
Numerical Python

David Ascher
Paul F. Dubois
Konrad Hinsen
Jim Hugunin
Travis Oliphant

Lawrence Livermore National Laboratory, Livermore, CA 94566
UCRL-MA-128569



ted, 
odifi-

 con-
f Cali-

rnment. 
s any 
r use-
t 

ice by 
ment, 

s and 
ernment 
Legal Notice
Copyright (c) 1999. The Regents of the University of California. All rights reserved. 

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby gran
provided that this entire notice is included in all copies of any software which is or includes a copy or m
cation of this software and in all copies of the supporting documentation for such software. 

This work was produced at the University of California, Lawrence Livermore National Laboratory under
tract no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University o
fornia for the operation of UC LLNL. 

DISCLAIMER 

This software was prepared as an account of work sponsored by an agency of the United States Gove
Neither the United States Government nor the University of California nor any of their employees, make
warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, o
fulness of any information, apparatus, product, or process disclosed, or represents that its use would no
infringe privately-owned rights. Reference herein to any specific commercial products, process, or serv
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse
recommendation, or favoring by the United States Government or the University of California. The view
opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov
or the University of California, and shall not be used for advertising or product endorsement purposes.
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1. Introduction

This chapter introduces the Numeric Python extension and outlines the rest of the
document.

The Numeric Python extensions (NumPy henceforth) is a set of extensions to the Python programm
guage which allows Python programmers to efficiently manipulate large sets of objects organized in g
fashion. These sets of objects are called arrays, and they can have any number of dimensions: one dim
arrays are similar to standard Python sequences, two-dimensional arrays are similar to matrices from l
gebra. Note that one-dimensional arrays are also different from any other Python sequence, and that two-dime
sional matrices are also different from the matrices of linear algebra, in ways which we will mention later in t
text.

Why are these extensions needed? The core reason is a very prosaic one, and that is that manipulatin
a million numbers in Python with the standard data structures such as lists, tuples or classes is much 
and uses too much space. Anything which we can do in NumPy we can do in standard Python – we j
not be alive to see the program finish. A more subtle reason for these extensions however is that the 
operations that programmers typically want to do on arrays, while sometimes very complex, can often
composed into a set of fairly standard operations.  This decomposition has been developed similarly in m
ray languages.  In some ways, NumPy is simply the application of this experience to the Python languag
many of the operations described in NumPy work the way they do because experience has shown tha
be a good one, in a variety of contexts. The languages which were used to guide the development of Nu
clude the infamous APL family of languages, Basis, MATLAB, FORTRAN, S and S+, and others. This
tage will be obvious to users of NumPy who already have experience with these other languages. This 
however, does not assume any such background, and all that is expected of the reader is a reasonabl
knowledge of the standard Python language.

This document is the “official” documentation for NumPy. It is both a tutorial and the most authoritative s
of information about NumPy with the exception of the source code. The tutorial material will walk you thr
a set of manipulations of simple, small, arrays of numbers, as well as image files. This choice was m
cause: 

• Aconcrete data set makes explaining the behavior of some functions much easier to motivate than
talking about abstract operations on abstract data sets;

• Every reader will at least an intuition as to the meaning of the data and organization of image files, and

• The result of various manipulations can be displayed simply since the data set has a natural graph
resentation. 

All users of NumPy, whether interested in image processing or not, are encouraged to follow the tutori
a working NumPy installation at their side, testing the examples, and, more importantly, transferring the
standing gained by working on images to their specific domain. The best way to learn is by doing – the
this tutorial is to guide you along this “doing.”
9
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Here is what the rest of this manual contains:

• Chapter 2 provides information on testing Python, NumPy, and compiling and installing NumPy if n
sary.

• Chapter 3 provides information on testing and installing the NumTut package, which allows easy visu
tion of arrays.

• Chapter 4 gives a high-level overview of the components of the NumPy system as a whole.

• Chapter 5 provides a detailed step-by-step introduction to the most important aspect of NumPy, the
dimensional array objects.

• Chapter 6 provides information on universal functions, the mathematical functions which operate on 
and other sequences elementwise.

• Chapter 7 covers pseudo-indices.

• Chapter 8 is a catalog of each of the utility functions which allow easy algorithmic processing of arra

• Chapter 9 discusses the methods of array objects.

• Chapter 10 presents the attributes of array objects.

• Chapter 11 is a collection of special topics, from the organization of the codebase to the mechanis
customizing printing.

• Chapter 12 is an tutorial on how to write a C extension which uses NumPy arrays.

• Chapter 13 is a reference for the C API to NumPy objects (both PyArrayObjects and UFuncObjects

• Chapter 14 is a reference for the Fast Fourier Transform module

• Chapter 15 is a reference for the Linear Algebra module

• Chapter 16 is a reference for the RandomArray random number generator module

• Chapter 17 is a glossary of terms

• Chapter 18 is a listing of known bugs and documentation tasks left undone.

Where to get information and code

Numerical Python and its documentation are freely distributed as a public service by the Lawrence Live
National Laboratory (LLNL), Livermore, CA, which is operated by the University of California for the Un
States Department of Energy. (See “Legal Notice” on page ii.). LLNL has a web site at:

http://xfiles.llnl.gov

where you can obtain this document, the NumTut tutorial source, and documentation about several ot
thon packages distributed by LLNL. Or, you can obtain them by using anonymous FTP to:

ftp://ftp-icf.llnl.gov/pub/python

The Python web site is

www.python.org

If the above LLNL link should ever become “stale”, the Python web page should contain an appropriate
the correct one.

Acknowledgments

Numerical Python is the outgrowth of a long collaborative design process carried out by the Matrix SIG
Python Software Activity (PSA). Jim Hugunin, while a graduate student at MIT, wrote most of the cod
initial documentation. When Jim joined CNRI and began working on JPython, he didn’t have the time to
10
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cess is the fastest way to improve it. Please send comments about the manual to support@icf.llnl.gov o
Dubois, L-264, Lawrence Livermore National Laboratory, Livermore, CA 94566, U.S.A.
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2. Installing NumPy

This chapter explains how to install and test NumPy, from either the source distribution or
from the binary distribution.

Before we start with the actual tutorial, we will describe the steps needed for you to be able to follow alo
examples step by step. These steps including installing Python, the NumPy extensions, and some tools 
ple files used in the examples of this tutorial.

Testing the Python installation

The first step is to install Python if you haven’t already. Python is available from the Python website’s dow
directory at http://www.python.org/download. Click on the link corresponding to your platform, and follow th
instructions described there.  When installed, starting Python by typing python  at the shell or double-clicking
on the Python interpreter should give a prompt such as:

Python 1.5.1 (#0, Apr 13 1998, 20:22:04) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

If you have problems getting this part to work, consider contacting a local support person or emailing python-
help@python.org for help. If neither solution works, consider posting on the comp.lang.python newsgroup
tails on the newsgroup/mailing list are available at http://www.python.org/psa/MailingLists.html#clp).

Testing the Numeric Python Extension Installation

The standard Python distribution does not come as of this writing with the Numeric Python extensions in
but your system administrator may have installed them already. To find out if your Python interpret
NumPy installed, type import  Numeric  at the Python prompt. You’ll see one of two behaviors (through
this document, bold  Courier New  font indicates user input, and standard  Courier New  font indicates
output):

>>> import Numeric
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ImportError: No module named Numeric
>>>

indicating that you don’t have NumPy installed, or:

>>> import Numeric
>>> 

indicating that you do. If you do, go on to the next step. If you don’t, you have to get the NumPy extens

Installing NumPy

There are currently two distributions available.
12
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On Win32 

For Microsoft Windows 95, 98 and NT, a binary installer is available at ftp://ftp-icf.llnl.gov/pub/python/
NumPy.exe. This installer is simple to use (simply double-click on the NumPy.exe file and answer each s
in turn). Running this installer will perform all the needed modifications to your Python installation so
NumPy works.

On Unix

For both Unix and other platforms, NumPy must be compiled from the source. The source distributi
NumPy is available as part of the LLNL Python distribution, which is available at ftp://ftp-icf.llnl.gov/pub/py-
thon/LLNLPython.tgz. This is a gzipped tarfile. It should be uncompressed using the gunzip program an
tarr’ed with the tar program:

csh> gunzip LLNLPython.tgz
csh> tar xf LLNLPython.tar

Follow the instructions in the toplevel directory for compilation and installation.

The standard Python installer for the Macintosh (available at http://www.python.org/download/
download_mac.html) also optionally installs the NumPy extensions, although these are typically not the
up-to-date. .

If you have problems getting this part to work, consider contacting a local support person or emailing python-
help@python.org . Alternatively, you can send a description of your problem to the Matrix-SIG (a specia
terest group devoted to the NumPy extension – details are available at http://www.python.org/sigs/matrix-sig/).
For a more targeted audience, the email address support@icf.llnl.gov provides technical support for the LLN-
LPython distribution, of which NumPy is a part.

�
Just like all Python modules and packages, the Numeric module can be invoked us-
ing either the import Numeric  form, or the from Numeric import ...  
form.  Because most of the functions we’ll talk about are in the Numeric module, in 
this document, all of the code samples will assume that they have been preceded by 
a statement: 

from Numeric import *
13
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3. The NumTut package

This chapter leads the user through the installation and testing of the NumTut package,
which should have been distributed with this document.

Testing the NumTut package

This tutorial assumes that the NumTut package has been installed. This package contains a few sampl
and utility functions for displaying arrays and the like. To find out if NumTut has been installed, do:

>>> from NumTut import *
>>> view(greece)

If a picture of a greek street shows up on your screen, you’re all set, and you can go to the next chapte

Possible reasons for failure:

>>> import NumTut
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ImportError: No module named NumTut

This message indicates that you do not have the NumTut package installed in your PythonPath. NumTu
tributed along with this document. (See “Where to get information and code” on page 10.) To install Nu
simply untar the NumTut.tar.gz file so that it is in your PythonPath. For example, on Win32, it can be pla
the main directory of your Python installation. On Unix, it can be placed in the site-packages directory o
installation.

Win32

>>> import NumTut
Traceback (innermost last):
[...]
14
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ConfigurationError: view needs Tkinter on Win32, and either threads or 
the IDLE editor"

or:

ConfigurationError: view needs either threads or the IDLE editor to be 
enabled.

On Win32 (Windows 95, 98, NT), the Tk toolkit is needed to view the images. Additionally, either the P
interpreter needs to be compiled with thread support (which is true in the standard win32 distribution) 
need to call the NumTut program from the IDLE interactive development environment.

If you do not wish to modify your Python installation to match these requirements, you can simply igno
references to the demonstrations which use the view()  command later in this document. Using NumPy do
not require image display tools, they just make some array operations easier to understand.

Unix

On Unix machines, NumTut will work best with a Python interpreter with Tk support (not true in the de
configuration), with the Tkinter GUI framework available and optionally with the tkImaging add-on (part o
Python Imaging Library). If this is not the case, it will try to use an external viewer which is able to read
files. The default viewer is ’xv’, a common image viewer available from ftp://ftp.cis.upenn.edu/pub/xv. If xv is
not installed, you will get an error message similar to:

>>> import NumTut
Traceback (innermost last):
[...]
ConfigurationError: PPM image viewer ’xv’ not found

You can configure NumTut to use a different image viewer, by typing e.g.:

>>> import NumTut
>>> NumTut.view.PPMVIEWER = ’ppmviewer’
>>> from NumTut import *
>>> view(greece)

If you do not have a PPM image viewer, you can simply ignore the references to the demonstrations wh
the view()  command later in this document. Using NumPy does not require image display tools, the
make some array operations easier to understand.
15
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4. High-Level Overview

In this chapter, a high-level overview of the extensions is provided, giving the reader the
definitions of the key components of the system.  This section defines the concepts used by
the remaining sections.

Numeric Python consists of a set of modules:

• Numeric.py  (and its helper modules multiarray  and umath .)

This module defines two new object types, and a set of functions which manipulate these objects, as
convert between them and other Python types.  The objects are the new array object (technically
multiarray  objects), and universal functions (technically ufunc  objects).   

• RandomArray.py  (and its helper module ranlib )

This module provides a high-level interface to a random-number generator.

• FFT.py  (and its helper module fftpack )

This module provides a high-level interface to the fast Fourier transform routines implemented in theFFT-
PACK library if it is available, or to the compatible but less optimized fftpack library which is shipped 
Numeric Python..

• LinearAlgebra.py  (and its helper module lapack_litemodule )

This module provides a high-level interface to the linear algebra routines implemented in the LAPACK li-
brary if it is available, or to the compatible but less optimized lapack_lite  library which is shipped with
Numeric Python.

Array Objects

The array objects are generally homogeneous collections of potentially large numbers of numbers.  All n
in a multiarray are the same kind (i.e. number representation, such as double-precision floating point).
objects must be full (no empty cells are allowed), and their size is immutable.  The specific numbers 
them can change throughout the life of the array. 

Mathematical operations on arrays return new arrays containing the results of these operations performele-
mentwise on the arguments of the operation.

The size of an array is the total number of elements therein (it can be 0 or more). It does not change thro
the life of the array.

The shape of an array is the number of dimensions of the array and its extent in each of these dimensions
be 0, 1 or more). It can change throughout the life of the array. In Python terms, the shape of an array i
of integers, one integer for each dimension that represents the extent in that dimension.

The rank of an array is the number of dimensions along which it is defined. It can change throughout the
the array. Thus, the rank is the length of the shape.

The typecode of an array is a single character description of the kind of element it contains (number fo
character or Python reference). It determines the itemsize of the array.
16
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The itemsize of an array is the number of 8-bit bytes used to store a single element in the array. The tota
ory used by an array tends to its size times its itemsize, as the size goes to infinity (there is a fixed overh
array, as well as a fixed overhead per dimension).

To put this in more familiar mathematicial language: A vector is a rank-1 array (it has only one dimension
which it can be indexed).  A matrix as used in linear algebra is a rank-2 array (it has two dimensions
which it can be indexed).  There are also rank-0 arrays, which can hold single scalars -- they have no di
along which they can be indexed, but they contain a single number. 

Here is an example of Python code using the array objects (bold text refers to user input, non-bold text 
puter output):

>>> vector1 = array((1,2,4,5))
>>> print vector1
[1 2 3 4 5]
>>> matrix1 = array(([0,1],[1,3]))
>>> print matrix1
[[0 1]
 [1 3]]
>>> print vector1.shape, matrix1.shape
(5,) (2,2)
>>> print vector1 + vector1
[ 2  4  6  8  10]]
>>> print matrix1 * matrix1
[[0 1] # note that this is not the matrix 
 [1 9]] # multiplication of linear algebra

If this example does not work for you because it complains of an unknown name “array”, you forgot to
your session with 

from Numeric import *

See page 13.

Universal Functions

Universal functions (ufuncs) are functions which operate on arrays and other sequences.  Most ufuncs 
mathematical operations on their arguments, also elementwise.  

Here is an example of Python code using the ufunc objects:

>>> print sin([pi/2., pi/4., pi/6.])
[ 1.        ,  0.70710678,  0.5       ]
>>> print greater([1,2,4,5], [5,4,3,2])
[0 0 1 1]
>>> print add([1,2,4,5], [5,4,3,2])
[6 6 7 7]
>>> print add.reduce([1,2,4,5])
12 # 1 + 2 + 3 + 4 + 5

Ufuncs are covered in detail in “Ufuncs” on page 36. 

Convenience Functions

The Numeric module provides, in addition to the functions which are needed to create the objects abov
of powerful functions to manipulate arrays, select subsets of arrays based on the contents of other arr
other array-processing operations.
17
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>>> data = arange(10) # convenient homolog of builtin 
range()
>>> print data
[0 1 2 3 4 5 6 7 8 9]
>>> print where(greater(data, 5), -1, data)
[ 0  1  2  3  4  5 -1 -1 -1 -1] # selection facility
>>> data = resize(array((0,1)), (9, 9))
>>> print data
[[0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]]

All of the functions which operate on NumPy arrays are described in “Array Functions” on page 44.

RandomArray

The RandomArray  module provides a high-level interface to the ranlib number generator.  It provides a
form distribution generator of pseudo-random numbers, as well as some convenience functions:

>>> from RandomArray import random, uniform, randint, permutation
>>> print random((5,5))
[[ 0.45456091  0.53438765  0.72412336  0.12156525  0.79255972]
 [ 0.14763653  0.93401444  0.38913983  0.97293309  0.45860398]
 [ 0.57528652  0.9801351   0.19893601  0.3396503   0.12224415]
 [ 0.9067847   0.37667559  0.71613152  0.24334284  0.68907028]
 [ 0.9655151   0.29746972  0.42734603  0.72314573  0.66344323]]
>>> print uniform(-1.0,1.0, (5,))
[-0.2637264   0.12331069  0.11497829 -0.25969645  0.36571342]
>>> print randint(10, 20, (4,2))
[[19 14]
 [14 11]
 [13 11]
 [13 11]]
>>> print permutation(10)
[0 5 9 4 2 1 6 8 3 7]
>>> print permutation(10)
[3 7 1 2 9 0 4 8 5 6]

The reader should also be aware that LLNL provides an alternative random number generator, calle
which also provides normal, log-normal and exponential distribution number generators. It is compatibl
the Cray random number generator and most importantly is designed for producing multiple independe
dom number streams. It is available as part of the LLNL distribution. See “RandomArray Referenc
page 87 for details.

FFT

The FFT module provides a high-level interface to the fast Fourier transform routines which are implem
in the FFTPACK library.  It performs one and two-dimensional FFT’s, forward and backwards (inverse F
and includes efficient routines for FFTs of real-valued arrays.  It is most efficient for arrays whose size is 
er of two.
18
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>>> from FFT import fft, inverse_fft
>>> data = array((1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0))
>>> print data
[ 1.  0.  0.  0.  1.  0.  0.  0.]
>>> print fft(data)
[ 2.+0.j  0.+0.j  2.+0.j  0.+0.j  2.+0.j  0.+0.j  2.+0.j  0.+0.j]
>>> print inverse_fft(fft(data))
[ 1.+0.j  0.+0.j  0.+0.j  0.+0.j  1.+0.j  0.+0.j  0.+0.j  0.+0.j]

See “FFT Reference” on page 82 for details.

