢ =1/6, and T; = T,, in the collisionless limit.
The gyrofluid and trapped electron fluid results are in very good agreement with
fully kinetic theory. The eigenfrequencies with adiabatic electrons are also shown.
These are the same parameters as in Fig. 1 of [KOTSCHENREUTHER el al., 1994b],
and comparison with Fig. 3.4 shows that the destabilization by trapped electrons
is strongly over-emphasized by the local and deeply trapped approximations, which
neglect the bounce averaging of the potential and the variation of the toroidal
precession frequency with pitch angle. Both of these effects will reduce the trapped
electron density response. The three and four moment electron equations yield

virtually identical results.

We next compare fully nonlocal results with kinetic theory in the collisionless
limit. The eigenfrequencies from the six moment toroidal gyrofluid equations and
the three moment trapped electron fluid equations are compared with fully kinetic
calculations [KOTSCHENREUTHER el al., 1994b] in Fig. 3.4. These results are for
a pure deuterium plasma in the collisionless limit for the parameters 7, = 5. = 3,
§=1,qg =15, ¢ = 1/3, and ¢ = 1/6, as in Fig. 1 of [KOTSCHENREUTHER

el al., 1994b]. The gyrofluid results with purely adiabatic electrons are also shown.
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Figure 3.3: Comparison of local linear eigenfrequencies from gyrofluid and trapped
electron fluid equations and fully kinetic results. The six moment toroidal gyrofluid
equations are used, coupled with either the 3 moment or 4 moment electron equa-
tions. The fluid results are in very good agreement with kinetic theory. The results
with adiabatic electrons are also shown. Comparison with Fig. 3.4 shows that the
destabilization by trapped electrons is strongly over-emphasized by the local and
deeply trapped approximations.
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Figure 3.4: Comparison of linear eigenfrequencies from gyrofluid trapped electron
fluid equations and fully kinetic results. The agreement is quite favorable. Also
shown are the gyrofluid results with adiabatic electrons, showing that the trapped

electron response doubles the growth rates for these parameters, even though this
is an I'TG mode.

The trapped electron response doubles the growth rates for these parameters, even
though this is an ITG mode. Overall the agreement between gyrofluid and kinetic

results is quite favorable.

Now we test our model of electron collisions by comparing with fully kinetic
results. In Fig. 3.5, the variation of linear eigenfrequencies with collisionality is
shown, for kgp; = 0.35, as in Fig. 2 of [KOTSCHENREUTHER el al., 1994b]. The
other parameters are as above. Again, there is very good agreement. The gyrofluid
equations give a somewhat sharper transition from the collisionless regime to the
strongly collisional regime where the electrons become adiabatic. Better agreement

should be possible by modeling some of the velocity dependence of v, (v).

While trapped electrons have a strong effect on the ITG mode for low col-
lisionality, the most interesting effect of the nonadiabatic electron dynamics is the

destabilization of the trapped electron mode (TEM). For large collisionality the elec-
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Figure 3.5: Variation of linear eigenfrequencies with v., from kinetic theory and
the gyrofluid trapped electron model. There is good agreement from the collision-

less regime where the electron destabilization comes from the toroidal precession

resonance, to the strongly collisional regime where the electrons become adiabatic.
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trons are nearly adiabatic, and when 7; falls below a critical value, 5™, the ITG
mode is stabilized and the plasma is completely stable. At low collisionality, when 7;
falls below the adiabatic 5t the trapped electron mode can still be unstable [RE-
WOLDT and TANG, 1990]. Fig. 3.6 shows this behavior using the gyrofluid trapped
electron model, for the parameters above, holding 1; = 5.. The solid squares are
the linear growth rates for kgp; = 0.3 at large v... At this large collisionality, below
1n; &= 1.5, the I'TG mode is stabilized. The open circles are the linear growth rates
for vee = 0.02. For 55; & 1.5, the ITG mode is unstable, and is further destabilized
by trapped electrons (compared to its growth rate with adiabatic electrons). Below
n; &= 1.5, it evolves into a trapped electron mode. When this transition occurs is
a function of kgp;, so the trapped electron mode growth rates are also shown for

kgpi = 0.4. Near n; = 1.5, it is difficult to determine the eigenfrequency, since there

are two unstable modes with nearly the same growth rates.

Thus, at low collisionality, the most striking effect of trapped electrons is to
soften the ITG threshold. The TEM has quasilinear (). > @;, while the I'TG mode
has Q. < Qi, as m [REWOLDT and TANG, 1990], so the TEM can be expected to
cause less ion heat transport. In this respect, there is still a threshold for the ion heat
transport, but it is not a sharp threshold at low collisionality. Below the adiabatic
ITG threshold, the growth rates become strong functions of electron collisionality
and electron temperature and density gradients, which suggests that the turbulence
levels and both ion and electron heat transport will be strongly dependent on these

parameters in this regime.
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Figure 3.6: Linear growth rates from the gyrofluid trapped electron model varying
n; and holding 1; = 5., showing the transition from an ITG mode to a trapped
electron mode at kgp; = 0.3. At high collisionality (solid squares), v.. = 10, the
electrons are nearly adiabatic, and when 7; < 1.5 the plasma is completely stable.
At low collisionality (open circles), vi.. = 0.02, for »; < 1.5 the TEM is unstable.
The TEM growth rate for kgp; = 0.4 is also shown, since the transition from ITG
to TEM depends on kgp;.



Chapter 4

Field-aligned Coordinate System

URBULENCE IN TOKAMAKS is characterized by long parallel wave-

lengths and short perpendicular wavelengths. This chapter describes a

coordinate system for nonlinear fluid, gyrokinetic “Vlasov”, or particle
simulations that exploits the elongated nature of the turbulence by resolving the
minimum necessary simulation volume: a long thin twisting flux tube. It is very
similar to the ballooning representation, although periodicity constraints can be in-
corporated in a manner that allows E x B nonlinearities to be evaluated efficiently
with FFTs. If the parallel correlation length is very long, however, enforcing peri-
odicity can introduce artificial correlations, so periodicity should not necessarily be
enforced in poloidal angle at § = £7. The advantages and limitations of this ap-
proach are discussed, and some of the inherent assumptions are tested numerically

with 3D simulations of toroidal ITG driven turbulence.

4.1 Motivation

The turbulence that evolves from fine-scale instabilities (e.g. 1;, trapped electron,
or resistive ballooning modes) is thought to be responsible for the anomalously
large particle, momentum, and heat transport levels in tokamaks. It is therefore of
great interest to simulate numerically the nonlinear evolution of these instabilities
to determine the resulting fluctuation and transport levels. These instabilities are
characterized by long wavelengths parallel to the magnetic field and short perpen-

dicular wavelengths, on the order of the ion gyroradius, p;. This is, of course, a
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consequence of the rapid communication along field lines (at the sound speed for
electrostatic instabilities) and slow communication across the field lines (typically
velocities across the field do not exceed the diamagnetic speed). In addition, fluc-
tuation measurements [FONCK el al., 1993; MAZZUCATO and NAZIKIAN, 1993] in
tokamaks indicate a relatively short perpendicular correlation length (~ 10p;), but
a long parallel correlation length [ZWEBEN and MEDLEY, 1989]. Simulation of a full
tokamak with adequate resolution of these fine perpendicular scales is somewhat be-
yond the presently available computational resources, since p;/a ~ 1073 for present
day large tokamaks, where a is the minor radius. (The latest full torus gyrokinetic
particle simulations can now be run down to p;/a = 1/128 [HAMMETT el al., 1994].)
However, it may be unnecessary to simulate a whole torus to reproduce small-scale,
locally-driven turbulence. This chapter describes a coordinate system for nonlinear
simulations that resolves a much smaller volume and is therefore computationally
more efficient, while still resolving the relevant small scales. The smallest possible
simulation volume is a long thin flux tube that is several correlation lengths wide
in both perpendicular directions (radial and poloidal), and extended along the field
line, exploiting the elongated nature of the turbulence (k, > k). This approach
1s advantageous for fluid, gyrokinetic “Vlasov”, and particle simulations, and could

eventually be compared with full torus simulations.

The fundamental idea is to use coordinates that follow field lines. With
such coordinates a flux tube (a tube with a surface parallel to B) which is bent
by magnetic curvature and twisted by magnetic shear, is mapped into a rectangu-
lar domain. Such twisting coordinates were originally proposed by [ROBERTS and
TAYLOR, 1965], and [COWLEY el al., 1991] emphasized their utility for nonlinear
calculations. In [HAMMETT el al., 1993], we described the essential features of this
approach, with an emphasis on slab geometry. Here we focus more on the toroidal
aspects and actual details of implementation. The major problem of these field line
coordinates is enforcing the periodicity constraint since the coordinates are multi-
valued in a torus (except at low order rational surfaces). In [COWLEY el al., 1991]
it was emphasized that it is unlikely that the correlated volume wraps around the
torus and overlaps itself. When this is true, the physical periodicity of the full
torus is irrelevant, and the simplest approach is to simulate a flux tube subdomain
that is several parallel correlation lengths long (just as it should be several perpen-

dicular correlation lengths wide). As will be described in Section 4.3, this can be
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different from imposing periodicity at § = +7 as i1s usually suggested for the bal-
looning representation (and which could lead to artificial correlations which modify

the results).

Another advantage of the field-line coordinates, in addition to the efficiency
of a minimum simulation volume, is that it can easily implement radial periodicity
(which in regular coordinates is complicated by the shear of the magnetic field),
thus avoiding the problems of “quasilinear flattening” and allowing self-consistent
turbulence-generated “zonal” flows (flows which cause flux surfaces to rotate). The
field-line coordinates are also particularly convenient for gyrofluid simulations where
partially Fourier transformed quantities (in 2 of the 3 dimensions) need to be eval-

uated, such as |wg(0)| x |kg cos(0) + k. sin(8)].

We have carried out simulations with various sizes for the flux-tube “box”,
and verified that the results are independent of the box size once it is larger than
the correlation lengths in each direction, thus justifying some of the assumptions
implicit in simulating a flux tube subdomain rather than the full torus. This leads
to interesting questions regarding Bohm vs. gyro-Bohm scaling for the turbulence,

which we will consider in the Section 4.8.

4.2 Flux Tube Simulations in General

If one wants to describe turbulence which is highly elongated along field lines and
narrowly localized across field lines it is natural to introduce coordinates which are
constant on field lines. A natural way to do this for any general magnetic field is
to use the Clebsch representation of the magnetic field [KRUSKAL and KULSRUD,
1958] (since V- B = 0):

B = Va x V. (4.1)

Clearly B- Va = B - V¢ = 0 so that « and ¢ are constant on field lines. Thus
o and t are natural coordinates for the flux tube. A third coordinate, z, must
be defined that represents distance along the flux tube. One obvious choice of the
third coordinate is the physical length along the field line, though this is not always
the most convenient choice. A complication of using o and ¥ as coordinates is that
they are not unique, for instance if @ = a + ¢(¢)) then B = Vo' x V. In many

applications toroidal flux surfaces are defined and it is natural to take ¢ to be the
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poloidal flux. The choice of « is less obvious and may be optimized for a particular
calculation. A further complication is that « and ¢ are typically not naturally
single valued and a cut must be introduced to enforce single values [KRUSKAL and
KuLsrun, 1958]. This issue will be discussed extensively below. Let us imagine
that a choice of a, ¢, and z has been made and that a = a(r), » = ¢(r), and
z = z(r) are known functions. This information can be obtained for instance from
the output of an equilibrium code. Thus, in what follows, the metric coefficients for
the transformation to the «, v, z coordinates are taken to be known. The Jacobian
of this transformation is J = (Va x V¢ - Vz)~h

Three spatial operators appear many times in the equations for the pertur-
bations, they are: B -V, V2 and B x V® - V. In the a, ¢, z coordinates we

have:

0A 10A
9 1 0 JdA 5 JdA 0A _
- gzl - y 4+ S e z .
VA 790 ] |V(){| + ]8 Va - Vi + 5 Va-Vz (4.3)
+ %% l]d—AVO Vi + .]—]Vt/’\z + IC;—AVH Vz]
10 J. aA / .
- J—— e ’/" . A -]»_ 2 [
+ 79 l]daVo/ Vz —I—]a,Vt/ Vz+. 02|Vz|l,
BxVd-VA /aA o0 _ 04 8(1)\ B2 (4.4)
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52 59~ 335 (Va x Vi) - (Vi x Vz2),

where A and @ are any scalars. Eqs. (4.2)-(4.4) are completely general.

We shall assume that the turbulence we wish to simulate has perpendicular
correlation lengths that are short compared to equilibrium scale lengths but a par-
allel correlation length of the same order as the equilibrium scale lengths. Let us
consider a simulation domain that is a flux tube volume defined by ag — Aa < a <

ag + Aa, g — Ay < < g+ A, and —zy < z < zy. This volume is chosen to
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be several correlation lengths in all three directions. Of course one wants to make
this volume as small as possible to save computer time. Once the box volume is
larger than several correlation lengths the turbulence should be insensitive to the
size of the box. One tests whether the box size is adequate (in the usual way) by
increasing the box size and comparing the turbulence in the different size boxes, or
by measuring the correlation functions in a given box and verifying that they go
to zero at the edges of the box. In this way we arrive at a minimum simulation

volume.

Since the simulation volume is narrow in « and ¢ (compared to equilib-
rium variations) all equilibrium quantities (or gradients of equilibrium equantities
when they appear in the equations) are to lowest order functions of z alone. In
other words, the perpendicular scale of the equilibrium is much greater than the
perpendicular scale of the perturbations, and the box is chosen to be only slightly
larger than the largest scale perturbations, so across the box (i.e. in « and ) one
can ignore the variation of these equilibrium quantities. For example, the Jacobian
J = (VaxVi¢-Vz)~lis to a good approximation constant across the box but not
along the box, thus J = J(ag, ¢, 2).

When A is a perturbed scalar (e.g. n, T, etc.), and @ is the potential, we can
neglect the 3/0z terms in Eqs. (4.3) and (4.4) since they are smaller by k,/k,. The
coefficients in Eqs. (4.2), (4.3), and (4.4) (various elements of the metric tensor) are

again roughly constant across the box and therefore may be taken as functions of =z
alone with a = ap and 1» = ¢bg. Then Eqs. (4.3) and (4.4) reduce to:

9A L9 A

o2’
9A0P  9A a¢) .

J*A
ViA = |V(X|2W + QVOZ . VK/)

Y da da O

wa-w:( (4.6)

Therefore, the equations to be solved in this (minimum simulation) volume
have no explicit dependence on « or ¢, which leads to great computational sim-
plification. The E x B nonlinearity takes the simple form Eq. (4.6), and all other

coefficients in the equations are only functions of z.

The perpendicular boundary conditions on the perturbations at @ = oyt A«
and b = 1y £ Ay are taken to be periodic. If the box is more than a correla-

tion length wide the turbulence should be insensitive to the boundary conditions,
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although one set of boundary conditions that is not advisable is fixed boundary
conditions which prohibit energy and particle fluxes through the boundary. If fixed
radial boundary conditions without sources or sinks are used, then the m = 0,n =0
component of the perturbations (where m is the poloidal mode number and n is
the toroidal mode number) will grow to eventually cancel the driving equilibrium
gradients (“quasilinear flattening”), thus turning off the turbulence. In principle,
this problem can be overcome with a sufficiently large box so that the time scale
to flatten the driving gradients becomes much longer than the simulation time.
But periodic radial boundary conditions avoid flattening altogether and allow the
use of a more efficient, smaller box. Past simulations have sometimes zeroed out
the m = 0,n = 0 components of perturbations to avoid this flattening, but that
prevents the turbulence from being able to generate sheared zonal flows (resulting
from the m = 0,n = 0 component of the electrostatic potential, ®(¢), which varies
only with minor radius), which can be an important nonlinear saturation process
[HAMMETT et al., 1993; DORLAND et al., 1993; COHEN el al., 1993; HASEGAWA
and WAKATANI, 1987; CARRERAS et al., 1991; DIAMOND and Kim, 1991]. Peri-
odic radial boundary conditions allow the self-consistent evolution of m =0,n =0

perturbations such as the zonal flows.

The assumption of radial periodicity in the small flux-tube is not based
on actual physical constraints (that would require simulating the full tokamak to
include losses to the limiter, auxiliary heating of the tokamak core, and including a
vacuum region and a conducting shell). Instead, we are assuming that the statistical
properties of the fluctuations at ¢ + 2A¢ are the same as at ¢, and that if the
simulation box width 2A4 is larger than the radial correlation length we can assume
that they are actually identical at every instant. This statistical radial periodicity
also serves as a model of the effect of turbulence in neighboring regions on the
simulated subdomain. This is illustrated by the contours in Fig. 4.9, which show
eddies that stick out of one side of the box and reenter on the other side of the box.
Periodic boundary conditions are often used in 2-D plasma simulations (such as
Hasegawa-Mima) or in simulations of homogeneous Navier-Stokes Turbulence, but
are complicated somewhat in 3-D plasma simulations by the shear in the magnetic
field. Because the parallel dynamics are so much faster than the perpendicular
dynamics (so k; < k), the fluctuations tend to be elongated along the direction

of the magnetic field, which points in different directions at different radii. In
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regular coordinates this requires the use of something like the “twist-and-shift”
radial boundary conditions suggested by [KOTSCHENREUTHER and WONG, 1991];
also discussed in [DORLAND el al., 1993; DimiTs, 1993]. The field-line coordinates,
however, are already aligned with the magnetic field, so radial periodicity becomes
simply A(¢ + 2A¢, a,z,1) = A(d,a, z,1). Some of the issues involved in radial
periodicity are discussed in more detail in [DORLAND el al., 1993; DORLAND, 1993;
COHEN el al., 1993].

