
November 23, 1998

UCRL-MA-128569, Manual 4

The Python Graphics Interface, Part I

EZPLOT User Manual

Written by

Zane C. Motteler
Lee Busby

Fred N. Fritsch

2

EZPLOT User Manual

Copyright (c) 1996.

The Regents of the University of California.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, pro-
vided that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under contract
no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of California for the op-
eration of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference
herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for advertising or product endorsement
purposes.

UCRL-MA-128569, Manual 4
Table of Contents

CHAPTER 1: The Python Graphics Interface 1
Overview of the Python Graphics Interface 1
Using the Python Graphics Interface 2
About This Manual 3

CHAPTER 2: Introduction to EZPLOT 5
Running EZPLOT 5
The Additive Model 6
Controlling Layout 6
Plot Function Summary 7

CHAPTER 3: Devices 9
Device functions 9
Working with Multiple Windows 15
PyGist 15
PyNarcisse 21
Using PyGist and PyNarcisse together 22
Setting the Colormap 22
Frame Control 22
frame: Set Frame Limits 23
nf: New Frame 28
sf: Show Frame 32
undo: Undo a Plot Command 35

CHAPTER 4: Attributes 37
 Attribute Types 37
 attr: Setting Attributes 43
Attribute Table 48

CHAPTER 5: General Plot Commands 51
plot: Plotting Curves and Markers 51
plotz: Plotting Contours 61
Contour Levels 62
Contour Color Fill 62
Contour Level Annotations (the Color Bar) 62
ploti: Cell Array Plots 64
Color-Mapping Functions 65
November 23, 1998

CHAPTER 6: Mesh-Oriented Commands 67
set_mesh and clear_mesh: Specifying the Default Mesh 68
ezcpvar, ezccindex, ezcx, ezcy, ezcireg, ezcu, ezcv: Convenience Functions 68
plotm: Plotting Meshes, Boundaries, and Regions 69
plotc: Plotting Contours 74
plotf: Fillmesh plot 77
plotv: Plotting Vectors 81

CHAPTER 7: Text Plotting and Miscellaneous 85
 titles: Put titles on the plot 85
 text: Put text on the plot 85

CHAPTER 8: Control Variables and Defaults 87
Setting Control Variables 87
Default Attributes 88
Setting Default Mesh Variables 89
2

UCRL-MA-128569, Manual 4

ies for
ctions of
 labels,
ation,
graphics
details
s, but
rticular
f what

lotting
rfaces,
tter ob-

graph-
ser can
to open
LOT; it
 Basis
til they

 Plotter
e which
e lower-

Na-
color)
(writ-
ick
r maps
 and col-
e anima-
CHAPTER 1: The Python Graphics
Interface

1.1 Overview of the Python Graphics Interface

The Python Graphics Interface (abbreviated PyGraph) provides Python users with capabilit
plotting curves, meshes, surfaces, cell arrays, vector fields, and isosurface and plane cross se
three dimensional meshes, with many options regarding line widths and styles, markings and
shading, contours, filled contours, coloring, etc. Animation, moving light sources, real-time rot
etc., are also available. PyGraph is intended to supply a choice of easy-to-use interfaces to
which are relatively independent of the underlying graphics engine, concealing the technical
from all but the most intrepid users. Obviously different graphics engines offer different feature
the intention is that when a user requests a particular type of plot which is not available on a pa
engine, the low level interface will make an intelligent guess and give some approximation o
was asked for.

There are two such graphics packages which are relatively independent of the underlying p
library. The Object-Oriented Graphics (OOG) Package defines geometric objects (Curves, Su
Meshes, etc.), Graph objects which can be given one or more geometric objects to plot, and Plo
jects, which receive geometric objects to plot from Graph objects, and which interface with the
ics engine(s) to do the actual plotting. A Graph can create its own Plotter, or the more capable u
create one or more, handy when one wishes (for instance) to plot on a remote machine, or
graphics windows of different types at the same time. The second such package is called EZP
is built on top of OOG, and provides an interface similar to the command-line interface of the
EZN package. Some of our long-time users may be more comfortable with this package, un
have mastered the concepts of object-oriented design.

As mentioned above, a Graph object needs at least one Plotter object to plot itself; only the
objects need know about graphics engines. At present we have two types of Plotter objects, on
knows about Gist and one which knows about Narcisse. Some power users may prefer to use th
level library-specific function calls, but most users will use EZPLOT or OOG.

Gist is a scientific graphics library written in C by David H. Munro of Lawrence Livermore
tional Laboratory. It features support for three common graphics output devices: Xwindows, (
PostScript, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small
ten directly to Xlib), portable, efficient, and full-featured. It produces x-vs.-y plots with ‘‘good’’ t
marks and tick levels, 2-D quadrilateral mesh plots with contours, vector fields, or pseudocolo
on such meshes. 3-D plot capabilities include wire mesh plots (transparent or opaque), shaded
ored surface plots, isosurface and plane cross sections of meshes containing data, and real-tim
November 23, 1998

-

ecially
luding
tions of
ctions of

, Nar-
ough it
ever,

o write

t have

n, you
e excel-
 way

follows.

n-

ci-

h will
et the

. Nar-
hich the

se.
tion (moving light sources and rotations). The Python Gist module gist.py and the associated Py
thon extension gistCmodule provide a Python interface to this library (referred to as PyGist).

Narcisse is a graphics library developed at out sister laboratory at Limeil in France. It is esp
strong in high-quality 3-D surface rendering. Surfaces can be colored in a variety of ways, inc
colored wire mesh, colored contours, filled contours, and colored surface cells. Some combina
these are also possible. We have also added the capability of doing isosurfaces and plane se
meshes, which is not available in the original Narcisse. The Python Narcisse module narcissemod-
ule (referred to as PyNarcisse) provides a low-level Python interface to this library. Unlike Gist
cisse does not currently write automatically to standard files such as PostScript or CGM, alth
writes profusely to its own type of files unless inhibited from doing so, as described below. How
there is a "Print" button in the Narcisse graphics window, which opens a dialog that allows you t
the current plot to a postscript file or to send it to a postscript printer.

1.2 Using the Python Graphics Interface

In order to use PyGraph, you first need to have Python installed on your system. If you do no
Python, you can obtain it free from the Python pages at http://www.python.org . You may
need the help of your system administrator to install it on your machine. Once you have Pytho
have to know at least a smattering of the language. The best way to do this is to download th
lent tutorial from the Python pages, sit down at your computer or terminal, and work your
through it.

Before using the Python Graphics Interface, you should set some environment variables as

• Your PATH variable should contain the path to the python executable.

• You should set a PYTHONPATH variable to point to all directories that contain Python exte
sions or modules that you will be loading, which may include the OOG modules, ezplot , and
narcissemodule or gistCmodule . Check with your System Manager for the exact spe
fications on your local systems.

• Unless you create your own plotter objects, PyGraph will create a default Gist Plotter whic
plot to a Gist window only. If you want your default Plotter to be a Narcisse Plotter, then s
variable PYGRAPH to Nar or Narcisse .

A Gist Plotter object automatically creates its own Gist window and then plots to that window
cisse, however, works differently. Narcisse is established as a separately running process, to w

Plotter communicates via sockets. Thus, to run a Narcisse Plotter, you must first open a Narcis1 To
do so, you need to go through the following steps:

1. Set your environment variable PORT_SERVEUR2 to 0.

1. I am going to assume that you already have Narcisse installed on your system, and its directory path in your PATH variable.

2. We did tell you that Narcisse was French, didn’t we?
2

ing
our
e-

off a

raph).

age in
he re-
ntists

er their
ine.

ations,
d So-
French
 yet been

ay be

Py-
2. Start up Narcisse by typing in the command Narcisse & . It will take a few moments for the
Narcisse GUI to open, then immediately afterwards it will be covered by an annoying window
which you can eliminate by clicking its OK button.

3. You will note that there is a server port number given on the GUI. Set your PORT_SERVEUR vari-
able to this value.

4. Narcisse has an annoying habit of saving everything it does to a multitude of files, and notify
you on the fly of all its computations. If you do a lot of graphics, these files can quickly fill up y
quota. In addition, the running commentary on file writing and computation on the GUI is tim
consuming and slows Narcisse down to a truly glacial pace. To avoid this, you need to turn
number of options via the GUI before you begin. They are all under the STATE submenu of the
FILE menu, and should be set as follows: set ‘‘Socket compute ’’ to ‘‘ no ,’’ set ‘‘ File
save ’’ to ‘‘ nothing ,’’ set ‘‘ Config save ’’ to ‘‘ no ,’’ and set ‘‘Ihm compute ’’ to ‘‘ no .’’
(‘‘IHM’’ are the French initials for ‘‘GUI.’’)

1.3 About This Manual

This manual is part of a series of manuals documenting the Python Graphics Interface (PyG
They are:

• I. EZPLOT User Manual

• II. Object-Oriented Graphics Manual

• III. Plotter Objects Manual

• IV. Python Gist Graphics Manual

• V. Python Narcisse Graphics Manual

EZPLOT is a command-line oriented interface that is very similar to the EZN graphics pack
Basis. The Object-Oriented Graphics Manual provides a higher-level interface to PyGraph. T
maining manuals give low-level plotting details that should be of interest only to computer scie
developing new user-level plot commands, or to power users desiring more precise control ov
graphics or wanting to do exotic things such as opening a graphics window on a remote mach

PyGraph is available on Sun (both SunOS and Solaris), Hewlett-Packard, DEC, SGI workst
and some other platforms. Currently at LLNL, Narcisse is installed only on the X Division HP an
laris boxes, however, and Narcisse is not available for distribution outside this laboratory. Our
colleagues are going through the necessary procedures for public release, but these have not
crowned with success. Gist, however, is publicly available as part of the Yorick release, and m
obtained by anonymous ftp from ftp-icf.llnl.gov ; look in the subdirectory /ftp/pub/
Yorick .

A great many people have helped create PyGraph and its documentation. These include

• Lee Busby of LLNL, who wrote gistCmodule , and wrought the necessary changes in the
thon kernel to allow it to work correctly;
3

r
ot bla-

d
oble,

men-

riat A
Jean-

col-
stolen
ission

er num-
• Zane Motteler of LLNL, who wrote narcissemodule , ezplot , the OOG, and some othe
auxiliary routines, and who wrote much of the documentation, at least the part that was n
tantly stolen from David Munro and Steve Langer (see below);

• Paul Dubois of LLNL, who wrote the PDB and Ranf modules, and who worked with Konra
Hinsen (Laboratoire de Dynamique Moleculaire, Institut de Biologie Structurale, Gren
France) and James Hugunin (Massachusetts Institute of Technology) on NumPy, the numeric ex-
tension to Python, without which this work could not have been done;

• Fred Fritsch of LLNL, who produced the templates and did some of the writing of this docu
tation;

• Our French collaborators at the Centre D’Etudes de Limeil-Valenton (CEL-V), Commissa
L’Energie Atomique, Villeneuve-St-Georges, France, among whom are Didier Courtaud,
Philippe Nomine, Pierre Brochard, Jean-Bernard Weill, and others;

• David Munro of LLNL, the man behind Yorick and Gist, and Steve Langer of LLNL, who
laborated with him on the 3-D interpreted graphics in Yorick. We have also shamelessly
from their Gist documentation; however, any inaccuracies which crept in during the transm
remain the authors’ responsibility.

 The authors of this manual stand as representative of their efforts and those of a much larg
ber of minor contributors.

Send any comments about these documents to ‘‘support@icf.llnl.gov ’’ on the Internet or
to ‘‘ support ’’ on Lasnet.
4

UCRL-MA-128569, Manual 4

aphics
ence
ar to

a sub-
l plots,

raph-

itional

es

ing

 second
CHAPTER 2: Introduction to
EZPLOT

EZPLOT is a function-call-driven interface to PyGraph intended to resemble the Basis EZN Gr
Package, which is described in “EZN User Manual,” UCRL-MA-118543 Pt 3. The primary differ
is that calls to EZPLOT will look like function calls, rather than the command line format famili
users of Basis and EZN.

Currently EZPLOT does only two-dimensional plots, and even with these, implements only
set of what is available in the EZN package. Users wishing to do more elaborate two dimensiona
or three dimensional plots, will have to use OOG or the extremely low level narcissemodule for
Narcisse, or else OOG or the low level 3-D Gist plotting functions described in the Python Gist G
ics Manual.