LinearAlgebra

The LinearAlgebra module provides a high-level interface to the most commonly used functionality 
LAPACK library, in a Python-friendly fashion.  It includes functions to solve systems of linear equation
linear least squares problems, invert matrices, compute eigenvalues and eigenvectors, generalized inve
terminants, as well as perform singular value decomposition.

>>> from LinearAlgebra import inverse
>>> data = array(((1.0,2), (4,5)))
>>> print data
[[ 1.  2.]
 [ 4.  5.]]
>>> print inverse(data)
[[-1.66666667  0.66666667]
 [ 1.33333333 -0.33333333]]
>>> print inverse(inverse(data))
[[ 1.  2.]
 [ 4.  5.]]
19
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5. Array Basics

This chapter introduces some of the basic functions which will be used throughout the text.

Basics

Before we explore the world of image manipulation as a case-study in array manipulation, we should f
fine a few terms which we’ll use over and over again. Discussions of arrays and matrices and vectors 
confusing due to disagreements on the nomenclature. Here is a brief definition of the terms used in this 
and more or less consistently in the error messages of NumPy.

The python objects under discussion are formally called “multiarray” objects, but informally we’ll just
them “array” objects or just “arrays.” These are different from the array objects defined in the standard 
array  module (which is an older module designed for processing one-dimensional data such as sound

These array objects hold their data in a homogeneous block of elements, i.e. their elements all have the
type (such as a 64-bit floating-point number). This is quite different from most Python container objects,
can contain heterogeneous collections. (You can, however, have an array of Python objects, as discuss

Any given array object has a rank, which is the number of “dimensions” or “axes” it has. For example, a
in 3D space [1, 2, 1] is an array of rank 1 – it has one dimension. That dimension has a length of 3. 

As another example, the array 

1.0 0.0 0.0
0.0 1.0 2.0

is an array of rank 2 (it is 2-dimensional). The first dimension has a length of 2, the second dimensio
length of 3. Because the word “dimension” has many different meanings to different folks, in general th
“axis” will be used instead. Axes are numbered just like Python list indices: they start at 0, and can a
counted from the end, so that axis -1 is the last axis of an array, axis -2 is the penultimate axis, etc. 

There are two important and potentially unintuitive behaviors of NumPy arrays which take some gettin
to. The first is that by default, operations on arrays are performed element-wise. This means that when
two arrays, the resulting array has as elements the pairwise sums of the two operand arrays. This is tr
operations, including multiplication. Thus, array multiplication using the * operator will default to elem
wise multiplication, not matrix multiplication as used in linear algebra. Many people will want to use arra
linear algebra-type matrices (including their rank-1 versions, vectors). For those users, the Matrix cla
vides a more intuitive interface. We defer discussion of the Matrix class until later. 

The second behavior which will catch many users by surprise is that functions which return arrays wh
simply different views at the same data will in fact share their data. This will be discussed at length when w
have more concrete examples of what exactly this means.

Now that all of these definitions and warnings are laid out, let's see what we can do with these arrays. 
20
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Creating arrays from scratch

array() and typecodes

There are many ways to create arrays. The most basic one is the use of the array()  function: 

>>> a = array([1.2, 3.5, -1])

to make sure this worked, do: 

>>> print a
[ 1.2  3.5 -1. ]

The array(numbers, typecode=None) 1 function takes two arguments – the first one is the valu
which have to be in a Python sequence object (such as a list or a tuple). The optional second argume
typecode of the elements. If it is omitted, as in the example above, Python tries to find the one type wh
represent all the elements. Since the elements we gave our example were two floats and one integer
`float' as the type of the resulting array. If one specifies the typecode, one can specify unequivocally the
the elements – this is especially useful when, for example, one wants to make sure that an array conta
even though in some cases all of its elements are integers: 

>>> x,y,z = 1,2,3
>>> a = array([x,y,z]) # integers are enough for 1, 2 and 3
>>> print a
[1 2 3]
>>> a = array([x,y,z], Float) # not the default type
>>> print a
[ 1.  2.  3.]

�
Pop Quiz: hat will be the type of an array defined as follows:

>>> mystery = array([1, 2.0, -3j])
Hint: -3j  is an imaginary number.
Answer: try it out! 

�
A very common mistake is to call array with a set of numbers as arguments, as in 
array(1,2,3,4,5) . This doesn’t produce the expected result as soon as at least 
two numbers are used, because the first argument to array()  must be the entire 
data for the array -- thus, in most cases, a sequence of numbers.  The correct way to 
write the preceding invocation is most likely array((1,2,3,4,5)) .

Possible values for the second argument to the array  creator function (and indeed to any function which a
cepts a so-called typecode for arrays) are: 

1. One type corresponding to single ASCII characters: Character .

2. One unsigned numeric type: UnsignedInt8 , used to store numbers between 0 and 255.

3. Many signed numeric types:

1. When giving “function signatures,” only the most commonly used arguments and their default value
will be listed.  For complete function signatures, consult the Numeric Python Reference Manual.
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• Signed integer choices: Int , Int0 , Int8 , Int16 , Int32 , and on some platforms, Int64  and
Int128  (their ranges depend on their size).

• Floating point choices: Float , Float0 , Float8 , Float16 , Float32 , Float64 , and on some
platforms, Float128 .

• Complex number choices: Complex , Complex0 , Complex8 , Complex16 , Complex32 ,
Complex64 , Complex128 .

The meaning of these is as follows:

• The versions without any numbers (Int , Float , Complex ) correspond to the int , float  and
complex  datatypes in Python.  They are thus long integers and double-precision floating point
bers, with a complex number corresponding to two double-precision floats.

• The versions with a number following correspond to whatever words are available on the sp
platform you are using which have at least that many bits in them.  Thus, Int0  corresponds to the
smallest integer word size available, Int8  corresponds to the smallest integer word size availa
which has at least 8 bits, etc.  The word sizes for the complex numbers refer to the total num
bits used by both the real and imaginary parts (in other words, the data portion of an arra
Complex128  elements uses up the same amount of memory as the data portions of two arr
typecode  Float64  with 2N elements).

4. One non-numeric type, PyObject .  Arrays of typecode PyObject  are arrays of Python references, an
as such their data area can contain references to any kind of Python objects.

The last typecode deserves a little comment. Indeed, it seems to indicate that arrays can be filled with 
thon objects. This appears to violate the notion that arrays are homogeneous. In fact, the typecode PyObject
does allow heterogeneous arrays. However, if you plan to do numerical computation, you're much bet
with a homogeneous array with a potentially “large” type than with a heterogeneous array. This is bec
heterogeneous array stores references to objects, which incurs a memory cost, and because the spee
putation is much slower with arrays of PyObject 's than with uniform number arrays. Why does it exist, the
A very useful features of arrays is the ability to slice them, dice them, select and choose from them, e
feature is so nice that sometimes one wants to do the same operations with, e.g., arrays of class inst
such cases, computation speed is not as important as convenience. Also, if the array is filled with object
are instances of classes which define the appropriate methods, then NumPy will let you do math with th
jects. For example, if one creates an object class which has an __add__  method, then arrays (created with th
PyObject  typecode) of instances of such a class can be added together.   [XXXXXX make sure that’s 

Multidimensional Arrays

The following example shows one way of creating multidimensional arrays: 

>>> ma = array([[1,2,3],[4,5,6]])
>>> print ma
[[1 2 3]
 [4 5 6]]

The first argument to array()  in the code above is a single list containing two lists, each containing thre
ements. If we wanted floats instead, we could specify, as discussed in the previous section, the option
code we wished: 

>>> ma_floats = array([[1,2,3],[4,5,6]], Float)
>>> print ma_floats
[[ 1.  2.  3.]
 [ 4.  5.  6.]]
22
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This array allows us to introduce the notion of `shape'. The shape of an array is the set of numbers whic
its dimensions. The shape of the array ma defined above is 2 by 3.  More precisely, all arrays have a shap
tribute which is a tuple of integers.  So, in this case: 

>>> print ma.shape
(2, 3)

Using the earlier definitions, this is a shape of rank 2, where the first axis has length 2, and the seond axis
length 3. The rank of an array A is always equal to len(A.shape) . 

Note that shape  is an attribute of  array  objects. It is the first of several which we will see throughout th
tutorial. If you're not used to object-oriented programming, you can think of attributes as  “features” or “
ties” of individual arrays. The relation between an array and its shape is similar to the relation between a
and their hair color. In Python, it's called an object/attribute relation. 

What if one wants to change the dimensions of an array? For now, let us consider changing the shape of
without making it “grow.” Say, for example, we want to make the 2x3 array defined above (ma) an array of rank
1: 

>>> flattened_ma = reshape(ma, (6,))
>>> print flattened_ma
[1 2 3 4 5 6]

One can change the shape of arrays to any shape as long as the product of all the lengths of all the ax
constant (in other words, as long as the number of elements in the array doesn’t change): 

>>> a = array([1,2,3,4,5,6,7,8])
[1 2 3 4 5 6 7 8]
>>> print a
>>> b = reshape(a, (2,4)) # 2*4 == 8
[[1 2 3 4]
 [5 6 7 8]]
>>> print b
>>> c = reshape(b, (4,2) # 4*2 == 8 
>>> print c
[[1 2]
 [3 4]
 [5 6]
 [7 8]]

Notice that we used a new function, reshape() . It, like array() , is a function defined in the Numeric
module. It expects an array as its first argument, and a shape as its second argument. The shape has 
quence of integers (a list or a tuple). Keep in mind that a tuple with a single element needs a comma at
the right shape tuple for a rank-1 array with 5 elements is (5,) , not (5) . 

One nice feature of shape tuples is that one entry in the shape tuple is allowed to be -1 .  The -1  will be auto-
matically replaced by whatever number is needed to build a shape which does not change the size of t
Thus: 

>>> a = reshape(array(range(25)), (5,-1))
>>> print a, a.shape 
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]] (5, 5)
23
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The shape of an array is a modifiable attribute of the array. You can therefore change the shape of an a
ply by assigning a new shape to it: 

>>> a = array([1,2,3,4,5,6,7,8,9,10]) 
>>> a.shape
(10,) 
>>> a.shape = (2,5) 
>>> print a
[[ 1  2  3  4  5]
 [ 6  7  8  9 10]]
>>> a.shape = (10,1) # second axis has length 1
>>> print a
[[ 1]
 [ 2]
 [ 3]
 [ 4]
 [ 5]
 [ 6]
 [ 7]
 [ 8]
 [ 9]
 [10]]
>>> a.shape = (5,-1) # note the -1 trick described above
>>> print a
[[ 1  2]
 [ 3  4]
 [ 5  6]
 [ 7  8]
 [ 9 10]]

As in the rest of Python, violating rules (such as the one about which shapes are allowed) results in exc

>>> a.shape = (6,-1)
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: total size of new array must be unchanged

�
The default printing routine provided by the Numeric module prints arrays as fol-
lows:
1 The last axis is always printed left to right
2 The next-to-last axis is printed top to bottom
3 The remaining axes are printed top to bottom with increasing numbers of sepa-

rators 

This explains why rank-1 arrays are printed from left to right, rank-2 arrays have the first dimension 
down the screen and the second dimension going from left to right, etc. 

If you want to change the shape of an array so that it has more elements than it started with (i.e. grow 
you have many options: One solution is to use the concat()  method discussed later. An alternative is to u
the array()  creator function with existing arrays as arguments: 

>>> print a
[0 1 2 3 4 5 6 6 7]
>>> b = array([a,a]) 
24
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>>> print b
[[1 2 3 4 5 6 7 8]
 [1 2 3 4 5 6 7 8]] 
>>> print b.shape
(2, 8) 

XXX reshape

A final possibility is the resize() function, which takes a “base” array as its first argument and the des
shape as the second argument. Unlike reshape() , the shape argument to resize()  can corresponds to a
smaller or larger shape than the input array.  Smaller shapes will result in arrays with the data at the “beg
of the input array, and larger shapes result in arrays with data containing as many replications of the inp
as are needed to fill the shape. For example, starting with a simple array

>>> base = array([0,1])  

one can quickly build a large array with replicated data: 

>>> big = resize(base, (9,9)) 
>>> print big
[[0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]
 [1 0 1 0 1 0 1 0 1]
 [0 1 0 1 0 1 0 1 0]]

and if you imported the view  function from the NumTut package, you can do:

>>> view(resize(base, (100,100)))
# grey grid of horizontal lines is shown
>>> view(resize(base, (101,101)))
# grey grid of alternating black and white pixels is shown

�
Sections denoted such as this one with an “eye” symbol will be used to indicate as-
pects of the functions which may not be needed for a first introduction at NumPy, but 
which should be mentioned for the sake of completeness.

The array  constructor takes a mandatory data  argument, an optional typecode, 
and an optional copy  argument.  If the data  argument is a sequence, then array 
creates a new object of type multiarray, and fills the array with the elements of the 
data  object. The shape of the array is determined by the size and nesting arrange-
ment of the elements of data.

If data  is not a sequence, then the array returned is an array of shape ()  (the empty 
tuple), of typecode ’O’ , containing a single element, which is data .
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zeros() and ones() 

Often, one needs to manipulate arrays filled with numbers which aren't available beforehand. The N
module provides a few functions which create arrays from scratch: 

zeros()  and ones()  simply create arrays of a given shape filled with zeros and ones respectively: 

>>> z = zeros((3,3))  
>>> print z  
[[0 0 0]
 [0 0 0]
 [0 0 0]]
>>> o = ones([2,3])  
>>> print o
[[1 1 1]
 [1 1 1]]

Note that the first argument is a shape – it needs to be a list or a tuple of integers. Also note that the def
for the returned arrays is Int , which you can feel free to override using something like: 

>>> o = ones((2,3), Float)  
>>> print o
[[ 1.  1.  1.]
 [ 1.  1.  1.]]

arrayrange() 

The arrayrange()  function is similar to the range()  function in Python, except that it returns an array 
opposed to a list. 

>>> r = arrayrange(10) 
>>> print r
[0 1 2 3 4 5 6 7 8 9] 

Combining the arrayrange()  with the reshape()  function, we can get: 

>>> big = reshape(arrayrange(100),(10,10))
>>> print big
[[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]
 [20 21 22 23 24 25 26 27 28 29]
 [30 31 32 33 34 35 36 37 38 39]
 [40 41 42 43 44 45 46 47 48 49]
 [50 51 52 53 54 55 56 57 58 59]
 [60 61 62 63 64 65 66 67 68 69]
 [70 71 72 73 74 75 76 77 78 79]
 [80 81 82 83 84 85 86 87 88 89]
 [90 91 92 93 94 95 96 97 98 99]]
>>> view(reshape(arrayrange(10000),(100,100)))
# array of increasing lightness from top down (slowly) and from left to
# right (faster) is shown

arange()  is a shorthand for arrayrange() .  

One can set the start, stop and step arguments, which allows for more varied ranges: 
26
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>>> print arrayrange(10,-10,-2)
[10  8  6  4  2  0  -2  -4  -6  -8]

An important feature of arrayrange is that it can be used with non-integer starting points and strides:

>>> print arrayrange(5.0)
[ 0. 1. 2. 3. 4.]
>>> print arrayrange(0, 1, .2)
[ 0.   0.2  0.4  0.6  0.8]

If you want to create an array with just one value, repeated over and over, you can use the * operator a
lists 

>>> a = array([[3]*5]*5)
>>> print a
[[3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]]

but that is relatively slow, since the duplication is done on Python lists. A quicker way would be to sta
0's and add 3: 

>>> a = zeros([5,5]) + 3
>>> print a
[[3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]
 [3 3 3 3 3]]

The optional typecode argument can force the typecode of the resulting array, which is otherwise the “h
of the starting and stopping arguments. The starting argument defaults to 0 if not specified. arange  is a syn-
onym for arrayrange . Note that if a typecode is specified which is “lower” than that which arrayrange w
normally use, the array is the result of a precision-losing cast (a round-down, as that used in the astype  method
for arrays.)

Creating an array from a function: fromfunction()

Finally, one may want to create an array with contents which are the result of a function evaluation. This 
using the fromfunction()  function, which takes two arguments, a shape and a callable object (usu
function).  For example: 

>>> def dist(x,y):
...   return (x-5)**2+(y-5)**2 # distance from point (5,5) squared
...
>>> m = fromfunction(dist, (10,10))
>>> print m
[[50 41 34 29 26 25 26 29 34 41]
 [41 32 25 20 17 16 17 20 25 32]
 [34 25 18 13 10  9 10 13 18 25]
 [29 20 13  8  5  4  5  8 13 20]
 [26 17 10  5  2  1  2  5 10 17]
 [25 16  9  4  1  0  1  4  9 16]
 [26 17 10  5  2  1  2  5 10 17]
 [29 20 13  8  5  4  5  8 13 20]
 [34 25 18 13 10  9 10 13 18 25]
27
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 [41 32 25 20 17 16 17 20 25 32]]
>>> view(fromfunction(dist, (100,100))
# shows image which is dark in topleft corner, and lighter away from it.
>>> m = fromfunction(lambda i,j,k: 100*(i+1)+10*(j+1)+(k+1), (4,2,3))
>>> print m
[[[111 112 113]
  [121 122 123]]
 [[211 212 213]
  [221 222 223]]
 [[311 312 313]
  [321 322 323]]
 [[411 412 413]
  [421 422 423]]]

By examining the above examples, one can see that fromfunction()  creates an array of the shape specifie
by its second argument, and with the contents corresponding to the value of the function argument (the
gument) evaluated at the indices of the array.  Thus the value of m[3,4]  in the first example above is the valu
of dist  when x=3  and y=4 .  Similarly for the lambda function in the second example, but with a rank-3 ar

The implementation of fromfunction consists of:

def fromfunction(function, dimensions):
    return apply(function, tuple(indices(dimensions)))

which means that the function function is called for each element in the sequence indices(dimensions)
scribed in the definition of indices, this consists of arrays of indices which will be of rank one less tha
specified by dimensions. This means that the function argument must accept the same number of argu
there are dimensions in dimensions, and that each argument will be an array of the same shape as that
by dimensions. Furthermore, the array which is passed as the first argument corresponds to the indices
element in the resulting array along the first axis, that which is passed as the second argument corres
the indices of each element in the resulting array along the second axis, etc. A consequence of this is
function which is used with fromfunction will work as expected only if it performs a separable computati
its arguments, and expects its arguments to be indices along each axis. Thus, no logical operation on 
ments can be performed, or any non-shape preserving operation. The first example below satisfies t
quirements, hence works (the x  and y  arrays both get 10x10 arrays as input corresponding to the values o
indices along the two dimensions), while the second array attemps to do a comparison test on an array
ces, which fails.

