
11/23/98 1

UCRL-MA-128569, Manual 4

The Python Graphics Interface, Part II

Object-Oriented Graphics
Manual

Written by

Zane C. Motteler
Lee Busby

Fred N. Fritsch

2

Object-Oriented Graphics Manual

Copyright (c) 1996.

The Regents of the University of California.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, pro-
vided that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under contract
no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of California for the op-
eration of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference
herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for advertising or product endorsement
purposes.

Table of Contents

CHAPTER 1: The Python Graphics Interface 1
Overview of the Python Graphics Interface 1
Using the Python Graphics Interface 2
About This Manual 3

CHAPTER 2: Introduction to Object-Oriented Graphics 5
Object Oriented Graphics 5
Running OOG 7
Class Summary 8

CHAPTER 3: Two-Dimensional Geometric Objects 9
Curve Objects 9
Lines Objects 16
QuadMesh Objects 22
Plots of Mesh Lines 26
Contour Plots 28
Region Objects 34
Polymap Objects 39
CellArray Objects 41

CHAPTER 4: Three-Dimensional Geometric Objects 47
Surface Objects 47
Mesh3d Objects 60
Structured vs. Nonstructured Meshes 61
Regular (or Structured) Meshes 63
Irregular (Unstructured) Meshes 66
Plane objects 72
Slice objects 73
3D Animation 77

CHAPTER 5: Graph Objects 79
Graph2d Objects 79
 Graph3d Objects 92
1

CHAPTER 6: Animation2d Objects 109

CHAPTER 7: Plotters: A Brief Primer 113
2

3

4

UCRL-MA-128569, Manual 4

ies for
ctions of
 labels,
ation,
graphics
details
s, but
rticular
f what

tting li-
rfaces,
tter ob-

graph-
ser can
to open
LOT; it
 Basis
til they

tter ob-
e which
e lower-

nal
 Post-
n di-
rks
n such
CHAPTER 1:The Python Graphics
Interface

1.1 Overview of the Python Graphics Interface

The Python Graphics Interface (abbreviated PyGraph) provides Python users with capabilit
plotting curves, meshes, surfaces, cell arrays, vector fields, and isosurface and plane cross se
three dimensional meshes, with many options regarding line widths and styles, markings and
shading, contours, filled contours, coloring, etc. Animation, moving light sources, real-time rot
etc., are also available. PyGraph is intended to supply a choice of easy-to-use interfaces to
which are relatively independent of the underlying graphics engine, concealing the technical
from all but the most intrepid users. Obviously different graphics engines offer different feature
the intention is that when a user requests a particular type of plot which is not available on a pa
engine, the low level interface will make an intelligent guess and give some approximation o
was asked for.

There are two such graphics packages which are relatively independent of the underlying plo
brary. The Object-Oriented Graphics (OOG) Package defines geometric objects (Curves, Su
Meshes, etc.), Graph objects which can be given one or more geometric objects to plot, and Plo
jects, which receive geometric objects to plot from Graph objects, and which interface with the
ics engine(s) to do the actual plotting. A Graph can create its own Plotter, or the more capable u
create one or more, handy when one wishes (for instance) to plot on a remote machine, or
graphics windows of different types at the same time. The second such package is called EZP
is built on top of OOG, and provides an interface similar to the command-line interface of the
EZN package. Some of our long-time users may be more comfortable with this package, un
have mastered the concepts of object-oriented design.

As mentioned above, a Graph object needs at least one Plotter object to plot itself; only the Plo
jects need know about graphics engines. At present we have two types of Plotter objects, on
knows about Gist and one which knows about Narcisse. Some power users may prefer to use th
level library-specific function calls, but most users will use EZPLOT or OOG.

Gist is a scientific graphics library written in C by David H. Munro of Lawrence Livermore Natio
Laboratory. It features support for three common graphics output devices: Xwindows, (color)
Script, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small (writte
rectly to Xlib), portable, efficient, and full-featured. It produces x-vs.-y plots with ‘‘good’’ tick ma
and tick levels, 2-D quadrilateral mesh plots with contours, vector fields, or pseudocolor maps o
11/23/98 1

red sur-
nimation
n

ecially
luding
tions of
ctions of

, Nar-
ough it
ever,

o write

t have

n, you
e excel-
 way

llows.

n-

ec-

which
then

. Nar-
hich the

se.

ectory
meshes. 3-D plot capabilities include wire mesh plots (transparent or opaque), shaded and colo
face plots, isosurface and plane cross sections of meshes containing data, and real-time a
(moving light sources and rotations). The Python Gist module gist.py and the associated Pytho
extension gistCmodule provide a Python interface to this library (referred to as PyGist).

Narcisse is a graphics library developed at out sister laboratory at Limeil in France. It is esp
strong in high-quality 3-D surface rendering. Surfaces can be colored in a variety of ways, inc
colored wire mesh, colored contours, filled contours, and colored surface cells. Some combina
these are also possible. We have also added the capability of doing isosurfaces and plane se
meshes, which is not available in the original Narcisse. The Python Narcisse module narcissemod-
ule (referred to as PyNarcisse) provides a low-level Python interface to this library. Unlike Gist
cisse does not currently write automatically to standard files such as PostScript or CGM, alth
writes profusely to its own type of files unless inhibited from doing so, as described below. How
there is a "Print" button in the Narcisse graphics window, which opens a dialog that allows you t
the current plot to a postscript file or to send it to a postscript printer.

1.2 Using the Python Graphics Interface

In order to use PyGraph, you first need to have Python installed on your system. If you do no
Python, you can obtain it free from the Python pages at http://www.python.org . You may
need the help of your system administrator to install it on your machine. Once you have Pytho
have to know at least a smattering of the language. The best way to do this is to download th
lent tutorial from the Python pages, sit down at your computer or terminal, and work your
through it.

Before using the Python Graphics Interface, you should set some environment variables as fo

• Your PATH variable should contain the path to the python executable.

• You should set a PYTHONPATH variable to point to all directories that contain Python exte
sions or modules that you will be loading, which may include the OOG modules, ezplot , and
narcissemodule or gistCmodule . Check with your System Manager for the exact sp
ifications on your local systems.

• Unless you create your own plotter objects, PyGraph will create a default Gist Plotter
will plot to a Gist window only. If you want your default Plotter to be a Narcisse Plotter,
set the variable PYGRAPH to Nar or Narcisse .

A Gist Plotter object automatically creates its own Gist window and then plots to that window
cisse, however, works differently. Narcisse is established as a separately running process, to w

Plotter communicates via sockets. Thus, to run a Narcisse Plotter, you must first open a Narcis1 To

1. I am going to assume that you already have Narcisse installed on your system, and its dir
path in your PATH variable.
2

ing
our
e-

off a

raph).

age in
he re-
ntists

er their
ine.

ns, and
olaris
ch col-
do so, you need to go through the following steps:

1. Set your environment variable PORT_SERVEUR1 to 0.

2. Start up Narcisse by typing in the command Narcisse & . It will take a few moments for the
Narcisse GUI to open, then immediately afterwards it will be covered by an annoying window
which you can eliminate by clicking its OK button.

3. You will note that there is a server port number given on the GUI. Set your PORT_SERVEUR vari-
able to this value.

4. Narcisse has an annoying habit of saving everything it does to a multitude of files, and notify
you on the fly of all its computations. If you do a lot of graphics, these files can quickly fill up y
quota. In addition, the running commentary on file writing and computation on the GUI is tim
consuming and slows Narcisse down to a truly glacial pace. To avoid this, you need to turn
number of options via the GUI before you begin. They are all under the STATE submenu of the
FILE menu, and should be set as follows: set ‘‘Socket compute ’’ to ‘‘ no ,’’ set ‘‘ File
save ’’ to ‘‘ nothing ,’’ set ‘‘ Config save ’’ to ‘‘ no ,’’ and set ‘‘Ihm compute ’’ to ‘‘ no .’’
(‘‘IHM’’ are the French initials for ‘‘GUI.’’)

1.3 About This Manual

This manual is part of a series of manuals documenting the Python Graphics Interface (PyG
They are:

• I. EZPLOT User Manual

• II. Object-Oriented Graphics Manual

• III. Plotter Objects Manual

• IV. Python Gist Graphics Manual

• V. Python Narcisse Graphics Manual

EZPLOT is a command-line oriented interface that is very similar to the EZN graphics pack
Basis. The Object-Oriented Graphics Manual provides a higher-level interface to PyGraph. T
maining manuals give low-level plotting details that should be of interest only to computer scie
developing new user-level plot commands, or to power users desiring more precise control ov
graphics or wanting to do exotic things such as opening a graphics window on a remote mach

PyGraph is available on Sun (both SunOS and Solaris), Hewlett-Packard, DEC, SGI workstatio
some other platforms. Currently at LLNL, Narcisse is installed only on the X Division HP and S
boxes, however, and Narcisse is not available for distribution outside this laboratory. Our Fren

1. We did tell you that Narcisse was French, didn’t we?
3

yet been
ay be

the

r
ot bla-

d
oble,

ocu-

ariat
taud,

col-
 stolen
smis-

 number
leagues are going through the necessary procedures for public release, but these have not
crowned with success. Gist, however, is publicly available as part of the Yorick release, and m
obtained by anonymous ftp from ftp-icf.llnl.gov ; look in the subdirectory /ftp/pub/
Yorick .

A great many people have helped create PyGraph and its documentation. These include

• Lee Busby of LLNL, who wrote gistCmodule , and wrought the necessary changes in
Python kernel to allow it to work correctly;

• Zane Motteler of LLNL, who wrote narcissemodule , ezplot , the OOG, and some othe
auxiliary routines, and who wrote much of the documentation, at least the part that was n
tantly stolen from David Munro and Steve Langer (see below);

• Paul Dubois of LLNL, who wrote the PDB and Ranf modules, and who worked with Konra
Hinsen (Laboratoire de Dynamique Moleculaire, Institut de Biologie Structurale, Gren
France) and James Hugunin (Massachusetts Institute of Technology) on NumPy, the numeric
extension to Python, without which this work could not have been done;

• Fred Fritsch of LLNL, who produced the templates and did some of the writing of this d
mentation;

• Our French collaborators at the Centre D’Etudes de Limeil-Valenton (CEL-V), Commiss
A L’Energie Atomique, Villeneuve-St-Georges, France, among whom are Didier Cour
Jean-Philippe Nomine, Pierre Brochard, Jean-Bernard Weill, and others;

• David Munro of LLNL, the man behind Yorick and Gist, and Steve Langer of LLNL, who
laborated with him on the 3-D interpreted graphics in Yorick. We have also shamelessly
from their Gist documentation; however, any inaccuracies which crept in during the tran
sion remain the authors’ responsibility.

 The authors of this manual stand as representative of their efforts and those of a much larger
of minor contributors.

Send any comments about these documents to ‘‘support@icf.llnl.gov ’’ on the Internet or to
‘‘ support ’’ on Lasnet.
4

UCRL-MA-128569, Manual 4

-

metric
e, mak-
t users
aphics
lly they
g like
s; hand

erlying
phics
pabiliti-
raphics
he nec-
some 3-
n. At the
roceed

 ani-
due to
 forth via
 slow.

ed in-
 a win-
 a Post-
CHAPTER 2: Introduction to Object-
Oriented Graphics

Graphics objects consist of instances of one or more of the geometric objects (Curve , Surface ,
Mesh3d, etc.), and of objects to which they can be given to create a potential plot (Graph2d for
Curve s, Graph3d for Surface s and/or Mesh3ds). A Graph object containing at least one geo
metric object needs to hand itself over to a third kind of object, a Plotter object, in order for the
actual plot to appear somewhere (in an Xwindow or in a file, for example).

2.1 Object Oriented Graphics

The idea behind object oriented graphics (OOG) is to supply the user with classes of geo
objects and graph objects which are completely independent of the underlying graphics engin
ing it unnecessary for the user to have to learn details of low level interfaces to graphics. Mos
do not wish to be bothered with the low-level and often arcane methods of dealing with a gr
engine, let alone having to know the properties of more than one graphics engine, since typica
differ so radically from one another. We believe that the typical user would like to do somethin
the following: take the results of some calculations and use them to specify geometric object
the geometric objects to graph objects; ask the graph objects to plot themselves.

Unfortunately the goal of a set of high-level graphics objects which are independent of the und
graphics engines is difficult (nearly impossible) to reach. This is particularly true of the two gra
engines, Gist and Narcisse, which currently underlie the OOG. Gist has far more and better ca
ues for 2-D graphics than does Narcisse. This means that to supply relatively equivalent 2-D g
with Narcisse, it would be necessary to write a Python or C wrapper for Narcisse which does t
essary computations. Likewise, although there is considerable overlap, each engine supplies
D capabilities that the other does not, so wrappers supplying extensions to each must be writte
time of the writing of this manual, only a small part of this work has been done, but we hope to p
with this work in the future.