It is possible that if the use of EZPLOT expands sufficiently, and enough users request add
features, then these features may be added.

2.1 Running EZPLOT

Assuming that you have set your PYTHONPATH environment variable to point to the subdirectori
containing the Python modules which you intend to use, you should start up Python by typing

python

at the unix prompt; you will then receive the Python prompt ‘‘>>> ’’ , at which you type the follow
two commands:

>>> from Numeric import *
>>> from ezplot import *

The first command puts the names of all the NumPy functions in your name space, and the
does the same with the EZPLOT functions.

If you prefer to keep name spaces separate, then you can do the following:

>>> import Numeric
>>> import ezplot

Then you can give these modules shorter names (for typing convenience), such as

>>> num = Numeric
>>> ez = ezplot
November 23, 1998

, each
mplete

tep in

l
sing EZ-
is-
e, you

 win-
n-

OT pic-
g room
left at
nd the

area taken

ssible
ho can
el in-
e

and then use the ‘‘dot’’ notation to refer to functions within the modules, e. g.

>>> ez.cgm ("close")

In what follows, for simplicity, we shall assume that the first form of the import statements was
used.

2.2 The Additive Model

The basic model of this package is that of additive graphic functions to a single frame. That is
graphic function call adds objects (curves, mesh plots, etc.) to a frame. The frame is not co
until a newframe “nf () ” function call is issued. The user controls whether or not to see each s
building a frame or just viewing the completed frame by setting the ezcshow status to "true" or
"false" . In EZPLOT, this is done by invoking the function ezcshow , e. g.,

>>> ezcshow ("false")

ezcshow is fairly tolerant; it will accept any string beginning with “t ”, “ T”, “ y ”, or “Y” as “true ”,
and any string beginning with “f ”, “ F”, “ n”, or “N” as “false ”.

 EZPLOT begins in interactive mode (the ezcshow status is "true"), so that each function cal
that changes the frame causes the whole frame to be redrawn. However, most programs u
PLOT will probably want to set ezcshow to "false" when making plots, so that each frame is d
played only when finished. If you stop the program and want to view the plots as they are mad
must either reset ezcshow to "true" or use the showframe “sf () ” function.

Caution: When using multiple windows in interactive mode, be aware that “nf () ” (the new frame
function) clears the display list, but only clears the currently open window. If you then change
dows, you will have to issue another “nf () ” call to avoid overplotting any graph already on the wi
dow.

2.3 Controlling Layout

EZPLOT supports a subset of what EZN users might be accustomed to. The standard EZPL
ture can be described as follows. There is a margin around the edges of the graph leavin
enough for titles at top, bottom, left, and right. In a contour plot, sufficient additional space is
the right for a color bar which associates the contours with particular colors. More space arou
edge of the plot is taken by the axes, unless the user suppresses the axes, in which case the
up by the plot may be somewhat larger.

Unlike EZN, EZPLOT does not allow you to change these values from their defaults. It is po
that with sufficient demand, these capabilities may be added at some time in the future. Users w
not afford to wait are encouraged to use the OOG, which has far more flexibility, or the low lev
terfaces gistCmodule and narcissemodule , which give access to the full machinery of th
graphics engines.
6

2.4 Plot Function Summary

Here is a summary of the functions which are described in the remainder of this manual.

• Device and frame control functions (CHAPTER 3: “Devices”)

win (<cmd> [, n] [, <keylist>])
cgm (<cmd> [, n] [, <keylist>])
ps (<cmd> [, n] [, <keylist>])
tv (<cmd> [, n] [, <keylist>])
list_devices ()
frame ([xmin [, xmax [, ymin [, ymax]]]]

[, window = val])
fr ([xmin [, xmax [, ymin [, ymax]]]] [, window = val])
nf ([new_frame = val1] [, window = val2])
sf ([window = val])
undo ([number])

• Attribute functions (CHAPTER 4: “Attributes”)

attr (keyword=value [, keyword=value ...])
 # set color, thickness, etc.

• General plot functions (CHAPTER 5: “General Plot Commands”)

plot (y, x [, <keylist>]) # curves, markers
plotz (fexpr [, xexpr [, yexpr]] [, <keylist>])

contours
ploti (<keylist>) # cell array plot

• Mesh-oriented functions (CHAPTER 6: “Mesh-Oriented Commands”)

set_mesh (<keylist>) # establish default mesh
clear_mesh () # erase default mesh
ezcpvar (val) # set plotted variable for mesh
ezccindex (val) # set color index for mesh
ezcx (val) # set abscissa for mesh
ezcy (val) # set ordinate for mesh
ezcireg (val) # specify regions in mesh
ezcv (val) # set x component of velocity
ezcu (val) # set y component of velocity
plotm (<keylist>) # plot mesh
plotb (<keylist>) # plot region boundaries in mesh
plotc (<keylist>) # plot contours of a mesh-based quantity
plotf (<keylist>) # fillmesh plot
plotv (<keylist>) # plot velocity field

• Text plotting and miscellaneous (CHAPTER 7: “Text Plotting and Miscellaneous”)
7

avior of
R 8:
titles ("top"[, "bottom"[, "left"[, "right"]]])
text ("message", x, y, charsize [, <keylist>])

You can use attributes and the values of user-settable variables to control the detailed beh
these functions. Attributes are explained in CHAPTER 4: “Attributes”, variables in CHAPTE
“Control Variables and Defaults”.
8

UCRL-MA-128569, Manual 4

yGist
oduces
inter,
terac-

nt de-
 CGM

ser can
t win-
ow

not open
) at the

o open
tines,
neously

se win-
efore

ange.
CHAPTER 3: Devices

EZPLOT has functions to control graphics devices. The devices supported by EZPLOT with P
graphics are CGM files, PostScript files, and Xwindows. The PyNarcisse graphics engine pr
plots in an Xwindow, and optionally its own brand of files, which can not be sent directly to a pr
but which can be loaded into a PyNarcisse window and sent to a PostScript file or printer in
tively.

A user can open multiple devices and direct the same or different graphics output to differe
vices. EZPLOT supports up to eight windows and/or files at a time. There can be at most one
file and one PostScript file open at a time, but there can be multiple windows. For example, a u
open several Xwindows, even at different workstations, and display different frames in differen
dows for comparison. When the user is satisfied with the result of a certain frame, say in windn,
he/she can issue cgm ("send", window = n) to record the frame into a CGM file.

Please note that there are major differences between PyNarcisse and PyGist, since you do
PyNarcisse windows from within the graphics routines; instead, you must open one (or more
unix prompt prior to firing up the graphics routines. Thus the win function, which opens windows in
PyGist, does not do so in PyNarcisse, but instead tries to find a PyNarcisse window to which t
a connection. Likewise, rather than specifying whether or not to write files via the graphics rou
you use the menus in the Narcisse GUI to do so. (Of course, as we shall see, one can simulta
use PyNarcisse to draw plots in windows and PyGist to send the same plots to files.)

3.1 Device functions

The device functions are used to specify where the plot should go, the choices being PyNarcis
dows, PyGist windows, or PostScript or CGM files (PyGist only). If you issue a plot command b
specifying at least one device, PyGist defaults to a single CGM file. In fact, PyGist will always write
to a CGM file unless you issue a ‘‘cgm ("close") ’’. PyNarcisse will attempt to find a running
Narcisse process, and if it finds one, will plot to that process’s window.

The device functions are of the form:

file-type (file-command [, device-number] [, new_frame = <str>])

win (win-command [, device-number] [, display = <str1>]

[, graphics = <str2>])

The file-type function is only valid for PyGist graphics. file-type can be cgm or ps . file-command
can be: "on" (or "open"), "off" , "close" , "send" , or "plot" . device-number can be a num-
ber from 0 to 7, and if not specified, defaults to the lowest available number in that r
new_frame , if specified, must be "yes" or "no" . See below for explanations.
November 23, 1998

 For an

ist,

cs

ex-

lose (i.

‘‘cur-

t

ed. If
of

,
 list,
nt to
lf has

le will
. For

active
win-command can be "on" (or "open") and "off" (or "close"). device-number can be a
number from 0 to 7, and if not specified, defaults to the lowest available number in that range.
explanation of the display and graphics keywords, see below.

The device cgm is a CGM file. The CGM file stores the frames of graphics output. Under PyG
a standard CGM file is produced, with suffix .cgm . The filenames default to Aa00.cgm ,
Ab00.cgm , etc.

The device ps is a PostScript file, which has suffix .ps . The PS file stores the frames of graphi
in the PostScript format. The filenames default to Aa00.ps , Ab00.ps , etc.

The device win (or tv) is an Xwindow on a certain display. The PyGist display is the network
address of the device where the plot will be displayed, e. g. "icf.llnl.gov:0.0" . If not speci-
fied, it will be set by the user’s environment variable DISPLAY. The PyNarcisse display is more
complicated and is described in section 3.2.2 “PyNarcisse”. The keyword graphics is used to spec-
ify the type of graphics engine for this particular window; allowed values are "Gist" and "Nar" . If
none is specified, then the graphics will be as specified by the user’s environment variable PYGRAPH,
or "Gist" if that variable is unset.

The command "on" or "open" opens a device if the device has not been opened. Then "on"
activates the device. It has no effect on the device if it is currently active.

The command "off " deactivates an opened file (but the linkage to the file for controlling still
ists). The command "close " deactivates and then closes the file. Beware, however; "off" and
"close" behave exactly the same for a graphics window, namely, they cause the window to c
e., go away forever).

The command "send" sends the current frame (see the next paragraph for the meaning of
rent frame”) to the specified CGM or PS file; the send command turns on the device (i.e. CGM or
PS file), sends a frame, and then turns the file off . The command "plot" also sends the curren
frame to the specified CGM or PS file; the difference is that the file is not turned off after the frame
is displayed. The keyword new_frame is only meaningful with the send and plot commands. If
"no" , then any new graphical components will be added to the current frame and display
"yes" , then the new graph will not be displayed until a nf () is issued, which also has the effect
erasing the current display list.

And now, what is the current frame? The cgm or ps function has a keyword argument window
which can be used to specify the number of an open window, or in the case of multiple windowswin-
dow = "min" will choose the window with the smallest number which has a nonempty display
and "max" will choose the one with the largest number; this wndow’s display list will then be se
the CGM or PS file. Lacking this keyword, the command looks first to see if the CGM device itse
a display list, and if not, defaults to "min" . If no display list can be found, an exception is raised.

For PyGist graphics, the window name appears in the title bar of the window. The window tit
be ‘‘PyGist n’’, where n is the number of the window (an integer between 0 and 7, inclusive)
users with multiple windows, the function call list_devices () will give an informative printout
listing the numbers of open devices, their status (e. g., in the case of CGM and PS files, active or
closed), what type of device they are, their graphics, and their display.

EZPLOT keeps track of the number of active devices. If a plot function is issued without any
10

n

what
 differ.
device, EZPLOT will open a CGM file as a default device to accept the plot function call.

Example 1

This example illustrates the use of the “open ” and “send ” commands. (As with most examples i
this document, we are assuming that the necessary graphics files and module Numeric have been
imported.) We show the following set of EZPLOT function calls, first with comments explaining
happens with PyGist graphics; afterwards, we comment on how the PyNarcisse version will
We invite the reader to type these commands in and follow along.

Assume PyGist graphics first (PYGRAPH set to Gist)
win ("on")

Open an Xwindow with name PyGist 0.
In PyGist, the window does not open until the
first plot is sent:

plot (arange (20, typecode = Float) ** 0.5)
Note: arange is the Python equivalent of iota.
11

Add a second curve to the plot:
plot (arange (20, typecode = Float) ** 1.2)

Open CGM file, send a frame to it with two curves,
then immediately set CGM file to off:

cgm ("send")
Prepare for next frame (plot will not be replaced
until next plot command is given):

nf ()
12

The plot appears on the window after we do:
plot (arange (15, typecode = Float) ** 1.2)

Activate the CGM file to accept a frame,
then deactivate the CGM file:

cgm ("send")
Open PS file, send a frame to it,
then deactivate the PS file:

ps ("send")
nf ()
13

 your
t plotting
 function

le to
The new plot appears on the window:
plot (arange (15, typecode = Float) ** 1.4)

Re-activate PS file, send a frame,
then deactivate the PS file:

ps ("send")
^D # CTRL-D terminates Python.

Close all devices; close CGM file and PS file.