>>> def buggy(test):
...     if test > 4: return 1
...     else: return 0
...
>>> print fromfunction(buggy, (10,))
Traceback (innermost last):
  File "<stdin>", line 1, in ?
  File "C:\PYTHON\LIB\Numeric.py", line 157, in fromfunction
    return apply(function, tuple(indices(dimensions)))
  File "<stdin>", line 2, in buggy
TypeError: Comparison of multiarray objects is not implemented.

If you need to fill an array with the result of a function which does not meet these criteria, you can alwa
a function like: 

def slowfromfunction(function, shape):
# XXXXXX  I need to come up with a version of that...
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The simplest array constructor is the identity(n)  function, which takes a single integer argument and 
turns a square identity array of that size of integers: 

>>> print identity(5)
[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]
>>> view(identity(100))
# shows black square with a single white diagonal

Coercion and Casting

We’ve mentioned the typecodes of arrays, and how to create arrays with the right typecode, but we have
ered what happens when arrays with different typecodes interact.

Automatic Coercions and Binary Operations

The rules followed by NumPy when performing binary operations on arrays mirror those used by Pyt
general.  Operations between numeric and non-numeric types are not allowed (e.g. an array of charact
be added to an array of numbers), and operations between mixed number types (e.g. floats and intege
and omplex numbers, or in the case of NumPy, operations between any two arrays with different numer
codes) first perform a coercion of the ’smaller’ numeric type to the type of the ‘larger’ numeric type.  Fi
when scalars and arrays are operated on together, the scalar is converted to a rank-0 array first. Thus,
“small” integer to a “large” floating point array is equivalent to first casting the integer “up” to the typeco
the array:

>>> arange(0, 1.0, .1) + 12
array([ 12. ,  12.1,  12.2,  12.3,  12.4,  12.5,  12.6,  12.7,  12.8,  
12.9])

The automatic coercions are described in Figure 1.
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Figure 1 Up-casts are indicated with arrows.  Down-casts are allowed by the 
astype()  method, but may result in loss of information.

Deliberate up-casting: The asarray function

One more array constructor is the asarray()  function. It is used if you want to have an array of a speci
typecode and you don't know what typecode array you have (for example, in a generic function which c
erate on all kinds of arrays, but needs them to be converted to complex arrays). If the array it gets as 
ment is of the right typecode, it will get sent back unchanged. If the array is not of the right typecode
element of the new array will be the result of the coercion to the new type of the old elements.  asarray()
will refuse to operate if there might be loss of information -- in other words, asarray()  only casts ’up’. 

asarray  is also used when you have a function that operates on arrays, but you want to allow people
it with an arbitrary python sequence object. This gives your function a behavior similar to that of most 
builtin functions that operate on arrays. 

The typecode value table

The typecodes identifiers (Float0 , etc.) have as values single-character strings.  The mapping between
code and character strings is machine dependent.  An example of the correspondences between typec
acters and the typecode identifiers for 32-bit architectures are shown in Table 3-X.

Table 1: Typecode character/identifier table on a Pentium computer

Character
# of 
bytes

# of 
bits

Identifiers

D 16 128 Complex, Complex64

F 8 64 Complex0, Complex16, Complex32, Complex8

d 8 64 Float, Float64

f 4 32 Float0, Float16, Float32, Float8

PyObject

Complex32

Complex64

Complex128

Float32

Float64

Float128

Float16

Float8

Char

Int32

Int64

Int128

Int16

Int8UnsignedInt8

Same-type coercion

Different-type coercion
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Consequences of silent upcasting

When dealing with very large arrays of floats and if precision is not important (or arrays of small integers
it may be worthwhile to cast the arrays to “small” typecodes, such as Int8 , Int16  or Float32 .  As the stan-
dard Python integers and floats correspond to the typecodes Int32  and Float64 , using them in apparently
“innocent” ways will result in up-casting, which may null the benefit of the use of small typecode arrays
example:

>>> mylargearray.typecode()
’f’ #  a.k.a. Float32 on a Pentium
>>> mylargearray.itemsize()
4
>>> mylargearray = mylargearray + 1 # 1 is an Int64 on a Pentium
>>> mylargearray.typecode() # see Fig. 1 for explanation.
’d’
>>> mylargearray.itemsize()
8

Note that the sizes returned by the itemsize()  method are expressed in bytes.

To prevent this problem, one should use arrays containing a single number, with the appropriate bytecod
can be facilitated by a few convenience functions, such as:

toChar = lambda x: array(x, Character)
toInt8 = lambda x: array(x, Int8)# or use variable names such as Byte
toInt16 = lambda x: array(x, Int16)
toInt32 = lambda x: array(x, Int32)
toFloat32 = lambda x: array(x, Float32)
toFloat64 = lambda x: array(x, Float64)

>>> mylargearray.typecode(), mylargearray.itemsize()
(’f’, 4) #  start again
>>> mylargearray = mylargearray + toFloat32(1)
>>> mylargearray.typecode(), mylargearray.itemsize()
(’f’, 4) #  no up-casting, no size change

Deliberate casts (potentially down): the astype method

You may also force NumPy to cast any number array to another number array.  For example, to take 
of any numeric type (IntX or FloatX or ComplexX or UnsignedInt8) and convert it to a 64-bit float, one ca

>>> floatarray = otherarray.astype(Float64)

l 4 32 Int

1 1 8 Int0, Int8

s 2 16 Int16

i 4 32 Int32

Table 1: Typecode character/identifier table on a Pentium computer

Character
# of 
bytes

# of 
bits

Identifiers
31
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The typecode can be any of the number typecodes, “larger” or “smaller".  If it is larger, this is a cast-u
asarray() had been used.  If it is smaller, the standard casting rules of the underlying language (C) a
which means that truncation or loss of precision can occur:

>>> print x
[ 0.   0.4  0.8  1.2  1.6]
>>> x.astype(Int)
array([0, 0, 0, 1, 1])

If the typecode used with astype()  is the original array’s typecode, then a copy of the original array is
turned.

Operating on Arrays

Simple operations 

If you have a keen eye, you have noticed that some of the previous examples did something new. It 
number to an array. Indeed, most Python operations applicable to numbers are directly applicable to ar

>>> print a
[1 2 3]
>>> print a * 3
[3 6 9]
>>> print a + 3
[4 5 6]

Note that the mathematical operators behave differently depending on the types of their operands. Whe
the operands is an array and the other is a number, the number is added to all the elements of the arra
resulting array is returned. This is called broadcasting. This also occurs for unary mathematical operations su
as sin and the negative sign

>>> print sin(a)
[ 0.84147098  0.90929743  0.14112001]
>>> print -a
[-1 -2 -3]

When both elements are arrays with the same shape, then a new array is created, where each element 
of the corresponding elements in the original arrays: 

>>> print a + a
[2 4 6]

If the operands of operations such as addition are arrays which have the same rank but different non-in
mensions, then an exception is generated: 

>>> print a
[1 2 3]
>>> b = array([4,5,6,7]) # note this has four elements
>>> print a + b
Traceback (innermost last):
  File ``<stdin>``, line 1, in ?
ArrayError: frames are not aligned

This is because there is no reasonable way for NumPy to interpret addition of a (3,)  shaped array and a (4,)
shaped array.

Note what happens  when adding arrays with different rank 

>>> print a
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[1 2 3]
>>> print b
[[ 4  8 12]
 [ 5  9 13]
 [ 6 10 14]
 [ 7 11 15]]
>>> print a + b
[[ 5 10 15]
 [ 6 11 16]
 [ 7 12 17]
 [ 8 13 18]]

This is another form of broadcasting. To understand this, one needs to look carefully at the shapes of a and b: 

>>> a.shape
(3,)
>>> b.shape
(4,3)

Because array a’s last dimension had length 3 and array b’s last dimension also had length 3, those two dime
sions were “matched” and a new dimension was created and automatically “assumed” for array a.  The
ready in a was “replicated” as many times as needed (4, in this case) to make the two shapes of the o
arrays conform.  This replication (broadcasting) occurs when arrays are operands to binary operations a
shapes differ and when the following conditions are true:

• starting from the last axis, the axis lengths (dimensions) of the operands are compared

• if both arrays have an axis length greater than 1, an exception is raised

• if one array has an axis length greater than 1, then the other array’s axis is “stretched” to ma
length of the first axis -- if the other array’s axis is not present (i.e., if the other array has sm
rank), then a new axis of the same length is created.

This algorithm is complex, but intuitive in practice.  For more details, consult the Numeric Reference.

Getting and Setting array values

Just like other Python sequences, array contents are manipulated with the [] notation. For rank-1 array
are no differences between list and array notations:

>>> a = arrayrange(10)
>>> print a[0] # get first element
0
>>> print a[1:5] # get second through fifth element
[1 2 3 4]
>>> print a[:-1] # get last element
9

The first difference with lists comes with multidimensional indexing.  If an array is multidimensional (of 
> 1), then specifying a single integer index will return an array of dimension one less than the original a

>>> a = arrayrange(9)
>>> a.shape = (3,3)
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a[0] # get first row, not first element!
[0 1 2]
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>>> print a[1] # get second row
[3 4 5]

To get to individual elements in a rank-2 array, one specifies both indices separated by commas:

>>> print a[0,0] # get elt at first row, first column
0
>>> print a[0,1] # get elt at first row, second column
1
>>> print a[1,0] # get elt at second row, first column
3
>>> print a[2,-1] # get elt at third row, last column
8

Of course, the []  notation can be used to set values as well: 

>>> a[0,0] = 123
>>> print a
[[123   1   2]
 [  3   4   5]
 [  6   7   8]]

Note that when referring to rows, the right hand side of the equal sign needs to be a sequence which “fits
referred array subset (in the code sample below, a 3-element row):

>>> a[1] = [10,11,12]
>>> print a
[[123   1   2]
 [ 10  11  12]
 [  6   7   8]]

Slicing Arrays 

The standard rules of Python slicing apply to arrays, on a per-dimension basis. Assuming a 3x3 array: 

>>> a = reshape(arrayrange(9),(3,3))
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]

The plain [:] operator slices from beginning to end:

>>> print a[:,:]
[[0 1 2]
 [3 4 5]
 [6 7 8]]

In other words, [:] with no arguments is the same as [:] for lists – it can be read ``all indices along this ax
to get the second row along the second dimension: 

>>> print a[:,1]
[1 4 7]

Note that what was a “column” vector is now a “row” vector -- any “integer slice” (as in the 1 in the exa
above) results in a returned array with rank one less than the input array.

If one does not specify as many slices as there are dimensions in an array, then the remaining slices are
to be ``all''. If A is a rank-3 array, then
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A[1] == A[1,:] == A[1,:,:]

There is one addition to the slice notation for arrays which does not exist for lists, and that is the option
argument, meaning the ``step size'' also called stride or increment.  Its default value is 1, meaning retu
element in the specified range.  Alternate values allow one to skip some of the elements in the slice: 

>>> a = arange(12)
>>> print a
[ 0  1  2  3  4  5  6  7  8  9 10 11]
>>> print a[::2] # return every *other* element
[ 0  2  4  6  8 10]

Negative strides are allowed as long as the starting index is greater than the stopping index:

>>> a = reshape(arrayrange(9),(3,3))
>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a[:, 0]
[0 3 6]
>>> print a[0:3, 0]
[0 3 6]
>>> print a[2:-1, 0]
[6 3 0]

If a negative stride is specified and the starting or stopping indices are omitted, they default to “end of ax
“beginning of axis” respectively.  Thus, the following two statements are equivalent for the array given:

>>> print a[2:-1, 0]
[6 3 0]
>>> print a[::-1, 0]
[6 3 0]
>>> print a[::-1] # this reverses only the first axis
[[6 7 8]
 [3 4 5]
 [0 1 2]]
>>> print a[::-1,::-1] # this reverses both axes  
[[8 7 6]
 [5 4 3]
 [2 1 0]]

One final way of slicing arrays is with the keyword ...  This keyword is somewhat complicated. It stands f
``however many `:' I need depending on the rank of the object I'm indexing, so that the indices I *do* s
are at the end of the index list as opposed to the usual beginning.`` 

So, if one has a rank-3 array A, then A[...,0]  is the same thing as A[:,:,0]  but if B is rank-4, then
B[...,0] is the same thing as: B[:,:,:,0] . Only one ...  is expanded in an index expression, so if o
has a rank-5 array C, then:  C[...,0,...]  is the same thing as  C[:,:,:,0,:] .
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What are Ufuncs?

The operations on arrays that were mentioned in the previous section (element-wise addition, multipli
etc.) all share some features -- they all follow similar rules for broadcasting, coercion and “element-wise
ation".  Just like standard addition is available in Python through the add function in the operator module
operations are available through callable objects as well.  Thus, the following objects are available in t
meric module:

All of these ufuncs can be used as functions.  For example, to use add , which is a binary ufunc (i.e. it takes two
arguments), one can do either of:

>>> a = arange(10)
>>> print add(a,a)
[ 0  2  4  6  8 10 12 14 16 18]
>>> print a + a
[ 0  2  4  6  8 10 12 14 16 18]

In other words, the + operator on arrays performs exactly the same thing as the add  ufunc when operated on
arrays.  For a unary ufunc such as sin , one can do, e.g.:

>>> a = arange(10)
>>> print sin(a)
[ 0.          0.84147098  0.90929743  0.14112001 -0.7568025  -0.95892427
      -0.2794155   0.6569866   0.98935825  0.41211849]

Unary ufuncs return arrays with the same shape as their arguments, but with the contents correspondi
corresponding mathematical function applied to each element (sin(0)=0, sin(1)=0.84147098, etc.).  

Table 2: Universal Functions, or ufunc s. The operators which invoke them when 
applied to arrays are indicated in parentheses. The entries in slanted 
typeface refer to unary ufuncs, while the others refer to binary ufuncs.

add (+) subtract (-) multiply (*) divide (/)

remainder (%) power (**) arccos arccosh

arcsin arcsinh arctan arctanh

cos cosh exp log

log10 sin sinh sqrt

tan tanh maximum minimum

conjugate equal (==) not_equal  (!=) greater (>)

greater_equal (>=) less (<) less_equal (<=) logical_and (and)

logical_or (or) logical_xor logical_not (not) bitwise_and (&)

bitwise_or (|) bitwise_xor bitwise_not (~)
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There are three additional features of ufuncs which make them different from standard Python functions
can operate on any Python sequence in addition to arrays; they can take an “output” argument; they 
tributes which are themselves callable with arrays and sequences. Each of these will be described in tu

Ufuncs can operate on any Python sequence

Ufuncs have so far been described as callable objects which take either one or two arrays as arguments
ing on whether they are unary or binary).  In fact, any Python sequence which can be the input to the
constructor can be used.  The return value from ufuncs is always an array.  Thus:

>>> add([1,2,3,4], (1,2,3,4))
array([2, 4, 6, 8])

Ufuncs can take output arguments

In many computations with large sets of numbers, arrays are often used only once.  For example, a com
on a large set of numbers could involve the following step

    dataset = dataset * 1.20

This operation as written needs to create a temporary array to store the results of the computation, a
eventually free the memory used by the original dataset array (provided there are no other references to
it contains).  It is more efficient, both in terms of memory and computation time, to do an “in-place” oper
This can be done by specifying an existing array as the place to store the result of the ufunc.  In this e
one can write:

    multiply(dataset, 1.20, dataset)

This is not a step to take lightly, however.  For example, the “big and slow” version (dataset = dataset
* 1.20 ) and the “small and fast” version above will yield different results in two cases:  

• If the typecode of the target array is not that which would normally be computed, the operatio
fail and raise a TypeError exception.

• If the target array corresponds to a different “view” on the same data as either of the source 
inconsistencies will result.  For example, 

          >>> a = arange(5, typecode=Float64)
          >>> print a[::-1] * 1.2
          [ 4.8  3.6  2.4  1.2  0. ]
          >>> multiply(a[::-1], 1.2, a)
          array([ 4.8 ,  3.6 ,  2.4 ,  4.32,  5.76])
          >>> print a
          [ 4.8   3.6   2.4   4.32  5.76]

This is because the ufunc does not know which arrays share which data, and in this case th
writing of the data contents follows a different path through the shared data space of the two 
thus resulting in strangely distorted data.

Ufuncs have special methods

The reduce ufunc method

If you don't know about the reduce  command in Python, review section 5.1.1 of the Python Tutorial (http://
www.python.org/doc/tut/functional.html). Briefly, reduce  is most often used with two arguments, a callab
object (such as a function), and a sequence.  It calls the callable object with the first two element of
quence, then with the result of that operation and the third element, and so on, returning at the end the
sive “reduction” of the specified callable object over the sequence elements.  Similarly, the reduce  method of
ufuncs is called with a sequence as an argument, and performs the reduction of that ufunc on the sequ
an example, adding all of the elements in a rank-1 array can be done with:
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>>> a = array([1,2,3,4])
>>> print add.reduce(a)
10 

When applied to arrays which are of rank greater than one, the reduction proceeds by default along the f

>>> b = array([[1,2,3,4],[6,7,8,9]])
>>> print b
[[1 2 3 4]
 [6 7 8 9]]
>>> print add.reduce(b)
[ 7  9 11 13]

A different axis of reduction can be specified with a second integer argument:

>>> print b
[[1 2 3 4]
 [6 7 8 9]]
>>> print add.reduce(b, 1)
[10 30] 

The accumulate ufunc method

The accumulate  ufunc method is simular to reduce , except that it returns an array containing the interm
diate results of the reduction: 

>>> a = arange(10)
>>> print a
[0 1 2 3 4 5 6 7 8 9]
>>> print add.accumulate(a)
[ 0  1  3  6 10 15 21 28 36 45] # 0, 0+1, 0+1+2, 0+1+2+3, ... 0+...+9
>>> print add.reduce(a)
45 # same as add.accumulate(...)[-1]

The outer ufunc method

The third ufunc method is outer , which takes two arrays as arguments and returns the “outer ufunc” of the
arguments. Thus the outer  method of the multiply  ufunc, results in the outer product. The outer method
only supported for binary methods. 

