UCRL-MA-128569, Manual 4

The Python Graphics Interface, Part |

EZPLOT User Manual

Written by

Zane C. Motteler
Lee Busby
Fred N. Fritsch

November 23, 1998

EZPLOT User Manual

Copyright (c) 1996.
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, pro-
vided that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under contract
no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of California for the op-
eration of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference
herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for advertising or product endorsement
purposes.

UCRL-MA-128569, Manual 4

Table of Contents

CHAPTER 1: The Python Graphics Interface 1
Overview of the Python Graphics Interface 1

Using the Python Graphics Interface 2

About This Manual 3

CHAPTER 2: Introduction to EZPLOT 5
Running EZPLOT 5

The Additive Model 6

Controlling Layout 6

Plot Function Summary 7

CHAPTER 3: Devices 9
Device functions 9

Working with Multiple Windows 15
PyGist 15

PyNarcisse 21

Using PyGist and PyNarcisse together 22
Setting the Colormap 22

Frame Control 22

frame: Set Frame Limits 23

nf: New Frame 28

sf: Show Frame 32

undo: Undo a Plot Command 35

CHAPTER 4: Attributes 37
Attribute Types 37

attr: Setting Attributes 43

Attribute Table 48

CHAPTER 5: General Plot Commands 51
plot: Plotting Curves and Markers 51

plotz: Plotting Contours 61

Contour Levels 62

Contour Color Fill 62

Contour Level Annotations (the Color Bar) 62

ploti: Cell Array Plots 64

Color-Mapping Functions 65

November 23, 1998

CHAPTER 6: Mesh-Oriented Commands 67

set_mesh and clear_mesh: Specifying the Default Mesh 68

ezcpvar, ezccindex, ezcx, ezcy, ezcireg, ezcu, ezcv: Convenience Functions 68
plotm: Plotting Meshes, Boundaries, and Regions 69

plotc: Plotting Contours 74

plotf: Fillmesh plot 77

plotv: Plotting Vectors 81

CHAPTER 7: Text Plotting and Miscellaneous 85
titles: Put titles on the plot 85
text: Put text on the plot 85

CHAPTER 8: Control Variables and Defaults 87
Setting Control Variables 87

Default Attributes 88

Setting Default Mesh Variables 89

UCRL-MA-128569, Manual 4

CHAPTER 1: The Pyth()n GraphiCS
Interface

1.1 Overview of the Python Graphics Interface

The Python Graphics Interface (abbreviated PyGraph) provides Python users with capabilities for
plotting curves, meshes, surfaces, cell arrays, vector fields, and isosurface and plane cross sections o
three dimensional meshes, with many options regarding line widths and styles, markings and labels,
shading, contours, filled contours, coloring, etc. Animation, moving light sources, real-time rotation,
etc., are also available. PyGraph is intended to supply a choice of easy-to-use interfaces to graphics
which are relatively independent of the underlying graphics engine, concealing the technical details
from all but the most intrepid users. Obviously different graphics engines offer different features, but
the intention is that when a user requests a particular type of plot which is not available on a particular
engine, the low level interface will make an intelligent guess and give some approximation of what
was asked for.

There are two such graphics packages which are relatively independent of the underlying plotting
library. The Object-Oriented Graphics (OOG) Package defines geometric objects (Curves, Surfaces,
Meshes, etc.), Graph objects which can be given one or more geometric objects to plot, and Plotter ob-
jects, which receive geometric objects to plot from Graph objects, and which interface with the graph-
ics engine(s) to do the actual plotting. A Graph can create its own Plotter, or the more capable user can
create one or more, handy when one wishes (for instance) to plot on a remote machine, or to open
graphics windows of different types at the same time. The second such package is called EZPLOT; it
is built on top of OOG, and provides an interface similar to the command-line interface of the Basis
EZN package. Some of our long-time users may be more comfortable with this package, until they
have mastered the concepts of object-oriented design.

As mentioned above, a Graph object needs at least one Plotter object to plot itself; only the Plotter
objects need know about graphics engines. At present we have two types of Plotter objects, one which
knows about Gist and one which knows about Narcisse. Some power users may prefer to use the lower-
level library-specific function calls, but most users will use EZPLOT or OOG.

Gist is a scientific graphics library written in C by David H. Munro of Lawrence Livermore Na-
tional Laboratory. It features support for three common graphics output devices: Xwindows, (color)
PostScript, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small (writ-
ten directly to Xlib), portable, efficient, and full-featured. It produces x-vs.-y plots with “good” tick
marks and tick levels, 2-D quadrilateral mesh plots with contours, vector fields, or pseudocolor maps
on such meshes. 3-D plot capabilities include wire mesh plots (transparent or opaque), shaded and col-
ored surface plots, isosurface and plane cross sections of meshes containing data, and real-time anime

November 23, 1998

tion (moving light sources and rotations). The Python Gist maglsteoy and the associated Py-
thon extensiogistCmodule provide a Python interface to this library (referred to as PyGist).

Narcisse is a graphics library developed at out sister laboratory at Limeil in France. It is especially
strong in high-quality 3-D surface rendering. Surfaces can be colored in a variety of ways, including
colored wire mesh, colored contours, filled contours, and colored surface cells. Some combinations of
these are also possible. We have also added the capability of doing isosurfaces and plane sections o
meshes, which is not available in the original Narcisse. The Python Narcisse nardidgsemod-
ule (referred to as PyNarcisse) provides a low-level Python interface to this library. Unlike Gist, Nar-
cisse does not currently write automatically to standard files such as PostScript or CGM, although it
writes profusely to its own type of files unless inhibited from doing so, as described below. However,
there is a "Print" button in the Narcisse graphics window, which opens a dialog that allows you to write
the current plot to a postscript file or to send it to a postscript printer.

1.2 Using the Python Graphics Interface

In order to use PyGraph, you first need to have Python installed on your system. If you do not have
Python, you can obtain it free from the Python pagdgtpt//www.python.org . You may

need the help of your system administrator to install it on your machine. Once you have Python, you
have to know at least a smattering of the language. The best way to do this is to download the excel-
lent tutorial from the Python pages, sit down at your computer or terminal, and work your way
through it.

Before using the Python Graphics Interface, you should set some environment variables as follows.
« Your PATHvariable should contain the path to gy¢hon executable.

« You should set Y THONPATHvariable to point to all directories that contain Python exten-
sions or modules that you will be loading, which may include the OOG modafgst , and
narcissemodule orgistCmodule . Check with your System Manager for the exact speci-
fications on your local systems.

« Unless you create your own plotter objects, PyGraph will create a default Gist Plotter which will
plot to a Gist window only. If you want your default Plotter to be a Narcisse Plotter, then set the
variablePYGRAPHo Nar or Narcisse

A Gist Plotter object automatically creates its own Gist window and then plots to that window. Nar-
cisse, however, works differently. Narcisse is established as a separately running process, to which the

Plotter communicates via sockets. Thus, to run a Narcisse Plotter, you must first open a NBocisse.
do so, you need to go through the following steps:

1. Set your environment variabRORT_SERVEURo 0.

1. Iam going to assume that you already have Narcisse installed on your system, and its directory pa@iifHariable.
2. We did tell you that Narcisse was French, didn’t we?

2. Start up Narcisse by typing in the commayafcisse & . It will take a few moments for the
Narcisse GUI to open, then immediately afterwards it will be covered by an annoying window
which you can eliminate by clicking i@Kbutton.

3. You will note that there is a server port number given on the GUI. SePyoRi _SERVEUfRari-
able to this value.

4. Narcisse has an annoying habit of saving everything it does to a multitude of files, and notifying
you on the fly of all its computations. If you do a lot of graphics, these files can quickly fill up your
guota. In addition, the running commentary on file writing and computation on the GUI is time-
consuming and slows Narcisse down to a truly glacial pace. To avoid this, you need to turn off a
number of options via the GUI before you begin. They are all und&TAdEsubmenu of the
FILE menu, and should be set as follows: sebtket compute " to “ no,” set “File
save " to “ nothing ,” set “Config save " to “ no,” and set lhm compute " to “ no.”

(“IHM” are the French initials for “GUL.”)

1.3 About This Manual

This manual is part of a series of manuals documenting the Python Graphics Interface (PyGraph).
They are:

o | EZPLOT User Manual

[I. Object-Oriented Graphics Manual

* lll. Plotter Objects Manual

IV. Python Gist Graphics Manual

V. Python Narcisse Graphics Manual

EZPLOT is a command-line oriented interface that is very similar to the EZN graphics package in
Basis. The Object-Oriented Graphics Manual provides a higher-level interface to PyGraph. The re-
maining manuals give low-level plotting details that should be of interest only to computer scientists
developing new user-level plot commands, or to power users desiring more precise control over their
graphics or wanting to do exotic things such as opening a graphics window on a remote machine.

PyGraph is available on Sun (both SunOS and Solaris), Hewlett-Packard, DEC, SGI workstations,
and some other platforms. Currently at LLNL, Narcisse is installed only on the X Division HP and So-
laris boxes, however, and Narcisse is not available for distribution outside this laboratory. Our French
colleagues are going through the necessary procedures for public release, but these have not yet bee
crowned with success. Gist, however, is publicly available as part of the Yorick release, and may be
obtained by anonymous ftp frofftp-icf.linl.gov ; look in the subdirectoryftp/pub/

Yorick

A great many people have helped create PyGraph and its documentation. These include

« Lee Busbhy of LLNL, who wrotgistCmodule , and wrought the necessary changes in the Py-
thon kernel to allow it to work correctly;

« Zane Motteler of LLNL, who wrot@arcissemodule , ezplot , the OOG, and some other
auxiliary routines, and who wrote much of the documentation, at least the part that was not bla-
tantly stolen from David Munro and Steve Langer (see below);

« Paul Dubois of LLNL, who wrote thEeDBandRanf modules, and who worked with Konrad
Hinsen (Laboratoire de Dynamique Moleculaire, Institut de Biologie Structurale, Grenoble,
France) and James Hugunin (Massachusetts Institute of Technoldgyid?y the numeric ex-
tension to Python, without which this work could not have been done;

« Fred Fritsch of LLNL, who produced the templates and did some of the writing of this documen-
tation;

« Our French collaborators at the Centre D’Etudes de Limeil-Valenton (CEL-V), Commissariat A
L’Energie Atomique, Villeneuve-St-Georges, France, among whom are Didier Courtaud, Jean-
Philippe Nomine, Pierre Brochard, Jean-Bernard Weill, and others;

« David Munro of LLNL, the man behind Yorick and Gist, and Steve Langer of LLNL, who col-
laborated with him on the 3-D interpreted graphics in Yorick. We have also shamelessly stolen
from their Gist documentation; however, any inaccuracies which crept in during the transmission
remain the authors’ responsibility.

The authors of this manual stand as representative of their efforts and those of a much larger num-
ber of minor contributors.

Send any comments about these documentsupport@icf.linl.gov " on the Internet or
to “support " on Lasnet.

UCRL-MA-128569, Manual 4

CHAPTER 2: Introduction to
EZPLOT

EZPLOT is a function-call-driven interface to PyGraph intended to resemble the Basis EZN Graphics
Package, which is described in “EZN User Manual,” UCRL-MA-118543 Pt 3. The primary difference
is that calls to EZPLOT will look like function calls, rather than the command line format familiar to
users of Basis and EZN.

Currently EZPLOT does only two-dimensional plots, and even with these, implements only a sub-
set of what is available in the EZN package. Users wishing to do more elaborate two dimensional plots,
or three dimensional plots, will have to use OOG or the extremely lowrnaveksemodule for
Narcisse, or else OOG or the low level 3-D Gist plotting functions described in the Python Gist Graph-
ics Manual.

It is possible that if the use of EZPLOT expands sufficiently, and enough users request additional
features, then these features may be added.

2.1 Running EZPLOT

Assuming that you have set yaRe¥ THONPATnvironment variable to point to the subdirectories
containing the Python modules which you intend to use, you should start up Python by typing

python

at the unix prompt; you will then receive the Python prompt “>>> " | at which you type the following
two commands:

>>> from Numeric import *
>>> from ezplot import *

The first command puts the names of all the NumPy functions in your name space, and the second
does the same with the EZPLOT functions.

If you prefer to keep name spaces separate, then you can do the following:

>>> import Numeric
>>> import ezplot

Then you can give these modules shorter names (for typing convenience), such as

>>> num = Numeric
>>> ez = ezplot

November 23, 1998

and then use the “dot” notation to refer to functions within the modules, e. g.
>>> ez.cgm ("close")

In what follows, for simplicity, we shall assume that the first form ofittygort statements was
used.

2.2 The Additive Model

The basic model of this package is that of additive graphic functions to a single frame. That is, each
graphic function call adds objects (curves, mesh plots, etc.) to a frame. The frame is not complete
until a newframe fif () ” function call is issued. The user controls whether or not to see each step in
building a frame or just viewing the completed frame by setting@zlhehow status td'true” or

"false” . In EZPLOQOT, this is done by invoking the functieacshow, e. g.,

>>> ezcshow (“false")

ezcshow is fairly tolerant; it will accept any string beginning with"; “T”, “y”, or “Y” as ‘true ",
and any string beginning withi *, “F”, “n”, or “N’ as “false .