Note that PyGist curves, as they appear, are marked along their extent by the letter ‘‘A’’ for the
first, ‘‘ B’’ for the second, etc. It is possible to draw curves without such markers, or to specify
own; it is also possible to plot curves as dots, dashes, etc., as we shall see later. In the defaul
mode, as above, each successive plot will appear on the same frame as all of the previous; the
nf () must be called to force PyGist to start a new frame.

Now try the same sequence of function calls with PyNarcisse graphics. You must have PYGRAPH
set to Nar , and a PyNarcisse window must be open, with your PORT_SERVEUR variable agreeing
with the port number in the window. (If you fail to do this, the PyNarcisse software will be unab
14

 com-
the let-
elling,
e other

time, so
arcisse

rcisse
amed
h. It
-
ot or
 have

 python

 so you

 of the
low for
find the window, and will go into a perpetual loop trying to make a connection.) After each plot
mand, the new curve will appear on the plot. Notice that PyNarcisse curves will be labeled by
ters ‘‘A’’, ‘‘ B’’, etc. at the right ends. This is because PyNarcisse does not support in-curve lab
and this was the closest approximation to the PyGist behavior that we could think of. If you us
options to label your curves, then your chosen labels will overrule these letters.

As we shall see later, it is possible to have both PyGist and PyNarcisse active at the same
a PyNarcisse plot can be sent to a PyGist CGM or PS file. Unfortunately, the PyGist and PyN
graphs will usually not look exactly alike.

3.2 Working with Multiple Windows

3.2.1 PyGist

If multiple windows will be used, then again the situation differs considerably between PyNa
and PyGist. PyGist is fairly straightforward in that each opened window will automatically be n
‘‘ PyGist n’’, where n is the window number. It is up to the user to keep track of which is whic
is possible, using the window = n keyword argument to plot , sf , and other frame control func
tions, to display different plots in different windows for comparison purposes. (Normally a pl
frame command will display the current plot in all open windows and CGM or PS files which
not explicitly been turned off .) It is also possible, using the display and graphics keyword
arguments to the win function, to open a PyGist window on a remote machine.

For making plots, changing frames, and closing windows or files, the window keyword argument
can be assigned a single number between 0 and 7 (the number of any open window or file), or a
list of such numbers (between square brackets, comma separated), the string "min" (select the small-
est open device number), the string "max" (select the largest), or the string "all" , which will select
all open windows and files. PyGist keeps a separate display list for each opened window or file,
can display quite different graphs on different devices. Upon opening a window or file, window de-
faults to the smallest unused device number. In most other commands, window defaults to "all" , so
if you want different graphs in different windows, you must be specific.

Note that if a second window is opened in the same display, it will most likely appear on top
first and will need to be repositioned to make both visible on the display. Study the example be
more information on working with multiple windows.

Example 2

Try out the following commands to gain experience working with multiple devices.

cgm ("close") # repress cgm; always on otherwise
tv ("on", 1) # (Same as win ("on", 1))

Create a window named "PyGist 1".
plot (arange(20, typecode = Float)**2, color="red")
(plot on next page)
15

16

win ("on", 2)
Create another window named "PyGist 2";

plot (arange(20, typecode = Float)**1.5, color="green",
window = [1, 2])
The new plot will appear on PyGist 2. Note: both
curves appear on PyGist 1, since we did not do
nf (1).

nf (window = 2) # Set a new frame (window PyGist 2 only)
plot (arange(15, typecode = Float)**1.7, color="blue")

Assuming ezcshow status "true", the plot will appear
on both windows. On PyGist 2 it will be on a fresh
screen, but on PyGist 1, it will appear superimposed
on what was there already, because "nf" applied only
to window 2. nf () (with no arguments) clears all
windows; nf (window = 1) would be necessary to clear
only window 1. (Plot is on next page)
17

 new
...

Note that curves within a window are lettered consecutively within that window. Thus the
curve is labeled B in window PyGist 2, and C in window PyGist 1.
18

win ("close", 1)
Close PyGist 1; now PyGist 2 is the only one active.
19

nf ()
plot (arange (10, typecode = Float), color="purple")

win ("close", 2)
Close PyGist 2; now no devices are active.

nf ()
...
cgm ("on")

Open a CGM file to accept the following plots.
plot (arange(20, typecode = Float), color="yellow")
20

ready
ing in
r

rying to

m from

-
e a col-

let you

t

A frame is send to the CGM file.
ps ("on")

Open a PostScript file.
plot (arange(20, typecode = Float)**1.2)

A frame has been send to both CGM and PS file.
The CGM file will contain both curves.

nf ()
win ("on", display = "greystoke.llnl.gov:0.0", graphics =

"Gist")
Open a PyGist window on a remote machine.

list_devices ()
Just in case you forgot which device is which,
this function gives an informative list.

plot (arange(20, typecode = Float)**1.8)
A frame has been send to CGM, PS and remote machine.

cgm ("close")
Close CGM file.

ps ("close")
Close PS file.

^D
Implicitly close all active devices; quit Python.

3.2.2 PyNarcisse

Working with multiple PyNarcisse windows is quite different from PyGist, because as you al
know, you can not open new PyNarcisse windows from within Python. You must do this by typ
the Narcisse command at the unix prompt; the win ("on") command from a Python script o

interactive session simply causes EZPLOT to connect to an existing Narcisse process1. If, as also
mentioned previously, no Narcisse process is to be found, then Narcisse goes into a loop t
connect to what it can’t find. This is not very logical behavior, but ours not to wonder why....

To open multiple Narcisse processes on the same Xterminal, the easiest way is to open the
separate windows, following the same procedure, namely first setting PORT_SERVEUR to 0, then typ-
ing in ‘‘Narcisse & ’’, then changing PORT_SERVEUR to the port number given on the GUI. Like
wise, if you want to converse with a Narcisse process on a remote machine, you need to hav
league open the window there. Or, if you can rlogin , you can do it yourself, provided the DISPLAY
variable is set to point to the remote machine. However, you’ll still have to have the colleague
know what the PORT_SERVEUR number is.

To open a connection to a particular Narcisse process, local or remote, use the display and
graphics keyword arguments to the win function. The PyNarcisse display argument must be a
character string in the form "hostname+port_number++user@ie.32" , where the

1. Note that Narcisse, when started, opens only its GUI. An actual graphics window will not open until (a) you are connected o the
Narcisse process, and (b) you send a plot to this process.
21

cate,

 by the

ple of the
st

refore,
sse, all
ent to the
ou

 if

sed in

ere is
p is a
nd vio-
ich is

t

port_number is the one displayed by the GUI of the Narcisse with which you wish to communi
and the hostname is where the server is running. An example string might be:

"kristen.llnl.gov+44812++motteler@ie.32"

Suppose, for instance, you want to form a connection with the Narcisse process identified
above string as window number 2. You would do this as follows:

win ("on", 2, display =
"kristen.llnl.gov+44812++motteler@ie.32",
graphics = "Nar")

We encourage the user to open a couple of Narcisse processes and go through the exam
previous section, the difference being using the win function to connect with Narcisse as we have ju
showed you.

3.2.3 Using PyGist and PyNarcisse together

The EZPLOT graphics model supports up to eight open ‘‘devices’’, and there is no reason, the
why a user cannot have a CGM file, a PS file, and several windows, both PyGist and PyNarci
active at the same time; and some of the windows can even be remote. Use the second argum
functions cgm, ps , and win to specify the window number (if you do not wish EZPLOT to give y
default numbers). Use the display keyword argument and the graphics keyword argument to
the win function to specify where the display is to appear (and remember, the form of display is
different for PyGist and PyNarcisse). The graphics keyword should be used for safety, although
it is not supplied, EZPLOT will use the environment variable PYGRAPH, if set, or will default to
"Gist" , if PYGRAPH is not set.

Finally, use the window keyword argument to the various plot functions and to nf and sf to con-
trol what plot goes to which device.

3.3 Setting the Colormap

EZPLOT currently does not support allowing the user to change the colormap (or palette) u
plotting. You can do this using OOG or the low-level gistCmodule or narcissemodule func-
tions. (EZPLOT commands can be successfully mixed with low-level gistCmodule calls.) If th
sufficient demand, we will eventually add this feature to EZPLOT. The current default colorma
rainbow palette, i. e., a set of colors running through red, orange, yellow, green, blue, indigo, a
let, just like a real rainbow. On non-color devices, this will be displayed as a greyscale, wh
unfortunate, because some shades will be essentially invisible.

3.4 Frame Control

There are three functions which control frame actions. The frame function sets the limits of the
picture frame. The nf (New Frame) function is used to begin a new frame. The sf (Show Frame) func-
tion is used to display the current frame to all active devices. The undo function removes the mos
22

d
m the

um-

jects it
ows;

xtreme
recently plotted function from the display list of the specified device(s).

3.4.1 frame : Set Frame Limits

Calling Sequence

frame ([xmin [, xmax [, ymin [, ymax]]]] [, window = val])
fr ([xmin [, xmax [, ymin [, ymax]]]] [, window = val])

Description

The frame function sets the limits of the picture frame, which are frame type attributes. The
frame command applies immediately to all plot commands in the frame. fr is an abbreviation for nf
followed by frame .

You can supply zero to four positional arguments. If specified, xmin is the minimum value for the
x scale, xmax is the maximum value for the x scale, ymin is the minimum value for the y scale, an
ymax is the maximum value for the y scale. These positional arguments may be omitted fro

right1; or, if you wish, you can specify any subset of the arguments using keywords, e. g.,

frame (xmax = 9.32, ymax = 1.05e11)

Those arguments omitted will be calculated from the data. The window keyword may be used to
specify a particular window or file to which you wish to apply the limits. Allowed values are the n
ber of an open window from 0 to 7, "cgm" , "ps" , or "all" (the default).

 The frame limits will not be retained across frame advances. If a frame already contains ob
will be displayed with these frame limits. Currently the same frame limits apply to all open wind
if sufficient demand surfaces, we will implement separate frame limits for separate devices.

Example 3

In the first example, the frame limits are set to the specified values. In the second call, the e
values for xmin and ymin are used. Hence, the frame limits are 1,5,1,9.

ezcshow ("true")
plot (arange (10), arange(10))
(plot on next page)

1. EZN (i. e., Basis) allows arbitrary arguments to be omitted, e. g.,
 frame ,,ymin,ymax
but this form is not allowed in Python.
23

24

frame (2, 9, 3, 7)
25

frame (xmax = 5, ymax = 9) # xmin,ymin defaulted
26

s. If

e

frame (2, 9) # ymin,ymax defaulted

Since ezcshow is true , four frames were displayed, as illustrated on the preceding page
ezcshow had been set false , only three frames would be displayed. The moral is: put the frame
command first, normally, and use subsequent frame commands to plot a different view of the sam
set of objects
27

 frame
e

 on the

lears

t but
tion

ll be

 will

wed
3.4.2 nf : New Frame

Calling Sequence

nf ([new_frame = val1] [, window = val2])

Description

The nf function signals that a new frame is to be started. By default, attributes set by the attr
function (See “attr: Setting Attributes” on page 43.) are reset to their default values when a new
is issued. If, however, the user has issued ezcreset ("false") , then the attributes set by th
attr command will remain in effect across frame advances.

What nf really does is to close the currently displayed frame. What else happens depends
value of the keyword parameter new_frame and also depends on the last call to ezcshow . If
new_frame is "yes" (the default), then the current frame remains displayed, but EZPLOT c
that frame’s current display list in preparation for the next one. If new_frame is "no" , then the nf
behaves exactly like sf , described in the next subsection; i. e., it redisplays the current display lis
does not clear it. The most recent ezcshow call determines what happens the next time a plot func
or an sf is invoked:"min"

• If it was ezcshow ("true") , and a plot command is issued, then the specified curve wi
added to the display list and the list will be displayed immediately. If an sf () is issued, it has
no effect unless nf was called with new_frame equal to "yes" , in which case it will tell you
that there is nothing to graph.

• If it was ezcshow ("false") , and a plot command is issued, then the specified curve
be added to the display list, but the current display will not change until an sf () is issued.