>>> print a
[0 1 2 3 4]
>>> print b
[0 1 2 3]
>>> print add.outer(a,b)
[[0 1 2 3]
 [1 2 3 4]
 [2 3 4 5]
 [3 4 5 6]
 [4 5 6 7]]
>>> print multiply.outer(b,a)
[[ 0  0  0  0  0]
 [ 0  1  2  3  4]
 [ 0  2  4  6  8]
 [ 0  3  6  9 12]]
>>> print power.outer(a,b)
[[ 1  0  0  0]
 [ 1  1  1  1]
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 [ 1  2  4  8]
 [ 1  3  9 27]
 [ 1  4 16 64]]

The reduceat ufunc method

The final ufunc method is the reduceat  method, which I’d love to explain it, but I don’t understand it (XXX

Ufuncs always return new arrays

Except when the ’output’ argument are used as described above, ufuncs always return new arrays whic
share any data with the input array.

Which are the Ufuncs?

Table 1 lists all the ufuncs. We will first discuss the mathematical ufuncs, which perform operations ver
ilar to the functions in the math  and cmath  modules, albeit elementwise, on arrays.  These come in two for
unary and binary:

Unary Mathematical Ufuncs (take only one argument) 

The following ufuncs apply the predictable functions on their single array arguments, one element at 
arccos , arccosh ,  arcsin ,  arcsinh ,  arctan ,  arctanh ,  cos ,  cosh ,  exp ,  log ,  log10 ,
sin ,  sinh ,  sqrt ,  tan ,  tanh .

As an example:

>>> print x
[0 1 2 3 4]
>>> print cos(x)
[ 1.          0.54030231 -0.41614684 -0.9899925  -0.65364362]
>>> print arccos(cos(x))
[ 0.          1.          2.          3.          2.28318531]
# not a bug, but wraparound: 2*pi%4 is 2.28318531

The conjugate  ufunc takes an array of complex numbers and returns the array with entries which a
complex conjugates of the entries in the input array.  If it is called with real numbers, a copy of the arra
turned unchanged.

Binary Mathematical Ufuncs

These ufuncs take two arrays as arguments, and perform the specified mathematical operation on them,
of elements at a time: add , subtract , multiply , divide , remainder , power . 

Logical Ufuncs

The ``logical'' ufuncs also perform their operations on arrays in elementwise fashion, just like the ``mat
ical'' ones.

Two are special (maximum and miminum ) in that they return arrays with entries taken from their input arra

>>> print x
[0 1 2 3 4]
>>> print y
[ 2.   2.5  3.   3.5  4. ]
>>> print maximum(x, y)
[ 2.   2.5  3.   3.5  4. ]
>>> print minimum(x, y)
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[ 0.  1.  2.  3.  4.]

The others all return arrays of 0’s or 1’s: equal , not_equal , greater , greater_equal , less ,
less_equal , logical_and , logical_or , logical_xor , logical_not , bitwise_and ,
bitwise_or , bitwise_xor , bitwise_not .

These are fairly self-explanatory, especially with the associated symbols from the standard Python ve
the same operations in Table 1 above.  The logical_*  ufuncs perform their operations (and, or, etc.) usin
the truth value of the elements in the array (equality to 0 for numbers and the standard truth test for Py
arrays).  The bitwise_*  ufuncs, on the other hand, can be used only with integer arrays (of any word 
and will return integer arrays of the larger bit size of the two input arrays:

>>> x
array([7, 7, 0],'1')
>>> y
array([4, 5, 6])
>>> bitwise_and(x,y)
array([4, 5, 0],'i')

We've already discussed how to find out about the contents of arrays based on the indices in the array
what the various slice mechanisms are for. Often, especially when dealing with the result of computat
data analysis, one needs to ``pick out'' parts of matrices based on the content of those matrices. For ex
might be useful to find out which elements of an array are negative, and which are positive. The com
ufuncs are designed for just this type of operation. Assume an array with various positive and negative n
in it (for the sake of the example we'll generate it from scratch): 

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> b = sin(a)
>>> print b
[[ 0.          0.84147098  0.90929743  0.14112001 -0.7568025 ]
 [-0.95892427 -0.2794155   0.6569866   0.98935825  0.41211849]
 [-0.54402111 -0.99999021 -0.53657292  0.42016704  0.99060736]
 [ 0.65028784 -0.28790332 -0.96139749 -0.75098725  0.14987721]
 [ 0.91294525  0.83665564 -0.00885131 -0.8462204  -0.90557836]]
>>> print less_equal(b, 0)
[[1 0 0 0 1]
 [1 1 0 0 0]
 [1 1 1 0 0]
 [0 1 1 1 0]
 [0 0 1 1 1]]

This last example has 1’s where the corresponding elements are less than or equal to 0, and 0’s everyw

>>> view(greater(greeceBW, .3))
# shows a binary image with white where the pixel value was greater than 
.3

Ufunc shorthands

Numeric  defines a few functions which correspond to often-used uses of ufuncs: for example, add.re-
duce()  is synonymous with the sum()  utility function: 

>>> a = arange(5) # [0 1 2 3 4]
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>>> print sum(a) # 0 + 1 + 2 + 3 + 4
10

Similarly, cumsum is equivalent to add.accumulate  (for ``cumulative sum``), product  to multi-
ply.reduce , and cumproduct  to multiply.accumulate .

Additional ``utility'' functions which are often useful are alltrue  and sometrue , which are defined as
logical_and.reduce  and logical_or.reduce  respectively:

>>> a = array([0,1,2,3,4])
>>> print greater(a,0)
[0 1 1 1 1]
>>> alltrue(greater(a,0))
0
>>> sometrue(greater(a,0))
1
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7. Pseudo Indices

Tbis chapter discusses pseudo-indices, which allow arrays to have their shapes modified
by adding axes, sometimes only for the duration of the evaluation of a Python expression.

Consider multiplication of a rank-1 array by a scalar: 

>>> a = array([1,2,3])
>>> a * 2
[2 4 6]

This should be trivial to you by now. We've just multiplied a rank-1 array by a scalar (which is converte
rank-0 array). In other words, the rank-0 array was broadcast to the next rank. This works for adding so
rank-1 arrays as well: 

>>> print a
[1 2 3]
>>> a + array([4])
[5 6 7]

but it won't work if either of the two rank-1 arrays have non-matching dimensions which aren't 1 – put a
way, broadcast only works for dimensions which are either missing (e.g. a lower-rank array) or for dime
of 1. 

With this in mind, consider a classic task, matrix multiplication. Suppose we want to multiply the row v
[10,20] by the column vector [1,2,3]. 

>>> a = array([10,20])
>>> b = array([1,2,3])
>>> a * b
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: frames are not aligned example 

This makes sense – we're trying to multiply a rank-1 array of shape (2,) with a rank-1 array of shape (3
violates the laws of broadcast. What we really want to do is make the second vector a vector of shape 
that the first vector can be broadcast accross the second axis of the second vector. One way to do this
the reshape function: 

>>> a.shape
(2,)
>>> b.shape
(3,)
>>> b2 = reshape(b, (3,1))
>>> print b2
[[1]
 [2]
 [3]]
>>> b2.shape
(3, 1)
>>> print a * b2
[[10 20]
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 [20 40]
 [30 60]]

This is such a common operation that a special feature was added (it turns out to be useful in many othe
as well) – the NewAxis  ``pseudo-index'', originally developed in the Yorick language.  NewAxis  is an index,
just like integers, so it is used inside of the slice brackets []. It can be thought of as meaning ``add a n
here,'' in much the same ways as adding a 1 to an array's shape adds an axis. Again, examples help 
situation: 

>>> print b
[1 2 3]
>>> b.shape
(3,)
>>> c = b[:, NewAxis]
>>> print c
[[1]
 [2]
 [3]]
>>> c.shape
(3,1) 

Why use such a pseudo-index over the reshape function or shape assignments? Often one doesn't rea
new array with a new axis, one just wants it for an intermediate computation. Witness the array multipl
mentioned above, without and with pseudo-indices: 

>>> without = a * reshape(b, (3,1))  
>>> with = a * b[:,NewAxis]

The second is much more readable (once you understand how NewAxis  works), and it's much closer to the in
tended meaning. Also, it's independent of the dimensions of the array b You might counter that using som
like reshape(b, (-1,1))  is also dimension-independent, but 1) would you argue that it's as readab
how would you deal with rank-3 or rank-N arrays? The NewAxis -based idiom also works nicely with highe
rank arrays, and with the ...  ``rubber index'' mentioned earlier. Adding an axis before the last axis in an a
can be done simply with: 

>>> a[...,NewAxis,:]
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8. Array Functions 

Most of the useful manipulations on arrays are done with functions. This might be surprising given Pytho
ject-oriented framework, and that many of these functions could have been implemented using meth
stead. Choosing functions means that the same procedures can be applied to arbitrary python sequence
to  a r ra ys .  Fo r  e xa mp le ,  w h i l e  t r an spose ( [ [ 1 , 2 ] , [ 3 , 4 ] ] )  w o rks  j us t  f i ne ,
[[1,2],[3,4]].transpose()  can’t work. This approach also allows uniformity in interface betwe
functions defined in the Numeric Python system, whether implemented in C or in Python, and functions d
in extension modules. The use of array methods is limited to functionality which depends critically on th
plementation details of array objects.  Array methods are discussed in the next chapter. 

We've already covered two functions which operate on arrays,  reshape  and resize .

take(a, indices, axis=0) 

take  is in some ways like the slice operations. It selects the elements of the array it gets as first argume
on the indices it gets as a second argument. Unlike slicing, however, the array returned by take  has the same
rank as the input array. This is again much easier to understand with an illustration: 

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
>>> print take(a, (0,)) # first row 
[ [0 1 2 3 4]]
>>> print take(a, (0,1)) # first and second row
[[0 1 2 3 4]
 [5 6 7 8 9]]
>>> print take(a, (0,-1)) # first and last row
[[ 0  1  2  3  4]
 [15 16 17 18 19]]

The optional third argument specifies the axis along which the selection occurs, and the default value (a
examples above) is 0, the first axis. If you want another axis, then you can specify it: 

>>> print take(a, (0,), 1) # first column
[[ 0]
 [ 5]
 [10]
 [15]]
>>> print take(a, (0,1), 1) # first and second column
[[ 0  1]
 [ 5  6]
 [10 11]
 [15 16]]
>>> print take(a, (0,-1), 1) # first and last column
[[ 0  4]
 [ 5  9]
 [10 14]
 [15 19]]
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This is considered to be a ``structural'' operation, because its result does not depend on the content of t
or the result of a computation on those contents but uniquely on the structure of the array. Like all suc
tural operations, the default axis is 0 (the first rank). I mention it here because later in this tutorial, we w
functions which have a default axis of -1. 

Take is often used to create multidimensional arrays with the indices from a rank-1 array.  As in the ear
amples, the shape of the array returned by take()  is a combination of the shape of its first argument and 
shape of the array that elements are “taken” from -- when that array is rank-1, the shape of the return
has the same shape as the index sequence. [XXX vague]  

>>> x = arange(10) * 100
>>> print x
[  0 100 200 300 400 500 600 700 800 900]
>>> print take(x, [[2,4],[1,2]])
[[200 400]
 [100 200]]

A typical example of using take()  is to replace the grey values in an image according to a “translation ta
For example, let’s consider a brightening of a greyscale image.  The view()  function defined in the NumTut
package automatically scales the input arrays to use the entire range of grey values, except if the inpu
are of typecode ’b’  unsigned bytes -- thus to test this brightening function, we’ll first start by converting
greyscale floating point array to a greyscale byte array:

>>> BW = (greeceBW*256).astype('b')
>>> view(BW) # shows black and white picture

We then create a table mapping the integers 0-255 to integers 0-255 using a “compressive nonlinearity

>>> table = (255- arange(256)**2 / 256).astype('b')
>>> view(table) # shows the conversion curve

To do the “taking” into an array of the right kind, we first create a blank image array with the same sha
typecode as the original array:

>>> BW2 = zeros(BW.shape, BW.typecode())

and then perform the take() operation

>>> BW2.flat[:] = take(table, BW.flat)
>>> view(BW2)

transpose(a, axes=None) 

transpose  takes an array and returns a new array which corresponds to a with the order of axes spec
the second argument. The default corresponds to flipping the order of all the axes (it is equiva
a.shape[::-1]  if a is the input array). 

>>> print a
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]
>>> print transpose(a)
[[ 0  5 10 15]
 [ 1  6 11 16]
 [ 2  7 12 17]
 [ 3  8 13 18]
 [ 4  9 14 19]]
>>> greece.shape # it’s a 355x242 RGB picture
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(355, 242, 3)
>>> view(greece)
# picture of greek street is shown
>>> view(transpose(greece, (1,0,2))) # swap x and y, not color axis!
# picture of greek street is shown sideways

repeat(a, repeats, axis=0) 

repeat  takes an array and returns an array with each element in the input array repeated as often as i
by the corresponding elements in the second array. It operates along the specified axis.  So, to stretch
evenly, one needs the repeats array to contain as many instances of the integer scaling factor as the s
specified axis:

>>> view(repeat(greece, 2*ones(greece.shape[0])))  # double in X
>>> view(repeat(greece, 2*ones(greece.shape[1]), 1))  # double in Y

choose(a, (b0, ..., bn)) 

a is an array of integers between 0 and n. The resulting array will have the same shape as a, with eleme
ed from b0,...,bn as indicating by the value of the corresponding element in a. 

Assume a is an array a that you want to ``clip'' so that no values are greater than 100.0. 

>>> choose(greater(a, 100.0), (a, 100.0))  

Everywhere that greater(a, 100.0) is false (ie. 0) this will ``choose'' the corresponding value in a. Ever
else it will ``choose'' 100.0. 

This works as well with arrays. Try to figure out what the following does: 

>>> ret = choose(greater_than(a,b), (c,d)) 

ravel(a) 

returns the argument array a as a 1d array. It is equivalent to reshape(a, (-1,))  or a.flat . Unlike
a.flat , however, ravel  works with non-contiguous arrays.

>>> print x
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> x.iscontiguous()
0
>>> x.flat
Traceback (innermost last):
  File "<stdin>", line 1, in ?
ValueError: flattened indexing only available for contiguous array
>>> ravel(x)
array([ 0,  1,  2,  3,  5,  6,  7,  8, 10, 11, 12, 13])

nonzero(a) 

nonzero() returns an array containing the indices of the elements in a that are nonzero. These indices on
sense for 1d arrays, so the function refuses to act on anything else. As of 1.0a5 this function does not 
complex arrays. 
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where(condition, x, y) 

where(condition,x,y) returns an array shaped like condition and has elements of x and y where conditio
spectively true or false 

compress(condition, a, axis=0) 

returns those elements of a corresponding to those elements of condition that are nonzero. condition mu
same size as the given axis of a. 

>>> print x
[0 1 2 3]
>>> print greater(x, 2)
[0 0 0 1]
>>> print compress(greater(x, 2), x)
[3]

diagonal(a, k=0) 

returns the entries along the k th diagonal of a (k is an offset from the main diagonal). This is designed
arrays. For larger arrays, it will return the diagonal of each 2d sub-array.

>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> print diagonal(x)
[ 0  6 12 18 24]
>>> print diagonal(x, 1)
[ 1  7 13 19]
>>> print diagonal(x, -1)
[ 5 11 17 23]

trace(a, k=0) 

returns the sum of the elements in a along the k th diagonal. 

>>> print x
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]
 [20 21 22 23 24]]
>>> print trace(x) # 0 + 6 + 12 + 18 + 24
60
>>> print trace(x, -1) # 5 + 11 + 17 + 23
56
>>> print trace(x, 1) # 1 + 7 + 13 + 19
40

searchsorted(a, values) 

Called with a rank-1 array sorted in ascending order, searchsorted()  will return the indices of the posi-
tions in a where the corresponding values would fit. 
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>>> print bin_boundaries
[ 0.   0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1. ]
>>> print data
[ 0.3029573   0.79585496  0.82714031  0.77993884  0.55069605  0.76043182
       0.28511823  0.29987358  0.40286206  0.68617903]
>>> print searchsorted(bin_boundaries, data)
[4 8 9 8 6 8 3 3 5 7]

This can be used for example to write a simple histogramming function:

>>> def histogram(a, bins):
... n = searchsorted(sort(a), bins)
... n = concatenate([n, [len(a)]])
... return n[1:]-n[:-1]
...
>>> print histogram([0,0,0,0,0,0,0,.33,.33,.33], arange(0,1.0,.1))
[7 0 0 3 0 0 0 0 0 0]
>>> print histogram(sin(arange(0,10,.2)), arange(-1.2, 1.2, .1))
[0 0 4 2 2 2 0 2 1 2 1 3 1 3 1 3 2 3 2 3 4 9 0 0]

sort(a, axis=-1) 

This function returns an array containing a copy of the data in a, with the same shape as a, but with the order
of the elements along the specified axis sorted. The shape of the returned array is the same as a’s. Thus,
sort(a, 3)  will be an array of the same shape as a, where the elements of a have been sorted along th
axis. 

>>> print data
[[5 0 1 9 8]
 [2 5 8 3 2]
 [8 0 3 7 0]
 [9 6 9 5 0]
 [9 0 9 7 7]]
>>> print sort(data) # Axis -1 by default
[[0 1 5 8 9]
 [2 2 3 5 8]
 [0 0 3 7 8]
 [0 5 6 9 9]
 [0 7 7 9 9]]
>>> print sort(data, 0)
[[2 0 1 3 0]
 [5 0 3 5 0]
 [8 0 8 7 2]
 [9 5 9 7 7]
 [9 6 9 9 8]] 

argsort(a, axis=-1) 

argsort  will return the indices of the elements of a needed to produce sort(a) . In other words, for a rank-
1 array, take(a, argsort(a)) == sort(a) . 

