# Copyright (c) 1996, 1997, The Regents of the University of California. # All rights reserved. See Legal.htm for full text and disclaimer. from plwf import * from pl3d import * from movie import * from slice3 import * from yorick import * from gist import * from arrayfns import * from Ranf import * window3 (hcp = "talk.ps", dump = 1) palette ("gray.gp") demo5_n = 20. * ones (3) making_movie = 0 def demo5_light (i) : global making_movie if i >= 30 : return 0 theta = pi / 4 + (i - 1) * 2 * pi/29 light3 (sdir = array ( [cos(theta), .25, sin(theta)], Float)) # without an explicit call to draw3, the light3 function would # cause no changes until Python paused for input from the keyboard, # since unlike the primitive plotting functions (plg, plf, plfp, ...) # the fma call made by the movie function will not trigger the # 3D display list # any movie frame display function which uses the 3D drawing # functions in pl3d.i will need to do this # the !making_movie flag supresses the fma in draw3 if this function # is called by movie (which issues its own fma), but allows it # otherwise draw3 ( not making_movie ) return 1 def paws ( ) : i = raw_input ("Type in any string to continue; ^C to return to prompt. ") return def demo5 (*itest) : """demo5 () or demo5 (i) Run examples of use of pl3d.i, plwf.i, and slice3.i. With argument I = 1, 2, or 3, run that particular demonstration. Read the source code to understand the details of how the various effects are obtained. demo5 (1) demonstrates the various effects which can be obtained with the plwf (plot wire frame) function. demo5 (2) demonstrates shading effects controlled by the light3 function demo5 (3) demonstrates the slice3, slice2, and pl3tree functions, as well as changing the orientation of the 3D object """ global making_movie if len (itest) == 0 or itest [0] == 1 : set_draw3_ (0) x = span (-1, 1, 64, 64) y = transpose (x) z = (x + y) * exp (-6.*(x*x+y*y)) limits_(square = 1) print "(plot wire frame) plwf,z,y,x" orient3 ( ) light3 ( ) plwf (z, y, x) [xmin, xmax, ymin, ymax] = draw3(1) # not necessary interactively limits (xmin, xmax, ymin, ymax) plt("opaque wire mesh", .30, .42) paws ( ) print "plwf,z,y,x, shade=1,ecolor=\"red\"" plwf(z,y,x,shade=1,ecolor="red") [xmin, xmax, ymin, ymax] = draw3(1) # not necessary interactively limits (xmin, xmax, ymin, ymax) paws() print "plwf,z,y,x, shade=1,edges=0" plwf(z,y,x,shade=1,edges=0) [xmin, xmax, ymin, ymax] = draw3(1) # not necessary interactively limits (xmin, xmax, ymin, ymax) paws ( ) light3 ( diffuse=.1, specular=1., sdir=array([0,0,-1])) [xmin, xmax, ymin, ymax] = draw3(1) limits (xmin, xmax, ymin, ymax) paws ( ) light3 ( diffuse=.5, specular=1., sdir=array([1,.5,1])) [xmin, xmax, ymin, ymax] = draw3 (1) limits (xmin, xmax, ymin, ymax) paws ( ) light3 ( ambient=.1,diffuse=.1,specular=1., sdir=array([[0,0,-1],[1,.5,1]]),spower=array([4,2])) [xmin, xmax, ymin, ymax] = draw3(1) limits (xmin, xmax, ymin, ymax) paws ( ) if len (itest) == 0 or itest [0] == 2 : set_draw3_ (0) x = span (-1, 1, 64, 64) y = transpose (x) z = (x + y) * exp (-6.