For the same reasons, we can also assume statistical periodicity in the «
direction, A(¢, a+2Aa, z, 1) = A(, a, 2, 1). There is no explicit dependence of the
operators in Ees. (4.5,4.6) on « or ¢, so it is useful to expand in a Fourier series in

¢b and « (which also provides periodicity in those directions):

A, a,z,1) = i i Aj’k(z, L)eij“w'_w")/&’*""{'ik”(“—"o)/A“. (4.7)

j=—oce k=——oce
The boundary conditions in the z direction will be discussed in the next section.
Note that while each term in the Fourier series is a plane wave in «, ) coordinates,
the wavefronts in real space can be very distorted. Perhaps the most pronounced
distortion arises from magnetic shear. To understand this we first define the angle,

A, between constant « and @ surfaces:

Va- Vi
Vallve

cos A = . (4.8)
Magnetic shear makes A change as z changes—in real space the flux tube is then
sheared and its cross-section goes from being rectangular where A = 7 /2 to being a
parallelogram where A # 7/2, as shown in Fig. 4.1. The wavefronts of each term in
the Fourier series, Ea. (4.7), also get sheared. For example the 3 = 0, k& # 0 term has
wavefronts corresponding to the constant « lines. The individual terms in the series
Ea. (4.7) are therefore “twisted eddies” [ROBERTS and TAYLOR, 1965; COWLEY

el al., 1991] whose wavefronts twist as one moves along z.

Now let us discuss the choice of the coordinates a and . A useful discussion
of this procedure can be found in [WHITE, 1989]. As shown in [GREENE and JOHN-
SON, 1962], it is possible to choose a, 1, and generalized “toroidal” and “poloidal”
angle variables ( and 6 such that the field lines are straight in the (¢,0) plane and

physical quantities are periodic over 27 in both variables. This choice of coordinates
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Figure 4.1: Shearing of flux tube cross section at different positions along the tube.
Lines represent constant 1 (dashed) and constant « (solid) lines.

will simplify our discussion of periodicity in section 4.3. For the general magnetic
field Eq. (4.1), we have [KRUSKAL and KULSRUD, 1958]:

a = (/) - q(g/?)g - V('(/)a 97 Qb)a (49)

where ¢ = (2m)7% [i- d7B - V0 is the poloidal flux, q(v)) = dipr/dy, vp = (27)7*
[y 7B - V¢ is the toroidal flux, €7 is the volume element, and ¢ and 6 are the
physical toroidal and poloidal angles, so physical quantities are periodic over 2w
in ¢ and 6. The function v is also periodic in ¢ and 6. We now introduce a new

toroidal coordinate,
(=d—v(y,0,9). (4.10)
With this choice

a=(—q(h), (4.11)

and the magnetic field lines are straight in the ((,0) plane. Further, periodicity is
preserved in ( and 6. Often, 0 is also redefined to choose a specific form of the
Jacobian. An alternative to Ea. (4.10) would be to use ( = ¢ and introduce a
new poloidal coordinate # = 6 + v/q. In any case, we will make use of the fact

that a coordinate system can be chosen such that magnetic fields lines are straight



4.3. Periodicity and Parallel Boundary Conditions 89

in the (0, () plane, and are given by a = ( — ¢(¢)# = constant. For our parallel
coordinate z we will use z = 6, since this makes our description very close to the
usual ballooning mode formalism. Note that z is not restricted to —7 < z < 7, as
we may choose to simulate a flux tube which follows a field line wrapping around the
torus several times in the poloidal direction, not just once. This will be discussed

further in the next section.

In summary, our field-line following coordinate system is given by (¢, a, z),
where field lines are labeled by constant ¢ and «. One can think of ¢ as a radial
coordinate, @ = ( —q(1)0 as a perpendicular-to-the-field coordinate, and z = § as a
parallel-to-the-field coordinate. Our notation simplifies if we introduce the following
new variables:

To

Go
= ’f)—’f) . yy = —— — y Z:g, 412
Boro([/ o), Yy qo(a @) (4.12)

x

where gy = q(tbg), By is the field at the magnetic axis, and ry is the distance from

the magnetic axis to the center of the box. Then Eq. (4.7) becomes:

Ale,y,z )= S 3 ebeotibn 4 (o), (4.13)

ky=—o08 ky=—oce
with k, = jn/Az, k, = —kn/Ay, Az = qA¢/Byro, and Ay = roAa/qy. The
rectangular computational box of “radial” width 2Az, and “poloidal” width 2Ay,
and extended along the field line, 8, is mapped onto a flux tube, as shown in Fig. 4.2,

for example.

These coordinates are similar to those used in [WALTZ and BOOZER, 1993].
Our a, ¢, and z are analogous to —¢f', o/, and ¢ in [WALTZ and BOOZER, 1993],
respectively, since they have chosen to measure the distance along the field line
with @', a “toroidal” angle, while we use §. A more significant difference between
our representation and [WALTZ and BOOZER, 1993] is the treatment of periodicity,
though their more recent work [WALTZ el al., 1994a] has adopted a similar treatment

to ours, described in the next section.

4.3 Periodicity and Parallel Boundary Conditions

The choice of parallel boundary conditions involves a number of subtle, yet im-

portant issues. The main concept is that of a statistically-motivated periodicity,
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Figure 4.2: The rectangular computational domain mapped onto a flux tube in a
torus, with gy = 2.4 and shear, § = 1.5. The ends of this flux tube are cut off
at poloidal angle —7 and 7, and the sheared cross-sections of the flux tube in the
poloidal plane are indicated.
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as described in Section 4.2 for the ¢ and « boundary conditions. For moderately
“ballooning” turbulence we might expect parallel correlation lengths 6, ~ (1 — 2)7
(though it might be longer than this). The simulation box should have a length
2z9 = 2 N in the parallel direction which is several times the parallel correlation
length. In some cases a box length of 27 might be sufficient. But an even longer
box may be necessary in many cases to ensure that one end of the box is sufficiently
decorrelated from the other end of the box to avoid artificially constraining corre-
lation effects, just as the box must be at least a few correlation lengths wide in the
¢ and « directions. For the cases simulated in Section 4.7, parallel box lengths of

al least 47 were needed for good convergence.

One must be careful about which other coordinates are held fixed while
applying parallel periodicity, just as one must be careful to impose radial periodicity
in field-line coordinates (¢, a, z) (i.e., impose periodicity in ¢ while holding « and z
fixed). As discussed in Section 4.2, trying to impose radial periodicity in the usual
(¢, 0, () coordinates would miss the fact that fluctuations tend to be extended along
the magnetic field, which changes direction in the the (8, () plane as ¢ is varied.
Similarly, though the flux-tube is rectangular in (¢, @) coordinates, it twists into
a parallelogram in physical space as one follows the flux-tube along z (Figs. 4.1
and 4.2). The fluctuations in the physical plane perpendicular to a magnetic field
line should be statistically identical at all places along that field-line with the same
poloidal angle (z = 0,2x, 47, ...), irrespective of the twisting of the flux-tube which
increases without bound as z — oco. Because of this, we will assume that the
fluctuations are periodic in z while holding (¢, () fixed, rather than holding the
field-line coordinates (¢, @) fixed. The reader may find it easier to visualize this in

sheared slab geometry, as carried out in [HAMMETT el al., 1993].

A related problem is that if we were to impose parallel periodicity as Ay, «,
+20) = A(¢, @, —2g), then every field line would effectively be a rational field line
that connected to itself. Field lines are labeled by constant (¢, ), and such a
boundary condition causes any particles flowing out one end of the field line to
flow back in the other end of the box on the same field line. This is unlike a real
sheared magnetic field where the set of irrational field-lines is dense, i.e., most of

the field-lines are irrational and never connect to themselves.

So, we will impose periodicity in z while holding ¢ and ( fixed (rather than
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holding ¢ and « fixed). Specifically,

A, a(0,), 2(0)|_ = A, 0(8.0). =(8))|

f=—Nm

Rather than the form of a boundary condition in z, this can be stated as a more

general periodicity relation with period 27 V:
A, (0 427N, (), z(0 + 27 N)) = A(, a(0,(), 2(0)) (4.14)

Physically, this is equivalent to considering two (¢, () planes cutting through the
flux tube, at z = 0 and at z = 0 + 27N, and assuming that the turbulence is
(statistically) identical in those two planes. To evaluate this periodicity constraint,
first substitute & = ( — g(¢)0, z = 0 into Ea. (4.7), and take ag = 0 for simplicity
(it drops out), to get

A= Z Z fijk(f), L)eijﬂ(w—wo)/A¢+ik7rcf/A~—ikﬂ(¢)9/A~. (4.15)
j=—o0e k=—o0e
For a thin flux-tube, we can approximate ¢(¢) ~ qo + (¥ — vo)q’, where ¢’ =

(3(]/3’(/))@:%’ to get

A = Z Z :ij’k(gv l)ciﬂ(w—wo)(j/Au‘J—kq'ﬁ/Aa)-I—ikTrg’/Aa—ik‘quoQ/Aa‘ (416)

j=—0e k=—o0e

Substituting this into Ee. (4.14) yields

(e, ] (e, ]

Z Z [1] k(a + 27I']V, l)Ciﬂ(w—wo)(j/Au‘J—kq'(9+27TN)/Aa)-l—ikwg’/.&a—ik?rqo(0—|—27rN)/Aa

j=—0® k=—o0e

— i.: i.: ‘L’ijk(lg’t‘)em(w—wo)(j/Au'J—kq'@/Aa)-l—ikwg‘/A«—ikrrqoB/Aq. (417)

j=—0® k=—o0e
In order for this to be valid at any arbitrary value of (, the coefficient of each

exp(tkm(/Aa) term must be identical:

(e, ]

Z L’i] k(a + 27 ]\/Y, z)em(w-wg)(j/Au'/—kq'(9+27T/V)/Aa)—ik7rqo(6’-I—27rN)/Aa

j::—OO

— i A[ljk(gj[/)Cm(u"—wo)(j/Aw—kq’H/Aa)—ilmqgH/Aa. (4.18)

j:—O.
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We can make the coefficients of (1 — 1)) identical by shifting the j index with the
substitution 7 = ' 4+ d7 into the left-hand side, where

§7 =2rNkqg' A/ Aa = 2r NkAg/ Ao, (4.19)

and where 2Aq = 2¢’ A4 is the change in g from one edge of the box to the other.
Note that d7 must be an integer, which quantizes the ratio Ag/Aa, as discussed

below. We now have

S Ajpsip(0 4 27N, 1) T @00 '/ Ab—ka'0]20) —ikma (6427N) [ Ae

S —

J

— 0O

— io: Aj,k(gy [/)eiw(‘t&—’lﬂo)(j/Aw—kq’B/Aa)—ikﬂqoQ/Aa. (420)

j=—oe
For convenience, we can take the width of the simulation volume 2Aa to be 1/ng

of the circumference in the toroidal direction,
Aa = 7 /ng, (4.21)

where ng is a positive integer. Dropping the primes on j in Eq. (4.20), the parallel
periodicity condition now becomes

~

Ajpsin(+ 27N, 1)C = A;4(0.1), (4.22)

55 =kJ, J =2ngNAg, (4.23)

where the phase-factor Cy = exp(—i27 Nkgong). Note that the requirement that j
be an integer quantizes the range of ¢ spanned by the flux tube 2Aq to be J/ngN,
where J is an integer. For ¢ # 0, this then quantizes the radial box size since
Ag = ¢Ay. One can treat shearless ¢’ = 0 cases as well, then §7 = J = 0, and
the radial box size 2A is no longer quantized and just needs to be at least a few
radial correlation lengths wide. In the usual ¢’ # 0 case, the radial position of the
simulation box can always be adjusted slightly (less than one radial box width) so

that go = g(vo) is rational such that the phase-factor Cy = 1.

Eeq. (4.22) thus expresses a modified periodicity condition on the mode am-
plitudes: the value of a coefficient at one end of the box is specified by the value
of another coefficient (with the same k but a different j, i.e., a different 6y, as we

will describe below) at the other end of a box. This is represented graphically in
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Fig. 4.3 (which uses notation introduced below). Of course computer simulations
can not retain an infinite set of j’s and k’s. Instead, enough j and £ modes are
kept to be able to resolve up to a desired value of k, p;, above which the coefficients

A;j are assumed to vanish. Note that §7 = 0 for £ = 0 modes, so the periodicity

condition for k = 0 modes simplifies to 41-,0(9 +27N,1) = fi]—,o(ﬂ, L).

This completes the formal specification of the boundary conditions, but we
go on to express it in terms of notation often used in the ballooning transformation.
It is common to introduce the “ballooning angle” 6y(j,%), such that the radial
derivative of an individual (7, k) mode of Eq. (4.16),

0 o .

—|  xim(j/AY — kq¢'0/Aa), (4.24)

o 6.c
vanishes at # = . Note that this definition of 83 employs a derivative with respect
to ¢ while holding § and ( fixed, nol « and 6. Clearly at 8 = 0y(7, k) the wavefronts
of the 7, k’th term in Eq. (4.7) are perpendicular to the ¢ surfaces. Eqs. (4.21-4.24)

yield
. JA« gT
KOy (7, k) = = :

Oy is discrete with spacing §0y = jm/knoAq that is dependent on k. Only the

(4.25)

combination kfy ever appears and the limit £ = 0 must be interpreted in terms of
the discrete j sum. In particular, the turbulence can generate k = 0 (6 = o0) modes
corresponding to zonal flows which can be important in the nonlinear dynamics, so
the £ = 0 modes must be allowed to evolve self-consistently. (Likewise, one must be
careful about the shearless limit ¢’ = 0, where 8y — oco. The field-line coordinates
are still useful, but it is then better to think about the j (or k) label of the
mode, which remains finite, rather than the 6y label.) Using the definition of 6y in
Ea. (4.25), we can express the shift §7 in Eq. (4.19) as a shift in 6y instead:
dgm

kngAqg

Using the definition of 6y to denote A;; by a corresponding Ag, x, and absorbing

AHO -

= 27 N. (4.26)

a phase factor which is independent of the coordinates (v,0,¢) by using A;; =
‘4‘7,;6 exp[—tkno(qobo(7, k) + ao)], the parallel periodicity condition of Ea.(4.22) can

be written in a form related to the familiar ballooning representation,

A’Z‘HU—I—ZWN.k(H? /) = ‘iﬁo.fa‘(_g - 27[-“’\‘T? /) (427)
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This form of the periodicity relation is illustrated graphically in Fig. 4.3.

—7N N

Figure 4.3: Boundary condition for A along the field line coordinate, Eq. (4.27). Dif-
ferent k&, modes (_i.e. fy’s) with the same k, are connected at £7 N, i.e. Ag (=7 N)
is connected to Ag,r2-nk(TN).

Using Eqs. (4.21) and (4.25) and g(v) & qo + (¢ — ¥o)q’ (or going back to
Eq. (4.7) and using q itself for the radial-like coordinate ), we can rewrite Eq. (4.16)
as .
A, 0,¢,0) = S0 ST A (8, 1)etFrolema@E=folG RN (4.28)
j=—ce k=—oe
It should be emphasized that Eqs. (4.16) and (4.28) are merely the same equations in
different notation. Ee. (4.28) bears a strong resemblance to the standard ballooning
representation. There are however important differences which we will discuss more
fully in Section 4.5.

Eq. (4.28), when used with the periodicity relation in Eq. (4.27), is periodic
in 6 with period 27 N. By setting N = 1, this can satisfy physical periodicity
in 0, achieving the same result as the “sum over p” in the standard ballooning
representation (see Ea. (4.32)). Thus, we are able to recover physical periodicity
as does the quasiballooning approach [DimiTs, 1993]. However, one should not
necessarily use N = 1. Rather, one should use a large enough N so that the parallel

box length 229 = 27 N is at least several times the parallel correlation length, as



96 Chapter 4. Field-aligned Coordinate System

argued in the beginning of this section. This point may be confusing to those who
think that ¥ = 1 regular periodicity in 8 should always be enforced because 8 is
a physical variable. This would be true if we were simulating the full torus with
ng = 1. Indeed, Eq. (4.28) or (4.16) provides an expansion in a complete basis
set if ng = 1 and N = 1. However, we are not trying to simulate the full torus,
but a thin flux-tube whose width is only 1/ng of the full toroidal circumference
(motivated by the short wavelengths and short perpendicular correlation lengths of
the turbulence). Then Egq. (4.28) represents ng identical copies of the simulation
volume if one considers the full range of ¢, 0 — 27. The distance along the field line
in this simulation volume is parameterized by z = 6. Following the flux tube along
the field lines (at fixed a = ¢ — ¢(¢)0) from 0 = 0 to § = 27 will not lead to the
same physical location (unless g is very close to an integer) but to one of the ng — 1
identical copies of itself. Forcing periodicity at this point is undesirable (unless the
parallel correlation length is indeed significantly shorter than 27) because it is a

fiction of simulating only 1/ng of the toroidal direction with ny identical copies.

This is illustrated by Fig. 4.4, which shows a correlated volume with a parallel
correlation length 6, ~ 37, and a perpendicular correlation length equal to half the
simulation box width, a. = Aa = 7/6. If the simulation flux tube has a parallel
length of only 27, then this correlated volume would be forced to overlap with
one of the ny images of itself, causing artificial interference effects. By extending
the simulated flux tube to a length of 47, we allow the whole region to evolve

self-consistently.