>>> print data
[5 0 1 9 8]
>>> print sort(data)
[0 1 5 8 9]
>>> print argsort(data)
[1 2 0 4 3]
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>>> print take(data, argsort(data))
[0 1 5 8 9]

argmax(a, axis=-1), argmin(a, axis=-1) 

The argmax()  function returns an array with the arguments of the maximum values of its input array a 
the given axis. The returned array will have one less dimension than a. argmin()  is just like argmax() , ex-
cept that it returns the indices of the minima along the given axis. 

>>> print data
[[9 6 1 3 0]
 [0 0 8 9 1]
 [7 4 5 4 0]
 [5 2 7 7 1]
 [9 9 7 9 7]]
>>> print argmax(data)
[0 3 0 2 0]
>>> print argmax(data, 0)
[0 4 1 1 4]
>>> print argmin(data)
[4 0 4 4 2]
>>> print argmin(data, 0)
[1 1 0 0 0]

fromstring(string, typecode) 

Will return the array formed by the binary data given in string of the specified typecode. This is mainly us
reading binary data to and from files, it can also be used to exchange binary data with other modules 
python strings as storage (e.g. PIL). Note that this representation is dependent on the byte order. To find ou
byte ordering used, use the byteswapped()  method described on page 54.

dot(m1, m2) 

The dot()  function returns the dot product of m1 and m2. This is equivalent to matrix multiply for rank-2 ar
rays (without the transpose). Somebody who does more linear algebra really needs to do this functio
some day! 

matrixmultiply(m1, m2) 

The matrixmultiply()  function is.. 

XXX

clip(m, m_min, m_max) 

The clip function creates an array with the same shape and typecode as m, but where every entry in 
less than m_min is replaced by m_min, and every entry greater than m_max is replaced by m_max.
within the range [m_min, m_max] are left unchanged. 

>>> a = arange(9, Float)
>>> clip(a, 1.5, 7.5)
1.5000 1.5000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 7.5000 
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The indices function returns an array corresponding to the shape given. The array returned is an array 
shape which is based on the specified shape, but has an added dimension of length the number of dim
in the specified shape. For example, if the shape specified by the shape  argument is (3,4), then the shape o
the array returned will be (2,3,4) since the length of (3,4) is 2. The contents of the returned arrays are s
the ith subarray (along index 0, the first dimension) contains the indices for that axis of the elements in th
An example makes things clearer:

>>> i = indices((4,3))
>>> i.shape
(2, 4, 3)
>>> print i[0]
[[0 0 0]
 [1 1 1]
 [2 2 2]
 [3 3 3]]
>>> print i[1]
[[0 1 2]
 [0 1 2]
 [0 1 2]
 [0 1 2]]

So, i[0]  has an array of the specified shape, and each element in that array specifies the index of that 
in the subarray for axis 0. Similarly, each element in the subarray in i[1]  contains the index of that position
in the subarray for axis 1. 

swapaxes(a, axis1, axis2)

Returns a new array which shares the data of a, but which has the two axes specified by axis1  and axis2
swapped. If a is of rank 0 or 1, swapaxes simply returns a new reference to a.

>>> x = arange(10)
>>> x.shape = (5,2,1)
>>> print x
[[[0]
  [1]]
 [[2]
  [3]]
 [[4]
  [5]]
 [[6]
  [7]]
 [[8]
  [9]]]
>>> y = swapaxes(x, 0, 2)
>>> print y.shape
(1, 2, 5)
>>> print y
[ [[0 2 4 6 8]
  [1 3 5 7 9]]]
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concatenate((a0, a1, ... , an), axis=0)

Returns a new array containing copies of the data contained in all arrays a0 ... an . The arrays ai will be
concatenated along the specified axis (0 by default). All arrays ai must have the same shape along ev
except for the one given. To concatenate arrays along a newly created axis, you can use array((a0, ...,
an))  as long as all arrays have the same shape. 

>>> print x
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> print concatenate((x,x))
[[ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]
 [ 0  1  2  3]
 [ 5  6  7  8]
 [10 11 12 13]]
>>> print concatenate((x,x), 1)
[[ 0  1  2  3  0  1  2  3]
 [ 5  6  7  8  5  6  7  8]
 [10 11 12 13 10 11 12 13]]
>>> print array((x,x) )
[[[ 0  1  2  3]
  [ 5  6  7  8]
  [10 11 12 13]]
 [[ 0  1  2  3]
  [ 5  6  7  8]
  [10 11 12 13]]]

innerproduct(a, b)

array_repr()

See section on Textual Representations of arrays.

array_str()

See section on Textual Representations of arrays.

resize(a, new_shape)

The resize  function takes an array and a shape, and returns a new array with the specified shape, an
with the data in the input array. Unlike the reshape  function, the new shape does not have to yield the sa
size as the original array. If the new size of is less than that of the input array, the returned array cont
appropriate data from the “beginning” of the old array. If the new size is greater than that of the input arr
data in the input array is repeated as many times as needed to fill the new array.

>>> x = arange(10)
>>> y = resize(x, (4,2)) # note that 4*2 < 10
>>> print x
[0 1 2 3 4 5 6 7 8 9]
>>> print y
[[0 1]
 [2 3]
 [4 5]
 [6 7]]
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>>> print resize(array((0,1)), (5,5)) # note that 5*5 > 2
[[0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]
 [1 0 1 0 1]
 [0 1 0 1 0]]

diagonal(a, offset=0, axis1=-2, axis2=-1)

The diagonal function takes an array a, and returns an array of rank 1 containing all of the elements o
that the difference between their indices along the specified axes is equal to the specified offset. With the
values, this corresponds to all of the elements of the diagonal of a along the last two axes. Currently this is bro-
ken for offsets other than -1, 0 and 1, and for non-square arrays.

repeat

convolve

where(condition, x, y)

identity(n)

The identity function returns an n by n array where the diagonal elements are 1, and the off-diagonal e
are 0.

>>> print identity(5)
[[1 0 0 0 0]
 [0 1 0 0 0]
 [0 0 1 0 0]
 [0 0 0 1 0]
 [0 0 0 0 1]]

sum(a, index=0)

The sum function is a synonym for the reduce method of the add ufunc. It returns the sum of all of the e
in the sequence given along the specified axis (first axis by default).

>>> print x
[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]
 [16 17 18 19]]
>>> print sum(x)
[40 45 50 55] # 0+4+8+12+16, 1+5+9+13+17, 
2+6+10+14+18, ...
>>> print sum(x, 1)
[ 6 22 38 54 70] # 0+1+2+3, 4+5+6+7, 8+9+10+11, ...

cumsum(a, index=0)

The cumsum function is a synonym for the accumulate  method of the add  ufunc.

product(a, index=0)

The product  function is a synonym for the reduce  method of the multiply  ufunc.
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cumproduct(a, index=0)

The cumproduct  function is a synonym for the accumulate  method of the multiply  ufunc.

alltrue(a, index=0)

The alltrue  function is a synonym for the reduce  method of the logical_and  ufunc.

sometrue(a, index=0)

The sometrue  function is a synonym for the reduce  method of the logical_or  ufunc.
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9. Array Methods 

As we discussed at the beginning of the last chapter, there are very few array methods for good reas
these all depend on the the implementation details. They're worth knowing, though: 

itemsize() 

The itemsize() method applied to an array returns the number of bytes used by any one of its elements

>>> a = arange(10)
>>> a.itemsize()
4
>>> a = array([1.0])
>>> a.itemsize()
8
>>> a = array([1], Complex)
>>> a.itemsize()
16

iscontiguous() 

Calling an array's iscontiguous() method returns true if the memory used by A is contiguous. A non-cont
array can be converted to a contiguous one by the copy() method. This is useful for interfacing to C r
only, as far as I know. 

>>> XXX example 

typecode() 

The `typecode()' method returns the typecode of the array it is applied to. While we've been talking abo
as Float, Int, etc., they are represented internally as characters, so this is what you'll get: 

>>> a = array([1,2,3])
>>> a.typecode()
'l'
>>> a = array([1], Complex)
>>> a.typecode()
'D'

byteswapped() 

The byteswapped  method performs a byte swapping operation on all the elements in the array.

>>> print a
[1 2 3]
>>> print a.byteswapped()
[16777216 33554432 50331648] 

tostring() 

The tostring  method returns a string representation of the data portion of the array it is applied to.  

>>> a = arange(65,100)
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>>> print a.tostring()
A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T
U   V   W   X   Y   Z   [   \   ]   ^   _   `   a   b   c 

tolist() 

Calling an array's tolist() method returns a hierarchical python list version of the same array:

>>> print a
[[65 66 67 68 69 70 71]
 [72 73 74 75 76 77 78]
 [79 80 81 82 83 84 85]
 [86 87 88 89 90 91 92]
 [93 94 95 96 97 98 99]]
>>> print a.tolist()
[[65, 66, 67, 68, 69, 70, 71], [72, 73, 74, 75, 76, 77, 78], [79, 80, 
81, 82, 83, 84, 85], [86, 87, 88, 89, 90, 91, 92], [93, 94, 95, 96, 97, 
98, 99]] 
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10. Array Attributes 

We've already seen a very useful attribute of arrays, the shape attribute. There are three more, flat, 
imaginary. 

flat  

Accessing the flat  attribute of an array returns the flattened, or ravel() 'ed version of that array, without
having to do a function call. The returner array has the same number of elements as the input array, b
rank-1.  One cannot set the flat attribute of an array, but one can use the indexing and slicing notations to
the contents of the array:

>>> print a
[[0 1 2]
 [3 4 5]
 [6 7 8]]
>>> print a.flat
[0 1 2 3 4 5 6 7 8]
>>> a.flat = arange(9,18)
Traceback (innermost last):
  File "<stdin>", line 1, in ?
AttributeError: Attribute does not exist or cannot be set
>>> a.flat[4] = 100
>>> print a
[[  0   1   2]
 [  3 100   5]
 [  6   7   8]]
>>> a.flat[:] = arange(9, 18)
>>> print a
[[ 9 10 11]
 [12 13 14]
 [15 16 17]]

real  and imaginary  

These attributes exist only for complex arrays. They return respectively arrays filled with the real and ima
parts of their elements. .imag  is a synonym for .imaginary . The arrays returned are not contiguous (exce
for arrays of length 1, which are always contiguous.). .real , .imag  and .imaginary  are modifiable: 

>>> print x
[ 0.        +1.j          0.84147098+0.54030231j  0.90929743-0.41614684j]
>>> print x.real
[ 0.          0.84147098  0.90929743]
>>> print x.imag
[ 1.          0.54030231 -0.41614684]
>>> x.imag = arange(3)
>>> print x
[ 0.        +0.j  0.84147098+1.j  0.90929743+2.j] 
>>> x = reshape(arange(10), (2,5)) + 0j # make complex array
>>> print x
[[ 0.+0.j  1.+0.j  2.+0.j  3.+0.j  4.+0.j]
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 [ 5.+0.j  6.+0.j  7.+0.j  8.+0.j  9.+0.j]]
>>> print x.real
[[ 0.  1.  2.  3.  4.]
 [ 5.  6.  7.  8.  9.]]
>>> print x.typecode(), x.real.typecode()
D d
>>> print x.itemsize(), x.imag.itemsize()
16 8
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11. Special Topics

This chapter holds miscellaneous information which did not neatly fit in any of the other
chapters.

Code Organization

Numeric.py and friends

Numeric.py  is the most commonly used interface to the Numeric extensions.  It is a Python module 
imports all of the exported functions and attributes from the multiarray  module, and then defines some uti
ity functions.  As some of the functions defined in Numeric.py  could someday be moved into a supportin
C module, the utility functions and the multiarray  object are documented together, in this section.  T
multiarray  objects are the core of Numeric Python – they are extension types written in C which a
signed to provide both space- and time-efficiency when manipulating large arrays of homogeneous dat
with special emphasis to numeric data types.

UserArray.py

In the tradition of UserList.py  and UserDict.py , the UserArray.py  module defines a class whos
instances act in many ways like array objects.

Matrix.py

The Matrix.py  python module defines a class Matrix  which is a subclass of UserArray . The only dif-
ferences between Matrix  instances and UserArray  instances is that the *  operator on Matrix  performs a
matrix multiplication, as opposed to element-wise multiplication, and that the power operator **  is disallowed
for Matrix  instances.

Precision.py

The Precision.py module contains the code which is used to determine the mapping between typecod
and values, by building small arrays and looking at the number of bytes they use per element.

ArrayPrinter.py

The ArrayPrinter.py module defines the functions used for default printing of arrays. See the section on T
Representations of arrays on page 64,

Mlab.py

The Mlab.py module provides some functions which are compatible with the functions of the same nam
MATLAB programming language. These are:

bartlett(M)

returns the M-point Bartlett window.

blackman(M)

returns the M-point Blackman window.
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corrcoef(x, y=None)

The correlation coefficient

cov(m,y=None)

returns the covariance

cumprod(m)

returns the cumulative product of the elments along the first dimension of m.

cumsum(m)

returns the cumulative sum of the elements along the first dimension of m.

diag(v, k=0)

returns the k-th diagonal if v is a matrix or returns a matrix with v as the k-th diagonal if v is a vector.

diff(x, n=1)

calculates the first-order, discrete difference approximation to the derivative.

eig(m)

returns the the eigenvalues of m in x and the corresponding eigenvectors in the rows of v.

eye(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where the k-th diagonal is all ones, and everything else is zeros.

fliplr(m)

returns a 2-D matrix m with the rows preserved and columns flipped in the left/right direction. Only works
2-D arrays.

flipud(m)

returns a 2-D matrix with the columns preserved and rows flipped in the up/down direction. Only work
2-D arrays.

hamming(M)

returns the M-point Hamming window.

hanning(M)

returns the M-point Hanning window.

kaiser(M, beta)

returns a Kaiser window of length M with shape parameter beta. It depends on the cephes module for t
ified bessel function i0.

max(m)

returns the maximum along the first dimension of m.

mean(m)

returns the mean along the first dimension of m. Note: if m is an integer array, integer division will occu
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median(m)

returns a mean of m along the first dimension of m.

min(m)

returns the minimum along the first dimension of m.

msort(m)

returns a sort along the first dimension of m as in MATLAB.

prod(m)

returns the product of the elements along the first dimension of m.

ptp(m)

returns the maximum - minimum along the first dimension of m.

rand(d1, ..., dn)

returns a matrix of the given dimensions which is initialized to random numbers from a uniform distribut
the range [0,1).

rot90(m,k=1)

returns the matrix found by rotating m by k*90 degrees in the counterclockwise direction.

sinc(x)

returns sin(pi*x)/(pi*x) at all points of array x.

squeeze(a)

removes any ones from the shape of a

std(m)

returns the standard deviation along the first dimension of m. The result is unbiased meaning divis
len(m)-1.

sum(m)

returns the sum of the elements along the first dimension of m.

svd(m)

return the singular value decomposition of m [u,x,v]

trapz(y,x=None)

integrates y = f(x) using the trapezoidal rule.

tri(N, M=N, k=0, typecode=None)

returns a N-by-M matrix where all the diagonals starting from lower left corner up to the k-th are all one

tril(m,k=0)

returns the elements on and below the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above and
below the main diagonal.
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triu(m,k=0)

returns the elements on and above the k-th diagonal of m. k=0 is the main diagonal, k > 0 is above and
below the main diagonal.

The multiarray object

The array objects which Numeric Python manipulates is actually a multiarray object, given this name to
guish it from the one-dimensional array object defined in the standard array module.  From here on, h
the terms array and multiarray will be used interchangeably to refer to the new object type.  multiarray 
are homogeneous multidimensional sequences.  Starting from the back, they are sequences.  This m
they are container (compound) objects, which contain references to other objects.  They are multidime
meaning that unlike standard Python sequences which define only a single dimension along which one

erate through the contents, multiarray objects can have up to 40 dimensions.1  Finally, they are homogeneous
This means that every object in a multiarray must be of the same type.  This is done for efficiency rea
storing the type of the contained objects once in the array means that the process of finding the type-
operation to operate on each element in the array needs to be done only once per array, as opposed to
element.  Furthemore, as the main purpose of these arrays is to process numbers, the numbers can be
rectly, and not as full-fledged Python objects (PyObject *), thus yielding memory savings.  It is howeve
sible to make arrays of Python objects, which relinquish both the space and time efficiencies but
heterogeneous contents (as we shall see, these arrays are still homogeneous from the Numeric perspe
are just arrays of Python object references).

Typecodes

The kind of number stored in an array is described by its typecode. This code is stored internally as a
character Python string, but more descriptive names corresponding to the typecodes are made availab
Python programmer in the Precision.py module. The typecodes are defined as follows:

1. This limit is modifiable in the source code if higher dimensionality is needed.

Table 3: Typecode Listing

Variable defined in
Typecode  module

Typecode
character

Description

Char ’c’ Single-character strings

PyObject ’O’ Reference to Python object

UnsignedInt8 ’b’ Unsigned integer using a single byte.

Int ’l’ Python standard integers (i.e. C long integers)

Float ’d’ Python standard floating point numbers
(i.e. C double-precision floats)

n/a ’f’ Single-precision floating point numbers

Complex ’D’ Complex numbers consisting of two double-preci-
sion floats

n/a ’F’ Complex numbers consisting of two single-precision
floats
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Indexing in and out, slicing

Indexing arrays works like indexing of other Python sequences, but supports some extensions which a

yet not implemented for other sequence types1. The standard [start:stop] notation is supported, with start 
faulting to 0 (the first index position) and stop defaulting to the length of the sequence, as for lists and 
In addition, there is an optional stride argument, which specifies the stride size between successive in
the slice. It is expressed by a integer following a second : immediately after the usual start:stop slice
[0:11:2]  will slice the array at indices 0, 2, 4, .. 10. The start and stop indices are optional, but the first
be specified for the stride interpretation to occur. Therefore, [::2]  means slice from beginning to end, with 
stride of 2 (i.e. skip an index for each stride). If the start index is omitted and the stride is negative, the in
starts from the end of the sequence and works towards the beginning of the sequence. If the stop index is
and the stride is negative, the indexing stops at the beginning of the sequence.