EZPLOT begins in interactive mode (tbecshow status istrue”), so that each function call
that changes the frame causes the whole frame to be redrawn. However, most programs using EZ-
PLOT will probably want to sedzcshow to"false” when making plots, so that each frame is dis-
played only when finished. If you stop the program and want to view the plots as they are made, you
must either reseizcshow to"true" or use the showframef () ” function.

Caution: When using multiple windows in interactive mode, be awarerthg) “” (the new frame
function) clears the display list, but only clears the currently open window. If you then change win-
dows, you will have to issue anotherf“() " call to avoid overplotting any graph already on the win-
dow.

2.3 Controlling Layout

EZPLOT supports a subset of what EZN users might be accustomed to. The standard EZPLOT pic-
ture can be described as follows. There is a margin around the edges of the graph leaving room
enough for titles at top, bottom, left, and right. In a contour plot, sufficient additional space is left at
the right for a color bar which associates the contours with particular colors. More space around the
edge of the plot is taken by the axes, unless the user suppresses the axes, in which case the area tak
up by the plot may be somewhat larger.

Unlike EZN, EZPLOT does not allow you to change these values from their defaults. It is possible
that with sufficient demand, these capabilities may be added at some time in the future. Users who can
not afford to wait are encouraged to use the OOG, which has far more flexibility, or the low level in-
terfacesgistCmodule andnarcissemodule , which give access to the full machinery of the
graphics engines.

2.4 Plot Function Summary

Here is a summary of the functions which are described in the remainder of this manual.
« Device and frame control functions (CHAPTER 3: “Devices”)

win (<cmd> [, n] [, <keylist>])
cgm (<cmd> [, n] [, <keylist>])
ps (<cmd> [, n] [, <keylist>])
tv (<cmd> [, n] [, <keylist>])
list_devices ()
frame ([xmin [, xmax [, ymin [, ymax]]]]
[, window = val])
fr ([xmin [, xmax [, ymin [, ymax]]]] [, window = val])
nf ([new_frame = vall] [, window = val2])
sf ([window = val])
undo ([number])

« Attribute functions (CHAPTER 4: “Attributes”)

attr (keyword=value [, keyword=value ...])
set color, thickness, etc.

« General plot functions (CHAPTER 5: “General Plot Commands”)

plot (y, x [, <keylist>]) # curves, markers
plotz (fexpr [, xexpr [, yexpr]] [, <keylist>])

contours
ploti (<keylist>)

set_mesh (<keylist>)
clear_mesh ()
ezcpvar (val)
ezccindex (val)
ezcx (val)

ezcy (val)
ezcireg (val)
ezcv (val)

ezcu (val)

plotm (<keylist>)
plotb (<keylist>)
plotc (<keylist>)
plotf (<keylist>)
plotv (<keylist>)

cell array plot

Mesh-oriented functions (CHAPTER 6: “Mesh-Oriented Commands”)

establish default mesh

erase default mesh

set plotted variable for mesh

set color index for mesh

set abscissa for mesh

set ordinate for mesh

specify regions in mesh

set x component of velocity

set y component of velocity

plot mesh

plot region boundaries in mesh
plot contours of a mesh-based quantit
fillmesh plot

plot velocity field

Text plotting and miscellaneous (CHAPTER 7: “Text Plotting and Miscellaneous”)

titles ("top"[, "bottom"[, "left"[, "right"]]])
text ("message”, X, y, charsize [, <keylist>])

You can use attributes and the values of user-settable variables to control the detailed behavior of
these functions. Attributes are explained in CHAPTER 4: “Attributes”, variables in CHAPTER 8:
“Control Variables and Defaults”.

UCRL-MA-128569, Manual 4

CHAPTER 3: Devices

EZPLOT has functions to control graphics devices. The devices supported by EZPLOT with PyGist
graphics are CGM files, PostScript files, and Xwindows. The PyNarcisse graphics engine produces
plots in an Xwindow, and optionally its own brand of files, which can not be sent directly to a printer,
but which can be loaded into a PyNarcisse window and sent to a PostScript file or printer interac-
tively.

A user can open multiple devices and direct the same or different graphics output to different de-
vices. EZPLOT supports up to eight windows and/or files at a time. There can be at most one CGM
file and one PostScript file open at a time, but there can be multiple windows. For example, a user can
open several Xwindows, even at different workstations, and display different frames in different win-
dows for comparison. When the user is satisfied with the result of a certain frame, say in window
he/she can issumm ("send”, window =n) to record the frame into a CGM file.

Please note that there are major differences between PyNarcisse and PyGist, since you do not oper
PyNarcisse windows from within the graphics routines; instead, you must open one (or more) at the
unix prompt prior to firing up the graphics routines. Thuswire function, which opens windows in
PyGist, does not do so in PyNarcisse, but instead tries to find a PyNarcisse window to which to open
a connection. Likewise, rather than specifying whether or not to write files via the graphics routines,
you use the menus in the Narcisse GUI to do so. (Of course, as we shall see, one can simultaneously
use PyNarcisse to draw plots in windows and PyGist to send the same plots to files.)

3.1 Device functions

The device functions are used to specify where the plot should go, the choices being PyNarcisse win-
dows, PyGist windows, or PostScript or CGM files (PyGist only). If you issue a plot command before
specifying at least one device, PyGist defaults to a single CGM file. In fact, PyGiatlweaillswrite

to a CGM fileunlessyou issue a ¢gm ("close") . PyNarcisse will attempt to find a running
Narcisse process, and if it finds one, will plot to that process’s window.

The device functions are of the form:
file-type(file-command, device-number] [new_frame = <str>])
win (win-command [, device-number]display = <strl>]
[, graphics = <str2>])

Thefile-typefunction is only valid for PyGist graphicile-typecan becgm or ps. file-command
can be’on" (or"open"),"off* ,"close" ,"send" ,or"plot" .device-numbecan be a num-
ber from O to 7, and if not specified, defaults to the lowest available number in that range.
new_frame , if specified, must b&es"” or"no" . See below for explanations.

November 23, 1998

win-commandcan be"on" (or "open") and"off* (or "close"). device-numbecan be a
number from 0 to 7, and if not specified, defaults to the lowest available number in that range. For an
explanation of thelisplay andgraphics keywords, see below.

The deviceegmis a CGM file. The CGM file stores the frames of graphics output. Under PyGist,
a standard CGM file is produced, with suffiegm. The filenames default t?\a00.cgm
Ab00.cgm , etc.

The deviceps is a PostScript file, which has suffps . The PS file stores the frames of graphics
in the PostScript format. The filenames defaulkh&®0.ps , Ab0O0.ps , etc.

The devicawin (ortv) is an Xwindow on a certain display. The PyGlisplay is the network
address of the device where the plot will be displayed, "&fdlnl.gov:0.0" . If not speci-
fied, it will be set by the user’'s environment variaDISPLAY. The PyNarcissdisplay is more
complicated and is described in section 3.2.2 “PyNarcisse”. The kegnaptics is used to spec-
ify the type of graphics engine for this particular window; allowed value€asg' and"Nar" . If
none is specified, then the graphics will be as specified by the user’s environment Paf@aRaPH
or"Gist" if that variable is unset.

The commandon" or"open" opens a device if the device has not been opened."©hén
activates the device. It has no effect on the device if it is currently active.

The commanddff " deactivates an opened file (but the linkage to the file for controlling still ex-
ists). The commandclose " deactivates and then closes the file. Beware, howé&g#f; and
"close" behave exactly the same for a graphics window, namely, they cause the window to close (i.
e., go away forever).

The commandsend” sends the current frame (see the next paragraph for the meaning of “cur-
rent frame”) to the specified CGM or PS file; gend command turnsn the device (i.e. CGM or
PS file), sends a frame, and then turns theofife. The commandplot” also sends the current
frame to the specified CGM or PS file; the difference is that the file is not tafhedfter the frame
is displayed. The keywondew_frame is only meaningful with theend andplot commands. If
"no" , then any new graphical components will be added to the current frame and displayed. If
"yes" , then the new graph will not be displayed untifa() is issued, which also has the effect of
erasing the current display list.

And now, what is the current frame? Tégm or ps function has a keyword argumemindow
which can be used to specify the number of an open window, or in the case of multiple winidews,
dow ="min" will choose the window with the smallest number which has a nonempty display list,
and"max" will choose the one with the largest number; this wndow’s display list will then be sent to
the CGM or PS file. Lacking this keyword, the command looks first to see if the CGM device itself has
a display list, and if not, defaults tmin" . If no display list can be found, an exception is raised.

For PyGist graphics, the window name appears in the title bar of the window. The window title will
be “PyGist n”, wheren is the number of the window (an integer between 0 and 7, inclusive). For
users with multiple windows, the function clidk_devices () will give an informative printout
listing the numbers of open devices, their status (e. g., in the case of CGM and RStives, or
closed), what type of device they are, their graphics, and their display.

EZPLOT keeps track of the number of active devices. If a plot function is issued without any active

10

device, EZPLOT will open a CGM file as a default device to accept the plot function call.

Example 1

This example illustrates the use of tleén” and “send ” commands. (As with most examples in

this document, we are assuming that the necessary graphics files and Maotelec have been
imported.) We show the following set of EZPLOT function calls, first with comments explaining what
happens with PyGist graphics; afterwards, we comment on how the PyNarcisse version will differ.
We invite the reader to type these commands in and follow along.

Assume PyGist graphics first (PYGRAPH set to Gist)
win ("on")
Open an Xwindow with name PyGist 0.
In PyGist, the window does not open until the
first plot is sent:
plot (arange (20, typecode = Float) ** 0.5)
Note: arange is the Python equivalent of iota.

—|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

0) 10 15

11

Add a second curve to the plot:
plot (arange (20, typecode = Float) ** 1.2)

I
o

b b b e e

s RN RN

0) 10 15

Open CGM file, send a frame to it with two curves,
then immediately set CGM file to off:
cgm ("send")
Prepare for next frame (plot will not be replaced
until next plot command is given):

nf ()

12

The plot appears on the window after we do:
plot (arange (15, typecode = Float) ** 1.2)

— — M
=] o o
RN R RN R R R A R A R A R R R A E A

o

o

0 2 4 6 8 10 12

Activate the CGM file to accept a frame,
then deactivate the CGM file:
cgm ("send")
Open PS file, send a frame to it,
then deactivate the PS file:
ps ("send")
nf ()

B B R R R R A S SRR

—r

h|lll|I

13

The new plot appears on the window:
plot (arange (15, typecode = Float) ** 1.4)

N
o
_

%)
o
e e

0 2 4 6 8 10 12 1

h|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|

Re-activate PS file, send a frame,
then deactivate the PS file:
ps ("send")
AD # CTRL-D terminates Python.
Close all devices; close CGM file and PS file.

Note that PyGist curves, as they appear, are marked along their extent by theAlettr the
first, *“ B” for the second, etc. It is possible to draw curves without such markers, or to specify your
own; it is also possible to plot curves as dots, dashes, etc., as we shall see later. In the default plotting
mode, as above, each successive plot will appear on the same frame as all of the previous; the functior
nf () must be called to force PyGist to start a new frame.

Now try the same sequence of function calls with PyNarcisse graphics. You muBtMGRAPH
set toNar, and a PyNarcisse window must be open, with YWORT_SERVEURariable agreeing
with the port number in the window. (If you fail to do this, the PyNarcisse software will be unable to

14

find the window, and will go into a perpetual loop trying to make a connection.) After each plot com-
mand, the new curve will appear on the plot. Notice that PyNarcisse curves will be labeled by the let-
ters “A”, * B”, etc. at the right ends. This is because PyNarcisse does not support in-curve labelling,
and this was the closest approximation to the PyGist behavior that we could think of. If you use other
options to label your curves, then your chosen labels will overrule these letters.

As we shall see later, it is possible to have both PyGist and PyNarcisse active at the same time, so
a PyNarcisse plot can be sent to a PyGist CGM or PS file. Unfortunately, the PyGist and PyNarcisse
graphs will usually not look exactly alike.

3.2 Working with Multiple Windows

3.2.1 PyGist

If multiple windows will be used, then again the situation differs considerably between PyNarcisse
and PyGist. PyGist is fairly straightforward in that each opened window will automatically be named
“PyGist n”, wheren is the window number. It is up to the user to keep track of which is which. It
is possible, using th&indow = n keyword argument tplot , sf , and other frame control func-
tions, to display different plots in different windows for comparison purposes. (Normally a plot or
frame command will display the current plot in all open windows and CGM or PS files which have
not explicitly been turnedff .) It is also possible, using tltesplay andgraphics keyword
arguments to thevin function, to open a PyGist window on a remote machine.

For making plots, changing frames, and closing windows or filesyititdow keyword argument
can be assigned a single number between 0 and 7 (the number of any open window or file), or a python
list of such numbers (between square brackets, comma separated), tHengttingselect the small-
est open device number), the stringax” (select the largest), or the stritadl" , which will select
all open windows and files. PyGist keeps a separate display list for each opened window or file, so you
can display quite different graphs on different devices. Upon opening a window uwiriitigw de-
faults to the smallest unused device number. In most other commands, window defalitts tpso
if you want different graphs in different windows, you must be specific.