Of course, at an integer ¢ flux surface, a simulation volume really does over-
lap itself within a distance § = 27 and experience these interference effects. More
generally, a correlated volume will overlap itself when 6 increases by 2o N if ¢27 N
modulo 27 is less than the perpendicular correlation length a.. This can be used
to define a maximum parallel length 6,,,, which the flux-tube can be without phys-
ically overlapping itself. 0,,,. is also the maximum correlation length a correlated
perturbation can have without “biting it’s tail” and experiencing coherent interfer-
ence effects. 0,4, is plotted vs. g(¢) in Fig. 4.5. Note that if one simulates only
1/ng of the toroidal direction, then a correlated perturbation is ng times as likely to
run into itself or one of its images. In this case we may need to extend the parallel

length of the simulated flux-tube to avoid these artificial correlations. For most
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Figure 4.4: Tllustration on a flux surface of a possible correlated volume of the
point 3 (enclosed by the solid line, with parallel correlation length 6. ~ 37), and
a minimum simulation volume enclosed by the dashed line. The diagonal lines are
parallel to the field lines (here ¢ = 2.4). In this case the simulation volume has a
toroidal width of one sixth the total toroidal circumference, i.e. ng in Eq. (4.21) is
6. If the potential is represented by Eq. (4.28) and ® is made periodic in 0, there
are six identical copies of the correlated volume centered at the points 1-6. The
correlated volume of point 5 (dotted line) partially overlaps the correlated volume
of point 3, at the point marked A. This is unphysical and can be avoided in this case
by making the system periodic over 47, —27 < 6 < 27. The minimum simulation
volume illustrated is for =27 < 0 < 27.
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of the plasma, there is no difficulty in extending the simulated flux-tube to be 2-3
times longer than 27, without having the flux-tube physically run in to itself. Even
for a simulation flux tube which spans a range of ¢ values, for example 2Aq ~ 1/2,
at worst the flux tube might overlap itself briefly near an integer or half-integer ¢
surface. As pointed out in [COWLEY el al., 1991], these low-order rational surfaces
occupy a small fraction of a minor radius of a tokamak and so it is very infrequent
that a correlated perturbation will “bite it’s tail”. Furthermore, experimental evi-
dence [ZARNSTORFF el al., 1993] on tokamaks indicates that there are no unusual

features near low-order rational surfaces (except when there are macroscopic MHD

instabilities).

a) b)
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Figure 4.5: Distance along the field line, 0,4, at which a correlated volume (with
perpendicular width 2Aa = 7 /25) overlaps itself, for varying ¢. a) For ng = 1, 0,4
is small only near low order g surfaces. b) For ny = 6, the maximum correlation
length is reduced, since the correlated volume can hit copies of itself. In this case,
if the physical correlation length is longer than ,,,., the box must be extended and
the periodicity condition relaxed.

In practice we find that the flux-tube length 27NV doesn’t need to be ex-
tremely large, and N = 2 may usually be sufficient. For the particular cases used
in Section 4.7, (Figs. 4.12 and 4.13), we find that N = 1 simulations produce a x;

which is about 30% low, while N = 2 — 4 are virtually indistinguishable. However,
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there may be other cases where an even larger N is required. In each case, one
should justify the value of N a posteriori, by verifying that the parallel correlation
functions from the simulations indeed fall off significantly in a distance 27 N, and for
by carrying out convergence studies with different values of N (just as convergence
with the size of the box in the other 2 directions should also be studied). Again,
the fundamental assumption in all of this is that it is probably sufficient (and most
efficient) to use a simulation volume which is just a few correlation lengths in all 3

directions.

4.4 Boundary Conditions for Particle Simulations

Particle simulations can also take advantage of an optimum flux-tube simulation
volume using the field-line coordinates (¢, ,z) described in Section 4.2. Field
quantities such as the electrostatic potential can be represented by the Fourier series
Ee. (4.7), with the parallel boundary conditions given by Eq. (4.22), or equivalently,
Ee. (4.27).

For the particles, we must specify the location where a particle will reenter
the box after passing through an edge of the box. The particle’s velocity should
not be changed. In the perpendicular directions 1) and «, standard periodicity
is used. In the parallel direction, z, periodicity is applied while holding ¢ and ¢
fixed (rather than holding the field-line coordinates 1) and « fixed), for the reasons
described at the beginning of Section 4.3. To quantify this, first recall the definitions
a=(—q()d, and z = 0. If a particle exits the box at the position (¢, a,z =
+7N), where a; = (1 — g(v1)7 N, then it will reenter the opposite side of the box
at (2,a2,2 = —N), where ¢y = b1, and az = (1 + q(¢;1)7N. Thus the particle

will be shifted in « by the amount
dav = g — ay = q(1)2n N modulo 2A« (4.29)

Where the modulo operation accounts for the fact that if this shift in « causes a3 to
fall outside the range of the box, —Aa < a < Aa, then the particle has fallen into
a periodic copy of the original box, and is simply shifted by a multiple of 2A« back
into the simulation domain. Expanding ¢(¢)) = go+ (¢ —%0)q’, using Eaqs.(4.21) and
(4.23), and introducing an integer K to reproduce the 2K A shift of the modulo
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function, we find that

Ja(¢) _ S Col ).
QA(I' == q()]\/ 1o + K + DW'. (‘430)

As discussed after Eq. (4.23), goNng can usually be assumed to be an integer. At
the outer edge of the box, » = g+ A, the box has twisted by .J/2 box lengths in
the a direction, and by —.J /2 box lengths at the inner edge of the box, ¢ = thg— At.
Thus .J represents the integer number of box widths in « that the box has twisted
from one end in z to the other end. This is illustrated for J = 2 in Fig. 4.6. In this
figure, go/Nng 1s assumed to be an integer for simplicity, so the center of the box is
at the same physical point at § = £7N. In general, the ends of the box will overlap
with periodic copies of the original box. (It may be easier to visualize this in a box
which spans g < ) < g + 2A, rather then being centered around t¢y. Then the
inner edge of the box at g is stationary, and the outer edge at g + 2A¢ will be
twisted by J box widths.)

¢
Oy
ey
CIY ¢
) e Aa
N
64,(‘
Yo AY Yot AY

Figure 4.6: Boundary conditions in the parallel direction. At § = 0, the simulation
box is rectangular in ( and ¢. The twisted ends of the box at # = 7N (solid) and
0 = —7 N (dashed) are shown. If a particle leaves the § = 7N end of the box at
oM it reenters the § = —7 N end of the box at ol?), given by Ea. (4.29).

To summarize, if a particle:
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leaves the box from

then it reenters at

(tho + Ath, ar, 2)
(1, +Aa, 2)
(¢, a,+7N)

(o — Ath,a, 2)
(Y, —Aa,z)
(Y,a+ da,—7N)

The equivalent particle boundary conditions can also be stated for the (z,y,2)
coordinates of Eq. (4.12). If a particle leaves the end of the box at (z1,y1,z = +7N),

it reenters at (z1,y2,2 = —7N), where

0y = Y2 — 1 = —(goNno2Ay + JAy z/ Az) modulo 2Ay, (4.31)

the analogue of Eq. (4.29). The integer J = 2aNsAxz/Ay, (where § = (ro/q)
(0q/ar)r:,.0) measures the number of twists of the box in the y direction from one

end in z to the other. Thus, if a particle:

leaves the box from

then it reenters at

(_Aia Y, Z)
(z, Ay, z)
(z,y +dy,—7N)

Of course all of the above boundary conditions are reversible, i.e., if a particle

leaves at (—Az,y, z), it will reenter at (Az,y, z), etc.

4.5 The Ballooning Transformation and its Rela-
tion to Flux Tube Simulation

The linear theory of short perpendicular wavelength instabilities in tokamaks has
been developed largely in terms of the so called “Ballooning Transformation” [CON-
NOR et al., 1979; GLASSER, 1977; LEE and VAN Dawm, 1977]. In this section we
will discuss the relationship of the “Ballooning Transformation” to our flux tube

simulation scheme. In Ballooning theory a single eigenmode is represented as:

O,(1,0,(,1) = Z 6—iwt+in(—inq(¢)(0—90+27r7))(i)n’90 (0 4 27p, ),

p=—oe

(4.32)

where 0y = 0y(¢)) and (i)n’go(ﬂ,'gb) depend on . The toroidal mode number n is
any large integer. The variation in § and @ of the exponential is large whereas
the variation of fy and ® is finite. In lowest order in an expansion in 1/ng one

obtains a differential equation in 0 for Cﬁn% (0,¢). This equation is solved with 6y
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a parameter and with the boundary conditions $ — 0 as |#| —» oo, so the sum over
p can converge. Periodicity in @ is recovered by the p summation in Ee. (4.32). A
lowest order approximation to the eigenvalue w, (g, 1) is obtained on each surface.
In higher order the eigenvalue is quantized by solving radial differential equations.
Much has been written about this higher order procedure to find the radial behavior
and we cannot do justice to the subtleties here [CONNOR el al., 1993; TAYLOR el al.,
1993]. Let us consider instead a narrow radial annulus ¢y — Ay < b < Py + A,
Let @ be periodic in ¢ over 2A¢ at constant o = ¢ — ()8 and 6; then we can
represent the radial variation of @ in a Fourier series in ¢, with nfy = Ir [Aq, i.e.
the ¢ variation of y(¢)) and (i)mgo (0,¢) are combined into a discrete series in 6.

Thus one could write for an arbitrary perturbation in this annulus:

ce lo ce o ' . o o
(I)('(/)’ 9’ C, t) — Z Z Z emg—mq(w)(9+27rp)+zlfr(w—1#0)/Awq)n’l(g + 271_[)7 t),
n=—oce |[=—{[y+1 p=—o0e
(4.33)

where we have rescaled e“’oﬂ/qlﬁwii)w = (i)n’g. The p summation makes this expres-
sion manifestly periodic in 6. Expanding ¢(1), so exp[—ing2mp+iln (¢ —ho)/A¢] =
expl—ingo2mp + 1w (I — 2pnAq) (¥ — o) /A], it is clear that in this summation we
need only take |I| < Iy = nAgq since otherwise the p and [ sums duplicate terms.
This restricts the bandwidth in ¢ of the perturbations in ballooning space, and

makes the ballooning transformation unique [HAZELTINE and NEWCOMB, 1990].

If we set ng =11in Eq. (4.28) and N =1 in Eqs. (4.22) and (4.23) we obtain
an exactly equivalent representation to Ee. (4.33). To see this we note that the j in
Fa. (4.28) and p and [ in Ea. (4.33) are related by j =1 —2ply and §j = 2[y, and we
set kK =n. Thus the —7 < § < 7 range of the (Bn,l modes with |/| < Iy correspond
to the A;; modes with |j] < §7/2 (defined only from —7 < < 7 for N = 1). The
Ajx modes with |j] > §5/2 correspond to the —7 — 27p < § < 7 — 27p range of
the ®,,; modes with p = (j —1)/8j. The boundary condition Ee. (4.22) makes this
series of A;x modes (for all j) identical to @,,; (for |/] < ly) defined on the extended

domain —oo < § < oo (when ng = N =1).

The boundary condition Ee. (4.22) simplifies the evaluation of the E x B
nonlinearities compared to the usual ballooning representation. The simple form
Fa. (4.6) is easy to evaluate using a pseudospectral method. A fully spectral

method remains in k space at all times, so the nonlinear terms become convo-
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lutions in k space and require of order 1\/21\751\72 ~ N°® operations. By using Fast
Fourier Transforms (FFTs), the pseudospectral method reduces the operations to

NN, N,(log, N, +logyN,) ~ N? resulting in a very significant savings for large N.

In the ballooning representation (i.e. using Eq. (4.33) to represent the per-

turbations) the nonlinear terms involve sums over p [FRIEMAN and CHEN, 1982]:

(VE . VA)n,l(g) — Z Z Z E—Qﬂiqo(n’p/-l-n”p”)nlnllql[Q,n_(pll _ pl’) + 96 _ 96/] X

nldnll=n I p'p!
(4.34)

[SH oY

[(T)n/’l/(ﬂ + 27{']3’) "Z_ln/y"lll(e —|— 27Tp,’) — A’inl’ll(g + 27Tp,) (?DnI/JH(H + 27('}7,,)] 5

where I" =1 —1' 4+ 2Aq(n'p' + n""p") and Oy(n,l) = In/nAq. Again |I'| < |n'|Aq and
1] < |n"|Aq, and A and ® are defined on an infinitely extended  domain, without
the boundary condition Ee. (4.22). This expression differs slightly from earlier
literature since we are using a discrete representation in ¢, and have implicitly used
the inverse ballooning transformation [HAZELTINE and NEwcOMB, 1990]. If the
mode width in 0 is less than 7, the sums over p appear to be a small effect, and
are usually neglected in nonlinear calculations using the ballooning representation.
This conclusion may be misleading. Noting that in Ea. (4.33) k, = jn/Az =
(I—2plo)m [Az and k, = —n7 /Ay = —nqo/ro, we see that in the standard ballooning
representation, only a wedge of ®,, ;s in (k,, k, ) space are evolved, —nAqg < | < nAg
(for n #0), and the rest of k space is filled by the sum over p. For small n the range
of k.’s evolved is small, so it may take many terms in the p sum to reach moderate
k.’s. The wedge of modes evolved in the ballooning representation are the open
circles in Fig. 4.7, while our approach evolves a rectangle of modes in £k, and k,,
up to kyp; = 1 and at least kyp; &= 1 (both the circles and the dots in Fig. 4.7).
This figure corresponds to the mode arrangement of the runs in Fig. 4.13, where
the shear is very weak (5 = 0.1), Az &~ L4Ay, k™p; = 1, and E*p; ~ 1.2, so
J = N. The nonlinear interaction between a mode (k;,k,) within the p = 0 wedge
and a mode outside the wedge (the square box in Fig. 4.7, for example) could be
strong, even if its linearly most unstable mode structure (of many eigenmodes in
f) is centered a long distance down the field line. For low k, and large k; one
would have to include many p’s to capture this interaction (in this case, nine). In
our nonlinear simulations, we do see modes outside the p = 0 wedge excited to

significant amplitudes.
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Figure 4.7: The wedge of k., k, modes evolved in the ballooning representation
(open circles), and the rectangle of modes evolved in our approach (circles and
dots). To recover the nonlinear interaction between the p = 0 modes and the mode
marked by the square box, nine terms in the p sum of Eq. (4.34) are needed, even
though k;p; = 0.8 for this mode.

While the usual k.’ x k,” - b nonlinearity can be efficiently evaluated pseu-
dospectrally, it is not obvious that the ballooning nonlinearity, with its sums over p,

can be. However, since our representation is equivalent to the ballooning represen-

tation (if ng = N = 1), it automatically includes the sums over p in the nonlinearity.
Thus the most efficient way to numerically evaluate the nonlinear terms using the
ballooning representation, if one were forced to, is probably to break the § domain
into segments of 27, fill a rectangle in (k,, ky) space with the sum over p, and apply
the pseudospectral method to Ea. (4.6). Our representation automatically accom-
plishes all of this. Our representation should also be more convenient for analytic

calculations, since the nonlinearity takes a simple form, and the choice of 8y’s, or

k.’s, is well defined.
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4.6 Axisymmetric Low-3 Equilibrium

We now specialize to the case of a low-3, large aspect ratio, axisymmetric torus with
circular concentric flux surfaces. In the usual r, 6, ¢, coordinates (minor radius,
poloidal angle, and toroidal angle), v = —(qr/Ry)sin 0 in Eq. (4.10), and
B = B(6, + — &), (4.35)
¢y
where B = ByRy/R, R is the distance from the axis of symmetry, and Ry is the
major radius. The ¢ defined in Eq. (4.10) is the usual toroidal angle, ¢, to lowest
order in r/Ry; we will only keep terms to lowest order in r/ Ry here. Near g, we
can expand ¢ — g = [ drByr/q >~ (r — ro)Boro/qo. Then Eaq. (4.12) becomes,
choosing oy = 0:
T'o

r=T—To, Yy =— [()9—()]
qo0

n
Il
>

(4.36)

In these variables, the parallel derivative becomes, using Ee. (4.2) with J=! ~

QORO/Bﬂa
1 0A

bA= 4.37
Tk (4.37)
and the perpendicular gradient is:
JA JA JA4
ViA=|—+50— — 4.38
(aw e 81/) o dy ¢ (4.38)

The linear w, terms, arising from E x B convection of the equilibrium, using
Ea. (4.6), are:
8140 (9@ c 0Ay 00

The nonlinear E x B terms are:

vA- © (8@8/& 8@8/1)

Ozr dy Oy Oz (4.40)

Using Ea. (4.5), with [Va|* ~ ¢3(1 + §%0%)/ri, Va - Vi ~ —Byhs, and |Vip| ~
Bo'f'()/(]gi

0*A *A %A

V2A = —(1+8%° 56 —.
dy* L+ ) +2 dxdy + Oa?

(4.41)
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Using the definition of 6y in Ea. (4.25), k, = —k,569,
ViA= —k;A[l + 8%(0 — 6,)%]. (4.42)

That this takes the usual ballooning form should come as no surprise, given the

discussion in Section 4.5. The combined VB and curvature drifts can be written:

v2 4 v? /2 drv? .
Vy = "QT:B X VH ‘|‘ mj’lzl"b X vpa (443)

where the Vp term is negligible in this low-3 equilibrium. For an axisymmetric
B, 0B/da = 0; for our low-3 equilibrium we also have dB/d¢ ~ —(qo/roRo)cos b,
OB/dz ~ (Byro/Ro)sinf, B-Va x Vz o~ —(Byqo/r2)s0, and B- Vi x Vz =~ B3/ q.
Thus using Ee. (4.4),

2 4 2 /9 9A HA
vi-VA = _% g?cosﬁ—}—@.%sinﬁ—}——xsinﬂ C o (4.44)
,2 2 )
_ i A0 50— By)sin ]

Qu Ry
for by, # 0 and v, - VA = (—ikmA/QORO)(Uﬁ +v%/2)sin @, for k, = 0. Other terms

in the equations, such as V- vg and (E) : VB) -V can also be written in the form
Fa. (4.44), as shown in Section 2.1.

4.7 Simulation Results

This coordinate system has been implemented in nonlinear toroidal gyrofluid sim-
ulations. Some simulation results are presented in this section to describe practical
computational issues and to test some the assumptions implicit in flux tube sim-
ulations. These nonlinear results will be discussed more fully in Chapter 5. This
chapter specifically focuses on testing the flux tube simulation method, so for com-
putational expediency the less accurate four moment model is used (as opposed
to six), and the electrons assumed to be adiabatic. For historical reasons, these
simulations used an older version of the four moment toroidal gyrofluid equations,

which are given in Appendix A for completeness.