>>> print x
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
>>> print x[10]
10
>>> print x[:10]
[0 1 2 3 4 5 6 7 8 9]
>>> print x[5:15:3]
[ 5  8 11 14]
>>> print x[:10:2]
[0 2 4 6 8]
>>> print x[10::-2]
[10  8  6  4  2  0]
>>> print x[::-1]
[19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0]

Int0, Int8, Int16, 
Int32, Int64, Int128

n/a These correspond to machine-dependent typecode
Int0  returns the typecode corresponding to the 
smallest available integer, Int8  that corresponding 
to the smallest available integer with at least 8 bits, 
Int16  that with at least 16 bits, etc. If a typecode is 
not available (e.g. Int64  on a 32-bit machine), the 
variable is not defined.

Float0, Float8, Float16, 
Float32, Float64, 
Float128

n/a Same as Int0 , Int8  etc. except for floating point 
numbers.

Complex0, Complex8, 
Complex16, Complex32, 
Complex64, Complex128

n/a Same as Float0 , etc., except that the number of 
bits refers to the precision of each of the two (real 
and imaginary) parts of the complex number.

1. The Python syntax can allow other Python datatypes to use both the stride notation and multidime
sional indexing, and it is relatively simple to write Python classes which support these operations. S
the Python Reference manual for details.

Table 3: Typecode Listing

Variable defined in
Typecode  module

Typecode
character

Description
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It is important to note that the out-of-bounds conditions follow the same rules as standard Python index
that slices out of bounds are trimmed to the sequence boundaries, but element indexing with out-of-bo
dices yields an IndexError:

>>> print x[:100]
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
>>> print x[-200:4]
[0 1 2 3]
>>> x[100]
Traceback (innermost last):
  File "<stdin>", line 1, in ?
IndexError: index out of bounds

The second difference between array indexing and other sequences is that arrays provide multidimens
dexing. An array of rank N can be indexed with up to N indices or slices (or combinations thereof. In
should be integers (with negative integers indicating offsets from the end of the dimension, as for other 
sequences), and slices can have, as explained above, one or two :’s separating integer arguments. The
and slies must be separated by commas, and correspond to sequential dimensions starting from the
(first) index on. Thus a[3]  means index 3 along dimension 0. a[3,:,-4]  means the slice of a along thre
dimensions: index 3 along the first dimension, the entire range of indices along the second dimension, 
4th from the end index along the third dimension. If the array being indexed has more dimensions than a
ified in the multidimensional slice, those dimensions are assumed to be sliced from beginning to end. T
a is a rank 3 array,

a[0] == a[0,:] == a[0,:,:]

Ellipses

A special slice element called Ellipses (and written ... ) is used to refer to a variable number of slices fro
beginning to end along the current dimension. It is a shorthand for a set of such slices, specifically the 
of dimensions of the array being indexed minus those which are already specified. Only the first (leftmo
lipses in an multidimensional slice is expanded, while the others are single dimensional slices from be
to end.

Thus, if a is a rank-6 array,

a[3,:,:,:,-1,:] == a[3,...,-1,:] == a[3,...,-1,...] .

NewAxis

There is another special symbol which can be used inside indexing operations to create new dimensio
returned array. The reference NewAxis, used as one of the comma-separated slice elements, does no
the selection of the subset of the array being indexed, but changes the shape of the array returned by the
operation, so that an additional dimension (of length 1) is created, at the dimension position correspon
the location of NewAxis within the indexing sequence. Thus, a[:,3,NewAxis,-3]  will perform the index-
ing of a corresponding to the slice [a:,3,-3] , but will also modify the shape of a so that the new shape oa
is (a.shape[0], a.shape[1], 1, a.shape[2]) . This operation is especially useful in conjunctio
with the broadcasting feature described next, as it replaces a lengthy but common operation with a sim
tation (in the example above, the same effect can be had with

reshape(a[:,3,-1], (a.shape[0], a.shape[1], 1, a.shape[2])).

Set-indexing and Broadcasting

The indexing rules described so far specify exactly the behavior of get-indexing. For set-indexing, the ru
exactly the same, and describe the slice of the array on the left hand side of the assignment operator
the target of the assignment. The only point left to mention is the process of assigning from the source
right hand side of the assignment) to the target (on the left hand side).
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If both source and target have the same shape, then the assignment is done element by element. The
of the target specifies the casting which can be applied in the case of a typecode mismatch between so
target. If the typecode of the source is “lower” than that of the target, then an ’up-cast’ is performed and
in precision results. If the typecode of the source is “higher” than that of the target, then a downcast
formed, which may lose precision (as discussed in the description of the array call, these casts are tru
casts, not rounding casts). Complex numbers cannot be cast to non-complex numbers.

If the source and the target have different shapes, Numeric Python attempts to broadcast the conten
source over the range of the target. This broadcasting occurs for all dimensions where the source has d
1 or 0 (i.e., is absent). If there exists a dimension for which the two arrays have differing lengths, and the
of that dimension in the source is not 1, then the assignment fails and an exception (ValueError) is raise
fying the user that the arrays are not aligned.

Axis specifications

In many of the functions defined in this document, indices are used to refer to axes. The numbering sc
the same as that used by indexing in Python: the first (leftmost) axis is axis 0, the second axis is axis 1, e
-1 refers to the last axis, -2 refers to the next-to-last axis, etc.

Textual representations of arrays

The algorithm used to display arrays as text strings is defined in the file ArrayPrinter.py, which defines a
tion array2string (imported into Numeric’s namespace) which offers considerable control over how arra
output. The range of options to the array2string function will be described first, followed by a descript
which options are used by default by str  and repr .

array2string(a, max_line_width = None, precision = None,
suppress_small = None, separator=' ', array_output=0):

The array2string  function takes an array and returns a textual representation of it. Each dimension
dicated by a pair of matching square brackets ([] ), within which each subset of the array is output. The orie
tation of the dimensions is as follows: the last (rightmost) dimension is always horizontal, so that the fr
rank-1 arrays use a minimum of screen real-estate. The next-to-last dimension is displayed vertically if p
and any earlier dimension is displayed with additional bracket divisions. For example:

>>> a = arange(24)
>>> print array2string(a)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
>>> a.shape = (2,10)
>>> print array2string(a)
[[ 0  1  2  3  4  5  6  7  8  9 10 11]
 [12 13 14 15 16 17 18 19 20 21 22 23]]
>>> a.shape = (2,3,4)
>>> print array2string(a)
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]
 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]

The max_line_width  argument specifies the maximum number of characters which the array2string
tine uses in a single line. If it is set to None, then the value of the sys.output_line_width  attribute is
looked up. If it exists, it is used. If not, the default of 77 characters is used.

>>> print array2string(x)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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>>> sys.output_line_width = 30
>>> print array2string(x)
[ 0  1  2  3  4  5  6  7  8  9
      10 11 12 13 14 15 16 17
      18 19 20 21 22 23 24 25
      26 27 28 29]

The precision  argument specifies the number of digits after the decimal point which are used. If a va
None is used, the value of the sys.float_output_precision  is looked up. If it exists, it is used. If not
the default of 8 digits is used.

>>> x = array((10.11111111111123123111, pi))
>>> print array2string(x)
[ 10.11111111   3.14159265]
>>> print array2string(x, precision=3)
[ 10.111   3.142]
>>> sys.float_output_precision = 2
>>> print array2string(x)
[ 10.11   3.14]

The suppress_small  argument specifies whether small values should be suppressed (and output as
value of None is used, the value of the sys.float_output_suppress_small  is looked up. If it exists,
it is used (all that matters is whether it evaluates to true or false). If not, the default of 0 (false) is used. Th
able also interacts with the precision parameters, as it can be used to suppress the use of exponential 

>>> print x
[ 1.00000000e-005  3.14159265e+000]
>>> print array2string(x)
[ 1.00000000e-005  3.14159265e+000]
>>> print array2string(x, suppress_small=1)
[ 0.00001     3.14159265]
>>> print array2string(x, precision=3)
[ 1.000e-005  3.142e+000]
>>> print array2string(x, precision=3, suppress_small=1)
[ 0.     3.142]

The separator  argument is used to specify what character string should be placed between two nu
which do not straddle a dimension. The default is a single space.

>>> print array2string(x)
[   0  100  200  300  400  500  600  700  800  900 100]
>>> print array2string(x, separator = ', ')
[   0,  100,  200,  300,  400,  500,  600,  700,  800,  900, 100]

Finally, the last attribute, array_output, specifies whether to prepend the string "array(” and append eit
string ")" or ", ’X’)" where X is a typecode for non-default typecodes (in other words, the typecode will on
displayed if it is not that corresponding to Float, Complex or Int, which are the standard typecodes ass
with floating point numbers, complex numbers and integers respectively). The array() is so that an eva
returned string will return an array object (provided a comma separator is also used).

>>> array2string(arange(3))
[0 1 2]
>>> eval(array2string(arange(3), array_output=1))
Traceback (innermost last):
  File "<stdin>", line 1, in ?
  File "<string>", line 1
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    array([0 1 2])
             ^
SyntaxError: invalid syntax
>>> type(eval(array2string(arange(3), array_output=1, separator=',')))
<type 'array'>
>>> array2string(arange(3), array_output=1)
'array([0, 1, 2])'
>>> array2string(zeros((3,), 'i') + arange(3), array_output=1)
"array([0, 1, 2],'i')"

The str  and repr  operations on arrays call array2string  with the max_line_width , precision
and suppress_small  all set to None, meaning that the defaults are used, but that modifying the attri
in the sys  module will affect array printing. str uses the default separator and does not use the array
while repr uses a comma as a separator and does use the array(...) text.

>>> x = arange(3)
>>> print x
[0 1 2]
>>> str(x)
'[0 1 2]'
>>> repr(x)
'array([0, 1, 2])' # note the array(...) and ,’s
>>> x = arange(0,.01,.001)
>>> print x
[ 0.     0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009]
>>> import sys
>>> sys.float_output_precision = 2
>>> print x
[ 0.    0.    0.    0.    0.    0.01  0.01  0.01  0.01  0.01]

Comparisons

Currently, comparisons of multiarray objects results in exceptions, since reasonable results (arrays of bo
are not doable without non-trivial changes to the Python core. These changes are planned for Python
which point array object comparisons will be updated.

>>> print x, y
[0 1 2] [3 4 5]
>>> print x < y
Traceback (innermost last):
  File "<stdin>", line 1, in ?
TypeError: Comparison of multiarray objects is not implemented.

Pickling and Unpickling -- storing arrays on disk

HowTo

byte-order independence

Dealing with floating point exceptions

Dealing with floating point exceptions

fpectl, NaNs, etc.
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12. Writing a C extension to NumPy

Introduction

There are two applications that require using the NumPy array type in C extension modules: 

• Access to numerical libraries: Extension modules can be used to make numerical libraries written i
languages linkable to C, such as Fortran) accessible to Python programs. The NumPy array type ha
vantage of using the same data layout as arrays in C and Fortran. 

• Mixed-language numerical code: In most numerical applications, only a small part of the total code i
time intensive. Only this part should thus be written in C, the rest can be written in Python. NumPy 
are important for the interface between these two parts, because they provide equally simple acces
contents from Python and from C. 

This document is a tutorial for using NumPy arrays in C extensions. 

Preparing an extension module for NumPy arrays

To make NumPy arrays available to an extension module, it must include the header file arrayobject.h ,
after the header file Python.h that is obligatory for all extension modules. The file arrayobject.h  comes
with the NumPy distribution; depending on where it was installed on your system you might have to te
compiler how to f ind it .  In addit ion to including arrayobject.h ,  the extension must cal l
import_array()  in its initialization function, after the call to Py_InitModule() . This call makes sure
that the module which implements the array type has been imported, and initializes a pointer array t
which the NumPy functions are called. If you forget this call, your extension module will crash on the fir
to a NumPy function!  If you will be manipulating ufunc objects, you should also include the file ufuncob-
ject.h , also available as part of the NumPy distribution in the Include  directory.

All of the rules related to writing extension modules for Python apply.  The reader unfamiliar with these
is encouraged to read the standard text on the topic, “Extending and Embedding the Python Interpreter
able as part of the standard Python documentation distribution.

Accessing NumPy arrays from C

Types and Internal Structure

NumPy arrays are defined by the structure PyArrayObject , which is an extension of the structure PyOb-
ject . Pointers to PyArrayObject  can thus safely be cast to PyObject  pointers, whereas the inverse i
safe only if the object is known to be an array. The type structure corresponding to array obje
PyArray_Type . The structure PyArrayObject  has four elements that are needed in order to access th
ray's data from C code: 

int nd

The number of dimensions in the array.

int *dimensions

A pointer to an array of nd integers, describing the number of elements along each dimension
sizes are in the conventional order, so that for any array a, 
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd]) .
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int *strides

A pointer to an array of nd  integers, describing the address offset between two successive dat
ments along each dimension. Note that strides can also be negative!  Each number gives the 
of bytes to add to a pointer to get to the next element in that dimension. For example, if myptr  cur-
rently points to element of a rank-5 array at indices 1,0,5,3,2  and you want it to point to elemen
1,0,5,4,2  then you should add strides[3]  to the pointer: myptr += strides[3] . This
works even if (and is especially useful when) the array is not contiguous in memory.

char *data

A pointer to the first data element of the array.

The address of a data element can be calculated from its indices and the data and strides pointers. For
element [i, j]  of a two-dimensional array has the address data + i*array->strides[0] + j*ar-
ray->strides[1] . Note that the stride offsets are in bytes, not in storage units of the array elements. 
fore address calculations must be made in bytes as well, starting from the data pointer, which is alway
pointer. To access the element, the result of the address calculation must be cast to a pointer of the 
type. The advantage of this arrangement is that purely structural array operations (indexing, extraction
arrays, etc.) do not have to know the type of the array elements. 

Element data types

The type of the array elements is indicated by a type number, whose possible values are defined as con
arrayobject.h , as given in Table 3.

The type number is stored in array->descr->type_num . Note that the names of the element type co
stants refer to the C data types, not the Python data types. A Python int  is equivalent to a C long , and a Py-
thon float  corresponds to a C double . Many of the element types listed above do not have correspon
Python scalar types (e.g. PyArray_INT ). 

Table 4: C constants corresponding to storage types

Constant element data type

PyArray_CHAR char

PyArray_UBYTE unsigned char

PyArray_SBYTE signed char

PyArray_SHORT short

PyArray_INT int

PyArray_LONG long

PyArray_FLOAT float

PyArray_DOUBLE double

PyArray_CFLOAT float[2]

PyArray_CDOUBLE double[2]

PyArray_OBJECT PyObject *
68



•
W

ritin
g

 a
 C

 exte
n

sio
n

 to
 N

u
m

P
y

ccupy a
rray, the

ntig-
ntiguous
 ar-
librar-
s to be

d higher-
demen-
rrays can
 different
e, even
on sca-

g that
Contiguous arrays

An important special case of a NumPy array is the contiguous array. This is an array whose elements o
single contiguous block of memory and have the same order as a standard C array. In a contiguous a
value of array->strides[i]  is equal to the size of a single array element times the product of array-
>dimensions[j]  for j  up to i-1 . Arrays that are created from scratch are always contiguous; non-co
uous arrays are the result of indexing and other structural array operations. The main advantage of co
arrays is easier handling in C; the pointer array->data  is cast to the required type and then used like a C
ray, without any reference to the stride values. This is particularly important when interfacing to existing 
ies in C or Fortran, which typically require this standard data layout. A function that requires input array
contiguous must call the conversion function PyArray_ContiguousFromObject() , described in the
section “Accepting input data from any sequence type".

Zero-dimensional arrays

NumPy permits the creation and use of zero-dimensional arrays, which can be useful to treat scalars an
dimensional arrays in the same way. However, library routines for general use should not return zero-
sional arrays, because most Python code is not prepared to handle them. Moreover, zero-dimensional a
create confusion because they behave like ordinary Python scalars in many circumstances but are of a
type. A comparison between a Python scalar and a zero-dimensional array will always fail, for exampl
if the values are the same. NumPy provides a conversion function from zero-dimensional arrays to Pyth
lars, which is described in the section “Returning arrays from C functions". 

A simple example

The following function calculates the sum of the diagonal elements of a two-dimensional array, verifyin
the array is in fact two-dimensional and of type PyArray_DOUBLE . 

static PyObject *
trace(PyObject *self, PyObject *args)
{
  PyArrayObject *array;
  double sum;
  int i, n;

  if (!PyArg_ParseTuple(args, "O!",
                        &PyArray_Type, &array))
    return NULL;
  if (array->nd != 2 || array->descr->type_num != PyArray_DOUBLE) {
    PyErr_SetString(PyExc_ValueError,
                    "array must be two-dimensional and of type float");
    return NULL;
  }

  n = array->dimensions[0];
  if (n > array->dimensions[1])
    n = array->dimensions[1];
  sum = 0.;
  for (i = 0; i < n; i++)
    sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);

  return PyFloat_FromDouble(sum);
}
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Accepting input data from any sequence type

The example in the last section requires its input to be an array of type double. In many circumstance
sufficient, but often, especially in the case of library routines for general use, it would be preferable to 
input data from any sequence (lists, tuples, etc.) and to convert the element type to double automaticall
possible. NumPy provides a function that accepts arbitrary sequence objects as input and returns an e
array of specified type (this is in fact exactly what the array constructor Numeric.array()  does in Python
code): 

PyObject *
PyArray_ContiguousFromObject(PyObject *object,
                             int type_num,
                             int min_dimensions,
                             int max_dimensions);

The first argument, object, is the sequence object from which the data is taken. The second arg
type_num, specifies the array element type (see the table in the section “Element data types". If you w
function to the select the ``smallest'' type that is sufficient to store the data, you can pass the speci
PyArray_NOTYPE . The remaining two arguments let you specify the number of dimensions of the res
array, which is guaranteed to be no smaller than min_dimensions  and no larger than max_dimensions ,
except for the case max_dimensions == 0 , which means that no upper limit is imposed.