Note that if a second window is opened in the same display, it will most likely appear on top of the
first and will need to be repositioned to make both visible on the display. Study the example below for
more information on working with multiple windows.

Example 2

Try out the following commands to gain experience working with multiple devices.

cgm ("close™) # repress cgm; always on otherwise
tv ("on", 1) # (Same as win ("on", 1))

Create a window named "PyGist 1".
plot (arange(20, typecode = Float)**2, color="red")
(plot on next page)

15

11 0 10,9615, 217.,2884:

J_|||||||||||||||||||||||||||||||||||||
35ﬂj

300

250 —

200—

ER R R R R S SRR TR RS
) 10 15

—

16

win ("on", 2)

Create another window named "PyGist 2",

plot (arange(20, typecode = Float)**1.5, color="green",

window = [1, 2])

The new plot will appear on PyGist 2. Note: both
curves appear on PyGist 1, since we did not do
nf (2).

Bustan || 1 115 T, B, 2289
||:|.||||I|||I|||I|.||||||II
B — =
Saqnt ey 14 0. 3G, m? -
|-| lelalalal ittt Eﬂ— =
o — 2
300 — : :
40— —
250 — 1
20 — 20— -
150 — = =
_Im: ‘u_lu T i i [|:|||||||||-| [i i i [| |
=] - 10 15
50—
e LA T T 0 L L L L e L
]] 10 15

nf (window = 2) # Set a new frame (window PyGist 2 only)
plot (arange(15, typecode = Float)**1.7, color="blue")

Assuming ezcshow status "true”, the plot will appear
on both windows. On PyGist 2 it will be on a fresh

screen, but on PyGist 1, it will appear superimposed
on what was there already, because "nf" applied only
to window 2. nf () (with no arguments) clears all

windows; nf (window = 1) would be necessary to clear
only window 1. (Plot is on next page)

17

Syzsken|: 3 C 01399, O @79

TSt D ¢ 0,6T36, 0.TORRD gn—: ; _—
etwtetatalararararlbara i / b
350 — 80— F -
- 40— : =
&30 — = =
200 — . r :
8 EI:I—_ % s
150 — 3 =
100 — R T e R R R R R A CER R RN RS B S U R o
= [i] B 10 16
i A &
50—
ﬂ—l—l—ru_'l_':'_|--|.| LN |-|||-|||||||l||||||||._
D !']u 15 will, Typeccais = Flgac)iesl 7, calaors"blus™!

Note that curves within a window are lettered consecutively within that window. Thus the new
curve is labele® in window PyGist 2, an@ in window PyGist 1.

18

win ("close”, 1)
Close PyGist 1; now PyGist 2 is the only one active.

LS e RN S R R S b
L] 10

_|||||| i

19

nf ()
plot (arange (10, typecode = Float), color="purple")

b 0, 0000, 75,8334

L R R R S AR RS E R
) 10 15

win ("close", 2)
Close PyGist 2; now no devices are active.

nf ()

cgm ("on")
Open a CGM file to accept the following plots.
plot (arange(20, typecode = Float), color="yellow")

—|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

20

A frame is send to the CGM file.
ps ("on")
Open a PostScript file.
plot (arange(20, typecode = Float)**1.2)
A frame has been send to both CGM and PS file.
The CGM file will contain both curves.
nf ()
win ("on", display = "greystoke.linl.gov:0.0", graphics =
"Gist")
Open a PyGist window on a remote machine.
list_devices ()
Just in case you forgot which device is which,
this function gives an informative list.
plot (arange(20, typecode = Float)**1.8)
A frame has been send to CGM, PS and remote machine.
cgm ("close”)
Close CGM file.
ps ("close")
Close PS file.
D
Implicitly close all active devices; quit Python.

3.2.2 PyNarcisse

Working with multiple PyNarcisse windows is quite different from PyGist, because as you already
know, you can not open new PyNarcisse windows from within Python. You must do this by typing in
theNarcisse command at the unix prompt; tken ("on") command from a Python script or

interactive session simply causes EZPLOT to connect to an existing Narcisse ‘prifcessalso
mentioned previously, no Narcisse process is to be found, then Narcisse goes into a loop trying to
connect to what it can't find. This is not very logical behavior, but ours not to wonder why....

To open multiple Narcisse processes on the same Xterminal, the easiest way is to open them from
separate windows, following the same procedure, namely first Se@RJ_SERVEU® 0, then typ-
ing in “Narcisse & ", then changinfPORT_SERVEU® the port number given on the GUI. Like-
wise, if you want to converse with a Narcisse process on a remote machine, you need to have a col-
league open the window there. Or, if you dagin , you can do it yourself, provided tBdSPLAY
variable is set to point to the remote machine. However, you'll still have to have the colleague let you
know what thePORT_SERVEURumber is.

To open a connection to a particular Narcisse process, local or remote, désspling and
graphics keyword arguments to tlvein function. The PyNarciss#isplay argument must be a
character string in the form'hosthame+port_number++user@ie.32" , Where the

1. Note that Narcisse, when started, opens only its GUI. An actual graphics window will not open until (a) you are corthected t
Narcisse process, and (b) you send a plot to this process.

21

port_number is the one displayed by the GUI of the Narcisse with which you wish to communicate,
and thehostname is where the server is running. An example string might be:

"kristen.linl.gov+44812++motteler@ie.32"

Suppose, for instance, you want to form a connection with the Narcisse process identified by the
above string as window number 2. You would do this as follows:

win ("on", 2, display =
"kristen.linl.gov+44812++motteler@ie.32",
graphics = "Nar")

We encourage the user to open a couple of Narcisse processes and go through the example of th
previous section, the difference being usingwire function to connect with Narcisse as we have just
showed you.

3.2.3 Using PyGist and PyNarcisse together

The EZPLOT graphics model supports up to eight open “devices”, and there is no reason, therefore,
why a user cannot have a CGM file, a PS file, and several windows, both PyGist and PyNarcisse, all
active at the same time; and some of the windows can even be remote. Use the second argument to th
functionscgm, ps, andwin to specify the window number (if you do not wish EZPLOT to give you
default numbers). Use tldisplay keyword argument and ttgraphics keyword argument to

thewin function to specify where the display is to appear (and remember, the foisplaly is

different for PyGist and PyNarcisse). Tinaphics keyword should be used for safety, although if

it is not supplied, EZPLOT will use the environment varia®¥GRAPHIf set, or will default to

"Gist" , if PYGRAPHk not set.

Finally, use thevindow keyword argument to the various plot functions anmif t@andsf to con-
trol what plot goes to which device.

3.3 Setting the Colormap

EZPLOT currently does not support allowing the user to change the colormap (or palette) used in
plotting. You can do this using OOG or the low-leg&tCmodule or narcissemodule func-

tions. (EZPLOT commands can be successfully mixed with low-level gistCmodule calls.) If there is

sufficient demand, we will eventually add this feature to EZPLOT. The current default colormap is a
rainbow palette, i. e., a set of colors running through red, orange, yellow, green, blue, indigo, and vio-
let, just like a real rainbow. On non-color devices, this will be displayed as a greyscale, which is
unfortunate, because some shades will be essentially invisible.

3.4 Frame Control

There are three functions which control frame actions.fildme function sets the limits of the
picture frame. Thaf (New Frame) function is used to begin a new frame st hgshow Frame) func-
tion is used to display the current frame to all active devicesuiitie function removes the most

22

recently plotted function from the display list of the specified device(s).

3.4.1 frame : Set Frame Limits

Calling Sequence

frame ([xmin [, xmax [, ymin [, ymax]]]] [, window = val])
fr ([xmin [, xmax [, ymin [, ymax]]]] [, window = val])
Description

The frame function sets the limits of the picture frame, which fasene type attributes. The
frame command applies immediately to all plot commands in the frames an abbreviation forf
followed byframe .

You can supply zero to four positional arguments. If specikedly is the minimum value for the
X scale xmax is the maximum value for the x scajenin is the minimum value for the y scale, and
ymax is the maximum value for the y scale. These positional arguments may be omitted from the

right’; or, if you wish, you can specify any subset of the arguments using keywords, e. g.,
frame (xmax = 9.32, ymax = 1.05e11)

Those arguments omitted will be calculated from the data.wihdow keyword may be used to
specify a particular window or file to which you wish to apply the limits. Allowed values are the num-
ber of an open window from O to "&gm" , "ps" , or"all" (the default).

The frame limits will not be retained across frame advances. If a frame already contains objects it
will be displayed with these frame limits. Currently the same frame limits apply to all open windows;
if sufficient demand surfaces, we will implement separate frame limits for separate devices.

Example 3

In the first example, the frame limits are set to the specified values. In the second call, the extreme
values forxminandyminare used. Hence, the frame limits are 1,5,1,9.

ezcshow ("true™)
plot (arange (10), arange(10))
(plot on next page)

1. EZN (i. e., Basis) allows arbitrary arguments to be omitted, e. g.,
frame ,,ymin,ymax
but this form is not allowed in Python.

23

0 00,3720, 0,9160%

-

'1"r'1"r'|"|"|'1"r']"r'|"|"|']"r'1"r'|"|"r'r'r'|"|"|"r'r'r'['l"|"|'1“['1"r'|"r'|'1"r'1"r'

0 2 4 6 8

—|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

24

frame (2,9, 3, 7)

0 (00,5487, 0,9141%

?JH:IIII|IIII|IIII|IIII|IIII EEEEEEEN

=3

N

5

TETTPTV T UV
3 4) 6 7 8

m_|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|_

25

frame (xmax = 5, ymax = 9) # xmin,ymin defaulted

0 (0 0,1954, 0,91513

-

IIII|IIII|IIII|IIII|_

m_|llII|IIII|IIII|IIII|IIII

26

frame (2, 9) # ymin,ymax defaulted

0 00,2941, 0,9141%

L

e b

el

]

TEVT TPV
2 3 4) 6 7 8

|'_
9

Sinceezcshow istrue , four frames were displayed, as illustrated on the preceding pages.

ezcshow had been sdalse , only three frames would be displayed. The moral is: puirémee
command first, normally, and use subseq@iemhe commands to plot a different view of the same
set of objects

27

3.4.2 nf: New Frame

Calling Sequence

nf([new_frame= wvall][,window = val2])

Description

Thenf function signals that a new frame is to be started. By default, attributes setatly the
function (See “attr: Setting Attributes” on page 43.) are reset to their default values when a new frame
is issued. If, however, the user has isseecdreset (“false”) , then the attributes set by the
attr command will remain in effect across frame advances.

Whatnf really does is to close the currently displayed frame. What else happens depends on the
value of the keyword parametaew_frame and also depends on the last calleteshow . If
new_frame is"yes" (the default), then the current frame remains displayed, but EZPLOT clears
that frame’s current display list in preparation for the next oneew_frame is"no" , then thenf
behaves exactly liksf , described in the next subsection; i. e., it redisplays the current display list but
does not clear it. The most receatshow call determines what happens the next time a plot function
or ansf is invoked:"min"

« Ifitwasezcshow ("true") , and a plotcommand is issued, then the specified curve will be
added to the display list and the list will be displayed immediately.df) is issued, it has
no effect unlesaf was called witmew_frame equal td'yes" , in which case it will tell you
that there is nothing to graph.

« Ifitwasezcshow ("false") , and a plot command is issued, then the specified curve will
be added to the display list, but the current display will not change uisfil &n is issued.

Thewindow keyword argument can be used to specify a particular window or file; the allowed
values forval2 are"all" (the default);’cgm” ,"ps" ,"min" ,"max" , an integer from O to 7, or
a list of such integers.

28

Example 4

In the default case, the line style is reset across frame advances. (Note, though, that PyNarcisse
does not support dashed curves, so this example won't illustrate much of anything if used with PyNar-
cisse.)

ezcreset ("true”) # (default)

attr (style = "dashed")

plot (y, X) # First plot dashed.

plot (y2, x2) # Second plot dashed.

00,3269, 0,9141%

J_|||||||||||||||||||||||||||||||||||||
35ﬂj

=

300 —

250 —

200—

—

10 15

29

nf ()
plot (y3, x3) # Style IS reset to solid (default).

0 005120, 00,9123

oottt b rerora bt ror b

= o
bt b o i

o

o

R R R R TR RS
0) 10 15

—|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I

30

In the example below, the line style remains dashed across frame advances.

ezcreset ("false")
attr (style="dashed")

nf ()

plot (y,x) # First plot dashed

plot (y2,x2) # Second plot dashed

(same plot showing as two pages back)

nf ()

plot (y3,x3) # Style NOT reset across frame advance

b 7,B267, 14,9193

J|||||||I|||I|||||||||||||||||||||||||/|_

—
o

—
Lo]

ol bt e b

o

A

0) 10 15

—|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I

A better way to do this is usually to change the default variables, in thislelstgde . See
Chapter 8 for details.

3.4.3 sf : Show Frame

Calling Sequence

sf([window= wval])

Description

The sf function displays the current frame to all active devices, or to particular window(s) or
file(s), depending omal ("all* being the default). The frame is displayed regardless of the value
of the status aézcshow . This function is useful when a user wants to control the display of the frame
at certain times; i.e., not every time a graphic object is added on a frame (default). Nsitewtiat
complain if there is nothing on a selected display list, which will be the case any timhe(anis
issued witnew_frame equal td'yes" , or missing altogether.