The window keyword argument can be used to specify a particular window or file; the allo
values for val2 are "all" (the default), "cgm" , "ps" , "min" , "max" , an integer from 0 to 7, or
a list of such integers.
28

arcisse
PyNar-
Example 4

In the default case, the line style is reset across frame advances. (Note, though, that PyN
does not support dashed curves, so this example won’t illustrate much of anything if used with
cisse.)

ezcreset ("true") # (default)
attr (style = "dashed")
plot (y, x) # First plot dashed.
plot (y2, x2) # Second plot dashed.
29

nf ()
plot (y3, x3) # Style IS reset to solid (default).
30

In the example below, the line style remains dashed across frame advances.

ezcreset ("false")
attr (style="dashed")
nf ()
plot (y,x) # First plot dashed
plot (y2,x2) # Second plot dashed
(same plot showing as two pages back)
nf ()
plot (y3,x3) # Style NOT reset across frame advance
31

s) or
alue
ame

een
A better way to do this is usually to change the default variables, in this case defstyle . See
Chapter 8 for details.

3.4.3 sf : Show Frame

Calling Sequence

sf ([window = val])

Description

The sf function displays the current frame to all active devices, or to particular window(
file(s), depending on val ("all" being the default). The frame is displayed regardless of the v
of the status of ezcshow . This function is useful when a user wants to control the display of the fr
at certain times; i.e., not every time a graphic object is added on a frame (default). Note that sf will
complain if there is nothing on a selected display list, which will be the case any time an nf () is
issued with new_frame equal to "yes" , or missing altogether.

Example 5

In the example below, the sf function is used to display the frame after three curves have b
added. Note that function ezcshow was called with argument "false" , so there will be no change
in the display until the sf . A fourth curve can then be added; had nf () been used instead of sf () ,
the first three curves would no longer be in the picture.

ezcshow ("false")
plot (y1, x1)
plot (y2, x2)
plot (y3, x3)
sf () # force show of current frame (next page):
32

33

plot (y4, x4)
sf ()
34

 list is
T

sup-

t or

diaplay
3.5 undo : Undo a Plot Command

Calling Sequence

undo ([item = number] [, window = val])

Description

Remove the number th object in the EZPLOT display list for the device(s) specified by the window
keyword.. (EZPLOT maintains a list of graphic objects created by successive plot calls. This
cleared when an nf is issued.) If no item is given, undo the last graphic object. Some EZPLO
functions do not generate graphic objects in the display list (for example, the frame function), so
cannot be undone in this way. It is the user’s responsibility to figure out which number should be
plied for undo . (Numbering of objects begins at 1.)

The window keyword can be "min" , "max" , or a number between 0 and 7. It cannot be a lis
"all" . The default value, if this argument is missing, is "min" . An exception will be raised if the
item number referred to does not exist, or if the specified window does not have a nonempty
list.
35

36

UCRL-MA-128569, Manual 4

ividual

until a

ire
,
ating a

d
 by this
he
s for

ues

These
t values
d De-

out the

How-
st
CHAPTER 4: Attributes

A set of “attributes” such as color , thickness , scale , marks , labels , etc., can be used to
control the appearance of graphic objects or the layout of a frame.

4.1 Attribute Types

Some attributes affect the entire picture (such as scale, frame limits) while others affect the ind
graphic objects in the picture (such as thickness, color).

If the attribute affects the entire picture, it will take effect immediately and we call it a frame at-
tribute. If the attribute only affects the individual graphic object, we call it an object attribute. A special
kind of object attribute (for mesh plots), which affects the current object and remains in effect
frame advance or until another assignment is made to the attribute, is called "sticky". See “Attribute
Table” on page 48. for a list of valid keywords, values and their attribute types.

The grid and scale attributes are examples of frame attributes. These attributes affect the ent
picture. When these attributes are specified with the attr function or in an EZPLOT graphic function
a new picture is plotted with the grid and scale changed. (Note: This has the side effect of cre
new frame even if ezcshow ("false") is in effect.)

The color and style attributes are examples of object attributes. If these attributes are specifie
in a graphics function call, the color and line style are changed only for the objects generated
command. If these attributes are specified with the attr command, only those objects added to t
frame following the attr command will have these specified attributes. Some special attribute
the mesh plots such as region , krange , lrange are ‘‘sticky’’: i.e., the specifications of region ,
krange and/or lrange will affect the following mesh plots until the end of the frame or the val
have been redefined.

If no attribute value is set explicitly by the user, a default value will be used for the attribute.
default values in turn can be changed by setting certain control variables. User specified defaul
will be in effect until new default values are assigned. See CHAPTER 8: “Control Variables an
faults” for details.

By specifying attributes and control variables, it is also possible to change many things ab
layout of the picture, such as the size of the titles, and the minimum size of the text.

Usually all attributes will be re-initialized to their default values when a frame is advanced.
ever, calling the function ezcreset with argument "false" will cause the attribute settings to la
across frames.
November 23, 1998

Examples

plot (y1, x1)
plot (y2, x2)
38

attr (scale = "linlog") # Picture redisplayed.
39

nf ()
plot (y1, x1)
plot (y2, x2)
attr (style = "dashed") # Only following curves affected;

no redisplay yet.
40

plot (y3, x3)
plot (y4, x4)
nf ()
41

to be

e-
The attributes labels and lev can be either frame or object attributes. For example, attr can
set labels to "yes" or "no" , to indicate whether or not subsequent curves in the frame are
labeled. As an object attribute, labels can also be set to the opposite value, as in:

attr (labels = "no")
plot (y1, x1)
plot (y2, x2, labels = "yes")
plot (y3, x3)

This results in the curves y1 and y3 being unlabeled, and y2 being labeled (see above); i. e., subs
42

 quoted

 level
r

 effect

me if it
 assigned

TER 8:
quent curves in the frame will be unlabeled unless the object attribute labels is explicitly set to
"yes" .

Labels for the curves (other than the default letters) can be specified with the labels keyword.
Labels must be quoted strings, or variables or expressions (including arrays) whose values are
strings. The attribute labels is also used to turn labelling on and off (by setting it to "yes" or
"no"). When the attribute labels is used in this sense, it is a frame attribute. i.e., all existing and
subsequent curves on the frame will be either labelled or not.

The attribute lev can be used to assign the number of contour levels or a vector of contour
values as an object attribute. When lev="log" , it becomes a frame attribute, and it sets the contou
levels based on a logarithmic scale.

4.2 attr : Setting Attributes

Calling Sequence

attr (keyword1=value1, keyword2=value2, ... ,
keywordN=valueN)

Description

The attr function assigns values to attributes. The value assigned to an attribute remains in
until a frame advance is issued, or until another assignment is made to the attribute via theattr
command (within the same frame). An attribute’s effect can be reversed for an object in the fra
can also be used as an object attribute, as noted in the previous section. To make the values
to attributes remain in effect across frame advances, call function ezcreset with argument
"false" .

To make a permanent change to a default, change the corresponding variable. See CHAP
“Control Variables and Defaults” for a list of these.
43

me
Examples

In the first example, the scale is set to loglog , the line style is set to dashed . Since the default
value "true" was sent to ezcreset , the attributes set only remained in effect until the next fra
advance. After that, the attributes were reset to their default values.

assume ezcreset ("true") (default)
Settings remain in effect only until next frame advance.
attr (scale = "loglog", style = "dashed")
plot (y1, x1)
plot (y2, x2)

44

nf ()
plot (y3, x3) # scale,style reset to defaults.
45

0 across

In the second example, ezcreset is called with argument "false" . This time the attr com-

mand remains in effect across frame advances. Hence, the line thickness remains set to 3.
frame advances.

ezcreset ("false")
Settings remain in effect across frame advances.
attr (thick = 3.0)
plot (y1, x1)
plot (y2, x2)
46

default
nf ()
plot (y3, x3) # Thickness still 3.0.

Or, we could accomplish the same thing more simply by making a permanent change to the
thickness (the plots will look identical to the previous two):

ezcreset ("true") # (default)
defthick=3.0
plot (y1, x1)
plot (y2, x2)
nf ()
plot (y3, x3) # Thickness still 3.0.
47

om-
 Basis

ult).

es only.

nd / fo
 EZPLO

ing 16

, "cyan
"purpl
", "ye
d", "red
 are ava
cisse.)

band,

r line

ar at the
tour or

g with p

pping

g with

ult)

esh pl

on.
4.3 Attribute Table

The following is an alphabetical list of all allowable attribute keywords. Refer to individual plot c
mands for more specific information. Note that this is only a subset of what is available in the
EZN package. More attributes can be added to EZPLOT if there is sufficient interest.

TABLE 1. attr : Attribute Table

Keyword Type Value Description

bnd object "no" Plot full mesh (defa

 "yes" Plot region boundari

color object "bg"
 "fg"

The default backgrou
ground color used by

 "color" Use one of the follow
colors (default="fg"):
"red", "green", "blue"
"magenta", "yellow",
"black", "white", "gold
lowgreen", "orangere
ange". (Not all colors
on both Gist and Nar

 "filled" Color fill the contour
ing from blue to red.

 "fillnl" "filled" without contou

color_bar frame 0 or 1 (default) If 1, place a color b
side of a colored con
contour plot

cscale frame "lin" Linear color mappin

"log" Logarithmic color ma
plotf

"normal" Normal color mappin
plotf

grid frame "no" No reference grid

 "tickonly" Tick marks only (defa

 "x" x rulings

" y" y rulings

 "xy" x and y rulings

krange sticky (kmin,kmax,kinc) Range for k-lines in m
(default=(1,kmax,1))

kstyle object "none" No lines in k directi
48

ee st

abelled in
).

 unless
spec (b

 curves
overru
low).

 tr.
r multip

vels.

ls.

 (defau

levels.

esh pl

n.

ee sty

 mesh

ion num

near (de

garith

axis lin

garithm

ear,
 "style" Use style for k-lines. (S
default="solid")

labels frame "yes" Curves/marks are l
order added (default

 "no" No labels displayed,
ruled by object label

label frame "str" Label all subsequent
frame with str, unless
object label spec (be

object "str" Label next curve withs
str can be a vector fo
curves.

lev object ival Number of contour le
(default=8)

 [rval1,rval2,...] Vector of contour leve

frame "lin" or "linear" Linear contour levels

 "log" Logarithmic contour

lrange sticky (lmin,lmax,linc) Range for l-lines in m
(default=(1,lmax,1))

lstyle object "none" No lines in l directio

 "style" Use style for l-lines. (S
default=solid)

mark object "asterisk" Asterisk marker

 "circle" Circle marker

 "cross" Cross marker

 "dot" Dot marker

 "plus" Plus marker

region sticky "all" Display all regions in
(default).

 [ival1,ival2,...] Vector of desired reg

scale frame "linlin" Both x and y axes li

"linlog" x-axis linear, y-axis lo

"loglin" x-axis logarithmic, y-

"loglog" Both x and y axes lo

"equal" Both x and y axes lin
scales equalized

TABLE 1. attr : Attribute Table (Continued)

Keyword Type Value Description
49

es

lier
style object "solid" Solid lines (default)

 "dashed" Dashed lines

 "dotted" Dotted lines

 "dotdash" Dot-dashed lines

 "none" Background color lin

thick object rval Line thickness multip
(default=1.)

vsc object rval Vector scaling factor
(default=0.05).

TABLE 1. attr : Attribute Table (Continued)

Keyword Type Value Description
50

UCRL-MA-128569, Manual 4

arkers

yle is

 it. If
dded

nsion-

ey are
CHAPTER 5: General Plot
Commands

This chapter describes the EZPLOT general-purpose plot commands.

5.1 plot : Plotting Curves and Markers

Calling Sequence

plot ([yexpr[, xexpr[,< keylist>]])

Description

The plot command plots line segments connecting points or discrete markers at the points. M
are plotted at the data points, without connecting line segments, when the attribute mark is set to one
of the valid marker types. The default scaling factor for markers is 1.0, the default line st
"solid" , and the default line thickness is 1.0. To override these values, set the attributes mark-

size 1, style , or thick , respectively.

If neither yexpr nor xexpr is specified, then the current picture is redisplayed. Otherwise, yexpr is
an array of y-axis values, xexpr is an array of x-axis values, and <keylist> is a list of optional attributes
specified by pairs of keywords and values separated by equal signs. If xexpr is not specified, then yexpr
is plotted against the index of yexpr. If yexpr differs in length by one from the length of xexpr, whether
explicitly or implicitly specified, the longer of the two will be automatically averaged to shorten
the lengths of xexpr and yexpr differ by more than 1, then the command is an error, no object is a
to the frame, and an exception will be raised.

If the arguments are two-dimensional arrays, plot plots the corresponding columns of yexpr and
xexpr to produce multiple curves at once. Multi-dimensional arguments are reduced to two-dime
al by collapsing any higher dimensions. If xexpr is one-dimensional, then each column of yexpr is plot-
ted against it.