If the input data is not compatible with the type or dimension restrictions, an exception is raised. Since th
returned by PyArray_ContiguousFromObject()  is guaranteed to be contiguous, this function also p
vides a method of converting a non-contiguous array to a contiguous one. If the input object is already
tiguous array of the specified type, it is passed on directly; there is thus no performance or memory pen
calling the conversion function when it is not required. Using this function, the example from the last s
becomes 

static PyObject *
trace(PyObject *self, PyObject *args)
{
  PyObject *input;
  PyArrayObject *array;
  double sum;
  int i, n;

  if (!PyArg_ParseTuple(args, "O", &input))
    return NULL;
  array = (PyArrayObject *)
          PyArray_ContiguousFromObject(input, PyArray_DOUBLE, 2, 2);
  if (array == NULL)
    return NULL;

  n = array->dimensions[0];
  if (n > array->dimensions[1])
    n = array->dimensions[1];
  sum = 0.;
  for (i = 0; i < n; i++)
    sum += *(double *)(array->data + i*array->strides[0] + i*array-
>strides[1]);
  
  Py_DECREF(array);
  return PyFloat_FromDouble(sum);
}
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Note that no explicit error checking is necessary in this version, and that the array reference that is retu
PyArray_ContiguousFromObject()  must be destroyed by calling Py_DECREF() . 

Creating NumPy arrays

NumPy arrays can be created by calling the function 

PyObject *
PyArray_FromDims(int n_dimensions,
                 int dimensions[n_dimensions],
                 int type_num);

The first argument specifies the number of dimensions, the second one the length of each dimension,
third one the element data type (see the table in the section “Element data types". The array that is re
contiguous, but the contents of its data space are undefined. There is a second function which permits
ation of an array object that uses a given memory block for its data space: 

PyObject *
PyArray_FromDimsAndData(int n_dimensions,
                        int dimensions[n_dimensions]
                        int item_type
                        char *data);

The first three arguments are the same as for PyArray_FromDims() . The fourth argument is a pointer to th
memory block that is to be used as the array's data space. It is the caller's responsibility to ensure that th
ory block is not freed before the array object is destroyed. With few exceptions (such as the creation o
porary array object to which no reference is passed to other functions), this means that the memory blo
never be freed, because the lifetime of Python objects are difficult to predict. Nevertheless, this function
useful in special cases, for example for providing Python access to arrays in Fortran common blocks. 

Returning arrays from C functions

Array objects can of course be passed out of a C function just like any other object. However, as has be
tioned before, care should be taken not to return zero-dimensional arrays unless the receiver is known t
pared to handle them. An equivalent Python scalar object should be returned instead. To facilitate th
NumPy provides a special function 

PyObject *
PyArray_Return(PyArrayObject *array);

which returns the array unchanged if it has one or more dimensions, or the appropriate Python scalar o
case of a zero-dimensional array. 

A less simple example

The function shown below performs a matrix-vector multiplication by calling the BLAS function DGEMV. It
takes three arguments: a scalar prefactor, the matrix (a two-dimensional array), and the vector (a one
sional array). The return value is a one-dimensional array. The input values are checked for consistenc
dition to providing an illustration of the functions explained above, this example also demonstrates 
Fortran routine can be integrated into Python. Unfortunately, mixing Fortran and C code involves machin
cific peculiarities. In this example, two assumptions have been made: 

• The Fortran function DGEMV must be called from C as dgemv_. Many Fortran compilers apply this rule
but the C name could also be dgemv or DGEMV (or in principle anything else; there is no fixed standard

• Fortran integer s are equivalent to C long s, and Fortran double precision numbers are equivalent   
C doubles. This works for all systems that I have personally used, but again there is no standard.
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Also note that the libraries that this function must be linked to are system-dependent; on my Linux syste
ing gcc /g77 ), the libraries are blas  and f2c . So here is the code: 

static PyObject *
matrix_vector(PyObject *self, PyObject *args)
{
  PyObject *input1, *input2;
  PyArrayObject *matrix, *vector, *result;
  int dimensions[1];
  double factor[1];
  double real_zero[1] = {0.};
  long int_one[1] = {1};
  long dim0[1], dim1[1];

  extern dgemv_(char *trans, long *m, long *n,
                double *alpha, double *a, long  *lda,
                double *x, long *incx,
                double *beta, double *Y, long *incy);

  if (!PyArg_ParseTuple(args, "dOO", factor, &input1, &input2))
    return NULL;
  matrix = (PyArrayObject *)
            PyArray_ContiguousFromObject(input1, PyArray_DOUBLE, 2, 2);
  if (matrix == NULL)
    return NULL;
  vector = (PyArrayObject *)
            PyArray_ContiguousFromObject(input2, PyArray_DOUBLE, 1, 1);
  if (vector == NULL)
    return NULL;
  if (matrix->dimensions[1] != vector->dimensions[0]) {
    PyErr_SetString(PyExc_ValueError,
                    "array dimensions are not compatible");
    return NULL;
  }

  dimensions[0] = matrix->dimensions[0];
  result = (PyArrayObject *)PyArray_FromDims(1, dimensions, 
PyArray_DOUBLE);
  if (result == NULL)
    return NULL;

  dim0[0] = (long)matrix->dimensions[0];
  dim1[0] = (long)matrix->dimensions[1];
  dgemv_("T", dim1, dim0, factor, (double *)matrix->data, dim1,
         (double *)vector->data, int_one,
         real_zero, (double *)result->data, int_one);

  return PyArray_Return(result);
}

Note that PyArray_Return()  is not really necessary in this case, since we know that the array bein
turned is one-dimensional. Nevertheless, it is a good habit to always use this function; its performance
practically zero. 
72



•
C

 A
P

I R
efe

ren
ce

. The

a ele-
 number

 its data
 is gar-
13. C API Reference

This chapter describes the API for ArrayObjects and Ufuncs.

ArrayObject C Structure and API

Structures

The PyArrayObject is, like all Python types, a kind of PyObject. Its definition is:

typedef struct { 
PyObject_HEAD 
char *data; 
int nd; 
int *dimensions, *strides; 
PyObject *base; 
PyArray_Descr *descr; 
int flags; 

} PyArrayObject; 

Where PyObject_HEAD  is the standard PyObject  header, and the other fields are:

char *data

A pointer to the first data element of the array.

int nd

The number of dimensions in the array.

int *dimensions

A pointer to an array of nd integers, describing the number of elements along each dimension
sizes are in the conventional order, so that for any array a, 
a.shape==(dimensions[0], dimensions[1], ..., dimensions[nd]) .

int *strides

A pointer to an array of nd  integers, describing the address offset between two successive dat
ments along each dimension. Note that strides can also be negative!  Each number gives the
of bytes to add to a pointer to get to the next element in that dimension. For example, if myptr  cur-
rently points to an element in a rank-5 array at indices 1,0,5,3,2  and you want it to point to ele-
ment 1,0,5,4,2  then you should add strides[3]  to the pointer: myptr += strides[3] .
This works even if (and is especially useful when) the array is not contiguous in memory.

PyObject *base

Used internally in arrays that are created as slices of other arrays. Since the new array shares
area with the old one, the original array’s reference count is incremented.  When the subarray
bage collected, the base array’s reference count is decremented.

PyArray_Desc *descr

See below.
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int flags

A bitfield indicating whether the array:

• is contiguous (rightmost bit)

• owns the dimensions (next bit to the left) (???)

• owns the strides (next bit to the left) (???)

• owns the data area

The ownership bits are used by NumPy internally to manage memory allocation and dealloc
They can be false if the array is the result of e.g. a slicing operation on an existing array.

PyArrayDescr *descr

a pointer to a data structure that describes the array and has some handy functions. The slot
structure are:

PyArray_VectorUnaryFunc *cast[]

an array of function pointers which will cast this arraytype to each of the other data types.

PyArray_GetItemFunc *getitem 

a pointer to a function which returns a PyObject of the appropriate type given a (char) poin
the data to get.

PyArray_SetItemFunc *setitem

a pointer to a function which sets the element pointed to by the second argument to con
Python Ojbect given as the first argument. 

int type_num

A number indicating the datatype of the array (i.e. a PyArray_XXXX )

char *one

A pointer to a representation of one for this datatype.

char *zero 

A pointer to a representation of zero for this datatype (especially useful for PyArray_OBJ
types)

char type

A character representing the array’s typecode (one of 'cb1silfdFDO' ). 

The ArrayObject API

In the following op  is a pointer to a PyObject  and arp  is a pointer to a PyArrayObject . Routines which
return PyObject *  return NULL to indicate failure (and follow the standard exception-setting mechanis
Functions followed by a dagger (†) are functions which return PyObjects whose reference count has bee
creased by one (new references). See the Python Extending/Embedding manual for details on referen
management.

int PyArray_Check(op) 

returns 1 if op  is a PyArrayObject  or 0 if it is not.

int PyArray_SetNumericOps(d) 

internally used by umath  to setup some of its functions.

int PyArray_INCREF(op)

Used for arrays of python objects (PyArray_OBJECT ) to increment the reference count of ever
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python object in the array op . User code does not typically need to call this.

int PyArray_XDECREF(op)

Used for arrays of python objects (PyArray_OBJECT ) to decrement the reference count of eve
python object in the array op .

PyArrayError

Exports the array error object. I don't know its use.

void PyArray_SetStringFunction(op,repr)

Sets the function for representation of all arrays to op which should be a callable PyObject . If
repr  is non-zero then the function corresponding to the repr  string representationis set, otherwise
that for the str  string representation is set.

PyArray_Descr PyArray_DescrFromType(type)

returns a PyArray_Descr  structure for the datatype given by type . The input type can be eithe
the enumerated types (PyArray_Float , etc.) or a character ('cb1silfdFDO' ).

PyObject *PyArray_Cast(arp, type) †

returns a pointer to a PyArrayObject  that is arp  cast to the array type specified by type . It is
just a wrapper around the function defined in arp->descr->cast  that handles non-contiguous
arrays and arrays of Python objects appropriately.

int PyArray_CanCastSafely(fromtype,totype)

returns 1 if the array with type fromtype  can be cast to an array of type totype  without loss of
accuracy, otherwise it returns 0. It allows conversion of long s to int s which is not safe on 64-bit
machines. The inputs fromtype  and totype  are the enumerated array types (e.
PyArray_SBYTE ).

int PyArray_ObjectType(op, min_type)

returns the typecode to use for a call to an array creation function given an input python seq
object op  and a minimum type value, min_type . It looks at the datatypes used in op , compares
this with min_type  and returns a consistent type value that can be used to store all of the d
op  and satisfying at the minimum the precision of min_type .

int _PyArray_multiply_list(list,n) 

is a utility routine to multiply an array of n integers pointed to by list .

int PyArray_Size(op) 

is a useful function for returning the total number of elements in op  if op  is a PyArrayObject , 0
otherwise.

PyObject *PyArray_FromDims(nd,dims,type) †

returns a pointer to a newly constructed PyArrayObject  (returned as a PyObject ) given the
number of dimensions in nd , an array dims  of nd  integers specifying the size of the array, and t
enumerated type of the array in type .

PyObject *PyArray_FromDimsAndData(nd,dims,type,data) †

This function should only be used to access global data that will never be freed (like FORT
common blocks). It builds a PyArrayObject  in the same way as PyArray_FromDims  but in-
stead of allocating new memory for the array elements it uses the bytes pointed to by data  (a
char * ).
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PyObject *PyArray_ContiguousFromObject(op,type,min_dim,max_dim) †

returns a contiguous array of type type  from the (possibly nested) sequence object op . If op  is a
contiguous PyArrayObject  then a reference is made; if op  is a non-contiguous then a copy is pe
formed to get a contiguous array; if op  is not a PyArrayObject  then a new PyArrayObject
is created from the sequence object and returned. The two parameters min_dim  and max_dim  let
you specify the expected rank of the input sequence. An error will result if the resulting PyArray-
Object  does not have rank bounded by these limits. To specify an exact rank requireme
min_dim = max_dim . To allow for an arbitrary number of dimensions specify min_dim =
max_dim = 0 .

PyObject *PyArray_CopyFromObject(op,type,min_dim,max_dim) †

returns a contiguous array similar to PyArray_ContiguousFromObject  except that a copy of
op  is performed even if a shared array could have been used.

PyObject *PyArray_FromObject(op,type,min_dim,max_dim) †

returns a reference to op  if op  is a PyArrayObject  and a newly constructed PyArrayObject
if op  is any other (nested) sequence object. You must use strides to access the elements of 
sibly discontiguous array correctly.

PyObject *PyArray_Return(apr) 

returns a pointer to apr  with some extra code to check for errors and be sure that zero-dimens
arrays are returned as scalars.

PyObject *PyArray_Reshape(apr,op) †

returns a reference to apr  with a new shape specified by op  which must be a one dimensional se
quence object. One dimension may be specified as unknown by giving a value less than zero,
ue will be calculated from the size of apr .

PyObject *PyArray_Copy(apr) †

returns an element-for-element copy of apr

PyObject *PyArray_Take(a,indices,axis) †

the equivalent of take(a, indices, axis)  which is a method defined in the Numeric modu
that just calls this function. 

int PyArray_As1D(*op, char **ptr, int *n, int type)

This function replaces op  with a pointer to a contiguous 1-D PyArrayObject  (using
PyArray_ContiguousFromObject ) and sets as output parameters a pointer to the first byt
the array in ptr  and the number of elements in the array in n. It returns -1  on failure (op  is not a
1-D array or sequence object that can be cast to type type ) and 0 on success. 

int PyArray_As2D(*op, char **ptr, int *m, int *n, int type) 

This function replaces op  with a pointer to a contiguous 2-D PyArrayObject  (using
PyArray_ContiguousFromObject ). It returns -1 on failure (op is not a 2-D array or nest
sequence object that can be cast to type type) and 0 on success. It also sets as output param
array of pointers in ptr  which can be used to access the data as a 2-D array so that ptr[i][j] is a p
er to the first byte of element [i,j] in the array; m and n are set to respectively the number of rows an
columns of the array. 

int PyArray_Free(op,ptr) 

is supposed to free the allocated data structures and decrease object references whe
PyArray_As1D  and PyArray_As2D  but there are suspicions that this code is buggy.
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UfuncObject C Structure and API

C Structure

The ufuncobject is a generic function object that can be used to perform fast operations over Numeric
with very useful broadcasting rules and type conversions performed automatically. The ufuncobject and
make it easy and graceful to add arbitrary functions to Python which operate over Numeric arrays. All
unary and binary operators currently available in the Numerical extensions (like sin, cos, +, logical_or, e
implemented using this object. The hooks are all in place to make it very easy to add any function that ta
or two (double) arguments and returns a single (double) argument.  It is not difficult to add support rout
order to handle arbitrary functions whose total number of input/output arguments is less than some ma
number (currently 10).

typedef struct { 
PyObject_HEAD 
int *ranks, *canonical_ranks; 
int nin, nout, nargs; 
int identity; 
PyUFuncGenericFunction *functions; 
void **data; 
int ntypes, nranks, attributes; 
char *name, *types; 
int check_return; 

} PyUFuncObject;

where:

int *ranks

unused.

int *canonical_ranks

unused

int nin

the number of input arguments to function

int nout

the number of output arguments for the function

int nargs

the total number of arguments  = nin + nout

int identity

a flag telling whether the identity for this function is 0 or 1 for use in the reduce  method for a zero
size array input.

PyUFuncGenericFunction *functions

an array of functions that perform the innermost looping over the input and output arrays (I thin
is over a single axis). These functions call the underlying math function with the data from the
arguments along this axis and return the outputs of the function into the correct place in the 
arrayobject (with appropriate typecasting). These functions are called by the general looping
There is one function for each of the supported datatypes. Function pointers to do this loop
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types 'f' , 'd' , 'F' , and 'D' , are provided in the C-API for functions that take one or two arg
ments and return one argument. Each PyUFuncGenericFunction  returns void  and has the fol-
lowing argument list (in order):

args

an array of pointers to the data for each of the input and output arguments with input argu
first and output arguments immediately following. Each element of args  is a char *  to the
first byte in the corresponding input or output array.

dimensions

a pointer to a single int  giving the size of the axis being looped over.

steps

an array of int s giving the number of bytes to skip to go to the next element of the array for
loop. There is an entry in the array for each of the input and output arguments, with input
ments first and output arguments immediately following.

func

a pointer to the underlying math function to be called at each point in this inner loop. Thi
void *  and must be recast to the required type before actually calling the function e.g
pointer to a function that takes two double s and returns a double ). If you need to write your
own PyUFuncGenericFunction , it is most readable to also have a typedef  statement that
defines your specific underlying function type so the function pointer cast is somewhat rea

void **data

a pointer to an array of functions (each cast to void * ) that compute the actual mathematical fun
tion for each set of inputs and outputs. There should be a function in the array for each support
type. This function will be called from the PyUFuncGenericFunction  for the corresponding
type.

int ntypes

the number of datatypes supported by this function. For datatypes that are not directly suppo
coercion will be performed if possible safely, otherwise an error will be reported.

int nranks

unused.

int attributes

unused.

char *name

the name of this function (not the same as the dictionary label for this function object, but it is u
set to the same string). It is printed when __repr__  is called for this object, defaults to "?"  if set
to NULL.

char *types

an array of supported types for this function object. I'm not sure why but each supported da
(PyArray_FLOAT , etc.) is entered as many times as there are arguments for this function. (nargs )

int check_return

Usually best to set to 1. If this is non-zero then returned matrices will be cleaned up so that 
arrays will be returned as python scalars. Also, if non-zero, then any math error that sets the errno
global variable will cause an appropriate Python exception to be raised.
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UfuncObject C API

There are currently 15 pointers in the C-API array for the ufuncobject which is loaded by import_ufunc() .
The macros implemented by this API, available by including the file ufuncobject.h ,' are given below. The
only function normally called by user code is the ufuncobject creation func
PyUFunc_FromFuncAndData . Some of the other functions can be used as elements of an array to be p
to this creation function.

int PyUFunc_Check(op)

returns 1 if op is a ufunc object otherwise returns 0.