Another intrinsic difficulty is that Narcisse is much slower than Gist, so, in particular, real-time
mations involving complex figures are simply not feasible in Narcisse. Part of this slowness is
the fact that the user program and Narcisse (a separate process) communicate data back and
sockets, and part is simply that Narcisse internal computations, for whatever reasons, are very

A third problem is that plotting solely to a file is impossible in Narcisse; it is designed to be us
teractively. Narcisse plots can be sent to either a binary or ascii file in addition to being sent to
dow, but these files are in a format peculiar to Narcisse. A particular Narcisse plot can be sent to
11/23/98 5

ther
ithout

se cur-
h will
Script file only by clicking a button in the Narcisse GUI currently displaying that plot. On the o
hand, Gist plots can be sent to an arbitrary choice of windows, PostScript files, and CGM files w
interctive intervention.

The tables below indicate to the user which capabilities are available in PyGist and PyNarcis
rently, and what types of devices can be plotted to. We use the term ‘‘not yet’’ for features whic
someday be implemented, and ‘‘never’’ for those which are essentially impossible.

TABLE 1 Geometry Capabilities of PyGist and PyNarcisse

PyGist PyNarcisse

curves, including multiple yes yes

multiple disjoint lines yes not yet

quadrilateral mesh--line plot yes not yet

quadrilateral mesh--contour plot yes not yet

quadrilateral mesh--filled contour plot not yet yes

region plots yes not yet

filled polygons yes not yet

cell arrays yes not yet

2-D animation, real time yes never

color bar yes yes

axes in 3d plots gnomona only

a. The gnomon is a small representation of the coordinate axes at the lower left of the
picture. The name of an axis is reverse video if it points into the plane of the graph.

yes

surfaces--wire mesh, monochrome yes yes

surfaces--wire mesh, colored by data never yes

surfaces--flat (color filled cells) yes yes

surfaces--contours, filled contours not yet yes

surfaces--shaded by light source yes not yet

3-D mesh--complete cells never yes

3-D mesh--isosurface and plane slices yes yes

3-D mesh--isosurface and plane slices, split palette yes not yet

3-D realtime animation--moving light source yes maybe someday

3-D realtime animation--rotation yes yes (slow)
6

nviron-
u need

re are

Thus,

alized)
2.2 Running OOG

Please read Chapter 1 first and follow the instructions there regarding the setting of various e
ment variables before running Python and PyGraph. Then, once you have fired up python, yo
to execute import statements for each component of the OOG which you intend to use. The
two forms of the import statement.

• from xxxx import *

(xxxx is the name of the file imported, but without the ‘‘.py ’’ suffix.) This form imports the
name space from file xxxx into the name space where the import statement is executed.
if foo is a name in xxxx ’s name space, then it may be referred to simply as foo .

• import xxxx

This form imports only the name xxxx , so that if foo is a variable in the xxxx name space, then
it must be referred to as xxxx.foo .

Following is a list of the OOG files available in PyGraph, and the names of the classes (capit
and functions (lower case) which are declared in the files which you may want to use:

curve.py: Curve
lines.py: Lines
quadmesh.py: QuadMesh
region.py: Region
polymap.py: Polymap
cellarray.py: CellArray
surface.py: Surface
mesh3d.py: Mesh3d, Slice, slice
plane.py: Plane
graph.py: Graph (not normally instantiated alone)

TABLE 2 Device Capabilities of PyGist and PyNarcisse

PyGist PyNarcisse

Xwindow yes yes

multiple Xwindows yes yes

Xwindow on remote machine yes yes

file(s) only, no Xwindow yes never

CGM file(s) yes never

PostScript file(s) yes only from GUI

multiple files yes never

file in self-specific format no yes
7

al.

cts”)

 Ob-
graph2d.py: Graph2d
graph3d.py: Graph3d
animation2d.py: Animation2d
Nar.py: Plotter
Gist.py: Plotter

Note that if you want to instantiate both a PyNarcisse and a PyGist Plotter, you must use the ‘‘import
xxxx ’’ form of the import statement.

2.3 Class Summary

Here is a summary of the PyGraph classes which are described in the remainder of this manu

• Two-dimensional geometric objects (CHAPTER 3: “Two-Dimensional Geometric Obje

c1 = Curve (<keylist>)
l1 = Lines (<keylist>)
qm = QuadMesh (<keylist>)
rg = Region (<keylist>)
pm = Polymap (<keylist>)
ca = CellArray (<keylist>)

• Three-dimensional geometric objects (CHAPTER 4: “Three-Dimensional Geometric
jects”)

sf = Surface (<keylist>)
m3 = Mesh3d (<keylist>)
pl = Plane (<normal> , <point>)
sl = slice (m, val [, varno]) # slice is a function
sl = slice (m, plane [, varno]) # slice is a function
sl = slice (s, plane [, nslices])# slice is a function
sl = Slice (nv , xyzv [, val [, plane [, iso]]])

• Graph objects (CHAPTER 5: “Graph Objects”)

g2 = Graph2d (<object list> , <keylist>)
g3 = Graph3d (<object list> , <keylist>)

• Animation objects (CHAPTER 6: “Animation2d Objects”)

anim = Animation2d (<keylist>)

• Plotter objects (CHAPTER 7: “Plotters: A Brief Primer”)

pl = Nar.Plotter ([<filename>] [, <keylist>])
pl = Gist.Plotter ([<filename>] [, <keylist>])
8

UCRL-MA-128569, Manual 4

lor),
, and
and

d Ob-

ou use

class:

ecking
CHAPTER 3:Two-Dimensional
Geometric Objects

Two-dimensional geometric objects available in OOG include: Curve , Lines (a collection of dis-
joint lines), QuadMesh (as its name implies, a quadrilateral mesh), Region (a sub-part of a Quad-
Mesh), PolyMap (a two-dimensional layout of polygons, each with an associated co
CellArray (a two-dimensional array of rectangular cells, each with an associated color)
Animation2d (a specification of an animation, which includes initialization, calculation,
update functions). All of these objects are available in PyGist, but PyNarcisse supports only Curve
objects in two dimensions (Narcisse is primarily a three and four dimensional plotting engine).

Animation2d objects are the subject of a separate chapter; see CHAPTER 6: “Animation2
jects” on page 109.

3.1 Curve Objects

To use Curve objects, you must import the Python module contained in file curve.py .

Instantiation

from curve import *
c1 = Curve (<keylist>)

Description

A Curve object consists of the coordinates and other characteristics of a geometric curve. Y
‘‘ Curve ’’ to create one, and the other methods of the Curve class to make a new Curve out of the
old one or change Curve characteristics. Here is a short description of the methods of the Curve

set : used to set one or more keyword arguments to new values. Warning--very little error ch
is done; it may be possible to set keywords to conflicting values using this method.

new: reinitializes a Curve object for reuse. The arguments are the same as for Curve .

The keyword arguments are all of the form ‘‘keyword = <value> ’’. Most are optional and will
be assigned sensible values if omitted.

Keyword Arguments
11/23/98 9

e.

.

ist)
e com-

e
ing to
: pur-

ve.
 right;

har-
an one

 guess

es sup-

 does
ged by

s,

 gives
The following keyword arguments can be specified for a Curve object:

y , x , color , axis , label , type , marks , marker , width , hide

Descriptions of the keywords are as follows:

y = <sequence of floating point values> (required): the y coordinates of the curv

x = <sequence of floating point values> (optional): the x coordinates of the curve
If not specified, y will be plotted versus its subscript range.

color = <value> where <value> is an integer from 0 to 63 (PyNarcisse) or 0 to 199 (PyG
representing an entry in a color chart, or else a string giving a common color name. Th
mon color names refer to colors on the default color card ‘‘rainbowhls ’’ (PyNarcisse) or
‘‘ rainbow.gp ’’ (PyGist). The allowed names are "background" , "foreground" (the
default), "blue" , "green" , "yellow" , "orange" , "red" , "purple" , "cyan" ,
"magenta" , "gold" , "yellowgreen" , "orangered" , "redorange" , "black" ,
and "white" . The abbreviations "fg" and "bg" are also allowed. On this color card th
numbers and their corresponding colors for PyNarcisse are roughly: 10-23: dark shad
light blue; 24-39: greens; 40-43: yellow to gold; 44-47: oranges; 48-57: reds; and 58-63
ples. PyGist shades will be similar but scaled from 0 to 199.

axis = "left" or "right" tells whether the left or right y axis will be assigned to this cur
(Narcisse allows two y axes with different scales, one on the left of the plot and one on the
this option is not available in PyGist.)

label = <string> represents the label of this curve. In PyGist, the label will be a single c
acter appearing periodically along the curve. In PyNarcisse, the label may be more th
character, and will appear opposite the right end of the curve.

type = <value> tells how the curve will be plotted: "line" , "solid" (same as "line"),
"step" , "dash" , "dashdot" , "dashdotdot" , "none" , "+" , "*" , "o" , "x" , and
"." are allowed. If the option is not available in a particular graphics package, a good
will be substituted. If type = "none" and marks = 1 , the plot will be a polymarker plot,
if supported by the graphics. Note that because of disparities among graphics packag
ported, you can specify plotting a curve pointwise with symbols like "+" , "*" , etc., either by
use of the type variable or by using marks and markers in conjunction with type =
"none" .

marks = 0 or 1; select unadorned lines (0) or lines with occasional markers (1). PyNarcisse
not support this option. The markers default to letters of the alphabet, but can be chan
the marker keyword.

marker = character or integer value for character used to mark this curve if marks = 1 . Special
values '\1' , '\2' , '\3' , '\4' , and '\5' stand for point, plus, asterisk, circle, and cros
which sometimes look prettier than characters on some devices. "." , "+" , "*" , "o" , and
"x" are also allowed.

width = real number; specifies the width of a curve if this is supported by the graphics. 1.0
a finely drawn curve and is the default.
10

hide = 0 or 1; if set to 1, this curve will be hidden on the plot.
11

 com-
es of a
Examples

In the following example, two curves with different characteristics are created and plotted. The
ments in the code explain what is going on. We use only the simplest (and minimal) properti
Graph2d object for this example.

from curve import *
from graph2d import *
instantiate first Curve:
c1 = Curve (y = arange (1, kmax+1, typecode = Float) ,
 color = "yellow" , width = 4)
create a Graph2d containing this curve:
g2 = Graph2d (c1)
plot this curve (Graph2d creates a default Plotter):
g2.plot ()
12

Create a second Curve:
c2 = Curve (
 y = sqrt (arange (1, kmax+1, typecode = Float)**3) ,
 color = "blue")
Add it to the Graph:
g2.add (c2)
Plot the two curves:
g2.plot ()
13

Change the two curves to have markers:
c1.set (marks = 1, marker = "A")
c2.set (marks = 1, marker = "B")
Replot with new characteristics:
g2.plot ()
14

e
de
ather

we
change yet again:
c1.set (marks = 0, width = 3.0, type = "dash")
c2.set (marks = 0, width = 4.0, type = "dashdot")
Replot:
g2.plot ()

Note that the changes we made to curve instances c1 and c2 did not need to be transmitted to th
Graph2d instance g2 . g2 has references to c1 and c2 , not copies of them; hence any changes ma
to the curves will be known to g2 . This is characteristic of Python: it passes objects by reference r
than by value, which, particularly for large objects, saves a lot of copying overhead.

At this point we used only very simple Graph2d properties so as not to distract from the fact that
are currently emphasizing curves. For thorough discussions and examples of Graph2d , Section 5.1
on page 79.
15

ents,
e
 are al-

.0, ...
3.2 Lines Objects

This class is not currently supported by PyNarcisse.

Instantiation

from lines import *
l1 = Lines (<keylist>)

Description

A Lines object contains the specifications for a set of disjoint lines. It has only keyword argum
in the form ‘‘keyword = <value> ’’. It has methods set and new, which function the same as th
Curve methods by the same name (Section on page 9). The following keywords arguments
lowed:

x0, y0, x1, y1, color, hide, width, type

These keywords are described in the next subsection.

Keyword Arguments

The following keyword arguments can be specified for a Lines object:

x0 = <sequence of floating point values>

y0 = <sequence of floating point values>

x1 = <sequence of floating point values>

y1 = <sequence of floating point values>

x0 , y0 , x1 , and y1 can actually be scalars, but if arrays must match in size and shape.

(x0[i] , y0[i]) represents the starting point of the i th line, and
(x1[i] , y1[i]) represents its endpoint.

color = one of the legal values for PyGist (currently the only package supporting Lines). See
gist.help for details.

hide = 0/1 (1 to hide this part of the graph)

width = width of the lines. 1.0 (pretty narrow) is the default. Successive values 2.0, 3
roughly represent width in pixels.

type = "solid" , "dash" , "dot" , "dashdot" , "dashdotdot" , and "none" (in which
case the lines will be plotted as characters).
16

axis and
s

Example 1

The first example draws a series of lines starting at a set of equally spaced points along the x
ending at a set of equally spaced points along the vertical line x = 49 . Subsequent command
change the plot as explained in the comments.

from lines import *
Set up the points along x axis:
x0 = arange(50, typecode = Float)
y0 = zeros(50, Float)
Set up the points along the line x = 49:
x1 = 49 * ones(50, Float)
y1 = arange(50, typecode = Float)
Instantiate the Lines object ly:
ly = Lines (x0 = x0 ,y0 = y0, x1 = x1, y1 = y1)
Instantiate a graph2d containing ly, with
(bottom) title "Just Lines":
g0 = Graph2d (ly , titles = "Just Lines")
Plot the graph:
g0.plot ()
17

18

Set the color of the lines to red; note that Lines,
like Curve, has a method set:
ly.set (color = "red")
Change the title to reflect this:
g0.change (titles = "Lines colored red")
Plot the new graph:
g0.plot ()
19

e

Now make the lines wider and change their type:
ly.set (width=4.0,type="dashdotdot")
Change the title to reflect this:
g0.change(titles = "Wide lines, dashdotdot style")
Plot the new graph:
g0.plot ()

Note once again that the Graph2d object g0 contains a reference to ly ; hence when we change som
of the characteristics of ly , g0 will know about these changes.