Example 5

In the example below, th&f function is used to display the frame after three curves have been
added. Note that functicgecshow was called with argumeifialse” , so there will be no change
in the display until thef . A fourth curve can then be added; mhd() been used instead sff () ,
the first three curves would no longer be in the picture.

ezcshow ("false™)

plot (y1, x1)

plot (y2, x2)

plot (y3, x3)

sf () # force show of current frame (next page):

32

b g,4793, 205, 70728

J_|||||||||||||||||||||||||||||||||||||
35ﬂj

300

250 —

200—

TR ey
) 10 15

33

plot (y4, x4)
sf()

b 89,3492, 359,5714

J_|||||||||||||||||||||||||||||||||||||
35ﬂj

300 —

250 —

TR ey
) 10 15

34

3.5 undo: Undo a Plot Command

Calling Sequence

undo ([item = number] [, window = val])

Description

Remove thewmber™ object in the EZPLOT display list for the device(s) specified bymineow
keyword.. (EZPLOT maintains a list of graphic objects created by successive plot calls. This list is
cleared when anf is issued.) If natem is given,undo the last graphic object. Some EZPLOT
functions do not generate graphic objects in the display list (for exampleathe function), so
cannot be undonia this way. It is the user’s responsibility to figure out which number should be sup-
plied forundo . (Numbering of objects begins at 1.)

Thewindow keyword can b&min" |, "max" , or a number between 0 and 7. It cannot be a list or
"all" . The default value, if this argument is missindg;nsn" . An exception will be raised if the
item number referred to does not exist, or if the specified window does not have a nonempty diaplay
list.

35

36

UCRL-MA-128569, Manual 4

CHAPTER 4: Attributes

A set of “attributes” such alor , thickness , scale , marks, labels , etc., can be used to
control the appearance of graphic objects or the layout of a frame.

4.1 Attribute Types

Some attributes affect the entire picture (such as scale, frame limits) while others affect the individual
graphic objects in the picture (such as thickness, color).

If the attribute affects the entire picture, it will take effect immediately and we cdtatree at-
tribute. If the attribute only affects the individual graphic object, we callabgactattribute. A special
kind of object attribute (for mesh plots), which affects the current object and remains in effect until a
frame advance or until another assignment is made to the attribute, is stdliegl." See “Attribute
Table” on page 48. for a list of valid keywords, values and their attribute types.

Thegrid andscale attributes are examplesfoimeattributes. These attributes affect the entire
picture. When these attributes are specified witlattie function or in an EZPLOT graphic function,
a new picture is plotted with the grid and scale changed. (Note: This has the side effect of creating a
new frame even iézcshow ("false”)is in effect.)

Thecolor andstyle attributes are examplesalijectattributes. If these attributes are specified
in a graphics function call, the color and line style are changed only for the objects generated by this
command. If these attributes are specified withattie command, only those objects added to the
frame following theattr command will have these specified attributes. Some special attributes for
the mesh plots such esgion , krange ,Irange are “sticky’: i.e., the specifications afegion ,
krange and/orlrange will affect the following mesh plots until the end of the frame or the values
have been redefined.

If no attribute value is set explicitly by the user, a default value will be used for the attribute. These
default values in turn can be changed by setting certain control variables. User specified default values
will be in effect until new default values are assigned. See CHAPTER 8: “Control Variables and De-
faults” for details.

By specifying attributes and control variables, it is also possible to change many things about the
layout of the picture, such as the size of the titles, and the minimum size of the text.

Usually all attributes will be re-initialized to their default values when a frame is advanced. How-
ever, calling the functioazcreset with argumentfalse” will cause the attribute settings to last
across frames.

November 23, 1998

Examples

plot (y1, x1)
plot (y2, x2)

0 00,4228, 0,90768

J_|||||||||||||||||||||||||||||||||||||
35ﬂj

TP e e
) 10 15

—

38

attr (scale = "linlog") # Picture redisplayed.

11 0 11,4404, 7,135e+013

A

I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|_
5] 10 15

39

nf ()

plot (y1, x1)

plot (y2, x2)

attr (style = "dashed") # Only following curves affected,;
no redisplay yet.

10 00,4651, 00,9104

J_|||||||||||||||||||||||||||||||||||||
35ﬂj

300

250 —

200—

TP e e
) 10 15

—

40

plot (y3, x3)
plot (y4, x4)
nf ()

b 7,3478, 0, 0000}

J| Lo tao bt oo totata bt ra ool
350 j

300 —

250 —

200—

B £
TP e
10 15

s AR AR AR RN RN RN RN

41

The attributesabels andlev can be eitheirameor objectattributes. For exampleftr can
setlabels to"yes" or"no" ,to indicate whether or not subsequent curves in the frame are to be
labeled. As ambjectattribute,labels can also be set to the opposite value, as in:

attr (labels = "no")

plot (y1, x1)

plot (y2, x2, labels = "yes")
plot (y3, x3)

System|: 0 ¢ 00,4566, 0,9141)

J_|||||||||||||||||||||||||||||||||||||
35ﬂj
300

250 —

0) 10 15

This results in the curvad andy3 being unlabeled, ang®? being labeled (see above); i. e., subse-

42

guent curves in the frame will be unlabeled unless the object attléhals is explicitly set to
llyeS

Labels for the curves (other than the default letters) can be specified widihéte keyword.
Labels must be quoted strings, or variables or expressions (including arrays) whose values are quoted
strings. The attributéabels is also used to turn labelling on and off (by setting ityes" or
"no"). When the attributéabels is used in this sense, it iSrameattribute. i.e., all existing and
subsequent curves on the frame will be either labelled or not.

The attributdev can be used to assign the number of contour levels or a vector of contour level
values as an object attribute. WHew="log" , it becomes &ameattribute, and it sets the contour
levels based on a logarithmic scale.

4.2 attr : Setting Attributes

Calling Sequence

attr (keywordl=valuel, keyword2=valuez, ...,
k eywordN=valueN)

Description

Theattr function assigns values to attributes. The value assigned to an attribute remains in effect
until a frame advance is issued, or until another assignment is made to the attributeattia the
command (within the same frame). An attribute’s effect can be reversed for an object in the frame if it
can also be used as an object attribute, as noted in the previous section. To make the values assigne
to attributes remain in effect across frame advances, call funetioreset with argument

"false”

To make a permanent change to a default, change the corresponding variable. See CHAPTER 8:
“Control Variables and Defaults” for a list of these.

43

Examples

In the first example, the scale is setdglog , the line style is set tdashed . Since the default
value"true" was sent t@zcreset |, the attributes set only remained in effect until the next frame
advance. After that, the attributes were reset to their default values.

assume ezcreset ("true") (default)

Settings remain in effect only until next frame advance.
attr (scale = "loglog", style = "dashed")

plot (y1, x1)

plot (y2, x2)

e
RN

s
1

o
tq
|

+3 _
1072 — e -
_ - —
— - P
— s P
B - - _
: - e
_ - - _
: -
- =4 L -
: -
'Iﬂ"'zj . s _
: P -
__é s .-ff -
i s -7 _
. -~ -
_ p - _
: - P
—E - ,.-'J —_
= - - -
. -
10+1 — B VA —
— P - _
— S -
= - L _
- // - _
= - -
: -
— 7 =~ —
—

44

nf ()

plot (y3, x3) # scale,style reset to defaults.

)

1049

|||||||||||||||||||||||||||||||||||||||_

0. EERERER | T I']"|"['I']"|"['I"|"r'|'1"|"r'|'1"|"r'|"|"['I']"|"['I']"|"['I"|"r'|'1"|"r'|_
5 10 15 20 25

45

In the second examplezcreset s called with argumerifalse” . This time thettr com-
mand remains in effect across frame advances. Hence, the line thickness remains set to 3.0 acros:
frame advances.

ezcreset ("false")

Settings remain in effect across frame advances.
attr (thick = 3.0)

plot (y1, x1)

plot (y2, x2)

—
o

10+4

—
Lo]

e
o

|

R R T T TTCrmama
5] 10 15 20 25

g
o

46

nf ()
plot (y3, x3) # Thickness still 3.0.

)

1049

|||||||||||||||||||||||||||||||||||||||_

0. EERERER | T I']"|"['I']"|"['I"|"r'|'1"|"r'|'1"|"r'|"|"['I']"|"['I']"|"['I"|"r'|'1"|"r'|_
5 10 15 20 25

Or, we could accomplish the same thing more simply by making a permanent change to the default
thickness (the plots will look identical to the previous two):

ezcreset ("true") # (default)
defthick=3.0
plot (y1, x1)
plot (y2, x2)

nf ()
plot (y3, x3) # Thickness still 3.0.

47

4.3 Attribute Table

The following is an alphabetical list of all allowable attribute keywords. Refer to individual plot com-
mands for more specific information. Note that this is only a subset of what is available in the Basis
EZN package. More attributes can be added to EZPLOT if there is sufficient interest.

TABLE 1. attr : Attribute Table
Keyword Type Value Description
bnd object "no" Plot full mesh (default).
"yes" Plot region boundaries only
color object "bg" The default background / fo
"fg" ground color used by EZPL
"color" Use one of the following 16
colors (default="fg"):
"red", "green", "blue", "cya
"magenta”, "yellow", "purp
"black", "white", "gold", "y
lowgreen”, "orangered", "re
ange". (Not all colors are av
on both Gist and Narcisse.)
“filled" Color fill the contour band,
ing from blue to red.
“fillnl" “filled" without contour line
color_bar frame 0 or 1 (default) If 1, place a color bar at th
side of a colored contour or
contour plot
cscale frame “lin" Linear color mapping with
"log" Logarithmic color mapping
plotf
"normal” Normal color mapping with
plotf
grid frame "no" No reference grid
“tickonly" Tick marks only (default)
"X x rulings
"y y rulings
"xy" x and y rulings
krange sticky Kmin,kmax,kinc) Range for k-lines in mesh p
(default=(1,kmax,1))
kstyle object "none" No lines in k direction.

48

TABLE 1.

. Attribute Table (Continued)

Keyword Type Value Description
"style” Usestylefor k-lines. Seest
default="solid")
labels frame "yes" Curves/marks are labelled i
order added (default).
"no" No labels displayed, unless
ruled by object label spet (
label frame "str" Label all subsequent curves
frame withstr, unless overr
object label spec (below).
object "str" Label next curve witlstr.
strcan be a vector for multi
curves.
lev object ival Number of contour levels.
(default=8)
[rvalq,rval,,..] Vector of contour levels.
frame "lin" or "linear" | Linear contour levels (defa
"log" Logarithmic contour levels.
lrange sticky (Imin,Imax,linc) | Range for I-lines in mesh pl
(default=(1,Imax,1))
Istyle object "none" No lines in | direction.
"style" Usestylefor |-lines. Seest
default=solid)
mark object "asterisk" Asterisk marker
"circle" Circle marker
"cross" Cross marker
"dot" Dot marker
"plus” Plus marker
region sticky "all" Display all regions in mesh
(default).
[ivalq,ivals,..] Vector of desired region mu
scale frame “linlin" Both x and y axes lineae (d
"linlog" x-axis linear, y-axis logairit
"loglin" x-axis logarithmic, y-axis li
"loglog" Both x and y axes logarith
"equal” Both x and y axes linear,

scales equalized

49

TABLE 1. attr : Attribute Table (Continued)

Keyword Type Value Description
style object "solid" Solid lines (default)
"dashed" Dashed lines
"dotted" Dotted lines
"dotdash" Dot-dashed lines
"none" Background color lines
thick object rval Line thickness multiplier
(default=1.)
VSC object rval Vector scaling factor
(default=0.05).

50

UCRL-MA-128569, Manual 4

CHAPTER 5: General Plot
Commands

This chapter describes the EZPLOT general-purpose plot commands.

5.1 plot : Plotting Curves and Markers

Calling Sequence
plot ([yexpr] xexpr[,< keylist]])

Description

Theplot command plots line segments connecting points or discrete markers at the points. Markers
are plotted at the data points, without connecting line segments, when the atiabutes set to one

of the valid marker types. The default scaling factor for markers is 1.0, the default line style is
"solid" , and the default line thickness is 1.0. To override these values, set the atimbtkes

size 1 style ,orthick , respectively.

If neitheryexprnor xexpris specified, then the current picture is redisplayed. Otherygseryis
an array of y-axis valuesexpris an array of x-axis values, aRkieylist> is a list of optional attributes
specified by pairs of keywords and values separated by equal siggoiis not specified, theyexpr
is plotted against the index yéxpr. If yexprdiffers in length by one from the lengthx@xpr, whether
explicitly or implicitly specified, the longer of the two will be automatically averaged to shorten it. If
the lengths okexprandyexprdiffer by more than 1, then the command is an error, no object is added
to the frame, and an exception will be raised.

If the arguments are two-dimensional arrget plots the corresponding columnsyeixprand
xexprto produce multiple curves at once. Multi-dimensional arguments are reduced to two-dimension-
al by collapsing any higher dimensionsxéfpris one-dimensional, then each columy@fpris plot-
ted against it.

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, they are
local to the command specified; i.e., they are not remembered across commands.