PyObject *PyUFunc_FromFuncAndData(functions, data, types, ntypes, nin, 
nout, identity, name, check_return)

returns the ufunc object given its parameters. This is the most important function call. It requir
fining three arrays to be passed as parameters: functions , data , and types . The arguments to
be passed are:

functions

an array of functions of type PyUFuncGenericFunction , there should be one function fo
each supported datatype. The functions should be in order so that datatypes listed toward
ginning of the array could be cast as datatypes listed toward the end.

data

an array of pointers to void* the same size as the functions array and in the same datatype
Each element of this array is the actual underlying math function (recast to a void * ) that will
be called from one of the PyUFuncGenericFunctions . It will operate on each element o
the input NumPy arrayobject (s) and return its element-by-element result in the outp
NumPy arrayobject(s). There is one function call for each datatype supported, (though fun
can be repeated if you handle the typecasting appropriately with the PyUFuncGenericFunc-
tion ).

types

an array of PyArray_Type s. The size of this array should be (nin+nout ) times the size of
one of the previous two arrays. There should be nin+nout  copies of PyArray_XXXXX  for
each datatype explicitly supported. (Remember datatypes not explicitly supported will still b
cepted as input arguments to the ufunc if they can be cast safely to a supported type.) 

ntypes

the number of supported types for this ufunc.

nin

the number of input arguments

nout

the number of output arguments

identity

PyUFunc_One, PyUFunc_Zero , or PyUFunc_None , depending on the desired value for th
identity. This is only relevant for functions that take two input arguments and return one o
argument. If not relevant use PyUFunc_None .

name

the name of this ufuncobject  for use in the __repr__  method.

check_return

the desired value for check_return for this ufuncobject.
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int PyUFunc_GenericFunction(self,args,mps)

allows calling the ufunc from user C routine. It returns 0 on success and -1 on any failures. T
the core of what happens when a ufunc is called from Python. Its arguments are:

self

the ufunc object to be called. INPUT

args

a Python tuple object containing the input arguments to the ufunc (should be Python seq
objects). INPUT

mps

an array of pointers to PyArrayObjects for the input and output arguments to this function
input NumPy arrays are elements mps[0]...mps[self->nin-1] . The output NumPy ar-
rays are elements mps[self->nin]...mps[self->nargs-1] . OUTPUT

The following are all functions of type PyUFuncGenericFunction  and are suitable for use in the func-
tions  argument passed to PyUFunc_FromFuncAndData :

PyUFunc_f_f_As_d_d

for a unary function that takes a double  input and returns a double  output as a ufunc that takes
PyArray_FLOAT  input and returns PyArray_FLOAT  output. 

PyUFunc_d_d

for a using a unary function that takes a double  input and returns a double  output as a ufunc that
takes PyArray_DOUBLE  input and returns PyArray_DOUBLE  output.

PyUFunc_F_F_As_D_D

for a unary function that takes a Py_complex  input and returns a Py_complex  output as a ufunc
that takes PyArray_CFLOAT  input and returns PyArray_CFLOAT  output.

PyUFunc_D_D

for a unary function that takes a Py_complex  input and returns a Py_complex  output as a ufunc
that takes PyArray_CFLOAT  input and returns PyArray_CFLOAT  output.

PyUFunc_O_O

for a unary function that takes a Py_Object *  input and returns a Py_Object *  output as a
ufunc that takes PyArray_OBJECT  input and returns PyArray_OBJECT  output

PyUFunc_ff_f_As_dd_d

for a binary function that takes two double  inputs and returns one double  output as a ufunc that
takes PyArray_FLOAT  input and returns PyArray_FLOAT  output.

PyUFunc_dd_d

for a binary function that takes two double  inputs and returns one double  output as a ufunc that
takes PyArray_DOUBLE  input and returns PyArray_DOUBLE  output.

PyUFunc_FF_F_As_DD_D

for a binary function that takes two Py_complex  inputs and returns a Py_complex  output as a
ufunc that takes PyArray_CFLOAT  input and returns PyArray_CFLOAT  output.

PyUFunc_DD_D

for a binary function that takes two Py_complex  inputs and returns a Py_complex  output as a
ufunc that takes PyArray_CFLOAT  input and returns PyArray_CFLOAT  output 
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PyUFunc_OO_O

for a unary function that takes two Py_Object *  input and returns a Py_Object * output as a
ufunc that takes PyArray_OBJECT  input and returns PyArray_OBJECT  output

PyUFunc_O_O_method

for a unary function that takes a Py_Object *  input and returns a Py_Object *  output and is
pointed to by a Python method as a ufunc that takes PyArray_OBJECT input and re
PyArray_OBJECT output

PyArrayMap

an exported API that was apparently considered but never implemented probably because th
tionality is already available with Python's map function. 
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14. FFT Reference

The FFT.py module provides a simple interface to the FFTPACK FORTRAN library,
which is a powerful standard library for doing fast Fourier transforms of real and complex
data sets, or the C fftpack library, which is algorithmically based on FFTPACK and
provides a compatible interface.  On some platforms, optimized version of one of these
libraries may be available, and can be used to provide optimal performance (see
“Compilation Notes” on page 84).

Python Interface

The Python user imports the FFT module, which provides a set of utility functions which provide access
most commonly used FFT routines, and allows the specification of which axes (dimensions) of the input
are to be used for the FFT’s.  These routines are:

fft(data, n=None, axis=-1)

Performs a n-point discrete Fourier transform of the array data.  n defaults to the size of data.  It is most efficien
for n a power of two.   If n is larger than data , then data  will be zero-padded to make up the difference. If
is smaller than data, then data  will be aliased to reduce its size. This also stores a cache of working mem
for different sizes of fft's, so you could theoretically run into memory problems if you call this too many 
with too many different n's.

The FFT is performed along the axis indicated by the axis  argument, which defaults to be the last dimensio
of data .

The format of the returned array is a complex array of the same shape as data , where the first element in the
result array contains the DC (steady-state) value of the FFT, and where each successive ...XXX

Example of use:

>>> print fft(array((1,0,1,0,1,0,1,0))+ 10).real
[ 84.   0.   0.   0.   4.   0.   0.   0.]
>>> print fft(array((0,1,0,1,0,1,0,1))+ 10).real
[ 84.   0.   0.   0.  -4.   0.   0.   0.]
>>> print fft(array((0,1,0,0,0,1,0,0))+ 10).real
[ 82.   0.   0.   0.  -2.   0.   0.   0.]

inverse_fft(data, n=None, axis=-1)

Will return the n point inverse discrete Fourier transform of data . n defaults to the length of data . This is
most efficient for n a power of two. If n is larger than data , then data  will be zero-padded to make up the
difference. If n is smaller than data , then data  will be aliased to reduce its size. This also stores a cach
working memory for different sizes of FFT’s, so you could theoretically run into memory problems if you
this too many times with too many different n's. 

real_fft(data, n=None, axis=-1)

Will return the n point discrete Fourier transform of the real valued array data . n defaults to the length of da-
ta . This is most efficient for n a power of two. The returned array will be one half of the symmetric comp
transform of the real array. 
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>>> x = cos(arange(30.0)/30.0*2*pi)
>>> print real_fft(x)
[ -1.        +0.j          13.69406641+2.91076367j
       -0.91354546-0.40673664j  -0.80901699-0.58778525j
       -0.66913061-0.74314483j  -0.5       -0.8660254j
       -0.30901699-0.95105652j  -0.10452846-0.9945219j
        0.10452846-0.9945219j    0.30901699-0.95105652j
        0.5       -0.8660254j    0.66913061-0.74314483j
        0.80901699-0.58778525j   0.91354546-0.40673664j
        0.9781476 -0.20791169j   1.        +0.j        ]

inverse_real_fft(data, n=None, axis=-1)

Will return the inverse FFT of the real valued array data .

fft2d(data, s=None, axes=(-2,-1))

Will return the 2-dimensional FFT of the array data .

real_fft2d(data, s=None, axes=(-2,-1))

Will return the 2d FFT of the real valued array data . 

C API

The interface to the FFTPACK library is performed via the fftpackmodule module, which is responsib
making sure that the arrays sent to the FFTPACK routines are in the right format (contiguous memory loc
right numerical storage format, etc).  It provides interfaces to the following FFTPACK routines, which ar
the names of the Python functions:

• cffti(i)

• cfftf(data, savearea)

• cfftb(data, savearea)

• rffti(i)

• rfftf(data, savearea)

• rfftb(data, savearea)

The routines which start with c  expect arrays of complex numbers, the routines which start with r  expect real
numbers only. The routines which end with i  are the initalization functions, those which end with f  perform
the forward FFTs and those which end with b perform the backwards FFTs.

The initialization functions require a single integer argument corresponding to the size of the dataset, 
turns a work array. The forward and backwards FFTs require two array arguments -- the first is the dat
the second is the work array returned by the initialization function. They return arrays corresponding to 
efficients of the FFT, with the first element in the returned array corresponding to the DC component, th
ond one to the first fundamental, etc.The length of the returned array is 1 + half the length of the input a
the case of real FFTs, and the same size as the input array in the case of complex data.

>>> x = cos(arange(30.0)/30.0*2*pi)
>>> w = rffti(30)
>>> f = rfftf(x, w)
>>> f[0]
(-1+0j)
>>> f[1]
(13.6940664103+2.91076367145j)
>>> f[2]
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(-0.913545457643-0.406736643076j)

Compilation Notes

On some platforms, precompiled optimized versions of the FFTPACK library are preinstalled on the ope
system, and the compilation procedure needs to be modified to force the fftpackmodule file to be linked 
those rather than the fftpacklite.c file which is shipped with NumPy.
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15. LinearAlgebra Reference

The LinearAlgebra.py module provides a simple interface to the low-level linear algebra
routines provided by either the LAPACK FORTRAN library or the compatible lapack_lite
C library.

Python Interface

solve_linear_equations(a, b)

This function solves a system of linear equations with a square non-singular matrix a and a right-hand-s
tor b. Several right-hand-side vectors can be treated simultaneously by making b a two-dimensional ar
a sequence of vectors). The function inverse(a) calculates the inverse of the square non-singular ma
calling solve_linear_equations(a, b) with a suitable b. 

inverse(a)

This function returns the inverse of the specified matrix a which must be square and non-singular. To
floating point precision, it should always be true that:

matrixmultiply(a, inverse(a)) == identity(len(a))

To test this claim, one can do e.g.:

>>> a = reshape(arange(25.0), (5,5)) + identity(5)
>>> print a
[[  1.   1.   2.   3.   4.]
 [  5.   7.   7.   8.   9.]
 [ 10.  11.  13.  13.  14.]
 [ 15.  16.  17.  19.  19.]
 [ 20.  21.  22.  23.  25.]]
>>> inv_a = inverse(a)
>>> print inv_a
[[ 0.20634921 -0.52380952 -0.25396825  0.01587302  0.28571429]
 [-0.5026455   0.63492063 -0.22751323 -0.08994709  0.04761905]
 [-0.21164021 -0.20634921  0.7989418  -0.1957672  -0.19047619]
 [ 0.07936508 -0.04761905 -0.17460317  0.6984127  -0.42857143]
 [ 0.37037037  0.11111111 -0.14814815 -0.40740741  0.33333333]]
>>> # Verify the inverse by printing the largest absolute element
... # of a * a^{-1} - identity(5)
... print "Inversion error:", \
... maximum.reduce(fabs(ravel(dot(a, inv_a)-identity(5))))
Inversion error: 2.6645352591e-015

eigenvalues(a)

This function returns the eigenvalues of the square matrix a. 

>>> print a
[[ 1.  0.  0.  0.  0.]
 [ 0.  2.  0.  0.  1.]
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 [ 0.  0.  3.  0.  0.]
 [ 0.  0.  0.  4.  0.]
 [ 0.  0.  0.  0.  1.]]
>>> print eigenvalues(a)
[ 1.  2.  3.  4.  1.]

eigenvectors(a)

This function returns both the eigenvalues and the eigenvectors, the latter as a two-dimensional array (
quence of vectors).

>>> print a
[[ 1.  0.  0.  0.  0.]
 [ 0.  2.  0.  0.  1.]
 [ 0.  0.  3.  0.  0.]
 [ 0.  0.  0.  4.  0.]
 [ 0.  0.  0.  0.  1.]]
>>> evalues, evectors = eigenvectors(a)
>>> print evalues
[ 1.  2.  3.  4.  1.]
>>> print evectors
[[ 1.          0.          0.          0.          0.        ]
 [ 0.          1.          0.          0.          0.        ]
 [ 0.          0.          1.          0.          0.        ]
 [ 0.          0.          0.          1.          0.        ]
 [ 0.         -0.70710678  0.          0.          0.70710678]]

singular_value_decomposition(a, full_matrices=0)

This function returns three arrays V, S, and WT whose matrix product is the original matrix a. V and WT are
unitary matrices (rank-2 arrays), whereas S is the vector (rank-1 array) of diagonal elements of the s
value matrix. This function is mainly used to check whether (and in what way) a matrix is ill-conditioned

generalized_inverse(a, rcond=1e-10)

This function returns the generalized inverse (also known as pseudo-inverse or Moore-Penrose-invers
matrix a. It has numerous applications related to linear equations and least-squares problems.

determinant(a)

This function returns the determinant of the square matrix a.

linear_least_squares(a, b, rcond=e-10)

This function returns the least-squares solution of an overdetermined system of linear equations. An o
third argument indicates the cutoff for the range of singular values (defaults to 10-10). There are four
values: the least-squares solution itself, the sum of the squared residuals (i.e. the quantity minimized by
lution), the rank of the matrix a, and the singular values of a in descending order.

C API

Compilation Notes

On some platforms, precompiled optimized versions of the LAPACK library are preinstalled on the ope
system, and the compilation procedure needs to be modified to force the lapackmodule.c file to be
against those rather than the dlapack_lite.c and zlapack_lite.c files which are shipped with NumPy.
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16. RandomArray Reference

The RandomArray.py module (in conjunction with the ranlibmodule.c file) provides a
high-level interface to the ranlib module, which provides a good quality C implementation
of a random-number generator.

Python Interface

seed(x=0, y=0)

The seed()  function takes two integers and sets the two seeds of the random number generator to those
If the default values of 0 are used for both x and y, then a seed is generated from the current time, pro
pseudo-random seed.

get_seed()

The get_seed()  function returns the two seeds used by the current random-number generator. It is m
ten used to find out what seeds the seed() function chose at the last iteration. [thread-safety issue?]

random(shape=ReturnFloat)

The random()  function takes a shape, and returns an array of double-precision floatings point numbe
tween 0.0 and 1.0. Neither 0.0 nor 1.0 is ever returned by this function. If no argument is specified, the f
returns a single floating point number (not an array). The array is filled from the generator following the c
ical array organization (see discussion of the .flat  attribute)

uniform(minimum, maximum, shape=ReturnFloat)

The uniform()  function returns an array of the specified shape and containing double-precision flo
point random numbers strictly between minimum and maximum. If no shape is specified, a single num
returned.

randint(minimum, maximum, shape=ReturnFloat)

The randint()  function returns an array of the specified shape and containing random (standard) in
greater than or equal to minimum  and strictly less than maximum. If no shape is specified, a single number 
returned.

permutation(n)

The permutation()  function returns an array of the integers between 0 and n-1 , in an array of shape (n,) ,
and with its elements randomly permuted.

An example use of the RandomArray module (exact output will be different each time!):

>>> from RandomArray import *
>>> seed() # Set seed based on current time
>>> print get_seed() # Find out what seeds were used
(897800491, 192000)
>>> print random()
0.0528018975065
>>> print random((5,2))
[[ 0.14833829  0.99031458]
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 [ 0.7526806   0.09601787]
 [ 0.1895229   0.97674777]
 [ 0.46134511  0.25420982]
 [ 0.66132009  0.24864472]]
>>> print uniform(-1,1,(10,))
[ 0.72168852 -0.75374185 -0.73590945  0.50488248 -0.74462822  0.09293685
      -0.65898308  0.9718067  -0.03252475  0.99611011]
>>> print randint(0,100, (12,))
[28  5 96 19  1 32 69 40 56 69 53 44]
>>> print permutation(10)
[4 2 8 9 1 7 3 6 5 0]
>>> seed(897800491, 192000) # resetting the same seeds
>>> print random() # yields the same numbers
0.0528018975065

C API
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17. Glossary

This section will define a few of the technical words used throughout this document.  [Please let us know
additions to this list which you feel would be helpful -- the authors]

typecode: a single character describing the format of the data stored in an array.  For example, ’b’ r
unsigned byte-sized integers (0-255).

ufunc / universal function: a ufunc is a callable object which performs operations on all of the eleme
its arguments, which can be lists, tuples, or arrays.  Many ufuncs are defined in the umath  module.

array / multiarray: an array refers to the Python object type defined by the NumPy extensions to st
manipulate numbers efficiently.

UserArray: The UserArray module defines a UserArray class which should be subclassed by users 
to have classes which behave similarly to the array object type.

Matrix: The Matrix module defines a subclass Matrix of the UserArray class which is specialized for 
algebra matrices.  Most notably, it overrides the multiplication operator on Matrix instances to perfor
trix multiplication instead of element-wise multiplication.

rank: the rank of an array is the number of dimensions it has, or the number of integers in its shape

shape: array objects have an attribute called shape which is necessarily a tuple.  An array with an e
ple shape is treated like a scalar (it holds one element).
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18. Known Bugs and Limitations

This chapter lists the known bugs in the current version, which will be fixed in later
releases, and lists known limitations, specifying whether they are likely to be addressed by
later releases.

Bugs

Modify docstrings for zeros and ones to be right (shape tuple instead of multiple indices, and default ty
is int, not float.

Modify docstring for reshape to be right (shares data by default, exactly opposite of what’s said).

Docstring for concatenate should be modified to include a tuple and optional axis

Should do typechecking early in arrayrange()

Weird:

>>> `arange(3) + ones((3,), 'i')`
'array([1, 2, 3])'
>>> `ones(3,), 'i') + arange(3)`
"array([1, 2, 3],'i')"

Limitations

Should define Precision.Char to be ‘c’, and come up with names for ‘1’, ‘s’ and ‘i’ (or is Int ‘i’)? Same F’

array(2**8, Int0) and the like.  

Int0 should be a ’b’, not an Int8, no?

Int should be a native long int -- check?

Somewhere other than glossary, talk about rank-0 arrays

Get rid of extra notice that... note that...

add more examples w/ pictures, talk about arrays of strings and other gotcha’s

Solicit ideas for two categories of other bits of knowledge to put somewhere:

• Gotcha’s -- things to watch out for, such as the shared data bit, the uncontrolled upcasting, e

• Recipes -- combinations of functions which together do really neat things, such as Jim Hug
historgram function: 

•
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