Example 2
20

ute the

),

r-
rns the

d
tion of

func-

code
The second example is more complicated, but is worth studying. It uses two functions to comp
endpoints of the lines; let us examine these functions first. Note that function a2 assumes that the
Numeric module’s name space has been imported.

def a2 (lb, ub, n) :
 return reshape (array ((n - 1) * spanz (lb, ub, n),
 Float), (n-1, n-1))

This function takes what spanz returns (which is a sequence of n - 1 items, as we shall see below
concatenates it to itself n - 1 times (the ‘‘* ’’ is not multiplication, but replication), turns it into an
array, then reshapes it into a two-dimensional array n - 1 by n - 1.

The spanz function is as follows:

def spanz (lb, ub, n) :
 if n < 3 : raise ValueError, \
 "3rd argument must be at least 3"
 c = 0.5 * (ub - lb) / (n - 1.0)
 b = lb + c
 a = (ub -c -b) / (n - 2.0)
 return map (lambda x, A = a, B = b:
 A * x + B, range (n - 1))

The spanz function divides the interval from lb to ub into n parts, such that the interior subinte
vals are of equal length, and the two end subintervals are each half of that length.and retu
sequence of n - 1 equally spaced points which divide it into these n parts. If you do not understan
how this function works, we recommend it as an excellent exercise to learn about the applica

the map function and the lambda operator in Python.1

Although this manual is not a Python text, it might be instructive to study the following version of
tion a2 , which does the same thing as the above a2 and spanz together:

def a2 (lb, ub, n) :
 return multiply.outer (ones (17, Float),
 arange (n - 1, typecode = Float) * (ub - lb) / (n - 1) +
 (ub - lb) / (2 * (n - 1)))

With the help of these two auxiliary functions, or just the latter one, if you prefer, the following
will draw the graph of an interesting seventeen-pointed star:

Create the endpoints:
theta = a2 (0, 2*pi, 18)
x = cos (theta)

1. See the Python Library Reference, page 17, for a description of map. The Python Reference
Manual, p. 29, describes lambda forms.
21

y = sin (theta)

from lines import *
Instantiate the lines object:
ln = Lines (x0 = x, y0 = y, x1 = transpose (x),
 y1 = transpose (y))
Instantiate a Graph2d object containing ln, with the x
and y axes in equal scale, and an informative title:
g1 = Graph2d (ln, xyequal = 1,
 titles = "Seventeen pointed star")
Plot the graph:
g1.plot ()

3.3 QuadMesh Objects

Currently only PyGist supports QuadMeshes.

Instantiation

from quadmesh import *
qm = QuadMesh (<keylist>)
22

uadri-
rmation
an be
h. The

are re-

dimen-
mesh
ill

ding

arac-
Description

The QuadMesh class provides a means of encapsulating information about two-dimensional, q
lateral meshes and plotting the information connected with these meshes in various ways. Info
can be plotted as contour lines, filled contours, or filled cells; different regions of the mesh c
plotted with different characteristics; and vector fields can be plotted on all or part of the mes
keyword arguments for QuadMesh objects are:

x, y, ireg, boundary, boundary_type, boundary_color, regions,
region, inhibit, tri, z, levels, filled, contours, edges,
ecolor, ewidth, vx, vy, type, color, hide, width, marks, marker

QuadMesh, like all other 2d classes, also has methods set and new.

Keyword Arguments

x and y , matching two-dimensional sequences of floating point values. These arguments
quired and give the coordinates of the nodes of the mesh.

ireg , the region map: optional two-dimensional sequence of integer values with the same
sions as x and y , giving positive region numbers for the cells of the mesh, zero where the
does not exist. The first row and column of ireg should be zero (although these values w
be ignored), since there are one fewer cells in each direction than there are nodes.

boundary = 0/1 ; 0: plot entire mesh; 1: plot only the boundary of the selected region(s).

boundary_type , boundary_color : these matter only if boundary = 1, and tell how the
boundary will be plotted ("solid" , "dash" , "dot" , "dashdot" , "dashdotdot" , or
"none") and what its color will be.

region = n: if n = 0, plot entire mesh; if any other number, plot the region specified (accor
to the settings in ireg).

regions = [r 1, r 2,...] : this option allows the user to specify to a QuadMesh a list of Re-

gion objects (Section 3.4 on page 34) to plot. Each object may have different plotting ch
teristics (Section on page 35). Only regions r 1, r 2, ... will be plotted.

regions = "all" (the default): plot all regions of the mesh.

inhibit = 0/1/2 ; 0: Plot all mesh lines. 1: Do not plot the (x [:, j], y [:, j]) lines; 2:
Do not plot the (x [i,:], y[i,:]) lines; 3: If boundary = 1, do not plot boundaries.
(Default: 0.) 0, 1, and 2 only apply if edges = 1.

tri , optional two-dimensional sequence of values with the same dimensions as ireg , triangula-
tion array used for contour plotting.

z = optional two-dimensional sequence of floating point values. Has the same shape as x and y . If
present, the contours of z will be plotted (default: 8 contours unless levels (see below) spec-
ifies otherwise), or a filled mesh will be plotted if filled = 1. In the latter case, z may be
one smaller than x and y in each direction, and represents a zone-centered quantity.
23

alues

ted (at

but
olor,

 be

s

ts of
ve

 in a
nt
bered
levels = either:

(1) optional one-dimensional sequence of floating point values. If present, a list of the v
of z at which you want contours; or

(2) if a single integer, represents the number of contours desired. They will be compu
equal levels) by the graphics.

filled = 0/1 : If 1, plot a filled mesh using the values of z if contours = 0, or plot filled con-
tours if contours = 1 (this option is not available at the time of writing of this manual,
will be added soon). If z is not present, the mesh zones will be filled with the background c
which allows plotting of a wire frame. (default value: 0.)

contours = 0/1 : if 1, contours will be plotted if filled = 0, and filled contours will be plotted
if filled = 1 (this option is not available at the time of writing of this manual, but will
added soon). contours normally defaults to 0, but will default to 1 if edges = 0 and
filled = 0.

The table below summarizes the effects of these two keywords (assuming z is present):

edges , if nonzero, draw a solid edge around each zone. If edges = 0 and filled = 0, draw
contour lines. (Default value: 0.)

ecolor , ewidth --the color and width of the mesh lines when filled = 1 and edges is non-
zero.

vx , vy --optional two-dimensional sequences of floating point values. Has the same shape ax and
y . If present, represents a vector field to be plotted on the mesh.

scale = floating point value. When plotting a vector field, a conversion factor from the uni
(vx, vy) to the units of (x, y) . If omitted, scale is chosen so that the longest vectors ha
a length comparable to a ‘‘typical’’ zone size.

z_scale = specifies "log" , "lin" , or "normal" for how z is to be plotted.

type , color , width , label , hide , and marks are as for curves.

marker is different, since you would not want to specify the same marker for all contours
contour plot. Instead, you can use marker to designate the letter (or number) which you wa
to mark the lowest contour curve; then the remaining contours will be lettered or num
consecutively from that point on.

Methods new and set are as in the Curve class. Remember the warning about set : very little error
checking is done, so if you are not careful, you could assign conflicting values to keywords.

TABLE 3 filled and contours

contours = 0 contours = 1

filled = 0 k and/or l lines if
edges = 1

contour lines

filled = 1 filled mesh ("bg" fill if
z = None)

filled contours
24

tion on
ompu-
Examples

The following Python code computes a mesh and some data on the mesh to be used in the QuadMesh
examples which follow. This same code will be assumed in the examples given in the next sec
Region s. Note the import statements, which bring in the necessary name spaces to do the c
tations.

from quadmesh import *
from graph2d import *
from Ranf import *
from Numeric import *
from shapetest import *
s = 1000.
kmax = 25 # The mesh is going to be 25 by 35
lmax = 35 # (24 cells by 34)
xr = multiply.outer (arange (1, kmax + 1, typecode = Float),
 ones (lmax))
yr = multiply.outer (ones (kmax), arange (1, lmax + 1,
 typecode = Float))
zt = 5. + xr + .2 * random_sample (kmax, lmax)
rt = 100. + yr + .2 * random_sample (kmax, lmax)
z = s * (rt + zt)
z = z + .02 * z * random_sample (kmax, lmax)
z [3:10, 3:12] = z [3:10, 3:12] * .9
z [5, 5] = z [5, 5] * .9
z [17:22, 15:18] = z [17:22, 15:18] * 1.2
z [16, 16] = z [16, 16] * 1.1
Define a vector field on the mesh:
ut = rt/sqrt (rt ** 2 + zt ** 2)
vt = zt/sqrt (rt ** 2 + zt ** 2)
Define the region map:
ireg = multiply.outer (ones (kmax), ones (lmax))
The first row and column should be 0:
ireg [0:1, 0:lmax]=0
ireg [0:kmax, 0:1]=0
ireg [1:15, 7:12]=2
ireg [1:15, 12:lmax]=3
Create a void in the mesh:
ireg [3:7, 3:7]=0
25

:

3.3.1 Plots of Mesh Lines

The following code plots the mesh lines in three different ways, as described in the comments

Instantiate a QuadMesh object qm with the mesh defined
by zt, rt, and ireg; its lines to be of width 1,
and blue in color:
qm = QuadMesh (x = zt, y = rt, ireg = ireg, width = 1.,
 color = "blue")
Create a Graph2d object gr with a reference to qm:
gr = Graph2d (qm)
Plot the graph. Note the void area in the graph.
gr.plot ()
26

 is
Change to a red-colored mesh:
qm.set (color = "red", width = 1.)
Change the plot so that the x and y axes have the same

scale (the mesh will appear narrower) 1:
gr.change_plot(xyequal = 1)

1. Note: the Graph method change_plot changes the appearance of the existing plot; there
no need to issue another plot call. See “Description” on page 79.
27

mputed
Change the color of the mesh to yellow:
qm.set (color = "yellow")
Let Gist calculate the x and y scales depending
on the data:
gr.change_plot(xyequal = 0)

3.3.2 Contour Plots

In this example, we create a uniform 25 by 35 mesh, and do a contour plot of the values of z co
above. Then we go back to the (xr, yr) mesh used above. We use the same Graph2d object as the
preceding example, deleting object 1 and then adding the new QuadMesh object each time.

sh = shape (z)
sh1 = sh[0]
28

sh2 = sh[1]
x = multiply.outer (arange (sh1, typecode = Float),
 ones (sh2, Float))
y = multiply.outer (ones (sh1, Float),
 arange (sh2, typecode = Float))
qm2 will have twenty yellow contour levels
with default labels (capital letters):
qm2 = QuadMesh (z = z, y = y, x = x, color = "yellow",
 width = 3., levels = 20, marks = 1)
Delete object 1 (the only one) from gr:
gr.delete (1)
Add the new object to gr, and plot it:
gr.add (qm2)
gr.plot ()
29

Now change back to (xr, yr), mesh plotted with dashes
in the foreground color:
qm2 = QuadMesh (z = z - z[kmax / 2, lmax / 2] ,
 y = yr, x = xr, type = "dash",
 color = "fg", levels = 20, width = 2., marks = 1)
gr.delete (1)
gr.add (qm2)
gr.plot ()
30

Now plot the same thing as a filled contour plot:
qm2.set(filled=1)
gr.plot ()
31

Next, plot the default number of contours (8) in
purple with width 3; start marking with letter "O":
qm2 = QuadMesh (z = z, y = yr, x = xr , color = "purple" ,
 marks = 1, marker = "O", width = 3.)
gr.delete (1)
gr.add (qm2)
gr.plot ()
32

Finally, plot four specified contour levels (three
contours) in cyan, width 3:
qm2 = QuadMesh (z = z, y = yr, x = xr , color = "cyan" ,
 marks = 1, width = 3., levels = [0., max (ravel (z)) / 4.,
 3. * max (ravel (z)) / 4., 7. * max (ravel (z)) / 8.])
gr.delete (1)
gr.add (qm2)
gr.plot ()
33

. The

h the

y

-

3.4 Region Objects

Currently only PyGist supports Region s.