1. Not currently available in PyGraph.

November 23, 1998

window , grid , scale ,style ,thick ,color ,labels |, label,mark

If optional attributes are given as keyword argumenpédb ; they are specified in the usual form:
keyl=valuel key2=valueZ,...,keyN=valueN

To set an object attribute across commands usetthe command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

Examples

In this example, three curves will be superimposed. Thepiiost function will plot a curve with
dashed lines, the secopbbt function will mark circles, and the thilot command will plot the
curve in red. Since the first plot command does not sp&ekpr y will be plotted against an array
spanning from 0 to 10. In the second and tpid calls, the y values are also plotted against this
same array. The curves are labellad dnd 'C' respectively. (“Marked” plots are not labelled.)

y = arange (5, 16, typecode = Float)

plot (y, style = "dashed") # plot curve

plot (y + 1,mark ="circle) # plot markers
plot (y + 2, color = "red") # plot curve in red

nf ()

_| |
16 — i
0 -
A
14 — —
B
12— —
3 A
10— o a
a
8— a 4 =
6— —
= . ' | 1 oy oy -
] . 4 & | gl

If you enter the above commands at the terminal, you will see three frames displayed in turn as the
graphic objects are added. Time call will clear the display list but not the screen. If you close the
window (issuewin ("close")), reopenitWin ("open"”)), and then you repeat the experiment

but issueezcshow ("false”) first, you will not see any graphic objects at all, or indeed any win-

52

dow in the case of Gist, until you issuerdn("no”) orsf () call, at which point the window with
the completed frame will appear. Just issuing a naed) will cause the window to open with
nothing displayed, since the display list will have been erased.

The next example replots two curves with an xy-grid added.

x = 0.5 * arange (1, 10, typecode = Float)
y:X**Z

plot (y, x)

plot (y - 1, x)

plot (grid = "xy")

nf ()

0— :_
[| [| [| [| [| [| [| | [|
1 2 3 4

In the next example, the firptot call will plot three curvesy,y + 1,y + 2 against the same x,
labelled 17, “2”, and “3”, respectively. The secormlot call will plot two curvesy + 3 againsix
+ 1 andy + 4 againsi + 2, perhapdabelled “D’ and “ E”, respectively. (Note that the default curve
labels continue to increment even if the letter is not the curve label. Note also the caveat “perhaps”.
This is because the letters will be the next two available in this particular Gist session; they will be
“D” and “E” only if this is the first plot you make.)

plot ([y,y +1,y+ 2], x, label =["1", "2", "3"])

53

20

lil
e
.\"\-
-y
[|

H"'J i
!
1

|||-I|| telanetatitabitotetanils
%S
B

=)
-

plot([y+3,y+4],[x+1, x+2])
sf ()

r =

! i
T i

Ful
L=

Alilali iletitenatebinatotatabitetotonilatatatal
.

T

/A
SR /
15 "f e, ;
LS =
VA, >
A ¥
10 o V., -y

4.]

\
LT}
I,

.\,"-ﬂ. %,

||||||||.|-|||||||||||||||'_
1 2 3 4 -] E

Narcisse and Gist behave differently regarding labels. Gist will label a curve at several spots along

54

its length with a single character. If you specify a label of more than one character, it will simply use
the first character. Otherwise it defaults to the capital letters, in order. Narcisse, on the other hand, al-
lows multiple-character labels, but does not put the labels on the curves themselves, but rather at the
right ends of the curves.

A difference between EZN and EZPLOT regarding labels is that EZN has only the kdgword
bels , which can be used to turn the labels attribute on and off, as well as to specify a label for a curve
or a default label for the frame. This is confusing, especially because EZN allows multiple occurrences
of the same keyword in@ot command. Python does not support multiple occurrences of a keyword,
because keywords create Python dictionaruy entries, and there can only be one entry per keyword. We
have solved this problem by usiladpels solely as the frame attribute which enables or disables la-
bels for the entire frame, according as itis s&gés” or"no" inanattr orplot call. Thelabel
keyword is then used in aitr call to set the default label for all curves in the frame (if labels are
enabled for the frame), or inpot call to specify the label(s) for one curve or a family of curves
regardless of whether labels are enabled for the frame.

It is also important to realize the difference between marks and labels. Both graphics engines sup-
port plotting curves with marks at each point specified by the coordinate arraysaikse attribute
described in the previous chapter allows you to spédagy’ |, "circle” ,"cross" ,"plus" ,or
"asterisk” to specify the mark to be used; marks, if used, forces the attritiyte to be
"none" . Narcisse supports only these five marks. Gist supports any single character mark. Narcisse
plots only the points specified; Gist draws what is called a “polyline,” which is a curve densely pop-
ulated with the specified character.

A major difference between EZPLOT and EZN is that EZPLOT does not support the keyword
“legend . Thisis because EZPLOT does not put the text of the plotting commands on the graph the
way EZN does. Instead, EZPLOT hasties function, which allows the user to specify titles for
the top, bottom, left, and right margins of the graph, atekta function (See Chapter 7), which al-
lows text to be plotted at arbitrary places in the graph. To put a title at the top of the graph, do

titles ("this is my title")
sf()

this is my ftitle

[
o=

—_
wn

55

The arguments fotitles must be given in the order top, bottom, left, right and may be omitted
from the right. Omitted arguments default to blank. For convenience, EZPLOT also offers four func-
tions, each of which sets just one of the titles (leaving the other three unchanged). Ttidse are

titleb ,titler , andtitlel

The fifth set of examples graphs the unit circle and x and y axes in a variety of styles and also il-
lustrates how thiabels attribute works. Comments in the code explain what happens on the frame.

Set x and y scales equal:

attr (scale = "equal")

a = (pi/2.)*arange (11, typecode = Float) / 10.
Curve in first quadrant labelled with 1:

titleb ("first quadrant")

plot (cos (a), sin (a), label ="1")

first quadrant

56

Curve in second quadrant not labelled "Q2" since
drawn with a "mark™:
plot (cos (a), -sin (a), label ="Q2", mark = "circle")

1.'3__'IlllIlIll|IlIlIl|||5||I|I|I|I|I|I|I|I|I|_

D -
— o _
— o —
- 0 -
— o _
G.E—__ 0 ;
— 0 ~
- -
n.n_:] ... B
~0.5—

—1.GTI|I|I|I|I|I|I|I|I|IiI|I|I|I|I|I|I|I|I|I
-1.0 -0.5 0.0 0.5

E:_|I|I|I|I|I|I|I|I|I|I

first quadrant

57

Third quadrant drawn and all labels turned off, but
label "XXX" is still associated with quadrant 3:
plot (- cos (a), - sin(a), labels = "no", label = "XXX")

8]

1'ﬂ__|||||||||||IlIlIlI||E||I|I|I|I|I|I|I|I|II_

a0
0

L]

! o
on
||||||||||||||||||

—1.GTI|I|I|I|I|I|I|I|I|I:I|I|I|I|I|I|I|I|I|I
-1.0 -0.5 0.0 0.5

E:_|I|I|I|I|I|I|I|I|I|I

first quadrant

58

All labels turned back on, including "XXX" in quadrant 3;
quadrant 4 labelled with D (maybe):

plot (- cos (a), sin (a), labels = "yes")

attr (label = "YYY")

1'ﬂ__||||||||||||lIlIlI||E||I|I|I|I|I|I|I|I|II_

8]

8]

8]

L]

nn

-0.5

—1.GTI|I|I|I|I|I|I|I|I|I:I|I|I|I|I|I|I|I|I|I
-1.0 -0.5 0.0 0.5 1

":3_|I|I|I|I|I|I|I|I|I|I

first quadrant

59

The following two curves will now be labelled with "YYY":
plot (zeros (11, Float),

(5. - arange (0, 11, typecode = Float)) / 5.,

style = "dashed")
plot ((5. - arange (0, 11, typecode = Float)) / 5.,

zeros (11, Float), style = "dotted")

See the following figure for the completed frame.

1.'3__'IlllIlIll|IlIlIl|||-||I|I|I|I|I|I|I|I|I|_

0 :
o Y

8]

L]

0.0

—1.ﬂjl|I|I|I|I|I|I|I|I|I:I|I|I|I|I|I|I|I|I|I
-1.0 -0.5 0.0 0.5 1

":3_|I|I|I|I|I|I|I|I|I|I:

first quadrant

60

5.2 plotz: Plotting Contours
Note:plotz is not available in Narcisse, which does only three- and four-dimensional contour plots.

Calling Sequence
plotz (fexpr [, xexpr [, yexpr 11[, <keylist> 1)

Description

Theplotz function plots contours of a surface definedféypr above the point set described by
xexpr andyexpr . <keylist> s a list of optional keywords and values.

There are two allowed types of data for contour plots:

« Gridded dataxexpr andyexpr are one-dimensional arrays, sagndy, andfexpr is atwo-
dimensional array, sa, such that

z(@, j) =fx @, y(@), iin range (len (x)), j in range (len (y)).

In order forxexpr andyexpr to form a valid rectangular grid, each array must contain either
strictly increasing or strictly decreasing values.

« Mesh data:fexpr , xexpr andyexpr are all two-dimensional arrays of the same shape. In
this casexexpr andyexpr form a logically rectangular mesh afexpr (i,) isthe value
associated with poir{txexpr (i, j), yexpr (i, j)) . For mesh-based data, a plot of this
type can also be generated bypheic function; Section 6.5 on page 77.

EZN-style Scattered data plots are not supported by EZPLOT.

Note: fexpr can also be the name of a function which, when called with no arguments, returns an
array of values of the appropriate shape.

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, they are
local to the command specified; i.e., they are not remembered across commands.

window , grid , scale , thick , style , font , mark, lev , color,
color_bar

If optional attributes are given on the plot command line, they are specified in the usual form:
keyl=valuel,key2=value2,...,keyN=valueN

To set an object attribute across commands usetthe command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

The default line style isolid and the default line thickness is 1.0. The default color is the fore-
ground color. To override these defaults, set attribsifde , thick , color , respectively. The
mark attribute will cause markers to be plotted at each of the mesh points, in the forground color.

61

5.2.1 Contour Levels

Contour levels are controlled by tley attribute. The attributkev can be used to specify the levels

of contours, the scale of the contoumsdar or logarithmic), or a list of specific values for the contour
levels. The attributeev can be set either on a plot command or with an attribute call suektas “

(lev =foo) . Like any such attribute, if set wittiitr it applies to alplotz commands on that
frame, except those that override it withlev* = " of their own. However, if a vector of values is
specified forlev , it will be lost at the next frame advance. There is currently no way to specify such
a list to be used on all frames.

In “lev =foo ", foo can be:

"linear" (or"lin"): at leasabs(deflev) linear levels;
« "log" :abs(deflev) logarithmic levels;

e n>0: nlinear levels;

e n<0: abs(n) logarithmic levels;

« areal or double precision list of values.

The default value dev is in the variableleflev , whose value is 8; hence, the default is 8 lin-
early-spaced contour levels.

In Gist, every contour line is labeled with the default (consecutive capital letters). Contours col-
ored according to value are currently not available in Gist.

5.2.2 Contour Color Fill

Thecolor attribute, if given a color name, causes all of the contours to be plotted in that color. The
color attribute for a contour plot can also be used to generate color filled contour bands. Each con-
tour band is a closed polygon (coupled with frame boundaries if necessary) which can be filled with

color. The user can setlor = "filled" to fill the contour levels with colors ranging frdstue
to red with increasingaltitude. When color fill is applied, the contour lines may become unnecessary.
The user may specifgolor = "fillnl" to avoid the contour lines’ being drawn. Details on

filled contour plots may be found in the section “plotf: Fillmesh plot” on page 77

5.2.3 Contour Level Annotations (the Color Bar)

For the contour plots, the contour level annotations can be shown in the right margin of the frame
under user’s control. This is done by means ofcthler_bar keyword argument. If set to 1, then

the grid will be slightly reduced in size to take into account the space needed for the color bar, and the
color bar will be plotted. If O, there will be no color bar. (The defaultis 0.)

The contour level annotationagslor codedfor easy association with the contour level colors. The
color assigned is the color of the contour level.

Example

The following example plots a matrix z versus vectors x and .

62

x = arange (-5, 6, typecode = Float)
y=X+6

z = multiply.outer (X, y)

plotz (z, x, y, color = "green”, lev=12)

sf()

63

5.3 ploti: Cell Array Plots

Note:ploti is not available in Narcisse.

Calling Sequence

ploti ([pvar]|, <keylist>])
ploti ([cindex][, <keylist>])
ploti (<keylist>)

Description

The ploti command is used to plot cell arrays in EZPLOT. The argumiedex is a two-
dimensional array of unsigned charactgpécode 'b' in Python) whose equivalent integer val-
ues (0-255) are color cell indices (i. e., subscripts into the current palette). The arguanens a
two-dimensional array of reals, in which case EZPLOT will convert the values to cell indices for you.
<keylist> is a list of optional keywords and values.

For mesh-based data, a more realistic display may be obtained by ugshatithe command in-
stead; Section 6.5 on page 77.