There are two ways to implement the boundary condition Ea. (4.22). Because

our equations involve |k;| Landau damping terms (equivalent to a non-local integral
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operator in real space [HAMMETT and PERKINS, 1990]), it is easiest to Fourier
transform from 0 to k; to evaluate the parallel terms. However, over the 6 domain,
each mode is not periodic with itself, but with a different mode. This mode will in
turn be connected to another mode, etc. The most accurate way to implement the
boundary condition is then to line up all the 5 modes connected by the boundary
condition onto an extended 6 domain and Fourier transform in £ over this domain.
Because the computational grid is rectangular in k; and k,, the length in 6 of
this extended domain will be longer at lower k,. Then we evaluate the £k terms,
transform back to 0, and extract each 3 mode from its position on the extended 0
domain. An alternative method is to add equal length extensions in 8 to each (k;, k)
mode, as shown in Fig. 4.3, and copy the part of Aﬂ_gj,k(t‘)) within =N < 8 < 7N
onto the extension (|0] > 7N) of A;; before transforming to k. Since we have a
finite number of k,’s, not all modes will have a mode to connect to at 7 + d7. In
this case A .k 18 zeroed in the extension, preserving periodicity. We have arranged
the box so the mode amplitudes are small where this is necessary (at large k,). The
second approach (“the equal-length extension method”) is easier to implement and
to parallelize on computers, since all the FFTs in 8 have the same length. But it may
be linearly less accurate than the first method (“the multiply-connected method”)
if there are low k, modes which extend much further along the field line than even
the extension region. (This is related to the fact that the minimum non-zero |k
which can resolved for the Landau-damping operator is given by 27 /L, where Ly is
the parallel box length including the extension region.) This difference is probably
less important in nonlinear runs where the relevant parameter for determining the
parallel box length is the parallel correlation length and not a linear mode width.
In practice, we have observed no significant differences between these two methods
in the nonlinear simulations done to date. The issues of an extension region (or
the filtering described next) are ignorable for a particle or Vlasov simulation, since
they do not require evaluation of kj and can directly use the boundary conditions

in Section 4.4.

There is another implementation detail involving the parallel FFTs. Note
that the 8y = 20 N mode in Fig. 4.3 has a large amplitude at the right-hand side
of the extended domain, and is not naturally periodic with itself at the left-hand
end of the figure where it is zero. Fourier transforms assume periodicity, so there

is effectively a sharp discontinuity for this mode across the endpoints in # which



108 Chapter 4. Field-aligned Coordinate System

introduces high-k components into the solution. These high & components are
Landau-damped, but a small amount of high & oscillations can propagate from
the ends of the extended domain into the physical region —N7 < § < Nm. This
high k) noise is reduced as the extension region is made longer, but convergence
can be greatly accelerated by smoothly filtering the modes to zero near end points
of the extended box. We use a filtering window which is 1 in most of the domain,
and goes to zero smoothly near ends of the full (extended) domain as 2z?/(1 + z*),
where © = (0 — Oepna) /Owiatn 18 @ normalized distance from the end points. A filtering
width Ogiqen of 1/2 to 1/4 of the width of the extension regions appears sufficient.
Thus a typical run with a physical  domain from —27 to 27 might use a fully
extended domain of —37 < # < 37, and the filter begins to turn on within 7 /2 of
the endpoints at f.,q = +37. In practice, though the filtering is useful for reducing
the small amount of high &) errors sometimes seen linearly (particularly for low
k, modes at low shear which are extended along the field line), no statistically
significant differences have been observed in the nonlinear runs with or without this

filtering.

To test the small-scale assumption, we present two simulations, one with
perpendicular dimensions (L, = 85p;, L, = 100p;), and one with double the box size
(Ly = 170p;, L, = 200p;). That these simulations give similar results indicates that
the small flux tube may be capturing the essence of the turbulence. It is a necessary
but not sufficient test, as discussed in Section 4.8. The physical parameters are taken
from TFTR L-mode shot #41309: n, =4, L,/R=04,5=1.5,¢q=24,T, = T.,
pi = 0.14cm, L, = 103cm, and the computational box is centered at ro = H3cm.
The box sizes then correspond to ng = 10 for the small box and ng = 5 for the large
box. Both simulations use 64 grid points along the field line coordinate . Using
128 grid points along 6 gives essentially the same results. For these runs, N = 2,
so the physical § domain extends from —27 to 27. The equal length (7) extension
method (for a total extended 6 domain from —37 to 37) was used to implement the

parallel boundary condition.

We use a spectral representation in « and y, with + 42 k. modes and £
15 k, modes for the small simulation and + 63 k, modes and £ 21 k, modes for
the large simulation, not counting additional modes added at high & for dealiasing.

The modes are evenly spaced such that k7*p; ~ 1 and Emin k,‘;‘i", making the
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Figure 4.8: Distribution of fy’s for the small run. The solid lines denote the ends
of the computational domain in 6.

computational domain roughly sequare in z and y. For N > 1, it is necessary to
include more k;’s to include unstable modes localized near § = +27, +4r, etc., in
the bad curvature regions (i.e. modes with 0y’s near +27, +47, etc.). The modes
tend to be localized along the field line near 6, so ideally one would like to include
enough k;’s to cover the range —mN < 0y < « N for all k,’s. This is very expensive
at high k,, where the spacing in 6y gets small, since 6y = —k,/5k,. We arrange
our modes in k space so that the 6y’s cover the 6 domain for low £,’s, but not high
ky’s, as shown in Fig. 4.8 for the smaller simulation. This implies &' > k** for
N > 1 and § & 1. Since most of the energy is at kyp; < 1/2, the missing 6y’s at
high k, have very little effect.

Fig. 4.9 shows contours of electrostatic potential in the (z,y) plane at § =0
(the outer midplane of the torus), for both runs at saturation. It is apparent that
although the box was doubled, the dominant scale didn’t change. This is also evi-
dent from the spectra in Fig. 4.10, also at 6 = 0, where [®*(k;) = ), T
|D|2(ky) = Sk, P, e, P, 5, and the low resolution spectra are reduced by a factor of
two to account for mode density. Although the resolution has increased, the shape
and the location of the peak in the spectrum is roughly the same. These spectra

are similar to BES measurements on TFTR [FONCK el al., 1993]. The large k, = 0
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Figure 4.9: Contours of potential on the outer midplane for a) small run, and
b) large run. Doubling the perpendicular simulation domain did not change the
dominant scale of the fluctuations.

component is evidence of perpendicular E x B rotation, as discussed in [HAMMETT
et al., 1993]. Though there are some small differences in the spectra, the two runs
agree within statistical fluctuations on global quantities such as the volume aver-
aged RMS fluctuation levels and transport levels: e®/T; = 15p;/L, ~ 0.020 and
Xi = 7.4p?vy; /Ly, averaged from lvy /L, = 150 — 300. In these simulations, the
electron density fluctuations on the outer midplane of the tokamak are roughly two
times larger than those on the inner midplane. The evolution of x; for the two runs
is shown in Fig. 4.11, where the statistical fluctuations are approximately 10%. This
level of ion heat transport is near the experimentally measured y; = 8.8p%vy;/L,,
but these simulations ignore impurities and beams (usually a stabilizing effect),
trapped electrons (destabilizing), and use our old four moment model (Appendix
A) which gives lower transport than our more accurate six moment model. Nev-
ertheless, this level of agreement is encouraging, and suggests that toroidal ITG

turbulence is responsible for anomalous 1on heat transport in tokamaks. More com-
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Figure 4.10: Time averaged potential spectra for both runs. a) Radial spectrum,

|®(k2)]>. b) Poloidal spectrum, |®(k, ).

plete simulations are compared with experiment in Chapter 6. The transport from
these toroidal simulations is about a factor of 25 larger than sheared slab simula-
tions for the same parameters, demonstrating the importance of toroidicity. Our
toroidal simulations can be run in the sheared slab limit by taking L,/R — 0 and
q/$ = 0 so that L,/Ls; = L,3/qR remains finite. We should point out that our
preliminary results, Fig. 4.4a of [HAMMETT el al., 1993], were high by a factor of
16/3 due to a numerical error in calculating yx;. The remaining change is due to

increased resolution.

We have also performed tests varying the box length in the parallel direction.
For these tests we have used the fully connected method to implement the paral-
lel boundary conditions, for greatest accuracy, as described earlier in this section.
Fig. 4.12a shows the time evolution of the volume averaged y; for two runs with
box length N =1 and 2, i.e. A = 27 and 47, with ng = 10, and other parameters
as above. Fig. 4.12b shows the correlation function along the field line,
(®(z,y,0)®(x,y,0 =0))

(D(z,y,0 =10)%)

C(6,0) = : (4.45)

for the two runs. The averaging ( ) is over z, y, and time once the simulation has

reached a quasi-steady state. If this correlation function were not averaged in x and
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Figure 4.11: Evolution of x; for the large and small runs.

y (only taken along the field line passing through = = y = 0), it would return to
one at § = £27 for the N = 1 run, because of periodicity. The Fourier transform
of C'(6,0) is the &y spectrum. As discussed in Section 4.3, since ng > 1, using a box
with —7 < 0 < 7, (N = 1), can artificially constrain the parallel correlation length.
There are significant correlations at 6 £ 7 for these parameters, indicating that this
is the case, and that the box should be extended. These additional correlations in
the 27 box are in some way constraining the nonlinear dynamics and reducing the

flux.

It is easier to test the scaling with box length at low shear, since the tur-
bulence at +27, +4m, etc., is not at such high k., since k, = —k,50,. This allows
us to increase the box length and resolve the turbulence all along the box with
fewer k, modes than at high shear. Also, at low shear the linear mode structure is
broader in 6, leading to slightly broader parallel correlation functions. Fig. 4.13a
shows the time evolution of yx; in four runs with box lengths N = 1,2,3,4 or
Af = 27 47,67, 87. The physical parameters are the same as above, except § = 0.1
and ¢ = 1.2, and the perpendicular box size is L, = 160p;, L, = 100p;. Again, the
Al = 27 box gives slightly lower flux, while the larger boxes all give the same flux,
so the minimum box length is Af = 47, The correlation functions of electron den-

sity for these runs are shown in Fig. 4.13b, and are noticeably broader than in the
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Figure 4.12: a) Evolution of y; for two runs with varying box length and § = 1.5,
g = 2.4 b) Correlation functions along the field line for the same two runs.

higher shear cases. Using n. in the correlation functions removes the k; = 0 compo-
nent present in the ® correlation functions in Fig. 4.12b, since n, = 7(® — (D)) (see
Section 5.3). For these low shear runs, the poloidal spectrum peaks at k,p; = 0.35,
so the perpendicular correlation length is smaller than in the high shear cases. This
may contribute to the slightly smaller change in flux in going from Af = 27 to
Al = 47, even though the parallel correlation functions are broader. The low shear
runs in Fig. 4.13 are better resolved and are easier to run longer than the high
shear runs, so we expect that a 30% change in flux is typical for ITG turbulence,
where 0. ~ 27, when the artificial correlations are removed by using a longer box.
We have also run with § = 0.1 and g = 2.4, where y; = 7.5p%vy;/ L, for A8 = 47
and y; = 6.5p%vy /L, for A = 27, For § = 0.25 and g = 1.2, both Af = 27 and

A = 4r give x; = bp?vy/ Ly, any change is within the statistical fluctuations.

4.8 Discussion

To summarize, we are simulating a rectangular domain in (z, y, z), and using the
transformation Eq. (4.12), this domain becomes a long, thin, twisting flux tube

in a torus. The differential operators take the particularly useful forms Eq. (4.37-
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Figure 4.13: a) Evolution of yx; for four runs with varying box length and § = 0.1,
g = 1.2. b) Correlation functions along the field line for A = 27 and 4.

4.44) in the traditional tokamak model of concentric circular flux surfaces. Our flux
tube approach is also applicable to general magnetic geometry, using Faqs. (4.2,4.5-
4.6) for the differential operators. (In this case the metric coefficients Va, Vi,
and Vz need to be specified.) The boundary condition Ee. (4.22) can make the
perturbations periodic in 0, if N = 1, which makes this representation equivalent
to the ballooning representation for a coarse grid in n, with spacing ng. However,
when ng > 1, the box must be extended in 6 to avoid non-physical correlations if
the parallel correlation length is longer than 27gR, 1.e. 6. > 27. The fundamental
assumptions are that the correlation lengths (both parallel and perpendicular) are
smaller than the box size, that the equilibrium gradients vary slowly across the
small perpendicular extent of the box, and that the turbulence is local, i.e. driven

only by the equilibrium gradients within the box.

The assumptions implicit in simulating a thin flux-tube subdomain should
always be checked a posteriori by verifying that the simulation box is indeed at least
a few correlation lengths long in each direction, so that the box is large enough for
the type of turbulence under consideration. One should also verify that the results
are independent of the size of the simulated flux tube (and independent of the

particular choice of boundary conditions), as the flux tube is made larger than
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the correlation lengths. This chapter has demonstrated that both conditions are
met, at least for the particular cases considered in Section 4.7. Thus our results
show the existence of a gyro-Bohm scaling regime, at least for sufficiently small p. =
pi/ Ln. (Our gyrofluid equations have been scaled to the gyroradius p;, and the limit

pi/ L, — 0 taken, using the usual small-scale turbulence ordering assumptions.)

While the turbulent heat conduction from our simulations is of the right
order-of-magnitude to explain experimental results from the main core region of
many tokamak experiments, they have a gyro-Bohm scaling while the actual ex-
periments have a Bohm scaling [SCOTT el al., 1993; PERKINS el al., 1993]. (The
experiments have a Bohm-like scaling with magnetic field, though the magnitude of
the experimental x; is about two orders of magnitude smaller than Bohm’s original
formula D = (1/16)cT/eB.) Several possibilities for this discrepancy exist. One is
that the experimental p., while small (~ 107® — 1072), may be large enough that
the radial variation of equilibrium gradients, i.e. wi(v), ni(v), etc., or equilibrium
flows, may be affecting the turbulence. For very small p, there is a scale separation
between the turbulence, with scales of order p;, and the equilibrium, with scale
L,, but if p. is not small enough, the turbulence may begin to feel radial varia-
tions in the equilibrium. It is interesting to note that the BES measured [FONCK
et al., 1993] correlation length A. ~ 2 cm is of order the geometric mean between
pi ~ 0.15 cm and the minor radius ¢ ~ 90 cm. Another possible explanation is that
the instabilities driving the turbulence may be near marginal stability, which can
mask gyro-Bohm scaling trends and, in some limits, tie the core transport scaling
to edge parameters [TERRY et al., 1988; BIGLARI et al., 1989; KOTSCHENREUTHER
et al., 1993]. The experiments have gone to great pains to keep other parameters
and profiles as fixed as possible while studying the p. scaling, but a very sensitive
dependence on some parameters (some of which are hard to measure) could also
mask, at least partially, a gyro-Bohm scaling. Another possible explanation might
involve non-local turbulence, where fluctuations radially propagate a significant dis-
tance from where they were generated by an instability, an effect which is currently

under debate [GARBET et al., 1993; MATTOR and DIAMOND, 1994].

Numerical studies of some of these effects do not necessarily require simulat-
ing the whole tokamak. Rather, one could consider a somewhat thicker flux-tube

than usual, and include the radial variations of wy(v), 5;(¢), and other plasma
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parameters over the simulated region in the governing gyrofluid (or gyrokinetic)
equations. Even if simulating the full torus radially, field-line coordinates are useful
to allow a coarser grid in the parallel direction, and a coarser grid in the toroidal
mode number n. When the equilibrium profiles are assumed to be constant, so L,,
Ly, etc. do not vary radially (as assumed in our simulations), the linear eigenmodes
are unbounded radially. In ballooning terminology, the solutions of the zeroth order
eigenmode equation in 1/nq are independent of ¢. In a real tokamak, however, the
radial profile variation determines the radial extent of the linear modes, and this
radial structure is determined from a higher order equation in 1/nq. Recently, there
has been renewed interest in the solution for this radial envelope, and the modifi-
cations to the zeroth order eigenfrequencies [CONNOR el al., 1993; TAYLOR el al.,
1993]. For longer wavelength global modes, the linear radial mode structure is also
determined by the radial variation of equilibrium gradients [TANG and REWOLDT,
1993]. An alternative way to include these effects is to still use Ea. (4.7) to represent
the perturbations, but to include the radial variation of equilibrium profiles. This ¢
dependence will linearly couple different j modes in Eq. (4.7), which are uncoupled
when the profiles have constant gradients. Then the superposition of different j
(i.e. k;) modes will determine the radial envelope of the true linear mode. How-
ever, since the nonlinear E x B coupling of the various ,LAlj’k modes is usually much
stronger than this linear coupling, it is likely that the precise radial linear mode
shape is subdominant, and that the radial scale length of the turbulence is set by
nonlinear processes, as suggested by [COWLEY el al., 1991] and [MATTOR, 1991].
Comparing the order of magnitude of these effects in, for example, the density

equation, we have:

1 ed ny

T VE -V ~ 1112

novh vnl Pitnk T, 71()
1 Uik, e®
—VE - Vno(:c) p vf e [1 ( )] )
N n

Where L, is the scale length for the radial va,rwlzon in L,, and is typically of order
L,. The nonlinear term is of the same order as the z independent linear term
(i.e. the wy(thy) term) in the standard gyrokinetic ordering, where ny/ng ~ p;/L,
and k,p; ~ 1. As the linear mode widths get broader radially (in z), the z/L.
terms become more important. While the linear modes are broad, the typical
turbulent eddy size is not much larger than Az ~ 10p;, so it would seem that

the z-dependent term (ox Ow,/0v ) can safely be ignored, as long as Az < L.
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The effects of radial variations in the equilibrium may start becoming important if
p« = pi/ L« is large enough, and could lead to a transition from gryo-Bohm to Bohm
behavior [HAMMETT el al., 1994]. From the above arguments, it would seem that
experiments should have small enough p. to be in the gyro-Bohm regime, though
TFTR seems to be in the Bohm regime [SCOTT el al., 1993; PERKINS el al., 1993].