Instantiation

from region import *
rg = Region (<keylist>)

Description

Region objects are used to specify graphing modes for some or all of the regions in a QuadMesh
plot. As we shall show in the examples later in this section, subsets of the regions in a QuadMesh can
be selected for plotting, and different regions can be plotted with different keyword options
QuadMesh keyword regions is used to specify a list of Region objects to a QuadMesh. If such
a list of Region objects is given, then only those regions on the list will be plotted, even thoug
QuadMesh may contain others.

The keywords arguments recognized are:

number, boundary, boundary_type, boundary_color, inhibit, lev-
els, filled, contours, vectors, z_scale, edges, type, color,
width, label, hide, marks, marker

Note that there are no keywords for specifying the mesh itself. Region s are never plotted unless the
belong to an already-defined QuadMesh, which has all the necessary information.

Region , like other 2d classes, also has the methods set and new.

Keyword Arguments

The keyword arguments for Region object instantiation are as follows:

number = <positive integer> : the number of the Region being specified. must corre
spond to one or more entries in the ireg array of the QuadMesh to which this Region be-
longs.

boundary = 0/1 --0: plot portion of mesh for the selected region; 1: plot only the boundary of
the selected region.

boundary_type , boundary_color : these matter only if boundary = 1, and tell how the
boundary will be plotted and what its color will be.

inhibit = 0/1/2 --0: plot both sets of mesh lines; 1: do not plot the (x [:, j], y [, j])
lines; 2: do not plot the (x [i,:], y[i,:]) lines; 3: if boundary = 1, do not plot the
boundary (default 0). Only applies if edges = 1.

levels = either:
34

alues

mpute

al,
und

ill

st two

-

key-

rs for

ng

 of the
lf.
(1) optional one-dimensional sequence of floating point values. If present, a list of the v
of z at which you want contours; or

(2) a single integer specifying the number of contours, in which case the graphics will co
the contour levels.

 filled = 0/1 --If 1, plot a filled mesh using the values of z if contours = 0, or plot filled
contours if contours = 1 (this option is not available at the time of writing of this manu
but will be added soon). If z is not present, the mesh zones will be filled with the backgro
color, which allows plotting of a wire frame. (default value: 0.)

contours = 0/1 --if 1, contours will be plotted if filled = 0, and filled contours will be plot-
ted if filled = 1 (this option is not available at the time of writing of this manual, but w
be added soon). contours normally defaults to 0, but will default to 1 if edges = 0,
filled = 0, and vectors = 0 on the theory that you must want to plot something.

The user should Table 3, “filled and contours,” on page 24 to understand how these la
parameters relate.

z_scale = "lin" (default), "log" , or "normal" specifies how the contours are to be com
puted.

vectors = 0/1 --This keyword is only meaningful if the QuadMesh containing this Region
has the vectors vx and vy defined. If 0, the vectors defined on this Region will not be plotted;
if 1, they will be. (default: 1)

edges , if nonzero when filled = 1, draw a solid edge around each zone, as controlled by
word inhibit . ewidth and ecolor may also be used.

type , color , width , label , hide , marks , marker as for QuadMesh. Remember that a
marker specified for a contour plot represents the first of a consecutive series of marke
the contours.

Methods new and set are as in the Curve and QuadMesh classes. Remember to beware of setti
conflicting values for keywords with set .

Examples

The following examples illustrate (on the same mesh as before) how you can plot the regions
mesh in differing styles. Study the code and comments carefully, and run the examples yourse

from region import *
Region 1 will have a solid, foreground-colored boundary:
r1 = Region (number = 1, width = 1., color = "fg",
 boundary = 1)
Region 2 will be plotted with no boundary and with its
mesh lines colored green and dashed in appearance:
r2 = Region (number = 2, width = 1., color = "green",
 type = "dash")
Region 3 will be plotted in the same style as Region 1:
r3 = Region (number = 3, width = 1., color = "fg",
35

 boundary = 1)
We now send the region list to the existing QuadMesh qm:
qm.set (regions = [r1, r2, r3])
Change the graph to print Region 2 in red on top
of Region 2, then plot the graph:
gr.change(text = "Region 2", text_pos = [0.25,0.54],
 text_size = 18, text_color = "red")
gr.plot ()
36

The next plot will be a vector plot, so send vectors
to the QuadMesh qm:
qm.set (vx = vt, vy = ut, scale = 1.)
Plot r1’s vectors in red:
r1.set (color = "red")
Change the color of r2’s mesh to foreground, and
give it a solid boundary. Its vectors will also be
foreground.
r2.set (color = "fg", type = "solid", boundary = 1)
Suppress the plotting of vectors over r3
r3.set (vectors = 0)
Erase the text and plot:
gr.change(text = "")
gr.plot ()
37

Change qm back to the rectangular mesh, and change
the vector field:
qm.set(z = z, x = xr, y = yr, vx = xr + yr/5.,
 vy = yr + xr/10., scale = .05)
change r1 to have orange vectors:
r1.set (color = "orange", width = 3.)
r2 will have red contours, no vectors:
r2.set (color = "red", width = 3., vectors = 0,
 contours = 1, type = "solid", levels = 20)
r3 will have cyan colored vectors:
r3.set (color = "cyan", width = 3., vectors = 1)
gr.plot ()
38

vertices

e

ette;
e

3.5 Polymap Objects

Currently Polymap objects are only available in PyGist.

Instantiation

from polymap import *
pm = Polymap (<keylist>)

Description

A Polymap is a set of arbitrary color-filled polygons. The allowed keywords are

x, y, n, z, hide, label

In addition, like all 2d geometric classes, Polymap s have the methods set and new.

Keyword Arguments

The following keyword arguments can be specified for Polymap s:

x = <sequence of floating point values>

y = <sequence of floating point values>

These are the coordinates of the vertices of the polygons. (The way this data is set up,
of adjacent polygons will be repeated.)

n = <sequence of integer values>

Entry n [i] in this array tells how many vertices polygon i has. Thus the first n [0] entries
in x and y are the vertices of the first polygon, the next n [1] entries, of the second, etc. Th
sum of all the entries in n is the length of vectors x and y .

z = <sequence of numerical or unsigned character values> (this vector is
the same length as n) tells how to color the polygons. Numbers are interpolated into a pal
the integer values of unsigned characters (Python typecode 'b')are used as indices into th
palette.

hide = 0/1 --(1 to hide this part of the graph)

label = <string> --label for this part of the graph.

Methods new and set have the same function as in the other 2d classes.

Example

The following simple polymap example shows something like a stained glass window.

from polymap import *
39

n = array ([4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 3])
x = array ([0., 1., 1., 0., 0., 1.5, 1., 1.5, 3., 0., 1.5,
 3., 2., 1.5, 2., 1., 2., 3., 3., 2., 1., 2., 2., 1., 2.,
 3., 1.5, 1., 2., 1.5, 1., 1.5, 0., 0., 3., 1.5])
y = [1., 2., 7., 8., 1., 1., 2., 0., 1., 1., 1., 1., 2., 1.,
 2., 2., 2., 1., 8., 7., 2., 2., 7., 7., 7., 8., 8., 7.,
 7., 8., 7., 8., 8., 8., 8., 9.])
z = array ([2.5, 1.2, 1.5, 1.2, .5, 2.5, 2., 1.2, .5, 1.2,
 1.5])
p1 = Polymap (x = x, y = y, z = z, n = n)
g0 = Graph2d (p1, titles = "Stained glass window")
g0.plot ()
40

speci-

.

d

rray.

low).

array.
l-
3.6 CellArray Objects

Currently, CellArray objects are only available in PyGist.

Instantiation

from cellarray import *
ca = CellArray (<keylist>)

Description

A CellArray is a regular two dimensional rectangular mesh whose cells are color filled as
fied by the keyword argument z . The keywords accepted by CellArray are:

z, x0, y0, x1, y1, hide, label

In addition, CellArray objects have the methods new and set , like all other 2d geometric objects

Keyword Arguments

The following keyword arguments can be specified for CellArray s:

z = <2d sequence of numeric or unsigned character values>

specifies the coloring to be given to the CellArray . If numeric, the values are interpolate
onto a palette. If unsigned character, the values are used to index into the palette. The argu-
ment z is required. If the dimensions of z are n1 and n2, then the cell array will be n1 by n2

cells in size.

x0 , y0 -- floating point scalars; if present, the coordinates of the lower left corner of the cell a
The default is (0., 0.) .

These coordinates are optional, but if they are present then x1, y1 must be also (see be

x1 , y1 -- floating point scalars; if present, the coordinates of the upper right corner of the cell
If these optional keywords are missing, then x0 , y0 must be also missing, and their default va
ues (1.0, 1.0) will be used.

hide = 0/1 (1 to hide this part of the graph)

label = <string> label for this part of the graph.

Methods new and set are as in the other 2d classes.

Example

The following simple example creates a 10 by 19 CellArray object and plots it.

from cellarray import *
41

nx= 10
ny= 19
’b’ (byte) is the typecode used by Python for
unsigned character:
ndx = reshape (arange (nx * ny, typecode = ’b’), (nx, ny))
Instantiate a CellArray object:
cla = CellArray (z = ndx)
Create a Graph2d object containing it:
gca = Graph2d (cla , titles = "Cell Array",
 axis_scales = "linlin") # (axis scales is redundant)
Plot it:
gca.plot ()
42

s
Another (and more interesting) example of a CellArray is given below. First we show the function
mag and a3 , which are used to calculate the data plotted.

def mag (*args) :
 r = 0
 for i in range (len (args)) :
 r = r + args[i] * args[i]
 return sqrt (r)
def a3 (lb, ub, n) :
 return reshape (array(n*span(lb,ub,n), Float), (n,n))
The following computation produces the plot
x=a3(-6,6,200)
y=transpose (x)
r=mag(y,x)
theta=arctan2(y,x)
funky=cos(r)**2*cos(3*theta)
from cellarray import *
c1 = CellArray(z=funky)
g1 = Graph2d (c1, color_card = "earth.gp",
 titles ="Cell array, three cycles in theta,r",
 axis_limits = "defaults")
g1.plot()
43

A final example of the CellArray is the sombrero function.

nz = 20
x = arange (-nz, nz+1, typecode = Float)
y = x
z = zeros ((2*nz + 2, 2*nz + 2), Float)
for i in range (len (x)) :
 for j in range (len (y)) :
 r = sqrt (x [i] * x[i] + y [j] * y [j]) + 1.e-12
 z [i, j] = sin (r) / r
cell array plot
cla = CellArray (z = z)
gca = Graph2d (cla , titles = "Sombrero Function",
 color_card = "rainbow.gp", axis_limits="defaults")
gca.plot ()
44

45

46

UCRL-MA-128569, Manual 4

y simi-
on the

y geo-
h
f
iny and

 func-

ods
CHAPTER 4:Three-Dimensional
Geometric Objects

Three dimensional objects are instantiated similarly to two dimensional objects, and have man
lar sounding keywords and methods. However, concatenating or linking multiple 3d objects
same graph--sometimes with different 3d options, color cards, etc.--is more complicated.

4.1 Surface Objects

Instantiation

from surface import *
sf = Surface (<keylist>)

Description

A Surface represents a two-dimensional object in three-dimensional space. It may be purel
metric, or there may be a function defined on the Surface which needs representation too, in whic
case we have essentially a four dimensional object. The Surface itself is projected on the plane o
the graph from some angle; its third dimension may be represented by shading (as if it is sh
there is a light source from some direction), by superimposing a wire mesh on the Surface , or by
coloring it according to height (when there isn’t a function on it which needs representation). A
tion defined on the Surface may have its values denoted by coloring the Surface or by drawing
contours on the Surface .

The following keyword arguments may be used in the instantiation of a Surface :

z, x, y, c, color_card, opt_3d, mesh_type, mask, z_c_switch,
z_contours_scale, c_contours_scale, z_contours_array,
c_contours_array, number_of_z_contours, number_of_c_contours

In addition, Surface s have two methods new (for clearing out a used Surface to an empty shell
and redefining its geometry) and set (for changing the value of arbitrary keywords). These meth
work exactly as they do for two dimensional objects.

Keyword Arguments

The following keyword arguments can be specified for a Surface object. Note that not all keywords
11/23/98 47

 cause

isse
ption
 a Gist

gn the

 ten, in
 other
are available in both PyGist and PyNarcisse. Generally, using an inapproriate keyword will not
an error; it will be ignored or else the graphics engine will make a clever guess.

z = <value> (required). z is a two dimensional array. If x and y are not specified, then z will be
graphed on equally spaced mesh points.

x = <value> , y = <value> (if one is present, then so must the other be.) If c (below) is not
present, this represents a 3d plot. Either x and y have dimensions matching z , or else they are
one-dimensional and x ’s length matches the first dimension of z , and y ’s length matches the
second.

c = <value> If present, then the Surface will be colored according to the values of c . (This is a
so-called four-dimensional graph.) c must have the same dimensions as z .

color_card = <value>

specifies which color card (another name for palette) you wish to use, e. g., "rainbowhls"
(the default), "random" , etc. Although a characteristic of a Graph2d , it can be a Surface
characteristic since 'link' ed surfaces can have different color cards (valid for Narc
only). Following is a list of color cards available in Narcisse and Gist, with a brief descri
of each. The graphics interface is intelligent enough to make a good guess if you specify
color card to Narcisse or vice versa; and if there is no near equivalent, it will simply assi
default color card.