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, they are
local to the command specified; i.e., they are not remembered across commands.

window,grid , scale , color_bar
If optional attributes are given in tipdoti call, they are specified in the usual form:
keyl=valuel,key2=value?2,...,.keyN=valueN

To set an object attribute across commands usetthe command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

Example

The following command will cause a 10 by 10 cell array to be plotted, with the first 100 colors of the
current color palette, and a corresponding color bar.

nf ()
ploti (reshape(arange(100,typecode = 'b"),(10,10))

sf()
(plot on next page)

64

0 2 4 6 8 10

5.3.1 Color-Mapping Functions
Setting the Color Map

Currently EZPLOT does not support letting you change the color map (or palette). This option can be
added if sufficient demand arises.

Mapping Real Data to Color Indices

There is currently no way to do this implemented in EZPLOT, since EZPLOT will accept your data
and do the conversions automatically.

65

66

UCRL-MA-128569, Manual 4

CHAPTER 6: Mesh-Oriented
Commands

Note: The mesh-oriented commands are not available in Narcisse graphics. Narcisse does three- anc
four-dimensional mesh plots only.

A mesh-oriented command assumes an underlying logically-rectangular two-dimensional mesh. The
x-coordinate of the meskexpr , and the y-coordinatgrexpr , are both two-dimensional real arrays

dimensionedkmax, Imax) % By conventionzone (i, j) is the quadrilateral with upper-right
corner(i,j) ;thatis, with diagonally opposite cornérsexpr (i - 1, j - 1), yexpr (i - 1,
- 1)) and(xexpr (i,]), yexpr (i,)

A mesh-oriented command also requires a regioninagp as an argument. This is a two-dimen-
sional integer array, also dimensiong@&tax, Imax) , withireg (i, j) the region number for
zone (i,j)) . Thevaluesofreg (0, :) andireg (;, 0) areirrelevant. A value of O indicates
a “void”.

The three mesh-defining arrayexpr , yexpr ,ireg , if specified in the plot command, must ap-
pear before the firstey = value pair. They may be dropped from the right, with missing values
replaced by defaults. Thug, color ="red") is equivalent tqx, rt, ireg, color =
"red")

A mesh-oriented command accepts attribute specifications which specify a subset of the mesh to
be plotted by defining values ferange , Irange , andregion . The command will plot the subset
of the mesh consisting of zones whose indices are in the ranges specified and with region numbers in
the region list.

A range specification has the forfstart, stop, inc) . Fields may be omitted from the right;
unspecified fields in the range are set to default valkuesmnge specifies a range for the first sub-
script, andirange specifies a range for the second subscript. The defaultgaarge = (O,
kmax, 1) andlrange = (0, Imax, 1).

In the specificatiomegion = region-list , region-list can be a scalar or vector of in-
tegers containing a list of region numbers. The defaudig®n = "all" |, meaning all regions.

The attribute&range ,Irange andregion are ‘sticky’, which means that after a mesh-orient-
ed plot specifies a value for an attribute, this attribute value will stay in effect for the following mesh-
oriented commands until a new frame or until the attribute is reassigned another value.

1. Remember: unlike FORTRAN, Python arrays are subscripted beginning with zero, so the subsdtiptsxdfydmax array range
from 0 tokmax - 1 and from0 tolmax - 1.

November 23, 1998

For example,

plotm (region = [1,3,5])

#Mesh plot for regions 1, 3 and 5.
plotc (te, color="filled")

#The contour plot will be restricted to regions 1,3,5.
nf ("no")

6.1 set mesh andclear mesh : Specifying the Default
Mesh

Calling Sequence

set_mesh (<keylist>)
clear_mesh ()

set_mesh is used to set all or part of the default mesh for the next mesh plotting functions, until
cleared or set to something elskear_mesh , of course, removes the default mesh from existence.
All of the mesh plotting functions require a mesh to be specified, either by a presedingesh
command, or by specifying the mesh to be plotted in the mesh plot function’s own arguments. The al-
lowed keywords in<keylist> are:

rt , zt, ireg , pvar, cindex , ut, vt

rt andzt are one-dimensional or two-dimensional arrays specifying the mesh. For plotting pur-
poseszt may be thought of as the abscissa (the x coordinate)t aad the ordinate (the y coordi-
nate). Suppose the mesh sizkrsax by Imax . Thenzt must be of dimensiokmax (if one dimen-
sional) orkmax bylmax (if two). Likewise,rt must be of dimensidmax orkmax bylmax .ireg
is akmax bylmax array of integers specifying the regions of the mesh. As mentioned earlier, the first
row and column ofreg are meaningless and should be set to zeros. The keypadsandcin-
dex are mutually exclusivepvar , if present, is &max by Imax array of reals values used to make
a contour plot on the mestindex , if present, is &max bylmax array of indices into a color table
specifying the colors for a filled mesh. Finally, andvt arekmax bylmax real arrays which specify
a vector field defined at each mesh point, for use in making vector field plots.

Any part of the default mesh may be overruled by a specification in a plot function’s arguments;
any part of the default mesh that was not set by a cadttanesh mustbe specified in a plot function
call if that function needs it. There are no default or pre-set values.

6.2 ezcpvar ,ezccindex ,ezcx,ezcy,ezcireg ,ezcu,
ezcv : Convenience Functions

The functions enumerated above may be used (if desired) to set the global vakees,aindex ,
rt ,zt ,ireg ,ut,andvt , respectively. They each accept a single, non-keyword argument.

68

6.3 plotm : Plotting Meshes, Boundaries, and Regions

Calling Sequence

plotm (<keylist>)
plotb (<keylist>)

Description

plotm is a mesh-oriented command-or general information, see the chapter introduction on
page 67. In a departure from EZN, EZPLOT requires that all arguments be keywords.

Theplotm function plots meshes. If the keywdrdd is set td'yes” (orl), only the boundaries
of regions are plotted. If specified, is an array of y-axis valuest is an array of x-axis values,
ireg is a region map, andkeylist> is a list of other optional keywords and values.

If plotm arguments are omitted, they are supplied by using the values set by the nearest preceding
call toset_mesh . If there was no such previous call, then the plot is not possible and an exception
will be raised.

As a special caselotm (bnd =1) can be abbreviatquotb
By convention, the curves connecting nodes are divided into two sets,
k-lines (xexpik, :), yexp(k, :)), k in range (kmax); and
l-lines. (xexpi(:, I), yexpi(:, 1)), I in range (Imax).
Thekrange andlrange attributes can be given a stridg¢o cause only everjyth line in that

direction to be plotted. The stride is ignored for boundary plots, and ignored in drawing the lines in the
opposite direction (that is, thelines will have all their pieces evenkifange has a strid¢, while

only everyj " k-line will be plotted).

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, they are
local to the command specified; i.e., they are not remembered across commands.

grid , scale , kstyle ,Istyle ,thick , bnd, color , mark, labels
krange , Irange ,region ,window

If optional attributes are given on the plot command line, they are specified in the usual form:
keyl=valuel key2=valueZ,...,keyN=valueN

To set an object attribute across commands usetthe command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

The default line style issblid" and the default line thickness is 1.0. The default color is the fore-
ground color. To override these defaults, set attribstids , thick , andcolor respectively.

The attributemark can be used to plot markers at the nodes instead of drawing mesh lines to con-

69

nect the nodes. This is similar to the funcigdot with themark attribute.

Optional attribute&style andistyle set the line style for tHe-lines and -lines, respectively.
By default, both are set tgolid" . If a style is set tdnone" , then no lines are plotted in that di-
rection.

The color specified by theolor attribute is used to specify the colorselines and -lines. EZ-
PLOT does not currently support separate colorgfiames and -lines.

Thewindow attribute is used to specify a device number from O to 7 for the platgor” , or
"ps" , or"all" if the plotis to appear in all active devictal" is the default.

Examples

The following data are used for the examples here and in Section 6.5 “plotf: Fillmesh plot”.

Define mesh:
kmax = 25
Imax = 35 #Don’t make either smaller than 25.
xr = multiply.outer (arange (kmax, typecode = Float),
ones(Imax, Float))
yr = multiply.outer (ones(kmax, Float),
arange (Imax, typecode = Float))
from Ranf import * # Used in following lines
zt = 5. + xr + .2 * random_sample (kmax, Imax)
rt = 100. + yr + .2 * random_sample (kmax, Imax)
Define region map:
ireg = multiply.outer (ones (kmax), ones (Imax))
ireg [0:1, O:lmax]=0
ireg [0:kmax, 0:1]=0
ireg [1:15, 7:12]=2
ireg [1:15, 12:Imax]=3
ireg [3:7, 3:7]=0 #Define an internal void.
k2=1
12 =7 #Index of a point in region 2.
Define data on the mesh:
s =1000.
z=s*(rt+zt)
z [3:10, 3:12] =z [3:10, 3:12] * .9
z[5,5]=2z[5,5]*.9
z[17:22,15:18] =z [17:22,15:18] * 1.2
z[16, 16] =z [16, 16] * 1.1
set_mesh (zt = zt, rt = rt, ireg = ireg, pvar = z)

70

In the first example, a mesh is plotted withines dashed and-lines dotted. Here, the displayed

R
o
£
<
=)
o
c —
— M~
©
<
=)
Q
)
o
Z
m I_ | _ | | _ | | _ | | _ | | _ | _l
2 T Ty PR S .
= ~ : . .“ N
£ — S el el St it aii i T
) - L 3 i _ -
E — S e e £ B
- R S ey T
c - H L=
) — e il e e S R
o - i b T o
2 — S el e S i il S Sl Tt — ™
o I S S SO S TN R N S i
1 — : L T S S _ I
e - : i
(@) — R T e i —_——— -
S . N
Y— R — : -
(@)] s — L i i R _
o] : : .
£ [- B S S S = D
> £ — _ SR B
€3 ©3 SRR 2t R Ry SRR L =
k..m = _ T sl T N S S
r=JJ) L 4 - C i ___i___L B
Wd S, — — : - == ” R P . _
= - " : -
S% B__ — B e A ittt o
L 2) _ : N
m |m w m — T el .1.1.4.1.4.......1.1“..?1.4.3 ... - ..H.d..J....m.| m
ge <c£ & Z ——
e O < - : P -
85 Sg e e N)
g5 o R U N S N S s
ne ol S R S A o L Eli-
R > i S T e R e I e R O o
cSs Lo
o (= w o) o
oL = c — b= b=t b= o
o Ec - - - - -
)
Ot —_—
es S8~¥-
cao o
<
°
53
£
[OIS!
Ea

Here we plot just two regions. Note that the full extent of the mesh is used.

nf ()
plotm (bnd = 1, region = [1, 2])
Plot boundaries of regions 1 and 2.

sf()

@
on
L

—
(V]
Lo]

Ll

S—i|||||||||||||||||||||||||||||||||||—

72

And here we plot all region boundaries, and then just the I-lines:

Figure 6.1: Example of Boundaries Plot

nf ()
plotb () # Plot boundaries.

plotm (kstyle = “none”, Istyle = “dotted”)
Plot just the I-lines of the mesh.

sf ()

73

Finally, we plot all region boundaries, and mark region 2 with text in it. Note that this looks better
on the screen, because the colored mesh lines make the text stand out.

plotb () # Plot boundaries

plotm (region = 2, kstyle = “dashed”, Istyle = “dotted”,
color = “green”)

text (“Region 27, zt[k2,12], rt[k2,12], 32, tosys = 1)

nf ()

S—i|||||||||||||||||||||||||||||||||||—

6.4 plotc: Plotting Contours

Note: plotc is currently not available in Narcisse. Narcisse does contour plots only in three and four
dimensions.

74

Calling Sequence
plotc (<keylist>)

Description

plotc is a mesh-oriented function. For general information, see the chapter introduction on page 67.
Note that unlike EZN, all argumentsgbtc must be keyword arguments.

Theplotc function plots a contour map p¥ar above the mesh describedby andzt . pvar
is a two-dimensional array of real values dimensioned the sameaslzt , or, if the latter are one
dimensional, thepvar will be len(rt) bylen(zt) . If specified,t is an array of y-axis values,
zt is an array of x-axis valuegseg is a region map, andkeylist> is a list of other optional key-
words and values. Strideskrange orlrange are ignored bylotc

If plotc mesh-defining arguments are omitted, then they are supplied by using the values set by
the closest preceding call sét_mesh . If there has been no such call, or if they have not been set,
then there is nothing to plot, and an exception will occur.

pvar can also be the name of a function which, when called with no arguments, returns a two-
dimensional array of values of the appropriate shape.

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, they are
local to the command specified, i.e. they are not remembered across commands.

grid , scale , thick , style , mark, lev , color , krange , Irange ,
region , window

If optional attributes are given on the plot command line, they are specified in the usual form:
keyl=valuel key2=valueZ,...,keyN=valueN

To set an object attribute across commands usatthe command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

Thewindow attribute is used to specify a device number from O to 7 for the platgor” , or
"ps" , or"all" if the plotis to appear in all active devictal" is the default.

Contour Levels, Colors, etc.

The discussion of the commaptbtz (Section 5.2 on page 61) contains a detailed explanation of
the way contour levels and colors are specified. The discussion there applats toas well.