Equilibrium sheared zonal flows (k, = 0,k, = 0,k, # 0 flows which cause
flux surfaces to rotate) can be included in our representation in several ways (one of
which is presented in [WALTZ el al., 1994a]), though we have not yet implemented
them in our simulations. Such sheared flows can be important, particularly near
the plasma edge where they appear to be responsible for the H-mode transition
[BIGLARI el al., 1990]. Though we are presently neglecting equilibrium-scale zonal
flows, we do include the higher k, components of the zonal flows which are generated

by the turbulence itself.

For typical tokamak parameters, our reduced simulation volume can rep-
resent large computational savings. We compare rough scalings with some other
methods; the results are only order of magnitude estimates. Perhaps the most

straightforward way to simulate a tokamak is with the “m, n, r” representation:

G, 0,() = Z emg_mg(i)m,n(’1/5). (4.46)

mon
Since we are interested in simulating fine-scale turbulence, we need to resolve per-
pendicular scales of order p;. If we are simulating a full torus, the range of m’s
must be m € (0,£1,...,+a/p;). To resolve the long parallel structure, the range
of n’s must be n € (0,+1,...,4+a/qp;), where q is a representative value, around 2.
The radial grid for (i)m’n('g/)) must resolve p; and span the minor radius, so r = [A,,

where A, ~ p; and [ € (0,1,...,a/p;). This gives the total number of grid points,

1/ « 3
Ny ~ —(—) ~ 10°.
q \pi

This is the same as expected from a computational grid in the physical r, 8, ( space,

for a ~ 10%p;,

where the ¢ grid can be 1/ coarser than the r or § directions.

By simulating a thin toroidal annulus in r, but still going all the way around
in 0 and ¢, the number of radial grid points is reduced by Ar/a, which for our

simulations is typically 1/10. Further, aligning the grid points with the field lines (or
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nearly aligning with the field, as proposed by [DIMITS, 1993]) reduces the necessary
resolution in this direction. We have found that 64 grid points along the field line
is adequate, so the number of grid points for a thin annulus with a field-aligned

coordinate is: 5
A
Nopnr ™ 64<3> =10
pi) a

The next level of reduction is to also exploit the small perpendicular corre-

lation length in the poloidal direction, which brings us to our twisting flux tube:

a>2ArA_y

pi) a a

MNux tube ~ 64( 106,

so for the simulation in Fig. 4.9a, counting modes included for dealiasing, we used:

N ~ 64 x 128 x 48 ~ 4 x 10°.

[KOTSCHENREUTHER and WONG, 1991] have proposed using the represen-

tation:

O(r, 0, () = Z e”(m"g_n"g)em&)]—’l(r —Tg), (4.47)

4l

which has many similarities to our representation. It is periodic in ¢ with period
27 /ng and in 0 over 27, and is therefore simulating a wedge of a toroidal annulus
when the r domain is small. Thus Ee. (4.47) is numerically as efficient as the one
described in this chapter, however, if 8. > 27 false correlations along the parallel
direction will be introduced, as discussed in Section 4.3. It is not obvious how to
remedy this problem with Ee. (4.47), but with our approach one simply uses a

longer box, i.e. N > 1.

The “quasiballooning” approach of [DimITs, 1993] shares similar compu-
tational advantages to our method. Indeed, the quasiballooning (almost-field-line
coordinates) method has many similarities to the field-line coordinates approach of
[ROBERTS and TAYLOR, 1965], and [COWLEY el al., 1991], upon which our repre-
sentation is based, though the quasiballooning method emphasizes the perspective
of a real-space radial grid while we use discrete Fourier transforms for the radial
direction which illustrate its relation to the usual ballooning transformation. We
have shown that physical periodicity in  can be also be implemented with our

approach, but that there are cases where one should forgo physical periodicity in
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favor of a longer box (i.e., N > 1) to avoid false parallel correlations. As described
in Section 4.3, simulating only 1/ng of the toroidal direction is often justified by the
short perpendicular correlation lengths of the turbulence, but that makes a pertur-
bation extended along a field-line ng times as likely to “bite it’s tail”, which should
be compensated for by making the box longer than a parallel correlation length. In
principle, N = 1 simulations should eventually converge as the box is made large
enough in the perpendicular directions (so that ng — 1), but from the runs we have
done it appears that faster convergence is obtained by allowing the box to be longer
than a parallel correlation length as well, thus consistently following the principle
that the simulation domain should be longer than the correlation lengths in all three

directions.
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Chapter 5

Nonlinear Results

HE EQUATIONS DEVELOPED in Chapters 2 and 3 provide a relatively

simple yet accurate model of the dynamics underlying electrostatic toka-

mak turbulence. Using the flux-tube simulation geometry discussed in
Chapter 4, we have developed high resolution nonlinear 3D toroidal simulations to
investigate the nonlinear dynamics of tokamak turbulence via direct numerical sim-
ulations. Having demonstrated the efficacy of this flux-tube simulation geometry in
Section 4.7, this Chapter investigates the nonlinear dynamics in more detail. These
simulations have revealed several interesting features of toroidal microinstability
driven turbulence, including the importance of nonlinear generation and damping
of sheared E x B flows, a nonlinear peak in the fluctuation spectrum at much longer
wavelengths than the fastest growing linear modes, similar to experimental measure-
ments on TFTR [FONCK et al., 1993] (also seen in full torus gyrokinetic particle
simulations [PARKER et al., 1993]), and much larger heat fluxes and fluctuation
levels than those observed in sheared slab simulations. Finally, using the bounce
averaged trapped electron fluid equations, toroidal simulation results are presented
which simultaneously retain the toroidal ITG drive and the TEM drive, allowing

calculation of both ion and electron heat transport and particle transport.

5.1 Fluctuation Spectra

One of the most interesting features of these toroidal simulations is the long wave-

length peak in the fluctuation spectra, consistent with BES measurements on TFTR

121
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[FONCK el al., 1993]. A contour plot of the linear growth rates vs. k, and k, is
shown in Fig. 5.1 for the parameters: § =1.5,¢=2,n,=4, ¢, =04 and T; = T,,
using the four moment toroidal gyrofluid equations with adiabatic electrons. These
parameters are from TFTR L-mode shot #41309 at ro = 53cm, and are the same
parameters used in the runs in Section 4.7. As described in Section 4.6, k, corre-
sponds to kg and k, corresponds to 6y in the ballooning representation. There may
be several eigenmodes for a given £, and k, corresponding to different mode struc-
tures along the field line. With the initial value toroidal gyrofluid code, the fastest
growing of these eigenmodes eventually dominates, and it is this largest growth rate
which is plotted in Fig. 5.1, in normalized units, yL, /vs;. As discussed in Chapter
4, k; corresponds to the radial wavevector (k) and k, corresponds to the poloidal
wavevector (kg). The anisotropy of the linear growth rate spectrum in k, and k,
arises from “good” and “bad” curvature effects, as discussed in Section 1.3. At
poloidal angle 6§ = 6y = —k, /k,3, k, is minimized, and FLR stabilization tends to
localize the mode near this poloidal angle through magnetic shear. If cos(y) > 0,
the modes are localized in the bad curvature region and are unstable, and modes
with cos(fy) < 0 are localized in the good curvature region and are stable. The
lines k, = +k,87/2, k, = +k,537/2, etc., determine the boundary between modes
localized in the good and bad curvature regions. The wedge of unstable modes with
—kysm )2 < ky < ky87 /2 are localized in the bad curvature region —7 /2 < 0 < 7/2.
There are also unstable wedges of modes with —k,$67/2 < k, < —Fk,837/2 and
k,83m[2 < k; < k,857 /2 localized in the bad curvature regions farther along the
field line, at =57 /2 < 0 < —37 /2 and 37/2 < § < 57 /2. The linear growth rate

spectrum peaks near k,p; = 0.35.

In the nonlinear simulations, these modes grow linearly until the E x B non-
linearities are no longer negligible compared to the linear terms. At the beginning of
the nonlinear stage, the spectrum is dominated by the fastest growing modes. The
E x B nonlinearities transfer energy between different k;, modes until a statistically
steady but turbulent steady state is reached. The nonlinear fluctuation spectrum
is obtained by averaging in time over this saturated steady state. Averaging over
several different realizations (runs with different initial conditions) is theoretically
more sound, but should be equivalent if the turbulence is stationary and the time
averaging is over many correlation times (by the ergodic theorem). Fig. 5.2 shows
contours of the energy spectrum in k, space, F(k;, k,) = <n2 + uﬁ + T"2/2 + Tf> /2
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Figure 5.1: Linear growth rate spectrum for TFTR L-mode #41309 at ro = 53cm.
The contours are at v = +0, 0.05, 0.1, 0.15, 0.2v4/L,,, with solid lines for v > 0
and dashed for v < 0. The peak growth rate is v &~ 0.2v4;/ Ly, at kgp; = 0.35.

(defined by Eq. (5.14) in the next section) averaged over the saturated state from
Lt =175 —170 L, /v, for a run using the #41309 parameters above, using the four
moment gyrofluid model and adiabatic electrons. The ®*(k,, k,) spectrum is very
similar, as shown in Section 4.7. The nonlinear energy spectrum is concentrated at
kgp; = 0.15. By comparison with Fig. 5.1, this is at significantly longer wavelength
than the fastest growing linear modes. The nonlinear spectrum remains anisotropic

in (k;, k), but there is a tendency towards isotropy at high k,, compared to Fig. 5.1.

5.2 Nonlinear Energy Balance

To investigate the nonlinear dynamics, it is useful to construct a quadratic energy-

like quantity for the fluctuations:

Uy V
=g (n' tuj+ 102+ 7). (5.1)
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E(k,.k,)

Figure 5.2: Time averaged nonlinear energy spectrum for #41309 parameters. Con-
tours are at 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 2.5, 3, and the £ =1 contour is bold

for reference.

where () is an average over the simulation volume:

(AB) = —

/ dzdyd=AB.

z

for any fluctuating quantities A and B. For simplicity, we will use the 34+1 model
in Section 2.7 to find the evolution of this energy, neglecting collisions and the

mirroring terms (¢ = 0). Some terms in Eqs. (2.102-2.105) vanish upon volume

~2
averaging due to the periodicity of the simulation domain: (Avy - VA) = (AV vy -
VA) =0, leaving:

<n%> = — <n[%Vdi,] : VTL> — (nV ) + <n (1 - %\L/i) iw*\ll> (5.2)
- <n (2 + %ﬁi) z:w,l\lf> — i (nwa(py + pu))

<“|| 8u,,> = — (V) — (V) V) — (udiwguy) — () 2|wy

sy} (5.3)

<T||ﬂ> = —(T2Vyug) — (T 2xylk|Ty) + (Tymyion W) — (Ty2iw®)  (54)
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— (Tyiwu(6py — 4n)) — (T)2]wa| (1 Ty + 12 T1))

<71 > <rl 252 vy] vn> <7;V§XJk“(7;4-%¢iw>> (5.5)

22 A 422
—|—< [ Vz —n.(1 —I—VJ_)] éw*ql> — <Tl <1 —{—Vi —I—VJ_) io.)d\ll>

—(Triwe(dp, — 3n)) — (T 2|wa| (5T + v4TL)) .

Adding these together as in Eq. (5.1), some more terms cancel from periodic-
ity: (AVB) = —(BV)A), (AwgB) = —(BwsA), (Aw.B) = —(Bw.A), and
<n[%Vdif] -VTJ_> = —<TJ_[%@iV\p] . Vn>. For this definition of the fluctua-
tion energy, Eq. (5.1), all the nonlinear FLR terms (cubic in perturbed quantities)

cancel, so the final energy evolution contains only quadratic quantities and is given
by:
oK
ot

The terms that affect the total energy evolution can be grouped into five classes:

=Di+ Dy + Dy + Dy + Wy =T (5.6)

drive from the equilibrium gradients, D, reactive contributions from the real parts
of the toroidal terms, Dy,, parallel Landau damping, D, damping from toroidal
phase mixing (from the imaginary parts of the toroidal terms), Dy;, and parallel

electric field work, W, y:

D*:@m+%ﬁwmm+%mww> (5.7)
1. A2
HILGVI 40 (14 V)i ),
Ty . . .
Dy = —(n(2+ EVi)zwd\]}) e (Tyiwg Uy = vy (Tyiwy T ) (5.8)
A 22
—v3 (TriwdTy) — (T (1 + Vi +V )iwgV),
\/§ ) y = 2 x
Dy = x (hilk|Ty) + Vax (Tl (To + FViv)), (5.9)
Dii = —2us (wylwaluy) — vip (Tywa| Ty) — var (Tylwa| Ty ) (5.10)
—2vs, (T |wa| Ty) — 2va (Tilwil Ti)
W = —(uV,¥). (5.11)

As a test of the numerical accuracy of the nonlinear simulations, we evaluate
these driving and damping terms and compare them to the actual time evolution

of the energy. The degree to which the simulations reproduce these conservation



126 Chapter 5. Nonlinear Results

0.0001||“||‘|||y|\\ 1OO|||||||||||||||7
: : //\\// v \f);\\/‘”/h \\~\ l\\;J/ hd :
5x10- - S ]
1w
: i
3 0 I3
() - ()
o 1z
—
i o
_6><10—5 | _
I - 50 R I PN
_O‘OOO]_’»Ilw\lll\llll\ll\\_ ’—lllllllll|lllllll_
0 50 100 150 0 50 100 150
time (L /v,) time (L /v,)

Figure 5.3: Energy conservation and time evolution of the various drive terms for
a nonlinear run at the #41309 parameters.

properties of the equations is shown in Fig. 5.3 by plotting:

OE/oL—T
—=—

% eITor —

(5.12)

The energy balance Eq. (5.6) is preserved quite well.

At saturation, where F & constant, it is interesting to look at the relative
nonlinear magnitudes of the five driving and damping terms m Eaq. (5.6). The
time evolution of these terms for the #41309 run is shown in Fig. 5.3. For these
parameters, the dominant drive is from equilibrium gradients, not from toroidal
terms. This is to be expected because wy 1s not by itself a free energy source for

instabilities. The local dispersion relation involves (see Eq. (2.56)):

w—w! ed

9= 1[0 (5.13)

w — ]C”U" — Wy OTO’
where w! drives instabilities, but wy only appears in the resonant denominator. The
dominant damping in the nonlinear simulations is from parallel Landau damping,
not from toroidal phase mixing, although the amount by which parallel damping

dominates can depend on the physical parameters of the run.
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Because the toroidal gyrofluid equations constitute a multiple field system
with many nonlinearities, constructing a simple nonlinear transfer function is more
difficult than, for example, in the Hasegawa-Mima equation [HASEGAWA and MIMA,
1977]. Nevertheless, we can begin to investigate the nonlinear dynamics by looking
at the energy spectrum in k, and k,, obtained by averaging only over the parallel

direction:

1 1 1 ,
Eky, ky) = L_z./dZ§ <n2 + uﬁ + ET”Q + Tf) : (5.14)
Similarly, k, dependent drive terms can be defined by integrating only over z:
T(ky ky) = Dilks, k) + Dy (kpoby) + - -+, (5.15)

where D., D,,, etc., are as given in Eaqs. (5.7-5.11), but with () now representing
only integration over z, with a few additional terms which are not cancelled by
integration over y. The evolution of the k, dependent energy is now given by:
J . . .

gﬁ(k:x,ky) =T(ky, ky) + N(ks, ky), (5.16)
where N(k;, k,) represents energy transfer from the nonlinear terms (triple correla-
tion terms in the £(k,) energy balance). Note that at saturation, [dxdy T(z,y)
Dby T(kayky) = 0 and 32, o N(kz,ky) = 0. The total drive, T(k;,k,) shows
where the energy is coming in linearly in k, space. The nonlinear terms convect
energy around in k, space to provide the balance dF(k;, k,)/0t = 0 for each k,
at saturation. The total drive is plotted in Fig. 5.4 for the #41309 run. The most
interesting feature of this plot is that the linear drive is coming in where the spec-
trum peaks, at long wavelengths, and not at the shorter wavelengths where the
linear growth rate is larger. This implies that at saturation, there is not a strong
nonlinear transfer of energy from modes with the largest linear growth rates to the
energy containing modes. Most of the nonlinear energy transfer in k -space is from
the energy containing range to longer wavelengths which are damped. However,
since T'(ky, ky) is averaged in z, it only diagnoses the energy transfer in k,-space.
The dominant energy transfer could very well be from low k; to high ky, since paral-
lel Landau damping is dominant. More detailed diagnostics are required to isolate
and identify these various possible cascade mechanisms. We can also construct a

nonlinear growth rate, T'(k;, k,)/F(k;, k,) which is also plotted in Fig. 5.4.
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Figure 5.4: Time averaged total linear drive spectrum T'(k,, k), and T/E(k;, k,)
spectrum, for the #41309 run. Contours for T are at —0.1, —0.05, 0, 0.25, 0.5, 0.75,
1, and contours for T/FE are at —0.2, —0.1, 0, 0.1, 0.2.

Clearly, much more work is need to understand the nonlinear dynamics in
more detail, beyond these cursory investigations. It is of great interest to understand

the processes which set the dominant nonlinear scale.

5.3 Nonlinear Generation and Damping of
Sheared E x B Flows

Both slab [DORLAND el al., 1992; DORLAND, 1993] and toroidal [BEER el al.,
1992; HAMMETT el al., 1993] simulations have revealed that an important nonlinear
saturation process for core tokamak turbulence is the nonlinear generation and
damping of sheared E x B flows. The amplitude of these flows is determined by
the balance between the nonlinear generation and linear damping of the poloidal
component of these flows. The amplitude of these flows is a sensitive control of
the turbulence levels and transport. In this section the effects of these flows are
discussed, and the gyrofluid models of the linear damping processes are carefully

imvestigated.
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It should be emphasized that in these simulations, the sheared E x B flows
are small-scale flows generated by the turbulence, with k.p; ~ 0.1, and evolve on
the turbulent time scales. This is in contrast to most theoretical and experimental
studies of the shear flow stabilization, where the effects of large scale E x B flows are
considered, with k. L, ~ O(1). The large scale flows evolve on the slower transport
time scale, except right at the L-H transition, and are equilibrium flows within
the gyrokinetic ordering. We have not considered the effects of equilibrium sheared
E x B flows or sheared parallel flows on our simulations, although these effects can

be incorporated.