First we list the Narcisse Color Cards. Narcisse color cards contain 64 colors. The first
order, are always bg, fg, blue, green, yellow, orange, red, purple, black, and white. The
54 are described roughly in the table, starting with the lowest index.

TABLE 4 Narcisse Color cards

absolute
from black to light grey in the middle of the palette, then back down to dark grey at the end.

binary repeatedly runs through the colors light blue, blue, cyan, green, purple, red, yellow, and orange.

bluegreen continuously shading from light green to deep blue.

default grey scale, from black at the low end to white at the top

negative first half is black; second is grey scale from white to dark grey

positive first half shades from dark grey to white; second is black

rainbow shades through the rainbow colors from purple at the low end through red at the high.

rainbowhls low end is blue, shades through rainbow colors to red, then purple.

random different every time you use it.

redblue shades from blue at the low end to red at the high end.

redgreen shades from light green at the low end to red at the high end.

shifted shades from medium grey at the low end to white in the middle, then from black in the middle to
medium grey at the high end.
48

 no re-

sur-
e
ed
ith a

ption,
 in any
ts for

ntly

 is

 the

-

, if
Next we describe the Gist color cards. Gist color cards contain 200 colors. There are
served spots at the start for special colors.

opt_3d = <value> where <value> is a string or a sequence of strings giving the 3d or 4d
face characteristics. A surface is colored by height in z if a 3d option is specified, and by th
value of the function c if a 4d option is specified. With a wire grid option, the grid is color
(Narcisse only); with a flat option, the quadrilaterals set off by grid points are colored; w
smooth option, the surface itself is colored by height (filled contours); and with an iso o
the contour lines are colored (Narcisse only). flat and iso options may be used together
combination. wire grid options are independent of the other options. Legal argumen
opt_3d are:

'wm' --monochrome wire grid (the default); 'w3' and 'w4' --3d and 4d coloring of wire grid.
'w3' and 'w4' are not currently available in Gist.

'f3' and 'f4' --flat 3d and 4d coloring options.

'i3' and 'i4' --3d and 4d isoline (contour line) options. Colored isolines are not curre
available in Gist.

's3' and 's4' --3d and 4d smooth coloring (filled contour) options.

mesh_type = <string> in one of the wire modes, tells what form the wire grid takes: "x" : x
lines only; "y" : y lines only; "xy" : both x lines and y lines (the default). Only the latter
available in Gist.

mask = <string> : specifies whether hidden lines will be eliminated, and if so, how complex
algorithm that will be used to determine what is hidden. "none" : transparent wire grid (the
default); "min" : simple masking; "max" : better masking; "sort" : slowest but most sophis
ticated. Only "none" and "sort" are available in Gist.

z_c_switch = 0 or 1 : set to 1 means switch z and c in the plot.

z_contours_scale , c_contours_scale = "lin " or "log" .

z_contours_array , c_contours_array = actual array of numbers to use for contours
you don't want them computed automatically.

TABLE 5 Gist Color Cards

earth.gp black, dark to light blues and then greens, all brown-tinged, tan, beige, some grey, pink, ivory,
and white at the top.

stern.gp black, grey, red, magenta, purple, lightening into blue, bluegreen, green, ivory, light grey, white.

rainbow.gp red through purple, in the normal rainbow order.

heat.gp very dark red, lightens up through shades of red to orange, yellow, ivory, and white.

gray.gp grey scale running from black at the low end to white at the high.

yarg.gp same, but white at the bottom to black at the top.
49

ch will

e, with
ailable
number_of_z_contours , number_of_c_contours = <integer> specifies how many
contours to use; they will be computed automatically depending on the data.

Examples

The following set of computations defines a surface and functional values on the surface, whi
be used in the subsequent plots. Note that this is very similar to the QuadMesh example. (See
“Examples” on page 25..) However, now we shall see the surface in three-dimensional spac
contours and contour lines. We will do many plots of this surface, in order to show the many av
options.

s = 1000.
kmax = 25
lmax = 35
xr = multiply.outer (arange (1, kmax + 1, typecode = Float),
 ones (lmax, Float))
yr = multiply.outer (ones (kmax, Float), arange (1, lmax + 1,
 typecode = Float))
zt = 5. + xr + .2 * random_sample (kmax, lmax)
rt = 100. + yr + .2 * random_sample (kmax, lmax)
z = s * (rt + zt)
z = z + .02 * z * random_sample (kmax, lmax)
ut = rt / sqrt (rt ** 2 + zt ** 2)
vt = zt / sqrt (rt ** 2 + zt ** 2)
ireg = multiply.outer (ones (kmax), ones (lmax))
ireg [0:1, 0:lmax] = 0
ireg [0:kmax, 0:1] = 0
ireg [1:15, 7:12] = 2
ireg [1:15, 12:lmax] = 3
ireg [3:7, 3:7] = 0

freg = ireg.astype (Float) + .2 * (1. -
 random_sample (kmax, lmax))
z [3:10, 3:12] = z [3:10, 3:12] * .9
z [5, 5] = z [5, 5] * .9
z [17:22, 15:18] = z [17:22, 15:18] * 1.2
z [16, 16] = z [16, 16] * 1.1
s1 = Surface (z = z, mask = "max", opt_3d = ["wm", "i3"])
g1 = Graph3d (s1 , titles = "Surface with contour lines",
 xyequal = 1.,
 theta = 45., phi = 10., roll = 0.)
g1.plot ()

The plot appears on the next page.
50

51

nd
In the following plot, we change the 3d options to "wm" (wire mode, i. e., mesh lines are plotted) a
"f3" (flat 3d, meaning cells are colored according to their average height).

s1.set (opt_3d = ["wm", "f3"])
g1.change (titles = "Flat mode")
g1.plot ()
52

rs
Now let us leave "wm" set, and switch to "s3" (smooth 3d, i. e., the surface is drawn with contou
filled with color according to height.

s1.set (opt_3d = ["wm", "s3"])
g1.change (titles = "Smooth mode")
g1.plot ()
53

gnal to
y parts

um
ing may
otted.
The next plot illustrates how we can use the axis_limits keyword to trim off a portion of the fig-
ure, when plotting contours. If both axis limits are given as 0.0, then PyGist takes this as a si
compute limits based on the data. if either or both limits are nonzero, then PyGist will not displa
of the graph whose z values fall outside the limits. In this particular example, we have set the minim
z value to 0.0, so the part of the surface below the xy plane will be suppressed. The same th
be done with 4d plots, by specifying a fourth set of limits, which apply to the variable being pl
The scale is exaggerated in the z direction; a larger y_factor might ameliorate this problem.

s1.new (x = xr, y = yr, z = z - z [kmax/2, lmax/2],
 mask = "max", opt_3d = ["wm" , "i3"])
g1.change (titles = "Part of surface above xy plane",
 phi = 30., y_factor = 2.0,
 axis_limits = [[0., 0.],[0., 0.], [0., 100000.]])
54

be
If we try to do the same plot in flat mode, the z axis limits do not work as advertised. Plots can
trimmed as above only in one of the contour plotting modes: "i3" , "i4" , "s3" , or "s4" . We are
going to use the same Surface and Graph3d objects, changing only the Graph3d ’s title, but there-
fore leaving the z axis limits unchanged. Thus we have the following:

s1.set (opt_3d = ["wm", "f3"])
g1.change (titles = "Flat mode")
g1.plot ()
55

nd min-
Next we go to smooth (filled contour) mode. The contours are colored based on the maximum a
imum z values taken over the whole surface, not on the ones plotted.

s1.set (opt_3d = ["wm", "s3"])
g1.change (titles = "Smooth mode")
g1.plot ()
56

urs are
ase the
t back
Below is a plot of the same surface, but this time it is a so-called 4d plot, meaning that conto
drawn and filled according to the value of a variable on the mesh, rather than its height. In this c
variable is freg , defined a few pages previously (see page 50). Note that all axis limits are se
to defaults.

s1.set (z = z, c = freg, opt_3d = ["wm", "s4"])
g1.change (titles = "Surface colored by mesh values",
 phi = 20., xyequal = 1,
 axis_limits = [[0., 0.], [0., 0.], [0., 0.], [0., 0.]])
g1.plot ()
57

Here is an illustration of a plot of a single region of the previous plot, namely region 2.

xr1 = xr [0:16, 6:13]
yr1 = yr [0:16, 6:13]
z1 = z [0:16, 6:13]
zs1 = freg [0:16, 6:13]
s1.set (x = xr1, y = yr1, z = z1, c = zs1)
g1.change (titles = "Region 2 colored by mesh values",
 phi = 10.)
g1.plot ()
58

Here is the same geometric object plotted with height contours:

s1.new (x = xr1, y = yr1, z = z1, opt_3d = ["wm", "s3"],
 mask = "max")
g1.change (titles = "Region 2 with mesh and contours",
 phi = 10.)
g1.plot ()
59

f
d). In
 a third
ller
-

Our final example is a plot of regions 2 and 3, with height contours.

zs1 = z [0:16, 6:lmax - 1]
s1.new (z = zs1, opt_3d = ["wm", "s3"], mask = "max")
g1.change (titles = "Regions 2 and 3, mesh and contours",
 theta = 70., phi = 10., roll = 0.)
g1.plot ()

4.2 Mesh3d Objects

Surface and Mesh3d objects differ in that a Surface is really the two-dimensional boundary o
a three-dimensional object (if it is closed) or the topological equivalent of a plane (if not close
other words, it is a two dimensional object which has been twisted, bent, or deformed through
dimension. In contrast, a Mesh3d consists of a partition of a three-dimensional object into sma
three-dimensional objects called cells. With a Surface , only what is happening on the two dimen
60

 you
 what is

e speci-

 spec-

ur-
nd prisms

tu-
d con-

l. The
 into
ase of

ls,
rder, as

 oppo-

ite face,

ist dis-

sure,
n-
sions of the Surface itself is of interest to us, whereas with a Mesh3d, what is happening inside the

three dimensional object is of interest.1 This leads to a problem in visualization, because how can
see the inside of an object? The answer, usually, is that cells have to be stripped away to view
going on underneath them. Alternatively, we can take sections through the Mesh3d, the most com-
mon of these being plane slices and isosurface slices. (Isosurfaces are slices upon which som
fied function is equal to some constant.)

At any rate, a Mesh3d is a generalization of a Surface , and in fact a Mesh3d is a derived class of
a Surface .

4.2.1 Structured vs. Nonstructured Meshes

There are two kinds of Mesh3d objects:

• A structured Mesh3d consists of rectangular hexahedra with sides parallel to the axes, and is
ified by three one dimensional vectors of coordinates, x , y, and z . Associated with each Mesh3d
point is a component of a three-dimensional array of data called c .

• A nonstructured Mesh3d in principle could consist of cells of arbitrary shape, but we limit o
selves to the four standard shapes: hexahedra, tetrahedra, pyramids (with square bases) a
(with triangular bases). A nonstructured Mesh3d is specified by one-dimensional arrays of x , y,

and z coordinates, the ith component of x , y, and z being the coordinates of the ith node in the
mesh. There is an associated one-dimensional array c of data, one value for each node point. Na
rally the points alone are not sufficient to specify the connectivity of the mesh. Hence we nee
figuration information which, for each cell in the mesh, tells which nodes belong to the cel
Mesh3d class accepts two formats, the Narcisse format peculiar to itself which we will not go
here (See “The Narcisse Format and Keywords” on page 68.), and the AVS format. In the c
the AVS format, for each shape of cell in the Mesh3d, the user must supply a count of the cel
and a one-dimensional array of integer node numbers for each of the cells, in a standard o
follows:

tetrahedra--apex, then base nodes, in inward normal order.

pyramids--apex, then base nodes, in inward normal order.

prisms--one triangular face, in outwards normal order, then the corresponding nodes of the
site face, in inward normal order.

hexahedra--one face, in outwards normal order, then the corresponding nodes of the oppos
in inward normal order.

All Mesh3d objects are instantiated as described below; the keyword parameters are how PyG
tingushes what kind of Mesh3d it is.

Instantiation

1. Normally there is a function defined on the mesh--e. g., a physical quantity such as pres
density, or velocity--that we want to visualize. These function values really add a fourth dime
sion to the plot.
61

 cause

use,
a
t
 see
ake a
o near

sur-
e
d;
rface
d iso

he oth-

 not
from mesh3d import *
m3 = Mesh3d (<keylist>)

Description

The list of keywords recognized by all types of Mesh3d objects are as follows:

color_card, opt_3d, mesh_type, mask, z_c_switch,
z_contours_scale, c_contours_scale, z_contours_array,
c_contours_array, number_of_z_contours, number_of_c_contours

Since a Mesh3d is a Surface , it also accepts all the keywords that define a Surface object, ignor-
ing any that might not be sensible (Section on page 47).

In addition, the Mesh3d class has two methods set (inherited from Surface) and new (not inher-
ited, but having exactly the same functionality).