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, th
local to the command specified; i.e., they are not remembered across commands.

1. Not currently available in PyGraph.
November 23, 1998

:

his

 as the
the
nt
in-
window , grid , scale , style , thick , color , labels , label,mark

If optional attributes are given as keyword arguments to plot ; they are specified in the usual form

key1=value1,key2=value2,...,keyN=valueN

To set an object attribute across commands use the attr command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

Examples

In this example, three curves will be superimposed. The first plot function will plot a curve with
dashed lines, the second plot function will mark circles, and the third plot command will plot the
curve in red. Since the first plot command does not specify xexpr, y will be plotted against an array
spanning from 0 to 10. In the second and third plot calls, the y values are also plotted against t
same array. The curves are labelled "A" and "C" respectively. (“Marked” plots are not labelled.)

y = arange (5, 16, typecode = Float)
plot (y, style = "dashed") # plot curve
plot (y + 1,mark = "circle") # plot markers
plot (y + 2, color = "red") # plot curve in red
nf ()

If you enter the above commands at the terminal, you will see three frames displayed in turn
graphic objects are added. The nf call will clear the display list but not the screen. If you close
window (issue win ("close")), reopen it (win ("open")), and then you repeat the experime
but issue ezcshow ("false") first, you will not see any graphic objects at all, or indeed any w
52

,

e
haps’’.
will be
dow in the case of Gist, until you issue an nf ("no") or sf () call, at which point the window with
the completed frame will appear. Just issuing a naked nf () will cause the window to open with
nothing displayed, since the display list will have been erased.

The next example replots two curves with an xy-grid added.

x = 0.5 * arange (1, 10, typecode = Float)
y=x**2
plot (y, x)
plot (y - 1, x)
plot (grid = "xy")
nf ()

In the next example, the first plot call will plot three curves, y , y + 1, y + 2 against the same x
labelled “1”, “ 2”, and “3”, respectively. The second plot call will plot two curves, y + 3 against x
+ 1 and y + 4 against x + 2, perhaps labelled ‘‘D’’ and ‘‘ E’’, respectively. (Note that the default curv
labels continue to increment even if the letter is not the curve label. Note also the caveat ‘‘per
This is because the letters will be the next two available in this particular Gist session; they
‘‘D’’ and ‘‘E’’ only if this is the first plot you make.)

plot ([y, y + 1, y + 2], x, label = ["1", "2", "3"])
53

s along
plot ([y + 3, y + 4], [x + 1, x + 2])
sf ()

Narcisse and Gist behave differently regarding labels. Gist will label a curve at several spot
54

ly use
and, al-
er at the

a curve
rences
ord,
ord. We
 la-

are
es

es sup-

arcisse
 pop-

word
ph the
r

l-
its length with a single character. If you specify a label of more than one character, it will simp
the first character. Otherwise it defaults to the capital letters, in order. Narcisse, on the other h
lows multiple-character labels, but does not put the labels on the curves themselves, but rath
right ends of the curves.

A difference between EZN and EZPLOT regarding labels is that EZN has only the keywordla-
bels , which can be used to turn the labels attribute on and off, as well as to specify a label for
or a default label for the frame. This is confusing, especially because EZN allows multiple occur
of the same keyword in a plot command. Python does not support multiple occurrences of a keyw
because keywords create Python dictionaruy entries, and there can only be one entry per keyw
have solved this problem by using labels solely as the frame attribute which enables or disables
bels for the entire frame, according as it is set to "yes" or "no" in an attr or plot call. The label
keyword is then used in an attr call to set the default label for all curves in the frame (if labels
enabled for the frame), or in a plot call to specify the label(s) for one curve or a family of curv
regardless of whether labels are enabled for the frame.

It is also important to realize the difference between marks and labels. Both graphics engin
port plotting curves with marks at each point specified by the coordinate arrays. The marks attribute
described in the previous chapter allows you to specify "dot" , "circle" , "cross" , "plus" , or
"asterisk" to specify the mark to be used; marks, if used, forces the attribute style to be
"none" . Narcisse supports only these five marks. Gist supports any single character mark. N
plots only the points specified; Gist draws what is called a ‘‘polyline,’’ which is a curve densely
ulated with the specified character.

A major difference between EZPLOT and EZN is that EZPLOT does not support the key
‘‘ legend ’’. This is because EZPLOT does not put the text of the plotting commands on the gra
way EZN does. Instead, EZPLOT has a titles function, which allows the user to specify titles fo
the top, bottom, left, and right margins of the graph, and a text function (See Chapter 7), which a
lows text to be plotted at arbitrary places in the graph. To put a title at the top of the graph, do

titles ("this is my title")
sf ()
55

tted
 func-

also il-
ame.
The arguments for titles must be given in the order top, bottom, left, right and may be omi
from the right. Omitted arguments default to blank. For convenience, EZPLOT also offers four
tions, each of which sets just one of the titles (leaving the other three unchanged). These are titlet ,
titleb , titler , and titlel .

The fifth set of examples graphs the unit circle and x and y axes in a variety of styles and
lustrates how the labels attribute works. Comments in the code explain what happens on the fr

Set x and y scales equal:
attr (scale = "equal")
a = (pi / 2.) * arange (11, typecode = Float) / 10.
Curve in first quadrant labelled with 1:
titleb ("first quadrant")
plot (cos (a), sin (a), label = "1")
56

Curve in second quadrant not labelled "Q2" since
drawn with a "mark":
plot (cos (a), -sin (a), label ="Q2", mark = "circle")
57

Third quadrant drawn and all labels turned off, but
label "XXX" is still associated with quadrant 3:
plot (- cos (a), - sin(a), labels = "no", label = "XXX")
58

All labels turned back on, including "XXX" in quadrant 3;
quadrant 4 labelled with D (maybe):
plot (- cos (a), sin (a), labels = "yes")
attr (label = "YYY")
59

The following two curves will now be labelled with "YYY":
plot (zeros (11, Float),
 (5. - arange (0, 11, typecode = Float)) / 5.,
 style = "dashed")
plot ((5. - arange (0, 11, typecode = Float)) / 5.,
 zeros (11, Float), style = "dotted")

See the following figure for the completed frame.
60

plots.

y

her

 In

is

rns an

ey are

m:

ore-

lor.
5.2 plotz: Plotting Contours

Note: plotz is not available in Narcisse, which does only three- and four-dimensional contour

Calling Sequence

plotz (fexpr [, xexpr [, yexpr]] [, <keylist>])

Description

The plotz function plots contours of a surface defined by fexpr above the point set described b
xexpr and yexpr . <keylist> is a list of optional keywords and values.

There are two allowed types of data for contour plots:

• Gridded data: xexpr and yexpr are one-dimensional arrays, say x and y , and fexpr is a two-
dimensional array, say z , such that

z (i, j) = f (x (i), y (j)), i in range (len (x)), j in range (len (y)).

In order for xexpr and yexpr to form a valid rectangular grid, each array must contain eit
strictly increasing or strictly decreasing values.

• Mesh data: fexpr , xexpr and yexpr are all two-dimensional arrays of the same shape.
this case, xexpr and yexpr form a logically rectangular mesh and fexpr (i, j) is the value
associated with point (xexpr (i, j), yexpr (i, j)) . For mesh-based data, a plot of th
type can also be generated by the plotc function; Section 6.5 on page 77.

EZN-style Scattered data plots are not supported by EZPLOT.

Note: fexpr can also be the name of a function which, when called with no arguments, retu
array of values of the appropriate shape.

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, th
local to the command specified; i.e., they are not remembered across commands.

window , grid , scale , thick , style , font , mark , lev , color,
color_bar

If optional attributes are given on the plot command line, they are specified in the usual for

key1=value1,key2=value2,...,keyN=valueN

To set an object attribute across commands use the attr command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

The default line style is solid and the default line thickness is 1.0. The default color is the f
ground color. To override these defaults, set attributes style , thick , color , respectively. The
mark attribute will cause markers to be plotted at each of the mesh points, in the forground co
61

ls
r

s
such

n-

s col-

r. The
h con-
d with

sary.
n

 frame
n
and the

he
5.2.1 Contour Levels

Contour levels are controlled by the lev attribute. The attribute lev can be used to specify the leve
of contours, the scale of the contours (linear or logarithmic), or a list of specific values for the contou
levels. The attribute lev can be set either on a plot command or with an attribute call such as “attr
(lev = foo) ”. Like any such attribute, if set with attr it applies to all plotz commands on that
frame, except those that override it with a “lev = ” of their own. However, if a vector of values i
specified for lev , it will be lost at the next frame advance. There is currently no way to specify
a list to be used on all frames.

In “ lev = foo ”, foo can be:

• "linear" (or "lin"): at least abs(deflev) linear levels;

• "log" : abs(deflev) logarithmic levels;

• n>0 : n linear levels;

• n<0 : abs(n) logarithmic levels;

• a real or double precision list of values.

The default value of lev is in the variable deflev , whose value is 8; hence, the default is 8 li
early-spaced contour levels.

 In Gist, every contour line is labeled with the default (consecutive capital letters). Contour
ored according to value are currently not available in Gist.

5.2.2 Contour Color Fill

The color attribute, if given a color name, causes all of the contours to be plotted in that colo
color attribute for a contour plot can also be used to generate color filled contour bands. Eac
tour band is a closed polygon (coupled with frame boundaries if necessary) which can be fille
color. The user can set color = "filled" to fill the contour levels with colors ranging from blue
to red with increasing altitude. When color fill is applied, the contour lines may become unneces
The user may specify color = "fillnl" to avoid the contour lines’ being drawn. Details o
filled contour plots may be found in the section “plotf: Fillmesh plot” on page 77

5.2.3 Contour Level Annotations (the Color Bar)

For the contour plots, the contour level annotations can be shown in the right margin of the
under user’s control. This is done by means of the color_bar keyword argument. If set to 1, the
the grid will be slightly reduced in size to take into account the space needed for the color bar,
color bar will be plotted. If 0, there will be no color bar. (The default is 0.)

The contour level annotation is color coded for easy association with the contour level colors. T
color assigned is the color of the contour level.

Example

The following example plots a matrix z versus vectors x and y.
62

x = arange (-5, 6, typecode = Float)
y = x + 6
z = multiply.outer (x, y)
plotz (z, x, y, color = "green", lev=12)
sf ()
63

l-

r you.

ey are

of the
5.3 ploti: Cell Array Plots

Note: ploti is not available in Narcisse.

Calling Sequence

ploti ([pvar] [, <keylist>])
ploti ([cindex] [, <keylist>])
ploti (<keylist>)

Description

The ploti command is used to plot cell arrays in EZPLOT. The argument cindex is a two-
dimensional array of unsigned character (typecode 'b' in Python) whose equivalent integer va
ues (0-255) are color cell indices (i. e., subscripts into the current palette). The argument pvar is a
two-dimensional array of reals, in which case EZPLOT will convert the values to cell indices fo
<keylist> is a list of optional keywords and values.

For mesh-based data, a more realistic display may be obtained by using the plotf command in-
stead; Section 6.5 on page 77.

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, th
local to the command specified; i.e., they are not remembered across commands.

window,grid , scale , color_bar

If optional attributes are given in the ploti call, they are specified in the usual form:

key1=value1,key2=value2,...,keyN=valueN

To set an object attribute across commands use the attr command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

Example

The following command will cause a 10 by 10 cell array to be plotted, with the first 100 colors
current color palette, and a corresponding color bar.

nf ()
ploti (reshape(arange(100,typecode = 'b'),(10,10))
sf()
(plot on next page)
64

an be

 data
5.3.1 Color-Mapping Functions

Setting the Color Map

Currently EZPLOT does not support letting you change the color map (or palette). This option c
added if sufficient demand arises.

Mapping Real Data to Color Indices

There is currently no way to do this implemented in EZPLOT, since EZPLOT will accept your
and do the conversions automatically.
65

66

UCRL-MA-128569, Manual 4

ree- and

h. The
s

t

n-

s

-
es

esh to
t
bers in

;
-

-

t-
esh-
CHAPTER 6: Mesh-Oriented
Commands

Note: The mesh-oriented commands are not available in Narcisse graphics. Narcisse does th
four-dimensional mesh plots only.