5.3.1 Proper Treatment of Adiabatic Electron Response

When the electrons are assumed to be adiabatic (or are nearly adiabatic) it is impor-
tant to use an expression for the perturbed electron density that allows consistent
evolution of sheared E x B flows. A historical review of various assumptions about
the adiabatic electron response is given in [DORLAND, 1993]. Adiabatic electrons
experience no net radial transport since the E x B convection of the perturbed elec-
tron density is zero (E x B- Vi, x VO x B-V® = 0). If the electrons are allowed
to respond to a potential perturbation which is constant on a flux surface, this
implies net radial transport of electrons, which is unphysical unless the magnetic
field is stochastic. Thus for adiabatic electrons, it is essential to use [DORLAND and
HamMmETT, 1993]:

ne =1 (O —(P)), (5.17)

where 7 = T;0/T.o, ® has been normalized to e/ Tjg, and (®) is a flux surface average.

The effect of this proper adiabatic response on our toroidal nonlinear simula-
tions is shown in Fig. 5.5. These simulations used the six moment toroidal gyrofluid
equations and assumed adiabatic electrons. The parameters correspond to TFTR
L-mode shot #65018 at r/a = 0.78: ¢ = 0.25, ¢, = 0.26, 5; = 2.31, 5 = 1.7,
g = 3.42, and T;/T. = 1.19. Because this is near the edge, § is relatively large.
When n, = e®/T, is used, radially elongated structures form and grow, showing
no signs of saturating throughout the length of this run. When the kg =0, £, =0
components of @ are artificially suppressed, so (®) = 0, there is no E x B rotation.
It is curious that the simulations with n. = 7® behave so differently from the those

with (&) = 0. Using n. = 7(®—(®)) allows nonlinear generation of radially sheared
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Figure 5.5: Effect of the proper adiabatic response in nonlinear simulations. When
n. = e®/T. is used (dashed line), radially elongated structures form and grow
throughout the run. Using n. = e(® — (®))/T. allows nonlinear generation of
radially sheared E x B flows, which rip apart these radially elongated structures
(solid line). A saturated state is reached where the turbulence generated sheared
E x B flows in turn regulate the turbulence. Also shown (dotted line) is a run
forcing the flux surface averaged ® to zero, disallowing sheared flows.

E x B flows, which rip apart these radially elongated structures. A saturated state
is reached where the turbulence generated sheared E x B flows in turn regulate the
turbulence. This interplay leads to lower fluctuation and turbulence levels than the

case with no sheared E x B flows.

It is interesting to investigate why the adiabatic response n, = 7 (® — (®)),
as opposed to n. = 7®, has such a dramatic effect on the nonlinear evolution.
Consider a potential perturbation as shown in Fig. 5.6, which is constant on a flux
surface, 1.e. kg = k; = 0, but is radially varying. In this figure, r is a small fraction of
the minor radius of the tokamak. Since this perturbation has ky = 0, if n. = 7® were
used for the adiabatic electron response, the flux surface averaged perturbed electron
density, n.(r), would have radial variation, as shown below ®(r). The perturbation

on the left of Fig. 5.6 could evolve into the perturbation on the right, and this would
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Figure 5.6: A possible evolution of the electrostatic potential, showing the necessity
of the form Eq. (5.17) for the adiabatic response. The potential perturbation on the
left could evolve into the perturbation on the right, implying nonphysical net radial
transport of adiabatic electrons if n./n.o = e®/T.. If n./n. = e(® — (9))/T., the
electrons do not respond to the flux surface averaged component.

imply a net radial transport of electrons, which is unphysical if the electrons are
adiabatic. Thus, the electrons should not respond to the kg = k; = 0 component
of the potential, leading to Ea. (5.17). The electrons can respond to potential
perturbations with k& # 0, since in this case the flux surface averaged perturbed
electron density is zero and there is no net radial electron transport. The form
Fa. (5.17) is essential to properly describe the evolution of radially varying potential
perturbations, which gives rise to sheared perpendicular E x B flow. Assuming
n. = 7® essentially allows the electrons to move radially, so they effectively short
out these components of the potential. Using Ea. (5.17) prohibits radial motion
of adiabatic electrons, and allows the self-consistent generation of sheared E x B

flows.

The turbulence level is very sensitive to the damping of these flux surface
averaged E x B flows, as shown in Fig. 5.7 The damping of the ks = 0 modes is
dominantly due to the toroidal effects associated with magnetic pumping which
damp the (large) poloidal component of this flow. These effects are independent of
k. for small k,p;, and dominate over viscous effects which are proportional to v;; V2.

The poloidal damping can be turned off in the simulations by artificially setting
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Figure 5.7: Effect of poloidal flow damping on the nonlinear saturation level. At
t = 250L, /vq, the poloidal flow damping is artificially turned off by setting wy = 0
for kg = 0 modes (dashed line). Compared to the case with flow damping (solid line),
the E x B flows grow to much larger amplitude and greatly reduce the fluctuation
levels and transport.

wg = 0 for these modes, which for kg = 0 is normally wy = —k,¢, sin(0). Fig. 5.7
shows a simulation with the proper treatment which was restarted at { = 2501, /vy
with wy = 0 for the ky = 0 rotation modes. This allows the sheared rotation to

grow to much larger amplitude, and the turbulence level is greatly reduced.

The radial variation of the flux surface averaged potential (®) and parallel
flow (u;) are shown in Fig. 5.8, plotted at the end (£ = 170L,, /vs;) of the simulation
discussed in Sections 5.1 and 5.2, i.e. for TFTR L-mode shot #41309 at r/a =
53cm. Both radially sheared E x B flow and sheared parallel flow can enhance
the radial decorrelation of the turbulence, reducing the fluctuation levels [BIGLARI
et al., 1990; Hanm, 1994]. (Large equilibrium sheared flows can also introduce a
Kelvin-Helmholtz type instability, see for example [WALTZ el al., 1994al.) Tt is
interesting to compare the relative strength of the radial decorrelation from the

perpendicular E x B and the parallel flows. This is measured by the perpendicular
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and parallel shearing rates: w; = Ar d(kgvgg)/0r and ! = Ar d(kjuy)/0r, where
Ar is the radial correlation length of the turbulence (a typical eddy or blob size).
Using a perpendicular correlation length roAf# ~ 1/kg, the shearing rate from vg =

itk pivii(e®1/Tio) 1s:

Recall that e®, /Ty, = ®(p;/L,) and uifvy; = uy(p;/L,) m our normalization,
FEa. 2.39. The shearing rate from parallel flow, since k; ~ 1/gR, see Figs. 4.12(b)

and 4.13(b), is:
ad [ piwyg\ vy
o Ap— [ 250} 22
“s ! or ( qR ) L.,

The shearing rate from perpendicular E x B flow is larger than that from parallel
flow by

5 v /)/ q {
— L L~ i\, ) k )
w‘! I‘OAO Pilly ( ! )( o ) i

in the gyrokinetic ordering. Using ® ~ 5y from Fig. 5.8, k.p; = 0.15 and kyp; ~
pi/(roAf) = 0.15 from the simulations, and the measured ¢ = 2.4, p; = 0.14cm,

and R = 258cm yields w?

~ 500w!, indicating that perpendicular flow shearing
dominates over parallel flow shearing for the elongated turbulence (k” &< k) in these
toroidal simulations. Note that thisis true for the flows generated by the turbulence,
but does not preclude the importance of large scale equilibrium toroidal (mostly
parallel) flows. In addition, since the radial scale of the flows and the turbulence
are comparable, the parameters above lead to an estimate of the perpendicular
shearing rate, w} a2 0.2v;/L,,. The measured turbulent decorrelation time from the
simulation is 7. ~ 5L, /vy (which can also be roughly estimated from the time scale
of the fluctuations in the time history plots in Figs. 4.12(a) and 5.3). This leads to
an estimate for the turbulent scattering rate of wy ~ 0.2v4;/L,. The sheared flows
should strongly influence the turbulence if w, R wy, which is satisfied here. While
these are rough estimates, it is clear that the levels of sheared E x B flow in the
simulations is large enough to have a significant impact on the turbulence. Thus
the conventional theoretical picture of the stabilizing influence of sheared E x B
flow [BIGLARI et al., 1990] on the turbulence seems consistent with the large effects

observed in these simulations.
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Figure 5.8: Flux surface averaged potential and parallel flow at the end of the
simulation at the #41309 parameters. The radial variation (first derivative) of the
potential leads to a perpendicular (mostly poloidal) E x B flow, which is radially
sheared (second derivative of ®).
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5.3.2 Neoclassical Damping of Poloidal Flows

These sheared E x B flows are damped primarily by toroidal effects. While (clas-
sical) collisional damping would damp these flows in sheared slab geometry, in a
toroidal system the strongest damping mechanism is neoclassical magnetic pump-
ing. Magnetic pumping damps the (large) poloidal component of the E x B flow
until the total flow (parallel flow plus E x B flow) is purely toroidal. Because this
process arises from the variation of B with major radius, we have termed these ef-
fects “neoclassical,” even though for turbulent time scales collisionless “transit-time
magnetic pumping” [STIX, 1973] dominates over collisional effects. This damping
arises from collisionless phase mixing (Landau damping), which dominates for short
time scales, { < w;;', and damps the flows at a rate proportional to wy. For these
short times, { < w;;', trapped particles do not know that they are trapped, so
the plateau regime damping rates are applicable. After a bounce time the Landau
damping ceases because of trapping, and one then gets a slow decay due only to
collisions. This collisionless transit-time magnetic pumping can also be related to
the radial drifts of particle orbits in a tokamak in response to a changing radial
electric field, i.e. a kind of neoclassical enhancement of the polarization drift [STiX,
1973; HINTON and ROBERTSON, 1984; CALLEN, 1973].

In this section damping rates for magnetic pumping are derived from the
toroidal gyrofluid equations derived in Chapter 2. It is shown that in the banana
and plateau regimes the toroidal gyrofluid equations accurately capture transit-time
magnetic pumping. The damping rate in the Pfirsch-Schluter is also shown to agree

with neoclassical theory, for completeness.

As discussed in Section 5.3.1, the most important flows are those with radial
scales on the order of the turbulence scale size or longer. We see k.p; =~ 0.1 — 0.2
in our nonlinear simulations, so we will concentrate on the limit k,.p; < 1, where
magnetic pumping dominates over collisional viscous damping. Let us consider
the dynamics of a potential perturbation which is constant of a flux surface, ® =
®(r). The discussion closely follows [HASSAM and KULSRUD, 1978], but extends
their approach into collisionless regimes. The radially varying potential leads to a
perpendicular E x B flow, vg = (C/B)BXV‘I). Restricting the discussion to circular

concentric flux surface geometry for simplicity, we have: b = b.les + (e/q)eq],

e = 1r/Ro, bJ' = /1 +¢2/q?%, e, is the toroidal direction, and e; is the poloidal
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direction. The magnetic field strength is B = ByRy/ R, where By is the field on
axis, at R = Ry. In addition to the perpendicular flow, there may be a parallel flow
wy(r,8). In the small k. limit which we consider here, ® > p, so the diamagnetic
flow contribution is negligible. Both the perpendicular E x B flow and parallel flow

have toroidal and poloidal components:

c 0P € .
Vg = Ea—’b; (eg — aeqﬁ) s (518)

The toroidal and poloidal components of the total flow v = u“f) +VvE = vgeg +vze,

are:

e c 00 .

ve = (uy — ;}”é"g;)bza (5.20)
e ¢ 0d .

Vg = (U”; -+ "}t_);-;d“;“)bz (521)

Let us consider the time evolution of these flows, as described by the 442 toroi-
dal gyrofluid equations, given in Section 2.6. The quasineutrality constraint for
adiabatic electrons, Ea. (2.9), is 7(® — (®}) = n; + (I'y — 1)®, where ® is normal-
ized to e/T;, n; to nj, and 7 = T;/T.. Tt is convenient to introduce the notation
h=R/Ro =1+ ¢ccos, so the flux surface average is (®) = (27)~! § dORD(r) = D.
For k,p; < 1, 7; = n and Ty = 1 — k?p?, so

(n)
d) = . 5.22
®) G (5:22)
We now normalize k. to p, where p,o = vyme/eBg, so p; = pioh and () =

(n) /K% (h*). Since we have assumed circular concentric surfaces, k, is independent
of 8. Now consider the evolution of the flux surface averaged toroidal angular

momentum, (hvg). Using Ee. (5.20),

%, 0 9, e ¢ 0P
— (hvyy = — (huyb,) — — { h——=—0. 2
ot (hvg) ot () ot < q B or 4>’ (5.23)

In the normalized units of Chapter 2 and Eq. (5.22), this becomes:

0 0 boe d(n)
Lthesy = 0.2 (huyy — 282N 5.24
gy W) = by Uy =i = (5:24)
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so we need to find 9 (huy) /0t and 9 (n) /Ot from the gyrofluid equations.

Considering perturbations with k, = 0, so w, = 0, bul with slow parallel
variation so 3/08 # 0 (the y coordinate is perpendicular and 6 is the parallel
coordinate, as discussed in Chapter 4), the density and parallel velocity equations,

FEas. (2.91) and (2.92) become:

on

FTl BVHBH + 2iwy® +vwa(py + po) =0, (5.25)
a .
(;;H + Bvug + V@ 4+ p,.VyIn B +iwg(q + gL +4y) = 0. (5.26)

The parallel derivatives, V| = bV = (b./qRo)0/00, when normalized, become
Vi = (b:6,/q)0/00, where ¢, = L,/Ry. Furthermore, in these variables, 1wy =
(cT/eB*)B x VB -V = —ik,b,¢,sin 0, and VIn B = (e,¢b,/hq)sin 0. Flux surface

averaging the density equation yields:

J{(n) 1 b.e, Bo 0 u o
T —g/dﬂh [ " %ﬁn — tkpbien s 020 +py +pL)| . (5.27)
The uy term vanishes on flux surface averaging, leaving:
d(n) ik.b.e, ) ‘
= /.za sin B(20 + py + p). (5.28)

Averaging the parallel velocity equation leads to:

o} 1 b.en, | O € . :
3 (huy) = g/‘mh? p [dﬂ( P+ @)+ E(‘Pn —pu) — ikegsin (g + qu + 4“||)} :
(5.20)

Using the identity:

/deh () +®) =2 [ dfhesinb(p, + @), (5.30)

Eas. (5.28) and (5.29) can be combined. The k, independent terms cancel, and:

17} ik, b, e,
% (hvg) =

/d()h sin 0(qy + g + 4uy) =0, (5.31)

since we are considering the krpz- — 0 limit.

Similarly, we can find the time evolution of the flux surface averaged parallel

flow, (uy/h) < (v - B), which to zeroth order in k, is given by:

J u”> / brenesin ( -
dl< oy dﬂiqh (py— po)- (5.32)
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The parallel flow is damped by the difference between p, and p,. In neoclassical
parlance, this expresses the fact that the parallel flow is damped by the parallel
viscous stress B - V- o [HIRSHMAN, 1978], where the stress tensor has the CGL
form 7 = (p, — pl)(BB —1/3) [CHEW el al., 1956]. Keep in mind that the density
and velocity gyrofluid equations are exact moments of the gyrokinetic equation
in this limit (small k1), so these equations for the toroidal and parallel flows are
capturing the true physics. (In the six moment model closures are not introduced

until the p; and p, equations.)

The evolution of dp = p; — p, is found by subtracting the parallel and
perpendicular pressure equations, Eqs. (2.93) and (2.94). Because k., < 1, but

O ~ n/k? we keep wy® terms but drop w, terms involving the fluid moments,

yielding:
Y q) 41— 4+ . 9

At this point it is convenient, but not necessary, to assume that the flows are
incompressible. Incompressibility is enforced by setting dn/dt = 0 in Ee. (5.25),
which forces the divergence of parallel flow to balance the divergence of E x B flow,
V-vg = 2iwgd:

BV”% = 2iw,®. (5.34)

This removes the fast parallel sound wave time scale and simplifies the analysis.
Using incompressibility in Eq. (5.33), some of the u; and wy® terms cancel. The
remaining u; and wy® terms can be written in terms of the poloidal flow using
vg = uyeb,/q + tk.hb,®, from Ea. (5.21). The evolution of §p is then given by:

d q)
“p = _pv,A
a1°? Vig

Thus dp is driven by poloidal flow and damped by ion-ion collisions and parallel

+ BWHE—; — 3ug — vbp, (5.35)

heat flows. Collisions relax the distribution function toward a Maxwellian, which
causes isotropization of T\ and T, damping dp. The physical mechanism by which
poloidal flow drives dp is a bit more subtle. Consider a poloidal flow which brings
plasma from the outer midplane to the inner midplane, where B is larger. Because
p = v?/2B is conserved, as B increases, T, increases. Similarly, from conservation
of canonical toroidal angular momentum, 7| decreases, so poloidal flow drives a

difference between p; and p,. This dp in turn damps the parallel flow, as shown by



5.3. Nonlinear Generation and Damping of Sheared E x B Flows 139

Ee. (5.32). Since the toroidal flow is constant, this parallel flow damping leads to
poloidal flow damping, as follows. Again using incompressibility, Avg 1s independent

of . Then with some manipulation, u;/h can be written in terms of (hvg) and (hvy):

mod ((%} - <,b§>) (hog) + <2—> (hvs) (5.36)

Evaluating the flux surface averages to lowest order in ¢, (h?) &= 14 2¢* and (1/h%) ~
14+ %ez, leads to:

B (1 4 207) (hoo) + (ho) (5.3)
4 q
Since the toroidal flow is constant, d (hvg) /Ol 2 0, Ee. (5.32) becomes:
) u||> ‘ , €0 1Ly b,e esinf
—(—) =1 —— (hvgy= i {py — pL)- ¥
al < n) =20 g =] PP (5.38)

In the Pfirsch-Schliiter regime (easiest, but least relevant to present day
experiments), collisions keep ¢, and g, small. Considering slow evolution compared
to the sound wave time scale, we can look at the average evolution of Jp by ignoring
ddp/at. Then dp in Eq. (5.35) is determined by the balance between the drive from

the poloidal flow and the damping from collisional isotropization:

€, sinf

dp = —3uy (5.39)

l/z'z'h
Plugging this into Ee. (5.38), using the fact that hvg is independent of 6, and

integrating over # to lowest order in ¢ yields:

€. Ouvg belesin? f
1 +2¢5)~h— = —3hvy ( —2—— 5.40
(1+2q )qz o zuy< k| (5.40)
The flux surface average on the right hand side can now be evaluated, which to
lowest order in € gives a poloidal damping rate of:

3 e?