Keyword Arguments

The following keyword arguments can be specified for a Mesh3d object. Note that not all keywords
are available in both PyGist and PyNarcisse. Generally, using an inapproriate keyword will not
an error; it will be ignored or else the graphics engine will make a clever guess.

color_card = <value> specifies which color card (another name for palette) you wish to
e. g., "rainbowhls" (the default), "random" , etc. Although a characteristic of
Graph2d , it can be a Surface characteristic since 'link' ed surfaces can have differen
color cards (valid for Narcisse only). For a full description of available color cards,
“color_card = <value>” on page 48. The graphics interface is intelligent enough to m
good guess if you specify a Gist color card to Narcisse or vice versa; and if there is n
equivalent, it will simply assign the default color card.

opt_3d = <value> where <value> is a string or a sequence of strings giving the 3d or 4d
face characteristics. A surface is colored by height in z if a 3d option is specified, and by th
value of the function c if a 4d option is specified. With a wire grid option, the grid is colore
with a flat option, the cells set off by grid lines are colored; with a smooth option, the su
itself is colored by height; and with an iso option, the contour lines are colored. Flat an
options may be used together in any combination. Wire grid options are independent of t
er options. Legal arguments for opt_3d are:

• 'wm' --monochrome wire grid (the default); 'w3' and 'w4' --3d and 4d coloring of wire
grid. The latter two are not currently available in Gist.

• 'f3' and 'f4' --flat 3d and 4d coloring options.

• 'i3' and 'i4' --3d and 4d isoline (contour line) options. Colored isolines are currently
available in Gist.

• 's3' and 's4' --3d and 4d smooth coloring options (filled contours).
62

p-

 the

, if

ecified

 (or

sh
mesh_type = <string> in one of the wire modes, tells what form the wire grid takes: "x" : x
lines only; "y" : y lines only; "xy" : both x lines and y lines (the default). Gist currently su
ports only the default.

mask = <string> : specifies whether hidden lines will be eliminated, and if so, how complex
algorithm that will be used to determine what is hidden. Allowed values are "none" : see-
through wire mesh (the default); "min" : simple masking; "max" : better masking; "sort" :
slowest but most sophisticated. Gist currently supports only "none" and "sort" ; spefifica-
tions of "min" and "max" are equivalent to "sort" .

z_c_switch = 0 or 1: set to 1 means switch z and c in the plot.

z_contours_scale , c_contours_scale = "lin" or "log" .

z_contours_array , c_contours_array = actual array of numbers to use for contours
you don't want them computed automatically.

number_of_z_contours , number_of_c_contours = <integer> specifies how many
contours to use; they will be computed automatically based on the data.

4.2.2 Regular (or Structured) Meshes

Instantiation

from mesh3d import *
m3 = Mesh3d (<keylist>)

Where <keylist> contains keywords peculiar to regular meshes.

Description

A structured Mesh3d consists of rectangular hexahedra with sides parallel to the axes, and is sp
by three arrays of coordinates, x , y , and z . Associated with each Mesh3d point is a component of a
three-dimensional array of data called c . Thus the keywords uniquely associated with structured
regular) Mesh3ds are:

x, y, z, c

Keyword Arguments

x = <values> , y = <values> , z = <values> To establish notation, assume that the me
is k by l by m (i. e., there are k nodes in the x direction, l nodes in the y direction, and m nodes
in the z direction.) Then there are three options for these keywords: (1) x , y , and z equally
spaced: x is a vector consisting of the three integers k - 1, l - 1, m - 1 (the cell dimensions),
y is a vector of three Float s giving dx , dy , dz (the increments in each direction), and z is
an array of three Float s giving x0 , y0 , z0 (the starting values of x , y , and z); (2) x , y , and
z not equally spaced: x , y, and z are one dimensional arrays of type Float specifying a k by
l by m mesh (k = len (x) , l = len (y) , m = len (z) ; or (3) x , y , and z are each k by l
by m, specifying a completely general hexahedral mesh.
63

s-

ular
ing the
 sslice,
se the
 to the
f the
ht. The
c = <values> , a three-dimensional array dimensioned k by l by m, whose [i, j, k] element

gives the associated data value at the (i , j , k) th point of the mesh. c may also be one less in
each direction, giving a cell-centered quantity. c may also be a list of such arrays, when iso
urfaces of more than one function are to be plotted.

Examples

A pdb file named berts.py contains temperature data for filamentary flow in a plasma on a reg
mesh. In this example we illustrate how to plot an isosurface slice trhrough the mesh, illustrat
filaments at a constant temperature. In order to get the isosurface slice, we use the function
which is described later in the chapter (see 4.4 “Slice objects” on page 73). In this plot, we u
rainbow palette to shade the surface as if a light source were shining from behind and slightly
right of the viewer. Polygons facing or nearly facing the viewer will be at the blue-violet end o
spectrum, and closer to the red end the closer they get to facing perpendicular to the line of sig
code to produce this plot is as follows:

f = PR ('./berts_plot')
x = -80.0 + arange (64, typecode = Float) * 2.5
y = -80.0 + arange (64, typecode = Float) * 2.5
z = arange (50, typecode = Float) * 10.
c = f.c
m3 = Mesh3d (x = x, y = y, z = z, c = transpose (c))
s3 = sslice (m3, 6.5, opt_3d = ["none"])
g3 = Graph3d (s3, color_card = "rainbow.gp", gnomon = 1,
 xyequal = 1, diffuse = .2, specular = 1)
g3.plot ()
64

tions.
by the
r any

times.
Note the use of opt_3d = "none" . Isosurfaces are shaded, so we use none of the usual 3d op
The plot looks a bit chaotic; it is possible that the PyGist sorting algorithm was a bit puzzled
complexity of this plot. At any rate, if the user is interested in getting a closer look at this plot (o
PyGraph plot), place the cursor within the window and click the left mouse button a couple of
Doing so causes the graph to zoom in, and you get something like the following:
65

, click

ves
 (with tri-

t-
d con-
You can zoom back out by clicking the third mouse button. To shift the plot around the window
and drag with the middle button.

4.2.3 Irregular (Unstructured) Meshes

Instantiation

from mesh3d import *
m3 = Mesh3d (<keylist>)

Where <keylist> contains keywords peculiar to irregular meshes.

Description

A nonstructured Mesh3d in principle could consist of cells of arbitrary shape, but we limit oursel
to the four standard shapes: hexahedra, tetrahedra, pyramids (with square bases) and prisms
angular bases). A nonstructured Mesh3d is specified by one-dimensional arrays of x , y , and z coor-

dinates of the same length, the i th component of x , y , and z being the coordinates of the i th node in
the mesh. There is an associated one-dimensional array c of data, one value for each node point. Na
urally the points alone are not sufficient to specify the connectivity of the mesh. Hence we nee
66

. The
 into

e of the
d a
llows:

 of the

pposite

o-

e
nction

e for-
figuration information which, for each cell in the mesh, tells which nodes belong to the cell
Mesh3d class accepts two formats, the Narcisse format peculiar to itself which we will not go
here (See “The Narcisse Format and Keywords” on page 68.), and the AVS format. In the cas
AVS format, for each shape of cell in the Mesh3d, the user must supply a count of the cells, an
one-dimensional array of integer node numbers for each of the cells, in a standard order, as fo

• tetrahedra--apex, then base nodes, in inward normal order

• pyramids--apex, then base nodes, in inward normal order

• prisms--one triangular face, in outwards normal order, then the corresponding nodes
opposite face, in inward normal order

• hexahedra--one face, in outwards normal order, then the corresponding nodes of the o
face, in inward normal order

The allowed keywords for irregular meshes are:

x, y, z, c

The following keywords apply if the mesh is in AVS format:

avs = 1, hex, tet, prism, pyr

The following keywords apply if the mesh is given in Narcisse internal format:

avs = 0, no_cells, cell_descr

Keyword Arguments

The following explains the keyword arguments in detail:

Description of example(s).

x = <values> , y = <values> , z = <values> : three vectors of equal lengths giving the c
ordinates of the nodes of a nonstructured Mesh3d.

c = <values> : a vector of the same size as x , y , and z giving a data value at each of the nod
points. c could also be an array of such vectors, when isosurfaces of more than one fu
are to be plotted. c is also allowed to be one smaller than x , y , and z in each dimension, for
cell-centered values.

avs = 0 or 1: if 1, the input data represents a nonstructured Mesh3d in a sort of AVS format,
which will be explained in more detail below. The data will be translated into the Narciss
mat prior to being sent to Narcisse.

cell_descr = <integer array> : if present, this keyword signifies a nonstructured Mesh3d
submitted in the Narcisse format, also explained in more detail below. avs must be zero (or
absent) if this keyword is present.

The AVS Format and Keywords
67

o spec-
 are:

e:

rd
al di-

hen

n-
ite side

hen

 listed

 of

port for
e chap-
If avs = 1, then one or more of the following keywords must also be present; these are used t
ify the types of cells present, and their node coordinates, in a standard order. These keywords

hex = [<list of hexahedral cell data>] The two entries in the list (in order) must b
(1) an integer number n_zones , which is the number of hex cells in the Mesh3d; and (2) a
matrix nz whose dimensions are n_zones by 8; nz [i][0] , nz [i][1] , ... nz [i][7]

give the indices of the 8 vertices of the i th zone in canonical order (one side in the outwa
normal direction, then the corresponding vertices of the opposite side in the inward norm
rection).

tet = [<list of tetrahedral cell data>] The list is the same format as for hex data.
The matrix nz will now be n_zones by 4, and each row gives the indices of the apex and t
the base in inward normal order.

prism = [<list of prismatic cell data>] The list is the same format as for hex data.
The matrix nz will now be n_zones by 6, and each row gives the indices of one of the tria
gular sides in the outward normal direction, then the corresponding vertices of the oppos
in the inward normal direction.

pyr = [<list of pyramidal cell data>] The list is the same format as for hex data.
The matrix nz will now be n_zones by 5, and each row gives the indices of the apex and t
the base in inward normal order.

Warning--your numbering of cells must be consistent: all cells of a particular type must be
together; the actual ordering of the four cell types, however, is irrelevant.

The Narcisse Format and Keywords

The special Narcisse keywords, which apply when avs = 0, and their descriptions are:

no_cells = <integer value> , the total number of two-dimensional cells in the Mesh3d.
(Here ‘‘cells’’ really refers to faces of 3d cells).

cell_descr = <integer array> , a vector of integers giving the description of the cells
the Mesh3d, as follows:

cell_descr [0] , call_descr [1] , ... , cell_descr [no_cells - 1] tell how
many vertices cell [0] , cell [1] , ... , cell [no_cells - 1] have.

cell_descr [no_cells] through cell_descr [no_cells + cell_descr [0] -
1] are the subscripts of the vertex coordinates of cell [0] ; cell_descr [no_cells +
cell_descr [0]] through cell_descr [no_cells + cell_descr [0] +
cell_descr [1] - 1] are the subscripts of the vertex coordinates of cell [1] , etc. Cell
vertices must be given in the outward normal order.

Example 1 (a PyNarcisse plot):

In general, PyGist does not support graphing an entire mesh. Instead, PyGist includes sup
graphing plane cross-sections and isosurface slices of meshes, which we will discuss later in th
ter.
68

y in an
 mesh to

he end
p away
The following example first reads data from a pdb file called bills_plot 1. The object partitioned
by the mesh is an imploding sphere, and the intent is to graph the z component of the velocity of im-
plosion. Although the mesh is unstructured, it has only hexahedral cells, and the data is alread
order accepted by PyNarcisse, so need not be rearranged. When PyNarcisse is given an entire
plot, it will plot every face of every cell from front to back; if the mask is other than "none" , then the
front faces will cover the back ones. If one plots the entire sphere, all that will remain visible at t
is the portion of the exterior of the sphere facing the observer. Therefore in this example we stri
the ‘‘front’’ half of the sphere so that we can observe a cross section.

f = PR ('./bills_plot')

n_nodes = f.NumNodes
n_z = f.NodesOnZones
x = f.XNodeCoords
y = f.YNodeCoords
z = f.ZNodeCoords
c = f.ZNodeVelocity
n_zones = f.NumZones

Now we're going to plot it with all cells missing which
have an x coordinate greater than 0.005.
n_zones_used = 0
zones_not_used = [] # subscripts of zones to ignore
zones_used = []
for i in range (n_zones) :
 nz = n_z [i]
 used = 1
 for j in range (8) :
 if x [nz [j]] > 0.005 :
 zones_not_used.append (i)
 used = 0
 break
 if used == 1 :
 zones_used.append (i)
 n_zones_used = n_zones_used + 1

new_n_z = zeros ((n_zones_used, 8), Int32)
for i in range (n_zones_used) :
 new_n_z [i] = n_z [zones_used [i]]

m1 = Mesh3d (x = x, y = y, z = z, c = c, avs = 1,

1. bills_plot and other files mentioned in this chapter are available on kristen in /home/
cs/motteler/wrk/EB.KEEP .
69

ted by
so it is
 hex = [n_zones_used, new_n_z],
 mask = "max", opt_3d = "s4")
Uncomment below when we take the front face away
g2 = Graph3d (m1,
 titles = ["Vertical component of velocity",
 "Imploding Sphere"])
g2.plot ()