A mesh-oriented command assumes an underlying logically-rectangular two-dimensional mes
x-coordinate of the mesh, xexpr , and the y-coordinate, yexpr , are both two-dimensional real array

dimensioned (kmax, lmax) 1. By convention, zone (i, j) is the quadrilateral with upper-righ
corner (i,j) ; that is, with diagonally opposite corners (xexpr (i - 1, j - 1) , yexpr (i - 1,
j- 1)) and (xexpr (i, j), yexpr (i, j)) .

A mesh-oriented command also requires a region map ireg as an argument. This is a two-dime
sional integer array, also dimensioned (kmax, lmax) , with ireg (i, j) the region number for
zone (i,j) . The values of ireg (0, :) and ireg (:, 0) are irrelevant. A value of 0 indicate
a “void”.

The three mesh-defining arrays xexpr , yexpr , ireg , if specified in the plot command, must ap
pear before the first key = value pair. They may be dropped from the right, with missing valu
replaced by defaults. Thus, (x, color = "red") is equivalent to (x, rt, ireg, color =
"red") .

A mesh-oriented command accepts attribute specifications which specify a subset of the m
be plotted by defining values for krange , lrange , and region . The command will plot the subse
of the mesh consisting of zones whose indices are in the ranges specified and with region num
the region list.

A range specification has the form (start, stop, inc) . Fields may be omitted from the right
unspecified fields in the range are set to default values. krange specifies a range for the first sub
script, and lrange specifies a range for the second subscript. The defaults are krange = (0,
kmax, 1) and lrange = (0, lmax, 1) .

In the specification region = region-list , region-list can be a scalar or vector of in
tegers containing a list of region numbers. The default is region = "all" , meaning all regions.

The attributes krange , lrange and region are “sticky”, which means that after a mesh-orien
ed plot specifies a value for an attribute, this attribute value will stay in effect for the following m
oriented commands until a new frame or until the attribute is reassigned another value.

1. Remember: unlike FORTRAN, Python arrays are subscripted beginning with zero, so the subscripts of a kmax by lmax array range
from 0 to kmax - 1 and from 0 to lmax - 1.
November 23, 1998

, until
ce.

The al-

 pur-
-

e first

e

ents;
For example,

plotm (region = [1,3,5])
#Mesh plot for regions 1, 3 and 5.

plotc (te, color="filled")
#The contour plot will be restricted to regions 1,3,5.

nf ("no")

6.1 set_mesh and clear_mesh : Specifying the Default
Mesh

Calling Sequence

set_mesh (<keylist>)
clear_mesh ()

set_mesh is used to set all or part of the default mesh for the next mesh plotting functions
cleared or set to something else. clear_mesh , of course, removes the default mesh from existen
All of the mesh plotting functions require a mesh to be specified, either by a preceding set_mesh
command, or by specifying the mesh to be plotted in the mesh plot function’s own arguments.
lowed keywords in <keylist> are:

rt , zt , ireg , pvar , cindex , ut , vt

rt and zt are one-dimensional or two-dimensional arrays specifying the mesh. For plotting
poses, zt may be thought of as the abscissa (the x coordinate), and rt as the ordinate (the y coordi
nate). Suppose the mesh size is kmax by lmax . Then zt must be of dimension kmax (if one dimen-
sional) or kmax by lmax (if two). Likewise, rt must be of dimension lmax or kmax by lmax . ireg
is a kmax by lmax array of integers specifying the regions of the mesh. As mentioned earlier, th
row and column of ireg are meaningless and should be set to zeros. The keywords pvar and cin-
dex are mutually exclusive: pvar , if present, is a kmax by lmax array of reals values used to mak
a contour plot on the mesh. cindex , if present, is a kmax by lmax array of indices into a color table
specifying the colors for a filled mesh. Finally, ut and vt are kmax by lmax real arrays which specify
a vector field defined at each mesh point, for use in making vector field plots.

Any part of the default mesh may be overruled by a specification in a plot function’s argum
any part of the default mesh that was not set by a call to set_mesh must be specified in a plot function
call if that function needs it. There are no default or pre-set values.

6.2 ezcpvar , ezccindex , ezcx , ezcy , ezcireg , ezcu ,
ezcv : Convenience Functions

The functions enumerated above may be used (if desired) to set the global values of pvar , cindex ,
rt , zt , ireg , ut , and vt , respectively. They each accept a single, non-keyword argument.
68

on

,

eceding
ption

 in the

ey are

m:

ore-

o con-
6.3 plotm : Plotting Meshes, Boundaries, and Regions

Calling Sequence

plotm (<keylist>)
plotb (<keylist>)

Description

plotm is a mesh-oriented command. For general information, see the chapter introduction
page 67. In a departure from EZN, EZPLOT requires that all arguments be keywords.

The plotm function plots meshes. If the keyword bnd is set to “yes” (or 1), only the boundaries
of regions are plotted. If specified, rt is an array of y-axis values, zt is an array of x-axis values
ireg is a region map, and <keylist> is a list of other optional keywords and values.

If plotm arguments are omitted, they are supplied by using the values set by the nearest pr
call to set_mesh . If there was no such previous call, then the plot is not possible and an exce
will be raised.

As a special case, plotm (bnd = 1) can be abbreviated plotb .

By convention, the curves connecting nodes are divided into two sets,

k-lines: (xexpr(k, :), yexpr(k, :)), k in range (kmax); and

l-lines: (xexpr(:, l), yexpr(:, l)), l in range (lmax).

The krange and lrange attributes can be given a stride j to cause only every j th line in that
direction to be plotted. The stride is ignored for boundary plots, and ignored in drawing the lines
opposite direction (that is, the l -lines will have all their pieces even if krange has a stride j , while

only every j th k -line will be plotted).

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, th
local to the command specified; i.e., they are not remembered across commands.

grid , scale , kstyle , lstyle , thick , bnd , color , mark , labels ,
krange , lrange , region , window

If optional attributes are given on the plot command line, they are specified in the usual for

key1=value1,key2=value2,...,keyN=valueN

To set an object attribute across commands use the attr command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

The default line style is "solid" and the default line thickness is 1.0. The default color is the f
ground color. To override these defaults, set attributes style , thick , and color respectively.

The attribute mark can be used to plot markers at the nodes instead of drawing mesh lines t
69

i-
nect the nodes. This is similar to the function plot with the mark attribute.

Optional attributes kstyle and lstyle set the line style for the k -lines and l -lines, respectively.
By default, both are set to "solid" . If a style is set to "none" , then no lines are plotted in that d
rection.

The color specified by the color attribute is used to specify the colors of k -lines and l -lines. EZ-
PLOT does not currently support separate colors for k -lines and l -lines.

The window attribute is used to specify a device number from 0 to 7 for the plot, or "cgm" , or
"ps" , or "all" if the plot is to appear in all active devices. "all" is the default.

Examples

The following data are used for the examples here and in Section 6.5 “plotf: Fillmesh plot”.

Define mesh:
kmax = 25
lmax = 35 #Don’t make either smaller than 25.
xr = multiply.outer (arange (kmax, typecode = Float),
 ones(lmax, Float))
yr = multiply.outer (ones(kmax, Float),
 arange (lmax, typecode = Float))
from Ranf import * # Used in following lines
zt = 5. + xr + .2 * random_sample (kmax, lmax)
rt = 100. + yr + .2 * random_sample (kmax, lmax)
Define region map:
ireg = multiply.outer (ones (kmax), ones (lmax))
ireg [0:1, 0:lmax]=0
ireg [0:kmax, 0:1]=0
ireg [1:15, 7:12]=2
ireg [1:15, 12:lmax]=3
ireg [3:7, 3:7]=0 #Define an internal void.
k2 = 1
l2 = 7 #Index of a point in region 2.
Define data on the mesh:
s = 1000.
z = s * (rt + zt)
z [3:10, 3:12] = z [3:10, 3:12] * .9
z [5, 5] = z [5, 5] * .9
z [17:22, 15:18] = z [17:22, 15:18] * 1.2
z [16, 16] = z [16, 16] * 1.1
set_mesh (zt = zt, rt = rt, ireg = ireg, pvar = z)
70

d
hing is
In the first example, a mesh is plotted with k -lines dashed and l -lines dotted. Here, the displaye
mesh has been restricted to lines with k ranging from 1 to 20 and l from 1 to 10. Note that not
plotted where the interior void was defined.

nf ()
plotm (kstyle = “dashed”, lstyle = “dotted”,
 krange = (1, 20), lrange = (1, 10))
sf ()
71

Here we plot just two regions. Note that the full extent of the mesh is used.

nf ()
plotm (bnd = 1, region = [1, 2])
Plot boundaries of regions 1 and 2.
sf ()
72

And here we plot all region boundaries, and then just the l-lines:

nf ()
plotb () # Plot boundaries.
plotm (kstyle = “none”, lstyle = “dotted”)
 # Plot just the l-lines of the mesh.
sf ()

Figure 6.1: Example of Boundaries Plot
73

etter

d four
Finally, we plot all region boundaries, and mark region 2 with text in it. Note that this looks b
on the screen, because the colored mesh lines make the text stand out.

plotb () # Plot boundaries
plotm (region = 2, kstyle = “dashed”, lstyle = “dotted”,
 color = “green”)
text (“Region 2”, zt[k2,l2], rt[k2,l2], 32, tosys = 1)
nf ()

6.4 plotc: Plotting Contours

Note: plotc is currently not available in Narcisse. Narcisse does contour plots only in three an
dimensions.
74

ge 67.

,

 set by
 set,

a two-

ey are

m:

n of

n.
e
g

at
Calling Sequence

plotc (<keylist>)

Description

plotc is a mesh-oriented function. For general information, see the chapter introduction on pa
Note that unlike EZN, all arguments of plotc must be keyword arguments.

The plotc function plots a contour map of pvar above the mesh described by rt and zt . pvar
is a two-dimensional array of real values dimensioned the same as rt and zt , or, if the latter are one
dimensional, then pvar will be len(rt) by len(zt) . If specified, rt is an array of y-axis values
zt is an array of x-axis values, ireg is a region map, and <keylist> is a list of other optional key-
words and values. Strides in krange or lrange are ignored by plotc .

If plotc mesh-defining arguments are omitted, then they are supplied by using the values
the closest preceding call of set_mesh . If there has been no such call, or if they have not been
then there is nothing to plot, and an exception will occur.

pvar can also be the name of a function which, when called with no arguments, returns
dimensional array of values of the appropriate shape.

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, th
local to the command specified, i.e. they are not remembered across commands.

grid , scale , thick , style , mark , lev , color , krange , lrange ,
region , window

If optional attributes are given on the plot command line, they are specified in the usual for

key1=value1,key2=value2,...,keyN=valueN

To set an object attribute across commands use the attr command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

The window attribute is used to specify a device number from 0 to 7 for the plot, or "cgm" , or
"ps" , or "all" if the plot is to appear in all active devices. "all" is the default.

Contour Levels, Colors, etc.

The discussion of the command plotz (Section 5.2 on page 61) contains a detailed explanatio
the way contour levels and colors are specified. The discussion there applies to plotc as well.

The primary difference between plotc and plotz is that the former is a mesh-oriented functio
This means that only the plotz mesh data discussion applies to plotc . Furthermore, because of th
underlying mesh and the associated region map, the plotc command has the possibility of controllin
the subregion over which contours are displayed by use of attributes krange , lrange , region .

The plotc command assumes that the physics quantity pval is mesh-based, which means th
75

rt

fore
pval (i, j) is the value associated with mesh point (i, j) . Currently EZPLOT does not suppo
zone-based quantities.

Example

The following is an example of using plotc with default arguments. The data are as defined be
the plotm examples, page 70. Note the gap in the graph at the internal void.

nf ()
plotc (pvar = z, lev = 13)
sf ()
76

d four

on on

 entered

ent call
xcep-

 to the

e nor-
d
s

al
ent of

e

tly as-
 knowl-
6.5 plotf : Fillmesh plot

Note: plotf is not available in Narcisse. Narcisse supports filled mesh plots only in three an
dimensions.

Calling Sequence

plotf ([pvar [, zt [,rt [,ireg]]]] [,<keylist>])
plotf ([cindex [,zt [,rt [,ireg]]]] [,<keylist>])

Description

plotf is a mesh-oriented command. For general information, see the chapter introducti
page 67.

Note that plotf allows the positional arguments pvar (or cindex), zt , rt , and ireg . For
consistency with other mesh plotting commands, these variables can (and probably should) be
as keyword arguments, or set by set_mesh .