=T 5.41
7 2 (] + 2(]2)1/2'2' ( )

Here both v and v;; have been normalized to vy;/L,. In dimensional form, this is:

3 o7 3 W
A ?’ - 5.42
K 2(1+2¢%)v; R? 2(2+ l/qz)r/ii7 ( )
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where wy; = vy /qR. This expression matches the Pfirsch-Schliiter result of [HASSAM

and KULSRUD, 1978] exactly.

Now consider the less collisional plateau and banana regimes. Here the v;
term in Ea. (5.35) is negligible, and the dominant balance is between the heat
flux terms, which damp dp, and poloidal flow, which drives dp. In these “colli-
sionless” regimes, the heat fluxes primarily come from the Landau damping terms
in the gyrofluid equations. For low frequencies, Eq. (2.95) and (2.96) reduce to
V2D, lkylgy = —(3 4 8,)V, T, and V2D, |ky|q. = —V,T.. Using k, = 1/qR (in our

dimensionless units, k; is normalized to Ly, so k; & ¢,/¢), this approximately leads

T vggsin b
~ 7 5.4
PR =3/ 5 (5.43)

Plugging this into Ea. (5.38) gives:

(142 )6/2()19:—3\/»}20 <b€ L€ SITI 9> (5.44)

Evaluating the flux surface average to lowest order in e yields the collisionless

to:

poloidal flow damping rate from the toroidal gyrofluid equations:

3 T qge,

: 2 §1+2q27

3 M wy .
Y AN IR 4
2\/;(2+'1/q2) (5.46)

This matches the plateau results of [HIRSHMAN, 1978] and [STRINGER, 1973] within

(5.45)

which in dimensional form is:

a factor of 1.5, and also agrees with [STix, 1973] if (1 4 2¢?) is replaced by 1, since

he was working in slab geometry, with modulated B.

In the banana regime, the neoclassical calculation of the poloidal flow damp-
ing rate is not as straightforward as in the plateau regime. Using the static values

for the parallel viscosity coefficients, [HIRSHMAN, 1978] found:

2
q Vi

1.29¢3/2(1 + 2¢?%)°

v =— (5.47)

which is the same expression in dimensional and dimensionless form. This large

damping rate violates the assumption w < v; which calls the use of the static
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viscosity coefficients into question; a point which [HIRSHMAN, 1978] emphasized.
Earlier works found v o —vj;/e [STIX, 1973] and v « —v;; [ROSENBLUTH el al.,
1971]. Later neoclassical expressions for the poloidal flow damping rate were de-
rived without using the static parallel viscosity coefficients and found v o« —uvy;
[SHAING and HIRSHMAN, 1989], v o —v;;/e'/? [TAGUCHI, 1991], and v o —vj;/e
[HSu el al., 1994]. Since ¢ is small, these results are extremely different. These
last three works, instead of using the static parallel viscosity coefficients, solve for
the time dependent distribution function, f;. However, when solving for f; they
order df; /0L ~ C(fi) < wy fi, so these calculations miss any collisionless damping
processes which occur on a faster time scale. As [STIX, 1973] argued, collisionless
transit-time magnetic pumping dominates for short time scales, { < w;;'. The an-
alytic damping rate calculated from the toroidal gyrofluid equations in the banana
and plateau regimes, Eq. (5.45), is consistent with this. Dimits’ interpretation of
poloidal flow damping in collisionless gyrokinetic particle simulations is also based
on Stix’s transit-time magnetic pumping picture [DimiTs, 1994]. The gyrofluid
damping rates are compared to the neoclassical results of [HIRSHMAN, 1978] in
Fig. 5.9. The results agree in the plateau and Pfirsch-Schliter regimes. In the
banana regime, transit-time magnetic pumping dominates for times ¢ N wit Wit

and at later times the damping is governed by collisional processes.

The analytic gyrofluid results for the flow damping rates in Eqs. (5.41) and
(5.45) are now compared with numerical solutions of the full toroidal gyrofluid
equations without making any of the approximations used above. A flow with both
toroidal and poloidal components is initially imposed and is linearly evolved in
time. The parameters used are k.p;o = 0.01, ¢ = 0.1 and g = ¢, = 1; the scaling of
FEas. (5.41) and (5.45) with g and ¢, have also been checked, but are not shown here.
Fig. 5.10 and 5.11 show the linear damping of these flows for the Pfirsch-Schluter,
plateau, and banana regimes. Here incompressibility is not enforced, so there are
oscillations during the damping of the flow; it is not a purely exponential decay.
The analytic gyrofluid expressions above compare favorably with the full numerical
solutions. In the plateau and banana regimes, after an initial rapid damping phase,
a finite poloidal flow is maintained which is damped on a slower collisional time
scale. In contrast to the neoclassical banana regime results (valid only for longer
time scales), no significant differences are seen between the plateau and banana

damping rates in this initial strong damping phase.
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Figure 5.9: Poloidal flow damping rates in various collisional regimes. The gyrofluid
results (solid) match the neoclassical results in the Pfirsch-Schliiter and plateau

. e < ol o=l transit o
regimes. For short time scales (I ~ w;;',w;;'), transit-time magnetic pumping
dominates in the banana regime. The neoclassical result of [Hirshman, 1978] (using
static parallel viscosity coefficients) is also shown in the banana regime (dashed).
Because the neoclassical calculations assume that the distribution function evolves
on a collisional time scale, they miss the rapid collisionless damping, and are only

valid for { > wl;l
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80

time (L_/v,)

Figure 5.10: Poloidal flow damping in the Pfirsch-Schliter regime, v;;/wy; = 10.0.
The poloidal flow (solid) from simulations agrees with the analytic result Eq. (5.41)
(dotted). The toroidal flow (dashed) is constant, demonstrating that toroidal an-
gular momentum is well conserved.
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Figure 5.11: Poloidal flow damping in (a) the plateau regime, v;; /w; = 0.1, and (b)
the banana regime, v;; /w,; = 0.001. The poloidal flow (solid) from simulations agrees
with the analytic gyrofluid result Ea. (5.45), and the toroidal flow (dashed) is again
well conserved. Transit-time magnetic pumping dominates for short time scales
L~ w;;'w;; ', and at later times the damping is governed by collisional processes.
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For the short time scales of the turbulence, transit-time magnetic pumping
is the dominant poloidal flow damping process in the banana and plateau regimes.
The small scale E x B flows are randomly generated by the turbulence, and damped
according to Eaq. (5.45). A bounce time later, when Eq. (5.45) is no longer valid,
the turbulence has evolved into a different state, generating new flows.  Because
the turbulence is quite sensitive to balance between the nonlinear generation and
the linear damping of the poloidal flow, it is important that the gyrofluid equations
accurately model this process. Things get slightly more complicated for k. p; ~ O(1),
and it is more difficult to check our models in this regime. Future work is needed
to fully resolve this issue, but it appears that the toroidal gyrofluid equations are

accurately modeling this process.

5.4 Nonlinear Simulation Results with Trapped
Electrons

Although the adiabatic electron assumption may lead to a reasonable description of
ITG driven turbulence in some regimes (e.g., when the electrons are very collisional
so trapped electrons are wiped out, but not so collisional that the parallel dynamics
are affected), in general, nonadiabatic electron effects should be taken into account.
It is conceivable that if x; > x., D, the electrons could be passively advected
by toroidal ITG driven turbulence with little effect on the ion transport, but n
general y; ~ x. ~ D. Clearly when x. > x;, nonadiabatic electron effects will be
important. Further, electrons are typically in the banana regime (v.. < 1), except
in the collisional extreme edge and in the extreme core where the trapped fraction
Ve is small, indicating that collisions are usually not large enough to completely
wipe out the nonadiabatic electron response. Again, D, x. # 0 guarantees that the

electrons are significantly nonadiabatic.

In this section, the effects of nonadiabatic electrons are investigated with
nonlinear simulations. These results should be considered preliminary. The effect
of electron collisionality on the predicted transport is shown in Fig. 5.12 for the pa-
rameters 1, = 5. = 3,9g=15,§=1,¢,=1/3, ¢=1/6 and T; = T., corresponding
to the linear results in Fig. 3.5. For high collisionality, veg L, /vs = 10 (vie = 2),

the electron response is nearly adiabatic. The ion thermal flux, x; & 4p v/ Ly,
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Figure 5.12: Fully nonlinear simulation results with trapped electrons, varying elec-
tron collisionality, for ITG driven turbulence at 1n; = 1. = 3. As v.. is reduced, the

?d‘aba“c in the collisionless limit.

electrons become destabilizing, until y; ~ 3y
i1s the same as obtained with adiabatic electrons and y. is very small. As veg 1s
reduced, the electrons become destabilizing. In the collisionless limit, v,. = 0.002,
X: ~ 11ptvs; /Ly, and x. & 5pfvs; /L, Although for these parameters the turbulence
is driven by toroidal ITG modes (1; = 3, Ly;/ R = 0.1), electrons increase x; by up

to a factor of three over simulations with adiabatic electrons.

Fig. 5.13 shows results from another set of nonlinear simulations showing
the effect of VT;. Beginning with the reference case n, = 5. = 3, ¢ = 1.5, § =
1, ¢, = 1/3, ¢ = 1/6, T; = T., and v.. = 0.02, VT; is reduced by lowering ;
holding L,. = L,; and Ly, fixed. These nonlinear runs correspond to the linear
results in Fig. 3.6. If the electrons are adiabatic, when 15; is reduced below the
adiabatic 7 the plasma is stable and the turbulent flux vanishes (solid squares in
Fig. 5.13). With trapped electrons at low electron collisionality, below the adiabatic
n<it the turbulence is driven by unstable trapped electron modes. The ion heat flux
Qi = (vg,pi) drops below Q. for n; < netit consistent with the quasilinear ratios

where @Q; > Q. for the toroidal ITG mode and Q; < Q. for the TEM [REWOLDT
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Figure 5.13: Nonlinear simulations predict y;/y. in experimental range even for
;< nfM adiabatic at low electron collisionality. At vi.. = 0.02, as 5; is reduced
holding 5. = 3 fixed, Q; drops below Q). as the ITG mode evolves into TEM, but

since VT; is getting weaker, y; stays above or comparable to x.. Lowering 7. reduces

xi and x. (weaker TEM drive).

and TANG, 1990]. However, since Q = xVT, because VT; is decreasing, x; stays
above or comparable to x.. The relative magnitudes of y; and yx. are within the
experimental range, where typically x; ~ x.. The parameters of this scan were
specifically chosen to investigate strongly driven TEM turbulence at n; < it A
physically more realistic scan would not hold 5. = 3 fixed; 5. = 5; is more likely.
When the scan is repeated decreasing both 7. and 1; simultaneously, both x; and

X. are reduced in the TEM regime, by roughly a factor of three.

These nonlinear results show that the most striking effect of trapped elec-
trons is to soften the 5™ or L/ R threshold which exists with adiabatic electrons.
When the turbulence is driven by trapped electron modes, below 5t Q; is reduced,
so in this sense there is still a threshold for the ion heat transport, but it is not a
sharp threshold at low collisionality. For the moderate v,. of many L-modes, there
is marginal behavior, but at lower v,. there may still be a fairly strong TEM drive

with less marginal features. Mapping outl precisely when this happens is now pos-
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sible with our simulations with trapped electrons. As shown above, the TEM drive
can strongly affect both ion and electron transport. It is thus expected that both y;
and y. will depend on electron collisionality and eleciron density and temperature
gradients in low collisionality regimes, particularly when n; is low and the TEM

dominates.



Chapter 6

Comparison with Experiment

IRECT COMPARISONS of the toroidal nonlinear simulations with ex-

periment are presented in this chapter. Recent comparisons between ex-

periment and a transport model based on simulations with our toroidal
gyrofluid code and linear fully kinetic calculations have shown good agreement in the
core (r/a < 0.85) of L-mode type discharges [DORLAND el al., 1994b; KOTSCHEN-
REUTHER el al., 1994a]. These comparisons used an interpolation formula for y;,
parameterized to fit our toroidal gyrofluid simulation results with adiabatic elec-
trons. This formula also uses an interpolation formula for the marginal Lp;/R
found from linear fully kinetic calculations with adiabatic electrons. (As discussed
in Section 5.4, a critical Lp;/R does not always rigorously exist with nonadiabatic
electrons, but threshold like behavior may still occur in many cases.) This fit to y;
was then used in a predictive power balance code to predict temperature profiles,
and T; and x; from the fit (using the predicted T;) were compared with experiment.
Many I-mode (~ 50) shots were simulated in this manner, finding encouraging
agreement. In this Chapter, a simpler, more direct approach is taken. Measured
temperature and density profiles are used as inputs for the toroidal gyrofluid sim-
ulations with trapped electrons, and the resulting y;’s and y.’s are compared with
those inferred from power balance. This comparison is presented here to roughly

demonstrate where we stand, and should be considered qualitative.

The specific shot chosen is TFTR L-mode #65018, and the input parameters
are taken from SNAP try 3. This shot is very similar to #65012 in [SCOTT el al.,
1993]. The primary ion species is deuterium, heated by 14MW of deuterium neutral

149
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beam injection. The major radius 18 By = 245cm, the minor radius is ¢ = 80cm,
and the toroidal field strength on axis is By = 4.8T. The Shafranov shift is not
terribly large, 11.8cm at the magnetic axis, so the simulations use concentric circular
flux surface geometry. In this shot the impurity concentration is small, Zeg =
1.73. At r = 0, the beam density is n,/n. = 0.15, and the hydrogen and carbon
impurily densities are ngy/n. = 0.071 and ng/n. = 0.024, with carbon making
largest contribution to Zeg and to the impurity charge density. Metal impurities are
negligible. The calculated beam density decreases monotonically towards the edge.
Because of this relatively low impurity and beam concentration, in the simulations
impurities and beams are neglected. The measured Z.g (assumed independent of

minor radius) is used to calculate the electron-ion collision frequency.

The profiles taken from SNAP are shown in Figs. 6.1-6.3. Since n; = L,;/L;
varies from 1.5 to 4, the turbulence in this shot is driven by the toroidal 1TG
mode. Several small flux tube simulations, centered at different r/a, are run using
the local measured parameters as input. The chosen numerical parameters vary
slightly with the physical parameters to ensure adequate resolution. In particular,
the simulations find a strong ¢ dependence of the peak in the nonlinear fluctuation
spectrum. At the edge where ¢ is large, the spectrum peaks at lower kg, so larger
simulation domains are required to resolve these long wavelengths. The results
from these nonlinear simulations are shown in Fig. 6.4 and compared against y;
and x. from power balance. Also shown is the predicted y; from [BIGLARI el al.,
1989], xi = [kepiq(1 + m:)/(78)] pivsi/ Ln. Since kgp; is not determined from this
theory, kgp; = 0.2 is used. Using kgp; found from the simulations would exacerbate
the difference between this theory and experiment, since kgp; from the simulations
decreases with increasing minor radius. In the core (r/a < 0.2), all modes are
stable for the measured parameters, but just barely; a small increase in V7; would
destabilize the toroidal ITG mode and give a small x;. (This shot had sawteeth,
which might be complicating things in this region, since the ¢ = 1 surface is at

about r/a = 0.25.)

There is a tendency for the predicted y from the simulations, ¥*™, to over-
and undershoot "B calculated from power balance. This is related to the depen-
dence of the x’s on VT, and the fact that the measured VT, as a gradient, is more

susceptible to experimental uncertainties than local quantities. The experimentally
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Figure 6.1: Measured electron (solid) and ion (dashed) density and temperature

profiles, and beam density (long dashes) for #65018 from SNAP.
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Figure 6.2: Electron (solid) and ion (dashed) density and temperature scale lengths.
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Figure 6.3: Safety factor, g (solid), shear, § (dashed), electron (solid) and ion
(dashed) collisionality for #65018.

inferred heat flux, Q;, is fairly smooth. Since y'® « Q,/VT;, if the measured VT; is
slightly lower than its actual value, Y72 a will be slightly higher than the actual ;.

The simulation y*™

is proportional to VT;, since the turbulence here is primarily
driven by the ion temperature gradient. Since the simulations use VT; as an input,
if VT; is slightly low, x*™ will be low. Therefore, small errors in VT; push y™
and "B in opposite directions. Taking this into account, Fig. 6.4 shows reasonable
agreement between the toroidal gyrofluid results and the experimental results in
the core region, r/a < 0.7, for both y; and y.. The heat transport is reduced in

the core where the toroidal ITG mode is more weakly driven than, for example, at

r/a = 0.5.

Outside r/a = 0.7, the predicted y; is clearly too low. There are a few
possible explanations which could make the predicted edge transport increase,
due to effects which are not included in these simulations. Increased damping of
the turbulence-generated sheared flows near the edge would increase the flux (see
Fig. 5.5). Increased flow damping could possibly come from collisional friction with
impurities or from drag due to charge exchange, although the latter is probably quite

weak. Another mechanism which would increase the edge transport is inverted im-
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Figure 6.4: (a) Comparison of predicted and experimental x;(r). (b) Comparison
of x.(r). The dots are from the simulations and the solid lines without dots are cal-
culated from power balance (SNAP). Also shown is the theoretical x; from [Biglari

et al., 1989].
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purity densily gradient drive, as discussed in Section 1.2 [DORLAND et al., 1994a).
The radial variation of impurity density is difficult to measure; it is probably easier
to find some signature of impurity density gradient driven turbulence in the sim-
ulations, and then look for this signature in fluctuation measurements. Another
possibility is Kelvin-Helmholtz type drive from sheared equilibrium flows, but it
seems unlikely that the flows in the edge are large enough to drive these instabili-
ties. Another possibility is that the large fluctuations at the edge are not generated
locally, but are propagating into the edge from more strongly driven core regions
[MATTOR and DIAMOND, 1994]. Finally, perhaps some increased drive at the edge
could come from the Shafranov shift. Near the edge the flux surfaces are com-
pressed, increasing the local gradient in the bad curvature region. Clearly all these

mechanisms are speculative at this point, and should be studied in more detail.