Example 2 (A PyNarcisse Plot):

In the next example, we read in imploding sphere data from file "ball.s0001", which is represen
an unstructured mesh containing all four kinds of cells. The data is not supplied in AVS order,
necessary to convert it into AVS format. We then do a number of plots of the data.

f = PR ("ball.s0001")
ZLss = f.ZLstruct_shapesize
ZLsc = f.ZLstruct_shapecnt
ZLsn = f.ZLstruct_nodelist
x = f.sap_mesh_coord0
y = f.sap_mesh_coord1
z = f.sap_mesh_coord2
c = f.W_vel_data
Now we need to convert this information to avs-style data
istart = 0 # beginning index into ZLstruct_nodelist
NodeError = "NodeError"
ntet = 0
nhex = 0
npyr = 0
nprism = 0
nz_tet = []
nz_hex = []
nz_pyr = []
nz_prism = []
for i in range (4) :
 if ZLss [i] == 4 : # TETRAHEDRON
 # put node coords into 4 by no_tet_nodes array
 nz_tet = reshape (ZLsn [istart: istart + ZLss [i] *
 ZLsc [i]], (ZLsc [i], ZLss [i]))
 ntet = ZLsc [i]
 istart = istart + ZLss [i] * ZLsc [i]
 elif ZLss[i] == 5 : # PYRAMID
 # put node coords into 5 by no_pyr_nodes array
 nz_pyr = reshape (ZLsn [istart: istart + ZLss [i] *
 ZLsc [i]], (ZLsc [i], ZLss [i]))
 npyr = ZLsc [i]
 # Now reorder the points (data has the apex last
70

 # instead of first)
 for ip in range (npyr) :
 tmp = nz_pyr [ip, 4]
 for jp in range (4) :
 nz_pyr [ip, 4 - jp] = nz_pyr [ip, 3 - jp]
 nz_pyr [ip, 0] = tmp
 istart = istart + ZLss [i] * ZLsc [i]
 elif ZLss[i] == 6 : # PRISM
 # put node coords into 6 by no_prism_nodes array
 nz_prism = reshape (ZLsn [istart: istart + ZLss [i] *
 ZLsc [i]], (ZLsc [i], ZLss [i]))
 nprism = ZLsc [i]
 # now reorder the points (data has a square face first)
 for ip in range (nprism) :
 tmp = nz_prism [ip, 1]
 tmpp = nz_prism [ip, 2]
 nz_prism [ip, 1] = nz_prism [ip, 4]
 nz_prism [ip, 2] = nz_prism [ip, 3]
 nz_prism [ip, 3] = tmp
 nz_prism [ip, 4] = nz_prism [ip, 5]
 nz_prism [ip, 5] = tmpp
 istart = istart + ZLss [i] * ZLsc [i]
 elif ZLss[i] == 8 : # HEXAHEDRON
 # put node coords into 8 by no_hex_nodes array
 nz_hex = reshape (ZLsn [istart: istart + ZLss [i] *
 ZLsc [i]], (ZLsc [i], ZLss [i]))
 # hex points are in proper avs order
 nhex = ZLsc [i]
 istart = istart + ZLss [i] * ZLsc [i]
 else :
 raise NodeError, `ZLss[i]` + "is an incorrect number of
nodes."
Create entire mesh, then create one mesh for each cell type
m1 = Mesh3d (x = x, y = y, z = z, c = c, avs = 1,
 hex = [nhex, nz_hex] ,
 pyr = [npyr, nz_pyr] ,
 tet = [ntet, nz_tet] ,
 prism = [nprism, nz_prism] , mask = "max",
 opt_3d = ["s4","wm"])
m2 = Mesh3d (x = x, y = y, z = z, c = c, avs = 1,
 hex = [nhex, nz_hex] , mask = "max",
 opt_3d = ["s4","wm"])
m3 = Mesh3d (x = x, y = y, z = z, c = c, avs = 1,
 pyr = [npyr, nz_pyr] , mask = "max",
 opt_3d = ["s4","wm"])
71

ed and

, this

, then
m4 = Mesh3d (x = x, y = y, z = z, c = c, avs = 1,
 tet = [ntet, nz_tet] , mask = "max",
 opt_3d = ["s4","wm"])
m5 = Mesh3d (x = x, y = y, z = z, c = c, avs = 1,
 prism = [nprism, nz_prism] , mask = "max",
 opt_3d = ["s4","wm"])
Now we graph the cells of each type, and then draw the
whole sphere. N. B. "paws" is a function which halts
until user enters a carriage return.
g1 = Graph3d (m5)
g1.plot () # draw prisms
paws ()
g1 = Graph3d (m4)
g1.plot () # draw tetrahedra
paws ()
g1 = Graph3d (m3)
g1.plot () # draw pyramids
paws ()
g1 = Graph3d (m2)
g1.plot () # draw hexahedra
paws ()
g1 = Graph3d (m1)
g1.plot () # draw the entire mesh

4.3 Plane objects

Instantiation

from plane import *
pl = Plane (<normal> , <point>)

Description

A Plane object is used as an auxiliary geometric object to enable plane slices through structur
unstructured meshes, as described in the next section. Plane s cannot be directly passed to a Graph
object to be plotted; they can, however, be plotted if they are a plane Slice object. The two posi-
tional arguments used to instantiate a Plane are:

<normal> : the direction numbers of the normal to the plane. If both arguments are omitted
defaults to the positive x axis.

<point> : coordinates of a point through which the plane passes. If this argument is omitted
the origin is the default.

A Plane object’s data is actually stored as the coefficients of the plane’s equation.
72

d
me
 with
n
rfaces,

 func-

l dif-
4.4 Slice objects

A Slice object is created by taking a slice through a Mesh3d object or perhaps an earlier-create
Slice . There are two types of Mesh3d Slice s: an isosurface slice (i. e., a surface where so
specified function on the Mesh3d has a constant value), and a plane slice (as created by slicing
a Plane object). A pre-existing Slice can be sliced only by a Plane , and the user has the optio
of retaining both slices, or of discarding one or the other (useful for seeing inside closed isosu
for example).

The user will not normally instantiate a Slice directly, but rather, by invoking the sslice function,
which does all the work and returns the resulting Slice .

Creation of a Slice

Isosurface Slice

from mesh3d import *
sl = sslice (m, val [, varno])

The arguments are as follows:

m: a Mesh3d object to be sliced.

val : the value of the function on the isosurface.

varno : the number of the variable for the isosurface; defaults to 1 if not specified. (Recall that the
argument c to a Mesh3d can be a vector of values, in which case isosurfaces for several different
tions can be plotted on the same graph.)

Upon return from function sslice , sl will be assigned the specified Slice object, or None, if it
does not exist.

Plane Slice of Mesh3d

from mesh3d import *
sl = sslice (m, plane [, varno])

The arguments are as follows:

m: a Mesh3d object to be sliced.

plane : a Plane object by which to slice the specified Mesh3d.

varno : the number of the variable used to color the slicing plane; defaults to 1 if not specified. (Recall
that the argument c to a Mesh3d can be a vector of values, in which case isosurfaces for severa
73

g

ferent functions can be plotted on the same graph.)

Upon return from function sslice , sl will be assigned the specified Slice object, or None, if it
does not exist.

Plane Slice of a Slice

from mesh3d import *
sl = sslice (s, plane [, nslices])

The arguments are as follows:

s : a Slice object to be sliced.

plane : a Plane object by which to slice the specified Slice :

nslices : if nslices = 1 (the default) then return the piece in front of the Plane ; if nslices =
2, return the pair [front , back] of slices. (If you want just the "back" surface, you can achieve
this by calling slice with nslices = 1 and - plane instead of plane .)

Upon return from function sslice , sl will be assigned the specified Slice object(s), or None, or
[None , None] , if it (they) does (do) not exist.

Instantiation

The user will most likely use the sslice function to create Slice objects, rather than instantiatin
them directly; but here, for the sake of completeness, is direct instantiation.

from mesh3d import *
sl = Slice (nv , xyzv [, val [, plane [, iso]]])

Description

The arguments are as follows:

nv is a one-dimensional integer array whose i th entry is the number of vertices of the i th face of
the object being sliced.

xyzv is a two-dimensional array dimensioned sum (nv) by 3. The first nv [0] triples in xyzv
are the coordinates of the vertices of face [0] , the next nv [1] triples are the coordinates
of the vertices of face [1] , etc.

val (if present) is an array the same length as nv whose i th entry specifies a color for face i .

plane (if present) says that this is a plane slice, and all the vertices xyzv lie in this plane.

iso (if present) says that this is the isosurface for the given value.

A Slice object or two Slice objects are created by a call to the function sslice (See “Creation
74

lice
u want

arcisse
s exam-
d con-
of a Slice” on page 73). The function sslice accepts either a mesh and a specification of how to s
it (isosurface or plane), or else a previously created slice, a plane to slice it with, and whether yo
to keep the resulting "front" slice or both slices.

Example 1 (a PyGist plot):

This example reads in the same data as the first PyNarcisse example (“Example 1 (a PyN
plot):” on page 68). The data is already in AVS order, so it does not need to be rearranged. Thi
ple takes three plane sections through the imploding sphere, and graphs them with color-fille
tours and a color bar. The actual plot is shown in Chapter 5, page 102.

from mesh3d import *
from plane import *
from graph3d import *
f = PR ('./bills_plot')
n_nodes = f.NumNodes
n_z = f.NodesOnZones
x = f.XNodeCoords
y = f.YNodeCoords
z = f.ZNodeCoords
c = f.ZNodeVelocity
n_zones = f.NumZones
m1 = Mesh3d (x = x, y = y, z = z, c = c, avs = 1,
 hex = [n_zones, n_z])
Now define the three planes:
pyz = Plane (array ([1., 0., 0.], Float),
 array ([0.0001, 0., 0.], Float))
pxz = Plane (array ([0., 1., 0.], Float),
 array ([0., 0.0001, 0.], Float))
p2 = Plane (array ([1., 0., 0.], Float),
 array ([0.35, 0., 0.], Float))
Now define the three slices
s2 = sslice (m1, pyz, varno = 1, opt_3d = ["wm", "s4"])
s22 = sslice (m1, p2, varno = 1, opt_3d = ["wm", "s4"])
s23 = sslice (m1, pxz, varno = 1, opt_3d = ["wm", "s4"])
Create the graph
g1 = Graph3d([s2, s22, s23], color_card = "rainbow.gp",
 opt_3d = ["wm", "s4"], mask = "min", color_bar = 1,
 split = 0, hardcopy = "talk.ps")
plot the graph
g1.plot ()
75

ibility.
Example 2 (a PyGist plot):

Now we shall plot three isosurfaces of the same sphere shaded by a light source (opt_3d = "none ").
The isosurfaces are nested and one will block our view of another, so we slice it for better vis
Note that the slices isosurface is disconnected, because you see two sliced pieces!

s1 = sslice (m1, .9 * max (c), varno = 1)
s2 = sslice (m1, .9 * min (c), varno = 1, opt_3d = "none")
s5 = sslice (m1, .5 * max (c), varno = 1, opt_3d = "none")
s6 = sslice (s5, -pyz, opt_3d = "none")
g1.set_surface_list ([s1, s2, s6])
g1.plot ()
76

 a light
f them

ribed in
Example 3 (a PyGist plot):

The next plot consists of a number of isosurfaces of the above imploding sphere shaded by
source (opt_3d = "none "). The isosurfaces are nested and some are closed, so we slice all o
in half and keep the ‘‘back’’ halves for visibility.

for i in range (8) :
 sl = sslice (m1, .9 * min (c) + i * (.9 * max (c) - .9 *
 min (c)) / 8., varno = 1, opt_3d = "none")
 slice_list.append (sslice (sl, pxz))
g1.set_surface_list (slice_list)
g1.plot ()

4.5 3D Animation

Graph3d objects have two methods that enable realtime animation of 3D plots. These are desc
the Graph3d chapter; see “3d Animation Methods” on page 93.
77

78

UCRL-MA-128569, Manual 4

 infor-

asses,

bjects

 plot-

 graph
ven of

ng
CHAPTER 5:Graph Objects

A Graph object is defined as a container for geometric objects which also contains the type of
mation common to all graphs (for example, titles, axis labels and scales, and the like). A Graph
object can be asked to plot itself; the user can supply one or more Plotter objects to the Graph , or
else leave it up to the Graph to try to obtain its own default Plotter object. The base class Graph
is not normally instantiated as is. Instead, the user will normally instantiate its derived cl
Graph2d and Graph3d .

5.1 Graph2d Objects

Instantiation

from graph2d import *
g2 = Graph2d (<object list> , <keylist>)

Description

A Graph2d is a two-dimensional graphics object which contains one or more 2d geometric o
plus a global environment. It will accept one or a list of Plotter objects or plotter identifiers, or
will try to complete generic connection(s) of its own if asked to plot without having been given a
ter specification.

<object list> is one or a sequence of 2d geometric objects. It makes sense sometimes to
several Curve objects on one plot; the user can specify several 2d objects of other types, or e
mixed types, but does so at his/her own risk.