The plotf function plots a color-filled mesh which displays the physics quantity pvar (or the
colors indexed by cindex) in the zones of interest with colors. If specified, zt is an array of x-axis
values, rt is an array of y-axis values, ireg is a region map, and <keylist> is a list of optional
keywords and values.

If plotf arguments are omitted, they are supplied by using the values set by the most rec
of the function set_mesh . If the values have not been set, then there is nothing to plot, and an e
tion will be raised.

The colors assigned to the individual zones range from the beginning color in the colormap
last color in the colormap. The color varies from low color index to high color index as pvar varies
from its minimum to maximum values.

The mapping of colors can be linearly, logarithmically, or normally distributed. The user can use
the attribute cscale to specify the mapping choice. For example, set cscale = "log" to set the
color mapping to logarithmic values of the physics quantity. The default mapping is linear. Th
mal distribution color mapping (cscale = "normal") will map pvar values which are 2 standar
deviations below the mean to the lowest color index, and pvar values which are 2 standard deviation
above the mean to the highest color index. The intermediate pvar values are mapped in the norm
distribution fashion. A colored annotation on the right side of the frame displays the assignm
colors to the corresponding values of pvar .

The plotf command also accepts an integer array cindex to directly assign color indices to th
zones in the mesh. The integer array must be of dimension (kmax, lmax) and with values between
the lowest color index and the highest color index (usually between 1 and 192). When direc
signed color indices are used, no color annotation will be displayed, because EZPLOT has no
edge how the color mapping is defined.
77

m:

erent

 differs
.

Optional Attributes

The following optional attributes can be specified with this command. As object attributes, they are
local to the command specified, i.e. they are not remembered across commands.

color , cscale , krange , lrange , region , window, color_bar

If optional attributes are given on the plot command line, they are specified in the usual for

key1=value1,key2=value2,...,keyN=valueN

To set an object attribute across commands use the attr command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

Due to the possibility of different color assignment schemes in different regions or with diff
physics quantities, the krange , lrange , region attributes are made “non-sticky”; i.e., the submesh
specifications will not be remembered during subsequent fillmesh plots in the same frame. This
from the effects of krange , lrange , region on the plotm command (Section 6.3 on page 69)

The window attribute is used to specify a device number from 0 to 7 for the plot, or "cgm" , or
"ps" , or "all" if the plot is to appear in all active devices. "all" is the default.

Examples

For our first example, assume the same data as defined before the plotm examples, page 70. Note
that nothing gets plotted in the void, so it has the background color. The plotc call in this example
will superimpose contours on the filled mesh plot:

nf ()
plotc (pvar = z, color = "filled", lev = 12)
Superimpose 12 contours
sf ()

The plot appears on the next page.
78

79

nt
riable
For our next set of examples, assume that a PFB dump file test1z has been created, and we wa
to examine some of its physics variables. First we do a linearly-scaled fillmesh plot of va
rhoout :

from PFB import * # import the PDB read module
f = PR ('./test1z') # open the file
nf ()
plotf (pvar = f.rhoout)
80

Next we do a logarithmically-scaled fillmesh plot of variable vxout :

nf ()
plotf(pvar=f.vxout,cscale=”log”)
sf ()

6.6 plotv: Plotting Vectors

Note: plotv is not available in Narcisse.

Calling Sequence

plotv ([zt [,rt [,vt [,ut [,ireg]]]]] [,<keylist>])
plotv (<keylist>)
81

on on

word ar-

,

t recent

me size
d

ey are

m:

ore-

 0.1.
Description

plotv is a mesh-oriented command. For general information, see the chapter introducti
page 67.

Note that plotv allows the positional arguments zt , rt , vt , ut , and ireg . For consistency with
other mesh plotting commands, these variables can (and probably should) be entered as key
guments, or by using set_mesh .

The plotv function plots velocity vectors on a mesh. If specified, rt is an array of y-axis values
zt is an array of x-axis values, ut is the displacement for rt , vt is the displacement for zt , ireg is
a region map, and <keylist> is a list of optional keywords and values.

If plotv arguments are omitted, they are supplied by using the values entered in the mos
call to set_mesh . If any are undefined, there is nothing to plot, and an exception will occur.

A series of arrows from (rt, zt) to (rt+ut*dx, zt+vt*dy) is plotted. The values dx and
dy are chosen so that the maximum extent of an arrow in the corresponding direction is the fra
in that direction multiplied by the vsc attribute. The default for vsc is .5; this default can be change
by assigning a new value to defvsc .

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, th
local to the command specified, i.e. they are not remembered across commands.

grid , scale , style , thick , vsc , color , krange , lrange ,
region , window

If optional attributes are given on the plot command line, they are specified in the usual for

key1=value1,key2=value2,...,keyN=valueN

To set an object attribute across commands use the attr command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

The default line style is solid and the default line thickness is 1.0. The default color is the f
ground color. To override these defaults, set attributes style , thick , and color respectively.

The window attribute is used to specify a device number from 0 to 7 for the plot, or "cgm" , or
"ps" , or "all" if the plot is to appear in all active devices. "all" is the default.

Examples

In the first example, the input arrays are explicitly specified. The line thickness of vectors will be

nf ()
ireg = zeros ((10, 10), Int)
vals = arange (1, 11, typecode = Float)
muls = ones (10, typecode = Float)
x = multiply.outer (vals, muls)
y = multiply.outer (muls, vals)
82

vx = sin (y)
vy = cos (x)
Define regions:
ireg [1:5, 1:5] = 1
ireg [1:5, 5:10] = 2
ireg [5:10, 1:5] = 3
ireg [5:10, 5:10] = 4
plotv (zt = y, rt = x, vt = vy, ut = vx, ireg = ireg, thick =
0.1) # Arguments explicitly specified.
83

e-
 plotted.
In the second example, the default values are set by set_mesh and then are used. The displac
ment vectors are scaled to 0.8. Only vectors originating at nodes of zones in regions 1 and 4 are
(Note that this is transposed relative to the previous example.)

Continuation from the last example.
Set up zt,rt,ut,vt:
set_mesh (zt = x, rt = y, vt = vx, ut = vy, ireg = ireg)
plotv (vsc = .8, region = [1, 4])
84

UCRL-MA-128569, Manual 4

h title

utes,

0., 0.]
.

 to
N

CHAPTER 7: Text Plotting and
Miscellaneous

7.1 titles : Put titles on the plot

Calling Sequence

 titles (top [, bottom [, left [, right]]])

Description

Put up to four quoted strings at the top, bottom, left, and right of the picture, respectively. Eac
can also be set individually by calling the appropriate function titlet , titleb , titlel , or
titler with a quoted string as argument.

The default value of each title is a blank string.

7.2 text : Put text on the plot

Calling Sequence

text (str, x, y, size [, <keylist>])

Description

Write str on the plot beginning at coordinates x , y ; size gives the size of the text in points.

Optional Attributes

The following optional keyword arguments can be specified with this function. For object attrib
they are local to the command specified, i.e., they are not remembered across commands.

tosys , window , color

tosys specifies the coordinate system. If 0, it denotes window coordinates, which vary from [
to [1., 1.]. If 1, it denotes the user coordinates (along the plotted x and y axes). The default is 1win-
dow may be used to specify a particular device (0 through 7, "cgm" , or "ps") or all active devices
("all"). The default is "all" . color may be used to specify the color of the text; it defaults
"fg" (foreground). Because of the tosys keyword, there is no EZPLOT equivalent of the EZ
function ftext .
November 23, 1998

or
To set an object attribute across commands use the attr command; Section 4.2 on page 43 f
descriptions of the values which can be assigned to these keywords.

Example

Example of text command
nf ()
plot (arange (20))
text ("Have a Nice Day", 4, 10, 24, tosys = 1)
sf ()
86

UCRL-MA-128569, Manual 4

 user.
ld say

tes” on
CHAPTER 8: Control Variables and
Defaults

EZPLOT differs from EZN in that its internal variables are not intended to be available to the
They are set not by assignment, but by calling a function. Thus, for instance, in Basis one wou

ezcshow = true

whereas the correct Python function call to EZPLOT is

ezcshow ("true")

Internal values for attributes are set by calling attr (see “Attributes” on page 37). The default values
of many internal attributes (i. e., the values to which they are set lacking calls to attr , which sets
them) can be set by assignment, however; these variables are listed below (see “Default Attribu
page 88).

8.1 Setting Control Variables

Here are some details on some of the functions in EZPLOT which set these internal variables.

ezcshow Determines if the current picture is displayed each time it is changed by
an EZPLOT function call, or only when a frame attribute is changed or nf
is called. "true" by default (display after each change).

ezcreset Determines if attributes set by the attr function are reset to the default
values upon a frame advance. If "false" , attributes will remain set
across frame advances. "true" by default.

ezcvsc Determines the size of the largest vector arrow relative to the frame size
for the plotv command. See “Attribute Table” on page 48., vsc .

titlet takes string valued argument, sets the top title for a frame. Default: a blank
string.

titleb takes string valued argument, sets the bottom title for a frame. Default: a
blank string.

titlel takes string valued argument, sets the left title for a frame. Default: a blank
string.

titler takes string valued argument, sets the right title for a frame. Default: a
blank string.
November 23, 1998

calls to
llow-
title takes from one to four string valued arguments, which are from left to
right the top, bottom, left, and right titles. Arguments may be omitted from
the right only. Defaults: four blank strings.

8.2 Default Attributes

You can change default settings of internal attributes (i. e., what they would be set to lacking
attr or by use of keyword arguments in a plot function call) by assigning new values to the fo
ing variables in EZPLOT. Their original values are shown for each.

Defaults for attributes

defgridx ("off")
 #grid lines in x direction
defgridy ("off")
 #grid lines in y direction
defvsc (0.5)
 #size of largest vector, relative to the frame size
defthick (1.0)
 #thickness of lines
defmark (" ")
 #mark -- blank for curves
defstyle ("solid")
 #line style
deflabels (1)
 #show labels on curves?
deflabel (" ")
 #default curve label
defscale ("linlin")
 #scale: "linlin", "linlog", "loglin", "loglog", or
 # "equal"
defcolor ("fg")
 #normal color
deflev (8)
 #Minimum number of contour levels to choose
 #Negative means use logarithmic contours
deftop ("")
 #title for top
defbot ("")
 #title for bottom
defleft ("")
 #title for left
defright ("")
 #title for right
88

iables,
calling

f the
s

l

ch

s
ll.)

-

will
y
unc-
defcgm ("yes")
 #plot to a cgm file?
defps ("no")
 #plot to a postscript file?