*(x*x+y*y)) print "light3 function demo- default lighting" orient3 ( ) light3 ( ) plwf (z,y,x,shade=1,edges=0) [xmin, xmax, ymin, ymax] = draw3 (1) # not necessary interactively limits (xmin, xmax, ymin, ymax) paws( ) print "light3,diffuse=.2,specular=1" light3(diffuse=.2,specular=1) limits_(square = 1) [xmin, xmax, ymin, ymax] = draw3(1) # not necessary interactively limits (xmin, xmax, ymin, ymax) paws() print "light3,sdir=[cos(theta),.25,sin(theta)] -- movie" making_movie = 1 movie(demo5_light, lims = [xmin, xmax, ymin, ymax]) making_movie = 0 fma() demo5_light(1) paws() light3() if len (itest) == 0 or itest [0] == 3 : nx = demo5_n [0] ny = demo5_n [1] nz = demo5_n [2] xyz = zeros ( (3, nx, ny, nz), Float) xyz [0] = multiply.outer ( span (-1, 1, nx), ones ( (ny, nz), Float)) xyz [1] = multiply.outer ( ones (nx, Float), multiply.outer ( span (-1, 1, ny), ones (nz, Float))) xyz [2] = multiply.outer ( ones ( (nx, ny), Float), span (-1, 1, nz)) r = sqrt (xyz [0] ** 2 + xyz [1] **2 + xyz [2] **2) theta = arccos (xyz [2] / r) phi = arctan2 (xyz [1] , xyz [0] + logical_not (r)) y32 = sin (theta) ** 2 * cos (theta) * cos (2 * phi) m3 = mesh3 (xyz, funcs = [r * (1. + y32)]) del r, theta, phi, xyz, y32 print " test uses " + `(nx - 1) * (ny - 1) * (nz - 1)` + " cells" elapsed = [0., 0., 0.] elapsed = timer_ (elapsed) elapsed0 = elapsed [nv, xyzv, dum] = slice3 (m3, 1, None, None, value = .50) # (inner isosurface) [nw, xyzw, dum] = slice3 (m3, 1, None, None, value = 1.) # (outer isosurface) pxy = plane3 ( array ([0, 0, 1], Float ), zeros (3, Float)) pyz = plane3 ( array ([1, 0, 0], Float ), zeros (3, Float)) [np, xyzp, vp] = slice3 (m3, pyz, None, None, 1) # (pseudo-colored slice) [np, xyzp, vp] = slice2 (pxy, np, xyzp, vp) # (cut slice in half) [nv, xyzv, d1, nvb, xyzvb, d2] = \ slice2x (pxy, nv, xyzv, None) [nv, xyzv, d1] = \ slice2 (- pyz, nv, xyzv, None) # (...halve one of those halves) [nw, xyzw, d1, nwb, xyzwb, d2] = \ slice2x ( pxy , nw, xyzw, None) # (split outer in halves) [nw, xyzw, d1] = \ slice2 (- pyz, nw, xyzw, None) elapsed = timer_ (elapsed) timer_print ("slicing time", elapsed - elapsed0) fma () print "split_palette,\"earth.gp\" -- generate palette for pl3tree" split_palette ("earth.gp") print "gnomon -- turn on gnomon" gnomon (1) print "pl3tree with 1 slicing plane, 2 isosurfaces" clear3 () # Make sure we don't draw till ready set_draw3_ (0) pl3tree (np, xyzp, vp, pyz) pl3tree (nvb, xyzvb) pl3tree (nwb, xyzwb) pl3tree (nv, xyzv) pl3tree (nw, xyzw) orient3 () light3 (diffuse = .2, specular = 1) limits () limits (square=1) demo5_light (1) paws () hcp () print "spin3 animated rotation, use rot3 or orient3 for one frame" # don't want limits to autoscale during animation lims = limits ( ) spin3 () limits ( ) # back to autoscaling demo5_light (1) paws () light3 () gnomon (0) limits (square = 1) palette ("gray.gp") if