The primary difference betwe@iotc andplotz is that the former is a mesh-oriented function.
This means that only th@otz mesh data discussion applieplotc . Furthermore, because of the
underlying mesh and the associated region maplthe command has the possibility of controlling
the subregion over which contours are displayed by use of attrivatege , Irange |, region

Theplotc command assumes that the physics quaptia/ is mesh-based, which means that

75

pval (i,) isthe value associated with mesh p@int j) . Currently EZPLOT does not support
zone-based quantities.

Example

The following is an example of usinglotc with default arguments. The data are as defined before
theplotm examples, page 70. Note the gap in the graph at the internal void.

nf ()
plotc (pvar = z, lev = 13)

sf ()

135£||||||||||||||||||||||||

— —
] (V]
o Lo]

e

T
mEER RN R RN RN

) 10 15 20 25

L
o

76

6.5 plotf : Fillmesh plot

Note: plotf is not available in Narcisse. Narcisse supports filled mesh plots only in three and four
dimensions.

Calling Sequence

plotf ([pvar [, zt [,rt [,ireg]l [,<keylist>])
plotf ([cindex [,zt [,rt [,reg]I ,<keylist>)

Description

plotf is a mesh-oriented command. For general information, see the chapter introduction on
page 67.

Note thatplotf allows the positional argumengsar (or cindex), zt , rt , andireg . For
consistency with other mesh plotting commands, these variables can (and probably should) be enterec
as keyword arguments, or setdst _mesh .

Theplotf function plots a color-filled mesh which displays the physics quamiity (or the
colors indexed byindex) in the zones of interest with colors. If specified,is an array of x-axis
values,rt is an array of y-axis valueggg is a region map, andkeylist> is a list of optional
keywords and values.

If plotf arguments are omitted, they are supplied by using the values set by the most recent call
of the functiorset_mesh . If the values have not been set, then there is nothing to plot, and an excep-
tion will be raised.

The colors assigned to the individual zones range from the beginning color in the colormap to the
last color in the colormap. The color varies from low color index to high color indexazs varies
from its minimum to maximum values.

The mapping of colors can hrearly, logarithmically, or normally distributed The user can use
the attributecscale to specify the mapping choice. For examplecseale ="log" to set the
color mapping to logarithmic values of the physics quantity. The default mapping is linear. The nor-
mal distribution color mappingécale ="normal") will map pvar values which are 2 standard
deviations below the mean to the lowest color index,a@adt values which are 2 standard deviations
above the mean to the highest color index. The intermeoliate values are mapped in the normal
distribution fashion. A colored annotation on the right side of the frame displays the assignment of
colors to the corresponding valuesoofr .

Theplotf command also accepts an integer aciagex to directly assign color indices to the
zones in the mesh. The integer array must be of dimefisitax, Imax) and with values between
the lowest color index and the highest color index (usually between 1 and 192). When directly as-
signed color indices are used, no color annotation will be displayed, because EZPLOT has no knowl-
edge how the color mapping is defined.

77

Optional Attributes

The following optional attributes can be specified with this commanabfectattributes, they are
local to the command specified, i.e. they are not remembered across commands.

color ,cscale ,krange ,lrange ,region ,window, color_bar
If optional attributes are given on the plot command line, they are specified in the usual form:
keyl=valuel,key2=value2,...,keyN=valueN

To set an object attribute across commands usetthe command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

Due to the possibility of different color assignment schemes in different regions or with different
physics quantities, tHeange ,Irange ,region attributes are mad@bn-sticky; i.e., the submesh
specifications will not be remembered during subsequent fillmesh plots in the same frame. This differs
from the effects okrange , Irange ,region on theplotm command (Section 6.3 on page 69).

Thewindow attribute is used to specify a device number from 0O to 7 for the platgor” , or
"ps" , or"all" if the plotis to appear in all active devictal" is the default.

Examples

For our first example, assume the same data as defined bef@letthe examples, page 70. Note
that nothing gets plotted in the void, so it has the background colopldtce call in this example
will superimpose contours on the filled mesh plot:

nf ()

plotc (pvar = z, color = "filled", lev = 12)
Superimpose 12 contours

sf()

The plot appears on the next page.

78

S—i|||||||||||||||||||||||||||||||||||—

79

For our next set of examples, assume that a PFB duntedilr has been created, and we want
to examine some of its physics variables. First we do a linearly-scaled fillmesh plot of variable
rhoout :

from PFB import * # import the PDB read module
f = PR ('./testlz’) # open the file

nf ()
plotf (pvar = f.rhoout)

30

25

20

15

10

o0 100 150 200 250

80

Next we do a logarithmically-scaled fillmesh plot of variaipteut :

nf ()

plotf(pvar=f.vxout,cscale="log")

sf ()

30

25

20

15

10

o0 100 150

6.6 plotv: Plotting Vectors

Note:plotv is not available in Narcisse.

Calling Sequence

plotv([zt [t [.wvt [.ut [.reg]I
plotv (<keylist>)

200

,<keylist>

250

)

81

Description

plotv is a mesh-oriented command. For general information, see the chapter introduction on
page 67.

Note thaplotv allows the positional argumerzs, rt ,vt ,ut , andireg . For consistency with
other mesh plotting commands, these variables can (and probably should) be entered as keyword ar-
guments, or by usinget_mesh .

Theplotv function plots velocity vectors on a mesh. If specifiedjs an array of y-axis values,
zt is an array of x-axis valuest is the displacement fat , vt is the displacement fat , ireg is
a region map, andkeylist> is a list of optional keywords and values.

If plotv arguments are omitted, they are supplied by using the values entered in the most recent
call toset_mesh . If any are undefined, there is nothing to plot, and an exception will occur.

A series of arrows frorrt, zt) to (rt+ut*dx, zt+vt*dy) is plotted. The valuedx and
dy are chosen so that the maximum extent of an arrow in the corresponding direction is the frame size
in that direction multiplied by thesc attribute. The default farsc is .5; this default can be changed
by assigning a new value defvsc

Optional Attributes

The following optional attributes can be specified with this command. For object attributes, they are
local to the command specified, i.e. they are not remembered across commands.

grid ,scale ,style ,thick ,vsc,color ,krange ,lIrange |,
region , window

If optional attributes are given on the plot command line, they are specified in the usual form:
keyl=valuel,key2=value?2,...,.keyN=valueN

To set an object attribute across commands usetthe command. See “Attribute Table” on
page 48. for descriptions of the values which can be assigned to these keywords.

The default line style isolid and the default line thickness is 1.0. The default color is the fore-
ground color. To override these defaults, set attribstids , thick , andcolor respectively.

Thewindow attribute is used to specify a device number from 0O to 7 for the platgor” , or
"ps" , or"all" if the plotis to appear in all active devictal" is the default.

Examples

In the first example, the input arrays are explicitly specified. The line thickness of vectors will be 0.1.

nf ()

ireg = zeros ((10, 10), Int)

vals = arange (1, 11, typecode = Float)
muls = ones (10, typecode = Float)

x = multiply.outer (vals, muls)

y = multiply.outer (muls, vals)

82

vX = sin (y)

vy = CO0S (X)

Define regions:

ireg [1:5, 1:5] =

ireg [1:5, 5:10] =

ireg [5:10, 1:5] =

ireg [5:10, 5:10] =

plotv (zt =y, rt = x, vt = vy, ut = vx, ireg = ireg, thick =
0.1) # Arguments explicitly specified.

R TGy

SN = g o NN~ S
R .,
=20 2 RN PN
5—2/3-*»//-"*2—
A A
O Y N N
SN =2 e NN~

i / -
||||(|||| ||||||||||||||||||||||||||||| ||||r
2 4 6 8 10

83

In the second example, the default values are se¢toynesh and then are used. The displace-
ment vectors are scaled to 0.8. Only vectors originating at nodes of zones in regions 1 and 4 are plotted.
(Note that this is transposed relative to the previous example.)

Continuation from the last example.

Set up zt,rt,ut,vt:

set_mesh (zt = x, rt =y, vt = vx, ut = vy, ireg = ireg)
plotv (vsc = .8, region = [1, 4])

1G_IIIII|IIII||||||||||J.||||%|||g||||||y|||y?
- / / ~ \ 1;—

o

=3

_("'.f""""'I""""'I"" IIII|IIII e

10

84

UCRL-MA-128569, Manual 4

CHAPTER 7: Text PlOttlng and
Miscellaneous

7.1 titles . Puttitles on the plot

Calling Sequence
titles (top [, bottom [, left [, right 1)

Description

Put up to four quoted strings at the top, bottom, left, and right of the picture, respectively. Each title
can also be set individually by calling the appropriate funditbet , titleb , titlel , or
titler with a quoted string as argument.

The default value of each title is a blank string.
7.2 text : Puttexton the plot

Calling Sequence

text (str, x, y, size [, <keylist>)

Description

Write str on the plot beginning at coordinatesy; size gives the size of the text in points.

Optional Attributes

The following optional keyword arguments can be specified with this function. For object attributes,
they are local to the command specified, i.e., they are not remembered across commands.

tosys , window , color

tosys specifies the coordinate system. If O, it denotes window coordinates, which vary from [0., 0.]
to[1., 1.]. If 1, it denotes the user coordinates (along the plotted x and y axes). The defauft-is 1.
dow may be used to specify a particular device (0 througbgm" , or"ps") or all active devices

("all"). The default isall" . color may be used to specify the color of the text; it defaults to
"fg" (foreground). Because of tliesys keyword, there is no EZPLOT equivalent of the EZN
functionftext

November 23, 1998

To set an object attribute across commands usatthe command; Section 4.2 on page 43 for
descriptions of the values which can be assigned to these keywords.

Example

Example of text command

nf ()
plot (arange (20))
text ("Have a Nice Day", 4, 10, 24, tosys = 1)

sf ()

oottt b rerora bt ror b

—
o

bt b o i

Have a Nice Day

—
Lo]

o

—|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I

o

R R R R TR RS
0) 10 15

86

UCRL-MA-128569, Manual 4

CHAPTER 8: Control Variables and
Defaults

EZPLOT differs from EZN in that its internal variables are not intended to be available to the user.
They are set not by assignment, but by calling a function. Thus, for instance, in Basis one would say

ezcshow = true
whereas the correct Python function call to EZPLOT is
ezcshow ("true™)

Internal values for attributes are set by calltiy (see “Attributes” on page 37). Tliefaultvalues

of many internal attributes (i. e., the values to which they are set lacking catts t¢ which sets

them) can be set by assignment, however; these variables are listed below (see “Default Attributes” on
page 88).

8.1 Setting Control Variables

Here are some details on some of the functions in EZPLOT which set these internal variables.

ezcshow Determines if the current picture is displayed each time it is changed by
an EZPLOT function call, or only wherframeattribute is changed of
is called."true"” by default (display after each change).

ezcreset Determines if attributes set by thd#r function are reset to the default
values upon a frame advance."#alse" , attributes will remain set
across frame advancésue" by default.

ezcvsc Determines the size of the largest vector arrow relative to the frame size
for theplotv command. See “Attribute Table” on page 48¢ .

titlet takes string valued argument, setsttigetitiefor a frame. Default: a blank
string.

titleb takes string valued argument, setslib&om titlefor a frame. Default: a
blank string.

titlel takes string valued argument, setsléfietitle for a frame. Default: a blank
string.

titler takes string valued argument, sets fiilgét title for a frame. Default: a
blank string.

November 23, 1998

title takes from one to four string valued arguments, which are from left to
right thetop, bottom left, andright titles. Arguments may be omitted from
the right only. Defaults: four blank strings.

8.2 Default Attributes

You can change default settings of internal attributes (i. e., what they would be set to lacking calls to
attr or by use of keyword arguments in a plot function call) by assigning new values to the follow-
ing variables in EZPLOT. Their original values are shown for each.

Defaults for attributes

defgridx ("off")
#grid lines in x direction
defgridy ("off")
#grid lines in y direction
defvsc (0.5)
#size of largest vector, relative to the frame size
defthick (1.0)
#thickness of lines
defmark (" ")
#mark -- blank for curves
defstyle ("solid")
#line style
deflabels (1)
#show labels on curves?
deflabel (" ")
#default curve label
defscale ("linlin")
#scale: "linlin", "linlog", "loglin", "loglog", or
"equal”
defcolor ("fg")
#normal color
deflev (8)
#Minimum number of contour levels to choose
#Negative means use logarithmic contours
deftop (")
#title for top
defbot (")
#title for bottom
defleft (")
#title for left
defright (")
#title for right

88

defcgm ("yes")

#plot to a cgm file?
defps ("no")

#plot to a postscript file?