8.3 Setting Default Mesh Variables

The following functions may be used to set default mesh variables for mesh plots. Default var
once set, can be changed to different values by calling the same functions, cleared by
clear_mesh , or overruled by the variables specified in an individual plot function call. In any o
following calls, the value specified for a variable may be None, in which case the default value i
simply unspecified, and must be supplied by a plot command that needs it.

set_mesh ([rt = <array1>] [,] [zt = <array2>] [,]
 [ireg = <array3>] [,] [ut = <array3>] [,]
 [vt = <array4>] [,] [pvar = <array5>] [,]
 [cindex = <array6>])

defines a two-dimensional mesh for plotting. rt and zt are either real, two-dimensiona
arrays of the same shape (say kmax by lmax) defining the mesh, or else rt is a vector
kmax long and zt is a vector lmax long. (rt is the abscissa, zt the ordinate.) ireg is
a two-dimensional (kmax by lmax) integer array defining which region of the mesh ea
quadrilateral in it belongs to. It should be the same shape as rt and zt , but the first row
and first column are constrained to be 0. (ireg is a cell-centered quantity, and it is it
value at the upper right corner of the cell that decides the region number of the ceut
and vt are velocity components used to plot vector fields. pvar and cindex are mutu-
ally exclusive. pvar is a real array used to color a filled mesh, while cindex is an
unsigned character array (Python typecode 'b') the numerical value of whose compo
nents specify an index into a color table. All arrays must be the same shape (kmax by
lmax) except, possibly, zt and rt , as mentioned earlier. Once set, these variables
define the mesh until the next set_mesh command. Any variable undefined b
set_mesh must be supplied as a keyword argument to a plot function call (if that f
tion needs the variable) or must have been previously defined by a set_mesh call (or a
call to one of the functions below).

ezcx (<val>) set the abscissa (zt) to <val>.
ezcy (<val>) set the ordinate (rt) to <val>.
ezcpvar (<val>) set the array of function values pvar to <val>.
ezccindex (<val>) set the array of color indices cindex to <val>.
ezcireg (<val>) set the array ireg defining the mesh regions to <val>.
ezcu (<val>) set the array ut of y velocity components to <val>.
ezcv (<val>) set the array vt of x velocity components to <val>.
89

90

UCRL-MA-128569, Manual 4
Index

A

activate device 10
additive graphic functions 6
attr 7, 37, 43

examples 44
attribute

default 37
marks 55
style 55

Attributes 37
attributes

attr 28, 43
bnd 48, 69
color 37, 48, 69
color_bar 48, 62
cscale 48, 77
default 43
frame 37, 42
grid 37, 48
krange 37, 48, 67, 69, 78
kstyle 48, 70
label 49
labels 42, 49, 56
lev 42, 49, 62
lrange 49, 67, 78
lstyle 49, 70
mark 49, 51, 62, 69
marksize 51
new_frame 28
object 37, 42
plot 51
plotc 75
plotf 78
ploti 64
plotm 69
plotv 82
plotz 61
region 37, 49, 67, 78
scale 37, 49
sticky 37, 67, 78
style 50, 51, 69
table 48
text 85
thick 50, 51, 69
tosys 85
vsc 50, 82

B

Basis 1
bg 48
bgcolor 48
bnd 48, 69

C

cell arrays 64
November 23, 1998

CGM 1
cgm 7, 9, 10

keywords
window 10

cgm ("send") 9
CGM file 9, 10
cindex 64, 77

explanation 64
clear_mesh 7, 68
close 9
color 37, 48, 61, 69, 82

bg 48
bgcolor 48
default 61, 82
fg 48
fill 48, 62
fillnl 48
foreground 61, 82

color bar 6
color_bar 48, 62
colormap 9, 22, 65
colors

contour 62
names of 48

config save 3
contour

colors 62, 75
labeling 62
Level Annotation 62
levels 62, 75
mesh 75
plots 61

contours
filled 77
linear 62
logarithmic 62

cscale 48, 77
"log" 77
"normal" 77

curve
marks 14
plotting 51

D

deactivate device 10
default

changing 43, 88
mesh 68
mesh variables 89

default value 37
defaults 88
defbot 88
defcgm 89
defcolor 88
defgridx 88
defgridy 88
deflabel 88
defleft 88
deflev 62, 88
defmark 88
defps 89
defright 88
2

defscale 88
defstyle 32, 88
defthick 88
deftop 88
defvsc 82, 88
device

activate 10
cgm 9, 10
deactivate 10
ps 10
tv 10
win 9, 10

devices
multiple 15

DISPLAY 10, 21
display 10, 32

default device 10
display argument

Gist 10
Narcisse 21

display keyword 15, 21, 22
display list 35

E

environment variables 2, 10
DISPLAY 10, 21
PATH 2
PORT_SERVEUR 2, 3, 14, 21
PYGRAPH 2, 10, 14, 22
PYTHONPATH 2, 5

examples
"open" and "send" 11
attr 44
boundary plot 72, 73, 74
cell array plot 64
color 74, 78
contour plot 63, 68
curves 52
defthick 47
ezcreset 29
filled contour plot 78
frame function 23
kstyle 71, 73, 74
label 53
labels 42, 57
lstyle 71, 73, 74
markers 52
mesh contour plot 76
mesh definition 70
mesh plot 71
multiple devices 15
plot 52
plotc 76, 78
plotv 83, 84
region plot 68, 72, 74, 84
scale 39, 56
set_mesh 84
sf 32
style 40, 60
text 86
text plot 74
thick 46, 83
3

titleb 56
titles 55
tosys 86
vsc 84

ezccindex 7, 68, 89
ezcireg 7, 68, 89
ezcpvar 7, 68, 89
ezcreset 28, 37, 43, 44, 87
ezcshow 6, 28, 32, 37, 87
ezcu 7, 68, 89
ezcv 7, 68, 89
ezcvsc 87
ezcx 7, 68, 89
ezcy 7, 68, 89
EZN 1
EZPLOT 1
ezplot 3
EZPLOT Defaults 88
ezplot module 5

F

fg 48
FILE menu 3
File save 3
fillmesh plot 77
fr 7, 23
frame 6, 7, 22, 23

attribute 42
attributes 37
control 22
layout 6, 37
limits 23
new 28, 37
set limits 23
show 32

ftext 85

G

Gist 1, 3, 9
multiple windows 15

gist.py 2
graphics keyword 15, 21, 22
grid 37, 48

no 48
tickonly 48
x 48
xy 48
y 48

gridded data 61

I

Ihm compute 3
interactive mode 6

K

keyword 7
keywords

window 10, 15, 35
k-lines 69, 70, 71
kmax 77
4

krange 37, 48, 67, 69, 78
kstyle 48, 70

L

label 49
Narcisse vs Gist 54

labels 42, 49, 56
contour 62

labels vs label 55
layout 6, 37
legend 55
lev 42, 49, 62
linear 62
list_devices 7, 10, 21
l-lines 69, 70, 71
lmax 77
log 62
logarithmic 62
lrange 37, 49, 67, 69, 78
lstyle 49, 70

M

mark 49, 51, 62, 69
asterisk 49
circle 49
cross 49
dot 49
plus 49

marks 14, 55
marksize 51
max 10
mesh 67, 71

default 68
mesh data 61, 75
mesh-oriented 67
min 10
multiple devices 15
multiple windows 6

Gist 15
Narcisse 21

N

Narcisse 2, 3, 9
FILE menu 3
File save 3
Ihm compute 3
multiple windows 21
process 2, 21
socket compute 3
STATE submenu 3

Narcisse display argument 21
network address 10
new_frame 9, 28, 32
nf 6, 7, 14, 22, 28, 32, 52

keywords
window 15

Numeric module 5
NumPy 5
5

O

object 6
attribute 42
attributes 37

Object-Oriented Graphics 1, 3
off 9, 10
on 9, 10
OOG 1
open 9

example 11
Open a PyGist window on a remote machine 21

P

palette 22
PATH 2
plot 7, 10, 51

keywords
window 15

Plot Commands 7
attributes 7
boundaries 69
contours 74
general plot 7
meshes 69
mesh-oriented 7
regions 69
text related 7

plotb 7, 69
plotc 7, 61, 75

contrasted with plotz 75
plotf 7, 77
ploti 7, 64
plotm 7, 69
Plotter object 1
Plotter Objects 3
plotv 7, 81, 82, 83, 84
plotz 7, 61, 75

contrasted with plotc 75
PORT_SERVEUR 2, 3, 14, 21
PostScript 1, 10
PostScript file 9
ps 7, 9, 10
PyGist 2, 3
PyGist and PyNarcisse 22
PYGRAPH 2, 10, 14, 22
PyGraph 1, 2, 3

Documentation 3
platforms 3

PyNarcisse 2
Python 2

home page 2
Python Narcisse 3
PYTHONPATH 2, 5

R

range specification 67
region 37, 49, 67, 78

list 67
map 67, 69, 75, 77, 82
number 67
void 67, 71, 76
6

remote machine 21
remote window 15
remote windows 22

S

scale 37, 49
equal 49
linlin 49
linlog 49
loglin 49
loglog 49

scattered data 61
send 9, 10

example 11
set_mesh 7, 68, 77, 89
sf 6, 7, 22, 32

keywords
window 15

socket compute 3
solid 69
STATE submenu 3
sticky 37, 67, 78
stride 69, 75
style 37, 50, 51, 55, 61, 69, 82

contour 61
dashed 50
dotdash 50
dotted 50
none 50
solid 50, 69

support 4

T

text 8, 55, 85
thick 50, 51, 61, 69, 82
title 88

titleb 85
titlel 85
titler 85
titles 8, 85
titlet 85

title bar 10
titleb 85, 87
titlel 87
titler 87
titles 8, 55
titlet 87
tosys 85
tv 7, 10

U

undo 7, 22, 35
window keyword values 35

V

vectors
plotting 82

void region 67, 71, 76
vsc 50, 82
7

W

win 7, 9, 10
window 10, 15, 22, 23, 28

active 15
multiple 15
on remote machine 15, 21
undo keyword values 35

windows
multiple 6, 15, 21
remote 22

X

xmax 23
xmin 23
Xwindow 10
Xwindows 1
Xwindows display 9

Y

ymax 23
ymin 23

Z

zone 67, 84
8

9

10

	The Python Graphics Interface, Part I
	Table of Contents
	CHAPTER 1: The Python Graphics Interface�1
	Overview of the Python Graphics Interface 1
	Using the Python Graphics Interface 2
	About This Manual 3

	CHAPTER 2: Introduction to EZPLOT�5
	Running EZPLOT 5
	The Additive Model 6
	Controlling Layout 6
	Plot Function Summary 7

	CHAPTER 3: Devices�9
	Device functions 9
	Working with Multiple Windows 15
	PyGist 15
	PyNarcisse 21
	Using PyGist and PyNarcisse together 22

	Setting the Colormap 22
	Frame Control 22
	frame: Set Frame Limits 23
	nf: New Frame 28
	sf: Show Frame 32

	undo: Undo a Plot Command 35

	CHAPTER 4: Attributes�37
	Attribute Types 37
	attr: Setting Attributes 43
	Attribute Table 48

	CHAPTER 5: General Plot Commands�51
	plot: Plotting Curves and Markers 51
	plotz: Plotting Contours 61
	Contour Levels 62
	Contour Color Fill 62
	Contour Level Annotations (the Color Bar) 62

	ploti: Cell Array Plots 64
	Color-Mapping Functions 65

	CHAPTER 6: Mesh-Oriented Commands�67
	set_mesh and clear_mesh: Specifying the Default Mesh 68
	ezcpvar, ezccindex, ezcx, ezcy, ezcireg, ezcu, ezcv: Convenience Functions 68
	plotm: Plotting Meshes, Boundaries, and Regions 69
	plotc: Plotting Contours 74
	plotf: Fillmesh plot 77
	plotv: Plotting Vectors 81

	CHAPTER 7: Text Plotting and Miscellaneous�85
	titles: Put titles on the plot 85
	text: Put text on the plot 85

	CHAPTER 8: Control Variables and Defaults�87
	Setting Control Variables 87
	Default Attributes 88
	Setting Default Mesh Variables 89

	CHAPTER 1: The Python Graphics Interface
	1.1 Overview of the Python Graphics Interface
	1.2 Using the Python Graphics Interface
	1.3 About This Manual

	CHAPTER 2: Introduction to EZPLOT
	2.1 Running EZPLOT
	2.2 The Additive Model
	2.3 Controlling Layout
	2.4 Plot Function Summary

	CHAPTER 3: Devices
	3.1 Device functions
	3.2 Working with Multiple Windows
	3.2.1 PyGist
	3.2.2 PyNarcisse
	3.2.3 Using PyGist and PyNarcisse together

	3.3 Setting the Colormap
	3.4 Frame Control
	3.4.1 frame: Set Frame Limits
	3.4.2 nf: New Frame
	3.4.3 sf: Show Frame

	3.5 undo: Undo a Plot Command

	CHAPTER 4: Attributes
	4.1 Attribute Types
	4.2 attr: Setting Attributes
	4.3 Attribute Table

	CHAPTER 5: General Plot Commands
	5.1 plot: Plotting Curves and Markers
	5.2 plotz: Plotting Contours
	5.2.1 Contour Levels
	5.2.2 Contour Color Fill
	5.2.3 Contour Level Annotations (the Color Bar)

	5.3 ploti: Cell Array Plots
	5.3.1 Color-Mapping Functions

	CHAPTER 6: Mesh-Oriented Commands
	6.1 set_mesh and clear_mesh: Specifying the Default Mesh
	6.2 ezcpvar, ezccindex, ezcx, ezcy, ezcireg, ezcu, ezcv: Convenience Functions
	6.3 plotm: Plotting Meshes, Boundaries, and Regions
	6.4 plotc: Plotting Contours
	6.5 plotf: Fillmesh plot
	6.6 plotv: Plotting Vectors

	CHAPTER 7: Text Plotting and Miscellaneous
	7.1 titles: Put titles on the plot
	7.2 text: Put text on the plot

	CHAPTER 8: Control Variables and Defaults
	8.1 Setting Control Variables
	8.2 Default Attributes
	8.3 Setting Default Mesh Variables

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