The predicted electron heat flux is in reasonable agreement with experiment
in the core, r/a < 0.5, but is too low in the edge. In the region 0.5 < r/a <
0.7, where y; matches fairly well, the predicted electron flux may be low due our
approximate collision model. As discussed in Section 3.4, we have approximated the
velocity dependence of v.(v). Over most of the minor radius, the collisionality for
this shot isnear vex L, /vy; & 1, where our trapped electron model underestimates the
nonadiabatic electron response. (See the right hand side of Fig. 3.5.) Incorporating

the velocity dependence of v.(v) could remedy part of this discrepancy.

Overall, this seems to be a reasonable level of agreement. The gyrofluid
equations appear to be accurate enough to properly capture the small linear drive
in the core, where the plasma is near marginality, without resorting to fully kinetic
linear theory. Small changes in VT; and VT, could make the agreement virtually
exact for r/a < 0.7. To demonstrate this, comparison of this shot with the IFS-
PPPL yx; interpolation formula based on our toroidal gyrofluid simulations with
adiabatic electrons and linear fully kinetic calculations is shown in Fig. 6.5(a). This

interpolation formula for y; found by [DORLAND et al., 1994b]:

9 1,1/2
05Vt R R , ;
S pva (0 I : 6.1
“TR (Lm L%zt> d o

is quite similar to the results with trapped electrons (Fig. 6.4) for this moderate
collisionality. In Ea. (6.1), F = ¢/(2 4 §)---, is a complicated function of lo-

cal dimensionless parameters, and R/L$Y is determined from kinetic calculations
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Figure 6.5: (a) Comparison of experimental y;(r) (solid) and and the IFS-PPPL
xi(r) (long dashes). Also shown is the IFS-PPPL y;(r) using an Lp;(r) profile ad-
justed so the predicted heat flux matches the experimental heat flux (short dashes).
(b) Measured (solid) and adjusted (long dashes) R/Lr;. In the core, the adjusted
R/ Lr; is only slightly above the critical R/ Ls; (short dashes).

[KOTSCHENREUTHER et al., 1994b]. If L1;(r) is adjusted so the predicted heat flux,
(i, matches the measured heat flux, x;(r) is in much better agreement, as shown
by the x*¥ in Fig. 6.5(a). This is similar to the results which would be obtained
from the predictive transport code used in [DORLAND el al., 1994b]. Fig. 6.5(b)
shows the measured R/Lp;, the adjusted R/Ly;, and R/LSE. The adjusted R/Ly;
is only slightly above marginal in the core, since the measured heat flux there is
small. Fig. 6.6 shows the T; profile obtained by integrating the adjusted Lp;(r)
inward, using the measured T; at r/a = 0.8 as a boundary condition. Thus, only
a relatively small change in T;(r) is needed to get the predicted y; to agree. This
is an example of usual marginal stability effects as emphasized again in [DORLAND

et al., 1994b]. A good sawtooth model might further improve the 7 fit in the core.

This encourages us to add more physics to these simulations to try to ex-
plain a wider range of experimental conditions. With nonadiabatic electrons, at

sufficiently small v,., there is often no rigorous critical Lp; beyond which the modes
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Figure 6.6: T; profile obtained by integrating the adjusted Lp; inward, using the
measured T; at r/a = 0.8 as a boundary condition. Only small changes from the
measured T; profile are necessary to make the heat fluxes agree.
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are completely stabilized, but there can still be threshold-like behavior where the
modes are weaker. For the moderate v, of many of the L-modes looked at in [DOR-
LAND et al., 1994b], there is marginal behavior (as in Fig. 6.4(a)), but at lower v,
there may still be a fairly strong TEM drive with less marginal features. Mapping
out precisely when this happens is now possible with our simulations with trapped

electrons, and is important work for the future.

There are many experimental transport scalings which appear to contradict
microinstability based theories, especially the scaling with current (7,), B, and ion
mass. There is some evidence, however, that the I, and B scalings are not incon-
sistent with our results. The ¢ dependence of Eq. (6.1) can lead to [, scaling. The
detailed comparisons in [KOTSCHENREUTHER el al., 1994a] also compare favorably
with the current ramp experiments of [ZARNSTORFF el al., 1991]. Although our
simulations and Ee. (6.1) are gyro-Bohm, this gyro-Bohm scaling with B can be
partially masked by marginal stability effects, leading to a more Bohm-like behav-
ior, as seen in experiments. While the comparisons discussed in this chapter and
in [DORLAND el al., 1994b; KOTSCHENREUTHER et al., 1994a] seem to be on the

right track, these issues must be carefully addressed.
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Chapter 7

Conclusions

EVERAL ADVANCES toward an understanding of turbulent transport in

tokamaks are made in this thesis. The primary thrust of this work is the

development of nonlinear toroidal simulations which predict fluctuation and
transport levels that compare favorably with experiment. These simulations rely on
more accurate fluid equations for the ions and new bounce averaged trapped elec-
tron equations. Together, these equations provide an accurate description of most
of the physics considered relevant for microinstability driven turbulence. This re-
duced fluid model is sufficiently simple to solve directly in high resolution numerical
simulations. These simulations implement a reduced flux tube geometry for further
numerical efficiency, and fully incorporate toroidal effects. Toroidal effects are found
to significantly enhance thermal transport and fluctuation levels over sheared slab
predictions, bringing the predictions up to experimentally measured levels. In ad-
dition, the nonlinear fluctuation spectrum is peaked at long wavelengths, and is
anisotropic in k. and kg due to the ballooning nature of this turbulence, in agree-
ment with experiment. Finally, the trapped electron fluid equations provide the first
high resolution toroidal nonlinear simulations which simultaneously include toroidal
ITG modes and trapped electron modes, and allow calculation of the full transport

matrix: ion and electron heat fluxes and particle fluxes.
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7.1 Summary

Toroidal ion gyrofluid equations are derived with improved models of the important
kinetic effects associated with toroidicity. Special care is taken to derive closure
approximations which, though similar to those of [WALTZ el al., 1992], are well
behaved in the mixed limit where both toroidal drifts and parallel free streaming
are important, i.e. where both k; and wg are non-zero. The four moment toroidal
gyrofluid model of [WALTZ el al., 1992] is extended to six moments, including the
,uE) - VB mirroring terms. This keeps the parallel velocity equation exact, impor-
tant for accurate poloidal flow damping rates. Including the ,u,lA) -V B terms also
incorporates trapped ion effects to some level of approximation (the growth rate
in the very low kgp; trapped ion mode regime is within a factor of two of full gy-
rokinetics). New toroidal FLR terms are treated which arise from the variation of
B (in the argument of Jy) with major radius, and generalize the FLR model of
[DORLAND and HAMMETT, 1993] to toroidal geometry. An improved four moment
model is also presented, which is simpler and numerically less demanding than the
six moment model. Impurity and (Maxwellian) beam dynamics are equally well
described by these toroidal gyrofluid equations, and have been incorporated into
the code by Dorland.

New bounce average fluid equations for trapped electrons are derived, incor-
porating sophisticated models of the trapped electron toroidal precession resonance
and pitch-angle scattering from collisions. Because these equations are bounce av-
eraged, the fast parallel electron time scale is removed, allowing high resolution
toroidal simulations simultaneously including drive from toroidal ITG modes and
trapped electron modes. Including nonadiabatic electron dynamics also allows pre-
dictions of electron heat transport and particle transport. Both the toroidal ion
gyrofluid and trapped electron equations are carefully benchmarked against fully

kinetic linear theory, in the local limit and in fully nonlocal eigenmode calculations.

A reduced flux tube coordinate system is presented which exploits the elon-
gated nature of microinstability driven turbulence. A slab gyrofluid code [DOR-
LAND, 1993] is extended to toroidal geometry using this coordinate system and the
comprehensive toroidal gyrofluid equations derived here.  These simulations find
that the effects of toroidal geometry are quite important. The fluctuation levels

and transport are about 25 times larger than sheared slab simulations, bringing
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the predicted transport up to measured levels. The fluctuation spectra from these
simulations are peaked at kgp; =~ 0.1 —0.2 for typical parameters and are anisotropic
in k, and kg, similar to BES fluctuation measurements on TFTR [FONCK el al.,
1993].

The importance of turbulence-generated small-scale sheared E x B flows on
toroidal ITG turbulence is demonstrated. The damping of the (large) poloidal
component of these flows is shown to be a sensitive control of the turbulence level.
The damping of these flows within the six moment gyrofluid model is carefully
imvestigated. For the relevant short time scales of the turbulence, the toroidal

gyrofluid model is shown to be accurate.

Direct comparison of these toroidal simulation results with L-mode experi-
ments are found to be encouraging. The predicted ion and electron heat transport
in the core, r/a < 0.7—0.8, are in reasonable agreement with those calculated from
power balance. The transport in the edge, r/a > 0.7 — 0.8, is too low, and possible

mechanisms to explain this discrepancy are discussed.

7.2 Future Directions

The gyrofluid equations are an approximation to the full nonlinear gyrokinetic equa-
tion, and break down in some regimes. For example, the weak turbulence wave-
kinetic equation derived from the gyrofluid equations successfully reproduces the
gyrokinetic wave-kinetic equation in the limit w > kjvy, but fails to recover the
ion-Compton scattering rate very near marginal stability, in the limit v < w < kjvy
[MATTOR, 1992; DORLAND, 1993]. The nonlinear validity of the gyrofluid equations
in strong turbulence regimes has not yet been unambiguously verified on fundamen-
tal grounds. However, gyrofluid simulations have been compared against technically
more accurate gyrokinetic particle simulations, finding similar behavior in a sheared
slab [PARKER el al., 1994; DORLAND, 1993]. The toroidal simulations developed
in this thesis have been benchmarked with toroidal gyrokinetic particle simulations
(though not as extensively as the sheared slab simulations), and find reasonable
agreement [PARKER el al., 1994]. Very recently, the toroidal gyrokinetic particle
simulations of [DIMITS el al., 1994] appear to predict lower transport by about a

factor of 2.5. While in principle gyrokinetic simulations are more accurate, since
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they solve the more fundamental gyrokinetic equation directly, there are a number
of issues which need investigation: particle noise, particle filtering, resolution, and
geometry (we implement field-line coordinates in a somewhat different way than
[DIMITS el al., 1994], which tends to emphasize resolution in different parts of k-
space). Detailed comparisons with gyrokinetics is worthy of further study, to track

down the causes of this discrepancy.

Closing the fluid hierarchy with linear closures naively appears to introduce
an error of O(Awpny/kyvy), which is typically O(1). Here Awny, ~ v - V is some
measure of the nonlinear decorrelation rate. In this sense it is very interesting that
gyrofluid models work as well as they do nonlinearly, but there are physical reasons
behind this. Each gyrofluid equation, as a moment of the gyrokinetic equation, is an
exact nonlinear conservation law: closure approximations are introduced into higher
moment equations in a way which preserves the conservative form the equations. As
more moments are retained, more details of the distribution function are accurately
described. Smith has demonstrated convergence in the number of moments for the
nonlinear plasma echo problem [HAMMETT el al., 1993], though it required many
moments in that case. In the strong turbulence limit, it seems unlikely that many
moments need to be kept, since the broad spectrum of modes should average out
sharp velocity space variations in the distribution function. OQur equations retain
the dominant (E x B) nonlinearities and provide accurate physics based models of
the linear drive and dissipation. Future work should continue to test the validity
of the gyrofluid approximation, both through comparisons with kinetic simulations

and through purely theoretical simplified problems.

The toroidal ion gyrofluid equations and trapped electron fluid equations
presented here are both derived in the electrostatic limit. Recent work has begun
including electromagnetic effects [WALTZ el al., 1994b; HAMMETT el al., 1994].
The main difficulty here is that magnetic fluctuations are driven by parallel current
fluctuations, and since trapped particles do not carry current, passing electrons
need to be evolved (they can no longer be considered adiabatic). Resolving the
fast electron parallel motion seriously slows down the numerical calculations. Some

trick analogous to bounce averaging would be useful.

The nonlinear simulation results in this thesis are in axisymmetric, low-3,

high aspect ratio magnetic geometry. Including the effects of general magnetic ge-
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ometry is a straightforward next step. It is of great interest to investigate the effects
of elongation and triangularity on the transport, both to compare with existing non-
circular tokamaks and to optimize the design of future experiments. The derivation
of both the toroidal ion gyrofluid equations and the trapped electron fluid equations
is valid for general geometry. Further, the flux tube simulation geometry in Chapter
4 is formulated in general geometry. All that is required is a pre-processor which
would take the equilibrium magnetic field described by Eq. (4.1) and calculate the
metric coefficients in Eqs. (4.5) and (4.6). These metric coefficients would then be

used as further input for the toroidal gyrofluid code.

Although these toroidal gyrofluid simulations are relatively fast, an analytic
formula for x;, x., and D would be more desirable. In addition to aiding comparisons
with experiment, analytic formulas (even if they are approximate) usually offer
more insight than purely numerical results. Our focus to date has been to add
more physics to our equations and simulations until we are confident that they
are experimentally relevant. Now that it appears we are reaching this point, it
would be very interesting to investigate the nonlinear dynamics in the simulations
in more detail, to try to develop an analytic model for the transport. While the
interpolation formula for x; in [DORLAND el al., 1994b] represents a significant step
towards a reduced description of the simulation results, a model for the transport
in terms of a simplified renormalized dispersion relation would be more satisfying.
[DORLAND el al., 1994b] have found that much of the variation in y; is captured by
max(y/k?) (different from max(y)/k? because of the k, dependence of ), but the
residual variation is still described by a numerical fit to the simulation results. This
residual variation presumably includes physics involving sheared-flow generation

and damping, and it would be nice to have an analytic model of this.

The electron equations have been implemented in the nonlinear simulations
only quite recently; a more careful investigation of electron heat fluxes and particle
fluxes 1s clearly called for. Further study of TEM driven turbulence is required
to accurately describe supershots and ohmic plasmas. We can now study several
important questions: Why is the convective multiplier as low as 3/2 in supershots?
When are there particle pinches? What is the helium ash diffusion coefficient? We
can also study advanced tokamak configurations with trapped electron mode sta-

bilization due to reversed shear or high-3, which are predicted to have improved
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confinement. A complete transport model must be able to predict density as well

as temperature profiles. Nonadiabatic electron dynamics are thus an essential in-

gredient.



Appendix A

Old Toroidal Gyrofluid Equations

The equations used in the nonlinear simulations in Chapter 4 are briefly summarized
here, since they are an earlier version of those derived in Chapter 2. Since the aim
of the simulations in Chapter 4 is to test various assumptions implicit in flux tube
simulation, the simpler four moment model is used, using adiabatic electrons and
ignoring collisions and particle trapping (i.e. V(B = 0). The four moment equations
here use less accurate toroidal closure coefficients and FLR approximations than
those in Section 2.7. Using the normalizations and definitions in Chapter 2, the

dynamical equations are:

dn ~ 0\ . 1 4 )
T + Vo + V) = —diwguy — 2iwgvsiuy — 2|wa|vseuy,
dT )
cl—t" + 2V + V2K T — nyiw¥ =
— 2iwg [(3 4+ vi) Ty + vo T 4+ n+ V] — 2vy, Jwe| T — 20y, |wa| T,
(]T 1 ~ 1 - a2 )
dtL + V2lkylx. (TL + §V2L‘I’) - [ivi +n(1+ VJ.)] 1w, W

1 ~. 22

+ (§Vivly> -Vn +(V, vy) VT, = =2us,|we| Ty — 2v4, |wa| T,
) 1 3

— 2?,(.()1 I:I/3Z"T|| + (2 -|- I/42')/TJ_ + g + 5(1 + §Vi)q/:| .

The total time derivative includes the main E x B nonlinearities. The parallel
closure coefficients are x; = 2/4/m and x, = 1/y/m. The toroidal closure coefficients

have both dissipative and reactive pieces, and written in the form v = (v, ;) =
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Ve + wilwe|/we, they are vy = (1.93,-.39), v, = (.24,1.29), vs = (—1.40,.47),
vy = (—.14,—-1.75), and v5 = (.76, —.98).

The adiabatic electron response is given by n, = 7 (® — (®)), where (®)(¢)) =
([ dadzJ|Vi|D)/ ([ dadzT|Vi)]) is a flux surface average. In circular concentric
geometry, this becomes (®) = (4Ay zo)™" [ dy dz(R/Ro)®(z,y, 2), and is only non-
zero for the k, = 0 components. The gyrokinetic quasineutrality constraint is
ne = n; + (I'o — 1)®, where the expression used for n; is related to the ion guid-
ing center density and perpendicular temperature by the FLR closure relation in
[DORLAND and HAMMETT, 1993], yielding:

F1/2 1.
T(® — (D)) = > N(b)n+§v371 +(Tg—1)®.

Where 7 = T;/T., and explicit forms for the functions N(b), D(b), are given in
[DORLAND and HAMMETT, 1993].

Since this equation involves both ® and (®), it is woth noting the procedure
used to determine @, given n and T,. In general, the coefficients in this equation
can be functions of the field line coordinate, so writing ® = (®) + §®, and solving

for 0@ gives:

5o it (FF’ — 1)<<I>)'
T+ 1 — FU
Averaging both sides, since (@) = 0, and solving for (®) gives:

(@) =

7 2

T+1—F0 T—|—]—r0

Now that () is determined, we use this expression in the quasineutrality constraint
to obtain ®.
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