8.3 Setting Default Mesh Variables

The following functions may be used to set default mesh variables for mesh plots. Default variables,
once set, can be changed to different values by calling the same functions, cleared by calling
clear_mesh , or overruled by the variables specified in an individual plot function call. In any of the
following calls, the value specified for a variable mayNmme, in which case the default value is
simply unspecified, and must be supplied by a plot command that needs it.

set_mesh ([rt = <array1>] [,] [zt = <array2>] [,]
[ireg = <array3>] [,] [ut = <array3>] [,]
[vt = <array4>] [,] [pvar = <array5>] [,]
[cindex = <array6>])
defines a two-dimensional mesh for plotting. andzt are either real, two-dimensional
arrays of the same shape (&ayax by Imax) defining the mesh, or else is a vector
kmax long andzt is a vectodmax long. {t is the abscissat the ordinate.jreg is
a two-dimensionalkmax by Imax) integer array defining which region of the mesh each
guadrilateral in it belongs to. It should be the same shape asdzt , but the first row
and first column are constrained to beifed is a cell-centered quantity, and it is its
value at the upper right corner of the cell that decides the region number of that cell.)
andvt are velocity components used to plot vector figdsr andcindex are mutu-
ally exclusive.pvar is a real array used to color a filled mesh, wiiledex is an
unsigned character array (Python typectxie) the numerical value of whose compo-
nents specify an index into a color table. All arrays must be the same Eheapely
Imax) except, possiblyzt andrt , as mentioned earlier. Once set, these variables will
define the mesh until the nedet_ mesh command. Any variable undefined by
set_mesh must be supplied as a keyword argument to a plot function call (if that func-
tion needs the variable) or must have been previously defineddty mesh call (or a
call to one of the functions below).
ezcx (<val>) setthe abscisgat) to<val>.
ezcy (<val>) setthe ordinatét) to<val>.
ezcpvar (<val>) setthe array of function valupsar to <val>.
ezccindex (<val>) set the array of color indicesndex to <val>.
ezcireg (<val>) setthe arrayreg defining the mesh regions twal>.
ezcu (<val>) setthe arrayt ofy velocity components teval>.
ezcv (<val>) setthe arrayt of x velocity components teval>.

89

90

UCRL-MA-128569, Manual 4

Index

A

activate device 10
additive graphic functions 6
attr 7, 37, 43

examples 44
attribute

default 37

marks 55

style 55
Attributes 37
attributes

attr 28, 43

bnd 48, 69

color 37, 48, 69

color_bar 48, 62

cscale 48, 77

default 43

frame 37, 42

grid 37,48

krange 37, 48, 67, 69, 78

kstyle 48, 70

label 49

labels 42, 49, 56

lev 42, 49, 62

Irange 49, 67, 78

Istyle 49, 70

mark 49, 51, 62, 69

marksize 51

new_frame 28

object 37, 42

plot 51

plotc 75

plotf 78

ploti 64

plotm 69

plotv 82

plotz 61

region 37,49, 67,78

scale 37, 49

sticky 37, 67, 78

style 50, 51, 69

table 48

text 85

thick 50, 51, 69

tosys 85

vsc 50, 82

B

Basis 1
bg 48
bgcolor 48
bnd 48, 69
C

cell arrays 64

November 23, 1998

CGM 1
cgm 7,9,10

keywords

window 10

cgm ("send") 9
CGMfile 9, 10
cindex 64, 77

explanation 64
clear_mesh 7, 68
close 9
color 37, 48, 61, 69, 82

bg 48

bgcolor 48

default 61, 82

fg 48

fill 48, 62

filinl 48

foreground 61, 82
color bar 6
color_bar 48, 62
colormap 9, 22, 65
colors

contour 62

names of 48
config save 3
contour

colors 62, 75

labeling 62

Level Annotation 62

levels 62, 75

mesh 75

plots 61
contours

filled 77

linear 62

logarithmic 62
cscale 48, 77

"log" 77

"normal" 77
curve

marks 14

plotting 51

D

deactivate device 10
default
changing 43, 88
mesh 68
mesh variables 89
default value 37
defaults 88
defbot 88
defcgm 89
defcolor 88
defgridx 88
defgridy 88
deflabel 88
defleft 88
deflev 62, 88
defmark 88
defps 89
defright 88

defscale 88
defstyle 32, 88
defthick 88
deftop 88
defvsc 82, 88
device

activate 10

cgm 9,10

deactivate 10

ps 10

tv 10

win 9, 10
devices

multiple 15
DISPLAY 10, 21
display 10, 32

default device 10
display argument

Gist 10

Narcisse 21
display keyword 15, 21, 22
display list 35

E

environment variables 2, 10
DISPLAY 10, 21
PATH 2
PORT_SERVEUR 2, 3, 14,21
PYGRAPH 2, 10, 14, 22
PYTHONPATH 2,5
examples
"open" and "send" 11
attr 44
boundary plot 72,73, 74
cell array plot 64
color 74,78
contour plot 63, 68
curves 52
defthick 47
ezcreset 29
filled contour plot 78
frame function 23
kstyle 71,73, 74
label 53
labels 42,57
Istyle 71, 73,74
markers 52
mesh contour plot 76
mesh definition 70
mesh plot 71
multiple devices 15
plot 52
plotc 76, 78
plotv 83, 84
region plot 68, 72, 74, 84
scale 39, 56
set_mesh 84
sf 32
style 40, 60
text 86
text plot 74
thick 46, 83

titteb 56

titles 55

tosys 86

vsc 84
ezccindex 7, 68, 89
ezcireg 7, 68, 89
ezcpvar 7, 68, 89
ezcreset 28, 37, 43, 44, 87
ezcshow 6, 28, 32, 37, 87
ezcu 7, 68, 89
ezcv 7, 68, 89
ezcvsc 87
ezcx 7, 68, 89
ezcy 7,68, 89
EZN 1
EZPLOT 1
ezplot 3
EZPLOT Defaults 88
ezplot module 5

F

fg 48

FILE menu 3

File save 3

fillmesh plot 77

fr 7,23

frame 6, 7, 22, 23
attribute 42
attributes 37
control 22
layout 6, 37
limits 23
new 28, 37
set limits 23
show 32

ftext 85

G

Gist 1, 3,9

multiple windows 15
gist.py 2
graphics keyword 15, 21, 22
grid 37, 48

no 48

tickonly 48

X 48

Xy 48

y 48
gridded data 61

Ihm compute 3
interactive mode 6

K

keyword 7
keywords

window 10, 15, 35
k-lines 69, 70, 71
kmax 77

krange 37, 48, 67, 69, 78

kstyle 48, 70
L
label 49

Narcisse vs Gist 54
labels 42, 49, 56
contour 62
labels vs label 55
layout 6, 37
legend 55
lev 42, 49, 62
linear 62
list_devices 7, 10, 21
I-lines 69, 70, 71
Imax 77
log 62
logarithmic 62
Irange 37, 49, 67, 69, 78
Istyle 49, 70

M

mark 49, 51, 62, 69
asterisk 49
circle 49
cross 49
dot 49
plus 49

marks 14, 55

marksize 51

max 10

mesh 67, 71
default 68

mesh data 61, 75

mesh-oriented 67

min 10

multiple devices 15

multiple windows 6
Gist 15
Narcisse 21

N

Narcisse 2, 3,9
FILE menu 3
File save 3
Ihm compute 3
multiple windows 21
process 2, 21
socket compute 3
STATE submenu 3
Narcisse display argument 21
network address 10
new_frame 9, 28, 32
nf 6,7, 14, 22, 28, 32,52
keywords
window 15
Numeric module 5
NumPy 5

0]

object 6
attribute 42
attributes 37
Object-Oriented Graphics 1, 3
off 9, 10
on 9, 10
000G 1
open 9
example 11
Open a PyGist window on a remote machine 21

P

palette 22
PATH 2
plot 7,10, 51
keywords
window 15
Plot Commands 7
attributes 7
boundaries 69
contours 74
general plot 7
meshes 69
mesh-oriented 7
regions 69
text related 7
plotb 7, 69
plotc 7,61, 75
contrasted with plotz 75
plotf 7, 77
ploti 7, 64
plotm 7, 69
Plotter object 1
Plotter Objects 3
plotv 7, 81, 82, 83, 84
plotz 7,61, 75
contrasted with plotc 75
PORT_SERVEUR 2, 3, 14, 21
PostScript 1, 10
PostScript file 9
ps 7,9, 10
PyGist 2, 3
PyGist and PyNarcisse 22
PYGRAPH 2, 10, 14, 22
PyGraph 1, 2,3
Documentation 3
platforms 3
PyNarcisse 2
Python 2
home page 2
Python Narcisse 3
PYTHONPATH 2,5

R

range specification 67
region 37, 49, 67, 78
list 67
map 67, 69, 75, 77, 82
number 67
void 67,71, 76

remote machine 21
remote window 15
remote windows 22

S

scale 37,49
equal 49
linlin 49
linlog 49
loglin 49
loglog 49
scattered data 61
send 9, 10
example 11
set_mesh 7, 68, 77, 89
sf 6,7, 22,32
keywords
window 15
socket compute 3
solid 69
STATE submenu 3
sticky 37, 67,78
stride 69, 75
style 37, 50, 51, 55, 61, 69, 82
contour 61
dashed 50
dotdash 50
dotted 50
none 50
solid 50, 69
support 4

T

text 8, 55, 85
thick 50, 51, 61, 69, 82
title 88
titteb 85
titlel 85
titler 85
titles 8, 85
titlet 85
title bar 10
titteb 85, 87
titlel 87
titler 87
titles 8, 55
titlet 87
tosys 85
tv 7,10

U

undo 7, 22, 35
window keyword values 35

\Y,

vectors

plotting 82
void region 67, 71, 76
vsc 50, 82

W

win 7,9, 10
window 10, 15, 22, 23, 28
active 15
multiple 15
on remote machine 15, 21
undo keyword values 35
windows
multiple 6, 15, 21
remote 22

X

xmax 23

xmin 23

Xwindow 10
Xwindows 1
Xwindows display 9

Y

ymax 23
ymin 23

4

zone 67, 84

10

	The Python Graphics Interface, Part I
	Table of Contents
	CHAPTER 1: The Python Graphics Interface�1
	Overview of the Python Graphics Interface 1
	Using the Python Graphics Interface 2
	About This Manual 3

	CHAPTER 2: Introduction to EZPLOT�5
	Running EZPLOT 5
	The Additive Model 6
	Controlling Layout 6
	Plot Function Summary 7

	CHAPTER 3: Devices�9
	Device functions 9
	Working with Multiple Windows 15
	PyGist 15
	PyNarcisse 21
	Using PyGist and PyNarcisse together 22

	Setting the Colormap 22
	Frame Control 22
	frame: Set Frame Limits 23
	nf: New Frame 28
	sf: Show Frame 32

	undo: Undo a Plot Command 35

	CHAPTER 4: Attributes�37
	Attribute Types 37
	attr: Setting Attributes 43
	Attribute Table 48

	CHAPTER 5: General Plot Commands�51
	plot: Plotting Curves and Markers 51
	plotz: Plotting Contours 61
	Contour Levels 62
	Contour Color Fill 62
	Contour Level Annotations (the Color Bar) 62

	ploti: Cell Array Plots 64
	Color-Mapping Functions 65

	CHAPTER 6: Mesh-Oriented Commands�67
	set_mesh and clear_mesh: Specifying the Default Mesh 68
	ezcpvar, ezccindex, ezcx, ezcy, ezcireg, ezcu, ezcv: Convenience Functions 68
	plotm: Plotting Meshes, Boundaries, and Regions 69
	plotc: Plotting Contours 74
	plotf: Fillmesh plot 77
	plotv: Plotting Vectors 81

	CHAPTER 7: Text Plotting and Miscellaneous�85
	titles: Put titles on the plot 85
	text: Put text on the plot 85

	CHAPTER 8: Control Variables and Defaults�87
	Setting Control Variables 87
	Default Attributes 88
	Setting Default Mesh Variables 89

	CHAPTER 1: The Python Graphics Interface
	1.1 Overview of the Python Graphics Interface
	1.2 Using the Python Graphics Interface
	1.3 About This Manual

	CHAPTER 2: Introduction to EZPLOT
	2.1 Running EZPLOT
	2.2 The Additive Model
	2.3 Controlling Layout
	2.4 Plot Function Summary

	CHAPTER 3: Devices
	3.1 Device functions
	3.2 Working with Multiple Windows
	3.2.1 PyGist
	3.2.2 PyNarcisse
	3.2.3 Using PyGist and PyNarcisse together

	3.3 Setting the Colormap
	3.4 Frame Control
	3.4.1 frame: Set Frame Limits
	3.4.2 nf: New Frame
	3.4.3 sf: Show Frame

	3.5 undo: Undo a Plot Command

	CHAPTER 4: Attributes
	4.1 Attribute Types
	4.2 attr: Setting Attributes
	4.3 Attribute Table

	CHAPTER 5: General Plot Commands
	5.1 plot: Plotting Curves and Markers
	5.2 plotz: Plotting Contours
	5.2.1 Contour Levels
	5.2.2 Contour Color Fill
	5.2.3 Contour Level Annotations (the Color Bar)

	5.3 ploti: Cell Array Plots
	5.3.1 Color-Mapping Functions

	CHAPTER 6: Mesh-Oriented Commands
	6.1 set_mesh and clear_mesh: Specifying the Default Mesh
	6.2 ezcpvar, ezccindex, ezcx, ezcy, ezcireg, ezcu, ezcv: Convenience Functions
	6.3 plotm: Plotting Meshes, Boundaries, and Regions
	6.4 plotc: Plotting Contours
	6.5 plotf: Fillmesh plot
	6.6 plotv: Plotting Vectors

	CHAPTER 7: Text Plotting and Miscellaneous
	7.1 titles: Put titles on the plot
	7.2 text: Put text on the plot

	CHAPTER 8: Control Variables and Defaults
	8.1 Setting Control Variables
	8.2 Default Attributes
	8.3 Setting Default Mesh Variables

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