len (itest) == 0 or itest [0] == 4 : from PR import * f = PR ('./bills_plot') n_nodes = f.NumNodes n_z = f.NodesOnZones x = f.XNodeCoords y = f.YNodeCoords z = f.ZNodeCoords c = f.ZNodeVelocity n_zones = f.NumZones # Put vertices in right order for Gist n_z = transpose ( take (transpose (n_z), array ( [0, 4, 3, 7, 1, 5, 2, 6]))) m3 = mesh3 (x, y, z, funcs = [c], verts = n_z ) # [0:10]) [nv, xyzv, cv] = slice3 (m3, 1, None, None, 1, value = .9 * max (c) ) pyz = plane3 ( array ([1, 0, 0], Float ), zeros (3, Float)) pxz = plane3 ( array ([0, 1, 0], Float ), zeros (3, Float)) # draw a colored plane first fma () clear3 () # Make sure we don't draw till ready set_draw3_ (0) [np, xyzp, vp] = slice3 (m3, pyz, None, None, 1) pl3tree (np, xyzp, vp, pyz, split = 0) palette ("rainbow.gp") orient3 () demo5_light (1) paws () # [nv, xyzv, d1] = \ # slice2 (- pyz, nv, xyzv, None) [nw, xyzw, cw] = slice3 (m3, 1, None, None, 1, value = .9 * min (c) ) # [nw, xyzw, d1] = \ # slice2 (- pyz, nw, xyzw, None) [nvi, xyzvi, cvi] = slice3 (m3, 1, None, None, 1, value = .5 * min (c) ) [nvi, xyzvi, cvi] = \ slice2 (- pyz, nvi, xyzvi, cvi) [nvj, xyzvj, cvj] = slice3 (m3, 1, None, None, 1, value = .5 * max (c) ) [nvj, xyzvj, cvj] = \ slice2 (- pyz, nvj, xyzvj, cvj) fma () print "gnomon -- turn on gnomon" gnomon (1) clear3 () # Make sure we don't draw till ready set_draw3_ (0) pl3tree (nv, xyzv) # , cv) pl3tree (nw, xyzw) # , cw) pl3tree (nvi, xyzvi) # , cvi) pl3tree (nvj, xyzvj) # , cvi) orient3 () light3 (ambient = 0, diffuse = .5, specular = 1, sdir = [0, 0, -1]) limits (square=1) palette ("gray.gp") demo5_light (1) paws () print "spin3 animated rotation, use rot3 or orient3 for one frame" # don't want limits to autoscale during animation spin3 () limits ( ) # back to autoscaling demo5_light (1) paws () light3 () gnomon (0) palette ("gray.gp") draw3 ( 1 ) paws () clear3 () del nv, xyzv, cv, nw, xyzw, cw, nvi, xyzvi, cvi, nvj, xyzvj, cvj # Make sure we don't draw till ready set_draw3_ (0) for i in range (8) : [nv, xyzv, cv] = slice3 (m3, 1, None, None, 1, value = .9 * min (c) + i * (.9 * max (c) - .9 * min (c)) / 8.) [nv, xyzv, d1] = \ slice2 (pxz, nv, xyzv, None) pl3tree (nv, xyzv) orient3 () light3 (ambient = 0, diffuse = .5, specular = 1, sdir = [0, 0, -1]) limits (square=1) palette ("heat.gp") demo5_light (1) paws () spin3 () limits ( ) # back to autoscaling demo5_light (1) paws () demo5_light (1) paws () if len (itest) == 0 or itest [0] == 5 : # Try bert's data from PR import PR f = PR ('./berts_plot') nums = array ( [63, 63, 49], Int) dxs = array ( [2.5, 2.5, 10.], Float ) x0s = array ( [-80., -80., 0.0], Float ) c = f.c m3 = mesh3 (nums, dxs, x0s, funcs = [transpose (c)]) [nv, xyzv, dum] = slice3 (m3, 1, None, None, value = 6.5) fma () clear3 () print "gnomon -- turn on gnomon" gnomon (1) # Make sure we don't draw till ready set_draw3_ (0) palette ("rainbow.gp") pl3tree (nv, xyzv) orient3 () light3 (diffuse = .2, specular = 1) limits (square=1) demo5_light (1) paws () spin3 () demo5_light (1) paws () if len (itest) == 0 or itest [0] == 6 : # Try Bill's irregular mesh from PR import PR f = PR ("ball.s0001") ZLss = f.ZLstruct_shapesize ZLsc = f.ZLstruct_shapecnt ZLsn = f.ZLstruct_nodelist x = f.sap_mesh_coord0 y = f.sap_mesh_coord1 z = f.sap_mesh_coord2 c = f.W_vel_data # Now we need to convert this information to avs-style data istart = 0 # beginning index into ZLstruct_nodelist NodeError = "NodeError" ntet = 0 nhex = 0 npyr = 0 nprism = 0 nz_tet = [] nz_hex = [] nz_pyr = [] nz_prism = [] for i in range (4) : if ZLss [i] == 4 : # TETRAHEDRON nz_tet = reshape (ZLsn [istart: istart + ZLss [i] * ZLsc [i]], (ZLsc [i], ZLss [i])) ntet = ZLsc [i] istart = istart + ZLss [i] * ZLsc [i] elif ZLss[i] == 5 : # PYRAMID nz_pyr = reshape (ZLsn [istart: istart + ZLss [i] * ZLsc [i]], (ZLsc [i], ZLss [i])) npyr = ZLsc [i] # Now reorder the points (bill has the apex last instead of first) nz_pyr = transpose ( take (transpose (nz_pyr), array ( [4, 0, 1, 2, 3]))) istart = istart + ZLss [i] * ZLsc [i] elif ZLss[i] == 6 : # PRISM nz_prism = reshape (ZLsn [istart: istart + ZLss [i] * ZLsc [i]], (ZLsc [i], ZLss [i])) nprism = ZLsc [i] # now reorder the points (bill goes around a square face # instead of traversing the opposite sides in the same direction. nz_prism = transpose ( take (transpose (nz_prism), array ( [0, 1, 3, 2, 4, 5]))) istart = istart + ZLss [i] * ZLsc [i] elif ZLss[i] == 8 : # HEXAHEDRON nz_hex = reshape (ZLsn [istart: istart + ZLss [i] * ZLsc [i]], (ZLsc [i], ZLss [i])) # now reorder the points (bill goes around a square face # instead of traversing the opposite sides in the same direction. nz_hex = transpose ( take (transpose (nz_hex), array ( [0, 1, 3, 2, 4, 5, 7, 6]))) nhex = ZLsc [i] istart = istart + ZLss [i] * ZLsc [i] else : raise NodeError, `ZLss[i]` + "is an incorrect number of nodes." m3 = mesh3 (x, y, z, funcs = [c], verts = [nz_tet, nz_pyr, nz_prism, nz_hex]) [nv, xyzv, cv] = slice3 (m3, 1, None, None, 1, value = .9 * max (c) ) pyz = plane3 ( array ([1, 0, 0], Float ), zeros (3, Float)) pxz = plane3 ( array ([0, 1, 0], Float ), zeros (3, Float)) # draw a colored plane first fma () clear3 () # Make sure we don't draw till ready set_draw3_ (0) [np, xyzp, vp] = slice3 (m3, pyz, None, None, 1) pl3tree (np, xyzp, vp, pyz, split = 0) palette ("rainbow.gp") orient3 () limits (square=1) demo5_light (1) paws () [nw, xyzw, cw] = slice3 (m3, 1, None, None, 1, value = .9 * min (c) ) [nvi, xyzvi, cvi] = slice3 (m3, 1, None, None, 1, value = .1 * min (c) ) [nvi, xyzvi, cvi] = \ slice2 (- pyz, nvi, xyzvi, cvi) [nvj, xyzvj, cvj] = slice3 (m3, 1, None, None, 1, value = .1 * max (c) ) [nvj, xyzvj, cvj] = \ slice2 (- pyz, nvj, xyzvj, cvj) [nvii, xyzvii, cvii] = slice3 (m3, 1, None, None, 1, value = 1.e-12 * min (c) ) [nvii, xyzvii, cvii] = \ slice2 (- pyz, nvii, xyzvii, cvii) [nvjj, xyzvjj, cvjj] = slice3 (m3, 1, None, None, 1, value = 1.e-12 * max (c) ) [nvjj, xyzvjj, cvjj] = \ slice2 (- pyz, nvjj, xyzvjj, cvjj) fma () print "gnomon -- turn on gnomon" gnomon (1) clear3 () # Make sure we don't draw till ready set_draw3_ (0) pl3tree (nv, xyzv) # , cv) pl3tree (nw, xyzw) # , cw) pl3tree (nvi, xyzvi) # , cvi) pl3tree (nvj, xyzvj) # , cvj) pl3tree (nvii, xyzvii) # , cvii) pl3tree (nvjj, xyzvjj) # , cvjj) orient3 () light3 (ambient = 0, diffuse = .5, specular = 1, sdir = [0, 0, -1]) limits (square=1) palette ("gray.gp") demo5_light (1) paws () palette ("heat.gp") paws () if len (itest) == 0 or itest [0] == 7 : # test plwf on the sombrero function # compute sombrero function x = arange (-20, 21, typecode = Float) y = arange (-20, 21, typecode = Float) z = zeros ( (41, 41), Float) r = sqrt (add.outer ( x ** 2, y **2)) + 1e-6 z = sin (r) / r fma () clear3 () gnomon (0) # Make sure we don't draw till ready set_draw3_ (0) palette ("rainbow.gp") limits (square=1) orient3 () light3 () plwf (z, fill = z, ecolor = "black") [xmin, xmax, ymin, ymax] = draw3 (1) limits (xmin, xmax, ymin, ymax) paws () ##### Try smooth contours, log mode [nv, xyzv, dum] = slice3mesh (x, y, z) zmult = max (max (abs (x)), max (abs (y))) plzcont (nv, xyzv, contours = 20, scale = "normal") [xmin, xmax, ymin, ymax] = draw3 (1) limits (xmin, xmax, ymin, ymax) paws () plzcont (nv, xyzv, contours = 20, scale = "lin", edges=1) [xmin, xmax, ymin, ymax] = draw3 (1) limits (xmin, xmax, ymin, ymax) paws () plwf (z, fill = z, shade = 1, ecolor = "black") [xmin, xmax, ymin, ymax] = draw3 (1) limits (xmin, xmax, ymin, ymax) paws () plwf (z, fill = z, shade = 1, edges = 0) [xmin, xmax, ymin, ymax] = draw3 (1) limits (xmin, xmax, ymin, ymax) paws () light3(diffuse=.2,specular=1) print "light3,sdir=[cos(theta),.25,sin(theta)] -- movie" making_movie = 1 movie(demo5_light, lims = [xmin, xmax, ymin, ymax]) making_movie = 0 fma() demo5_light(1) paws () plwf (z, fill = None, shade = 1, edges = 0) [xmin, xmax, ymin, ymax] = draw3 (1) palette("gray.gp") limits (xmin, xmax, ymin, ymax) paws () if len (itest) == 0 or itest [0] == 8 : # test pl3surf on the sombrero function # compute sombrero function nc1 = 100 nv1 = nc1 + 1 br = - (nc1 / 2) tr = nc1 / 2 + 1 x = arange (br, tr, typecode = Float) * 40. / nc1 y = arange (br, tr, typecode = Float) * 40. / nc1 z = zeros ( (nv1, nv1), Float) r = sqrt (add.outer ( x ** 2, y **2)) + 1e-6 z = sin (r) / r # In order to use pl3surf, we need to construct a mesh # using mesh3. The way I am going to do that is to define # a function on the 3d mesh so that the sombrero function # is its 0-isosurface. z0 = min (ravel (z)) z0 = z0 - .05 * abs (z0) maxz = max (ravel (z)) maxz = maxz + .05 * abs (maxz) zmult = max (max (abs (x)), max (abs (y))) dz = (maxz - z0) nxnynz = array ( [nc1, nc1, 1], Int) dxdydz = array ( [1.0, 1.0, zmult*dz], Float ) x0y0z0 = array ( [float (br), float (br), z0*zmult], Float ) meshf = zeros ( (nv1, nv1, 2), Float ) meshf [:, :, 0] = zmult*z - (x0y0z0 [2]) meshf [:, :, 1] = zmult*z - (x0y0z0 [2] + dxdydz [2]) m3 = mesh3 (nxnynz, dxdydz, x0y0z0, funcs = [meshf]) fma () # Make sure we don't draw till ready set_draw3_ (0) pldefault(edges=0) [nv, xyzv, col] = slice3 (m3, 1, None, None, value = 0.) orient3 () pl3surf (nv, xyzv) lim = draw3 (1) limits (lim [0], lim [1], 1.5*lim [2], 1.5*lim [3]) palette ("gray.gp") paws () # Try new slicing function to get color graph [nv, xyzv, col] = slice3mesh (nxnynz [0:2], dxdydz [0:2], x0y0z0 [0:2], zmult * z, color = zmult * z) pl3surf (nv, xyzv, values = col) lim = draw3 (1) dif = 0.5 * (lim [3] - lim [2]) limits (lim [0], lim [1], lim [2] - dif, lim [3] + dif) palette ("rainbow.gp") paws () palette ("heat.gp") # Try plzcont--see if smooth mode possible plzcont (nv, xyzv) draw3 (1) paws () plzcont (nv, xyzv, contours = 20) draw3 (1) paws () plzcont (nv, xyzv, contours = 20, scale = "log") draw3(1) paws () plzcont (nv, xyzv, contours = 20, scale = "normal") draw3(1) paws () if len (itest) == 0 or itest [0] == 9 : vsf = 0. c = 1 s = 1000. kmax = 25 lmax = 35 # The following computations define an interesting 3d surface. xr = multiply.outer ( arange (1, kmax + 1, typecode = Float), ones (lmax, Float)) yr = multiply.outer ( ones (kmax, Float), arange (1, lmax + 1, typecode = Float)) zt = 5. + xr + .2 * random_sample (kmax, lmax) # ranf (xr) rt = 100. + yr + .2 * random_sample (kmax, lmax) # ranf (yr) z = s * (rt + zt) z = z + .02 * z * random_sample (kmax, lmax) # ranf (z) ut = rt/sqrt (rt ** 2 + zt ** 2) vt = zt/sqrt (rt ** 2 + zt ** 2) ireg = multiply.outer ( ones (kmax, Float), ones (lmax, Float)) ireg [0:1, 0:lmax]=0 ireg [0:kmax, 0:1]=0 ireg [1:15, 7:12]=2 ireg [1:15, 12:lmax]=3 ireg [3:7, 3:7]=0 freg=ireg + .2 * (1. - random_sample (kmax, lmax)) # ranf (ireg)) freg=array (freg, Float) #rt [4:6, 4:6] = -1.e8 z [3:10, 3:12] = z [3:10, 3:12] * .9 z [5, 5] = z [5, 5] * .9 z [17:22, 15:18] = z [17:22, 15:18] * 1.2 z [16, 16] = z [16, 16] * 1.1 orient3 () plwf (freg, shade = 1, edges = 0) [xmin, xmax, ymin, ymax] = draw3 (1) limits (xmin, xmax, ymin, ymax) paws () nxny = array ( [kmax - 1, lmax - 1]) x0y0 = array ( [0., 0.]) dxdy = array ( [1., 1.]) [nv, xyzv, col] = slice3mesh (nxny, dxdy, x0y0, freg) [nw, xyzw, col] = slice3mesh (nxny, dxdy, x0y0, freg + ut) pl3tree (nv, xyzv) pl3tree (nw, xyzw) draw3 (1) limits ( ) paws () light3 (ambient = 0, diffuse = .5, specular = 1, sdir = [0, 0, -1]) demo5_light (1) paws () [nv, xyzv, col] = slice3mesh (nxny, dxdy, x0y0, freg, color = freg) pl3surf (nv, xyzv, values = col) draw3 (1) palette ("rainbow.gp") paws () [nv, xyzv, col] = slice3mesh (nxny, dxdy, x0y0, freg, color = z) pl3surf (nv, xyzv, values = col) draw3 (1) paws () palette ("stern.gp") paws () [nv, xyzv, col] = slice3mesh (nxny, dxdy, x0y0, z, color = z) pl3surf (nv, xyzv, values = col) orient3(phi=0,theta=0) draw3 (1) paws () set_draw3_ (0) palette ("gray.gp") light3 ( diffuse=.1, specular=1., sdir=array([0,0,-1])) pl3surf (nv, xyzv) draw3 (1) paws () # spin3 () # paws () hcp_finish ()