A list of keyword arguments accepted by Graph2d is:

plotter, filename, display, graphics, style, label_type,
titles, title_colors, grid_type, axis_labels, x_axis_label,
y_axis_label, yr_axis_label, axis_limits, x_axis_limits,
y_axis_limits, yr_axis_limits, axis_scales, x_axis_scale,
y_axis_scale, yr_axis_scale, text, text_color, text_size,
text_pos, color_card, xyequal, sync, color_bar, color_bar_pos

There are a number of methods available in Graph2d to enable the user to reconfigure an existi
object. Let’s say that g2 is a Graph2d object.

g2.new (<object list> , <keylist>) : has the same arguments as Graph2d , and simply
11/23/98 79

.)

ey-
 re-

ris-
istics of
s
 as

 curve.
d use
t

ne.

se the
ommu-
g sec-
reinitializes an existing Graph2d object, instead of instantiating a separate one.

g2.add (<2d object>) adds the specified 2d object to the others already in the Graph2d .
(2d objects are numbered in the order that they are put into the graph, beginning with 1

g2.delete (n) : deletes the nth 2d object from the Graph2d .

g2.replace (n, <2d object>) : replaces the nth 2d object in the Graph2d with the one
specified.

g2.change_plot (<keyword arguments>) : used to change any Graph2d characteris-
tics except the 2d objects being graphed. Use the add , delete , and/or replace methods to
do that. change_plot will draw the graph without sending object coordinates, unless k
word send is 1. Generally, change_plot should be used when the graph needs to be
computed, and quick_plot (below) when it does not. change_plot does no error check-
ing and does not convert user-friendly names of colors and such into numbers.

g2.quick_plo t (<keyword arguments>) is used to change some Graph2d characte
tics which do not demand that the graph be recomputed. You can change the character
a 2d object in the graph by specifying its number (curve = n) and any combination of the trait
type , color , and label . Or you can change such overall graph characteristics
label_type , titles , title_colors , text , text_color , text_size ,
text_pos , color_card , grid_type , sync , and axis_labels . The changes will be
effected and the graph redrawn.

Things that you cannot change include axis limits and scales, and the coordinates of a
Use change_plot if axis limits and scales are among the things you want to change, an
add , delete , or replace followed by a call to plot , if you wish to change the 2d objec
list.

g2.plot () plots a 2d graph. If the user has not by now specified Plotter (s) or filename (s)
then a generic Plotter object will be created, if it is possible to find a local Graphics routi

Graph2d objects inherit from base class Graph , as does Graph3d . The following methods are in-
herited from Graph :

g2.add_file ("filename") allows the user to add a Plotter contacted via "filename"
to the list of Plotter s being used to draw the current Graph object.

filename has different (and incompatible) meanings for PyNarcisse and PyGist, becau
two graphics packages are so fundamentally different in the way that the user program c
nicates with them. Please consult the discussion of keyword arguments in the followin
tion.

g2.delete_file ("filename") allows the user to delete a Plotter contacted via
"filename" from the list of Plotter s being used by this object.

g2.add_display ("host") and g1.delete_display ("host") adds or deletes a
Plotter displaying on the specified host . Currently, these are the same as the add_file
and delete_file for PyGist.
80

tics

en-
f

., in

r-
rd, as

s to a
 more

..)

d,
g2.add_plotter (pl) allows the user to add the specified Plotter to the list of Plotter s
being used by this object.

g2.delete_plotter (pl) allows the user to delete the specified Plotter from the list of
Plotter s being used by this object.

g2.change (<keyword arguments>) allows some of the graph's generic characteris
to be changed. These are sync , titles , title_colors , style (PyGist only),
grid_type , axis_labels (and x_axis_labels , etc.), axis_limits (and
x_axis_limits , etc.), axis_scales (and x_axis_scales , etc.), text ,
text_color , text_size , and text_pos .

Keyword Arguments

This section describes the Graph2d keyword arguments. The first three keywords are used to id
tify where and how you want the graph plotted. A Graph2d will create a default plotter if none o
these keywords is specified; see below.

plotter = <Plotter object> or a sequence of <Plotter object> s if you have a
Plotter object or a sequence of them that you want the Graph2d to use when plotting itself.
In particular, if you want to plot only to CGM or PostScript files and not interactively (i. e
batch mode), then you will need to instantiate your own Plotter and give it to the Graph2d
object. Currently Graph objects cannot instantiate their own batch Plotter s, although this
feature will eventually be added.

filename = <string> or a sequence of <string> s specifies plotting associated with a pa
ticular filename. PyGist and PyNarcisse differ dramatically in the meaning of this keywo
explained below.

PyGist: currently, filename is synonymous with the display keyword, which specifies a
host where the PyGist window is to be displayed. If the user wants a plotter which plot
given CGM or PostScript file (or one of each), then the user must instantiate one or
Plotter objects and hand them to the Graph2d via the plotter keyword. Eventually this
will be changed to make it easier on the user. But for future compatibility, use the display
keyword to specify where PyGist will open its window, and instantiate a Plotter yourself if
you wish to have PyGist send plots to a file. (See “Plotters: A Brief Primer” on page 113

PyNarcisse: filename can be used in two different ways.

(1) As a way to specify a Narcisse process to connect to. In this case, the filename should
be in the form "machine+port_serveur++user@ie.32" where machine specifies
where the display is to take place (e. g., "icf.llnl.gov:0.0"), port_serveur is the
port number displayed on the Narcisse GUI, and user is the userid of the person running.

(2) As a filename where Narcisse is to dump its plots. In this case, use the file suffix ".spx"
to specify a binary file, or ".spc" for an ascii dump file. If a filename of this form is specifie
PyNarcisse attempts a connection to Narcisse using the value of the DEST_SP3 environment
variable, if it exists, and if not, attempts to construct a connection filename using DISPLAY
environment variable for machine , the value of the PORT_SERVEUR environment variable
(or the default 2101 if PORT_SERVEUR is not defined) for port_serveur , and the value of
81

ts.

ve to
u

mpt to

d
is

d by

 using

e

t of
ist
st

d
erlay

the
USER for user .

display = <string> or a sequence of <string> s if you want to display on the named hos
(This keyword is ignored by PyNarcisse, since the desired display is specified in the filena-
me keyword.) The form of <string> is the usual

"hostname:server.screen"

The purpose of this argument is to allow you to continue without exiting Python if you ha
open a Gist window without the DISPLAY environment variable having been set, or if yo
want to open Gist windows on more than one host.

If none of the above three keywords is specified, then when asked to plot, a Graph2d will atte
connect to a plotter as follows:

• It first examines the environment variable PYGRAPH to see what type of graphics is desire
(the allowed values are "Gist" and "Nar"). If this variable is undefined, then the default
"Gist" .

• If the graphics is "Gist" , it attempts to open a Gist graphics window on the host specifie
the DISPLAY environment variable.

• If the graphics is "Narcisse" , it attempts a connection using the value of the DEST_SP3
environment variable, if it exists, and if not, attempts to construct a connection filename
DISPLAY environment variable for machine , the value of the PORT_SERVEUR environ-
ment variable (or the default 2101 if PORT_SERVEUR is not defined) for PORT_SERVEUR,
and the value of USER for user .

The remaining Graph2d keyword arguments are as follows:

graphics = <string> or a sequence of <string> s if you want to specify which graphics th
Plotter or Plotter s associated with this Graph2d will connect to. Currently the values
allowed are "Nar" and "Gist" . This argument is meaningless if you supply one or a lis
Plotter s via the plotter keyword. If <string> is a scalar and you have supplied a l
of filename s, then all Plotter s opened will be that type. If it is a vector, then it mu
match the list of filename s in size and correspond to the filename , i. e., don’t give a Nar-
cisse-style filename and specify a "Gist" Plotter for it.

style = one of "vg.gs" , "boxed.gs" , "vgbox.gs" , "nobox.gs" , "work.gs" . For
Gist only, and only if a Plotter has not already been specified, then each Plotter opened
will have axes plotted in the specified style. The default is "work.gs" .

grid_type = <string> : where "none" means no axis grid, "axes" means a pair of axes
with tick marks, "wide" means a widely spaced 2d grid, and "full" means a closely space
2d grid. (By a ‘‘grid’’ here, we mean a set of lines parallel to the coordinate axes which ov
the graph when plotted.)

label_type = "end" (to label the curve at its end), "box" (to put the labels in a box) Appli-
cable to PyNarcisse only.

titles = <value> where <value> is a string or a sequence of up to four strings, giving
82

r in-

re-

-

l

o be

lor

gh-
t).

 cards”

e.

t

gful

ite
titles in the order bottom, top, left, right.

title_colors = <value> where value is an integer or string or a sequence of up to fou
tegers or strings giving the colors of the titles.

axis_labels = <value> where <value> is a string or sequence of up to three strings rep
senting the labels of the x axis, the y axis, and the right y axis.

x_axis_label , y_axis_label , and yr_axis_label may be used to label individual ax
es.

axis_limits = <value> where <value> is a pair [xmin, xmax] or a sequence of up to
three pairs, where the second would be the y limits, and the third the yr limits.

x_axis_limits , y_axis_limits , and yr_axis_limits may be used to specify limits
on individual axes.

axis_scales = "linlin" , "linlog" , "loglin" , or "loglog" or, if all three axes are
to be specified, a triple of the values "lin" and "log" .

x_axis_scale , y_axis_scale , and yr_axis_scale may be used to specify individua
axis scales.

text = <value> where <value> is a string or a sequence of strings representing texts t
placed on the plot.

text_color = <value> where <value> is a color number or name, or a sequence of co
numbers or names giving colors for the texts.

text_size = <value> where <value> is an integer or a sequence of integers giving (rou
ly) the number of characters in a line on the graph (PyNarcisse) or the point size (PyGis

text_pos = <value> where <value> is a pair or a sequence or reals between 0. and 1.0
giving the relative position of the lower left corner of a text in the graphics window.

color_card = <value> specifies which color card you wish to use, e. g., "rainbowhls"
(the default), "random" , etc. Note that for Graph2d , color_card is a keyword, since it
is not possible to specify different color cards on the same 2d graph, whereas link ed 3d and
4d graphs can have different color cards. For details on color cards, See “Narcisse Color
on page 48. and See “Gist Color Cards” on page 49..

xyequal = 0/1 : If 1, the axis limits will be adjusted so that both axes are to the same scal

sync = 0 or 1: (1 to synchronize before sending a plot) defaults to 1, otherwise plots may ge
garbled. Only applicable to PyNarcisse.

color_bar = 0 or 1: (1 enables plotting of a color bar on any graphs for which it is meanin
(colored contour plots, filled contour plots, cell arrays, filled meshes and polygons).

color_bar_pos (ignored unless a color bar is actually plotted) is a 2d array [[xmin, ym-
in], [xmax, ymax]] specifying where (in window coordinates) the diagonally oppos
corners of the color bar are to be placed.

Examples
83

indow,
The following sequence of instructions creates a simple curve (a straight line), a 75 dpi plot w
passes both objects to a new Graph2d object with a blue title, and does the plot:

c1 = Curve (y = [0,1] , marks = 1 , marker = "A")
pl = Plotter (dpi = 75)
g1 = Graph2d (c1, plotter = pl , titles =
 "Curve marked with A" , title_colors = "blue")
g1.plot ()
84

This next sequence adds a second curve to the above Graph2d , and changes the title:

c2 = Curve (y = [1,0] , marks = 1 , marker = "B")
g1.add (c2)
g1.change (titles = "New curve marked B.")
g1.plot ()
85

Now we set the x coordinates of the two curves. g1 has already been given references to c1 and c2 ,
so the changes will be visible to g1 and will be reflected in the new plot. g1 ’s title is changed, and the
x scale is changed to logarithmic.

c1.set (x = [1,2])
c2.set (x = [1,2])
g1.change (axis_scales = "loglin",
 titles = "Same, x axis now logarithmic.")
g1.plot ()
86

ph:
Change the x axis scale back to linear, and change the axis limits to show only a part of the gra

g1.change (x_axis_scale = "lin",
 axis_limits=[[1.2,1.8],[0.2,0.8]],
 titles="Limits now 1.2<x<1.8, 0.2<y<0.8.")
g1.plot ()
87

Change the axis limits back to defaults, i. e., values computed from the data by PyGist:

g1.change(axis_limits="defaults",
 titles="Limits now back to extreme values.")
g1.plot ()
88

t.

The next example shows how you can change the curve or curves associated with a Graph2d object.
Here we delete the two curves associated with g1 , then add the new one, change the title, and plo

x=10*pi*arange(200, typecode = Float)/199.0
c1 = Curve (x = x , y = sin(x),marks = 1, marker= "A")
g1.delete (2)
g1.delete (1)
g1.add (c1)
g1.change (titles = "Five cycles of a sine wave, marked A.")
g1.plot ()
89

nt
-

The next sequence of code creates a list of Curve objects which are nested cardioids with differe
parameters. It then creates a new Graph2d containing these Curve s, and plots them in different col
ors, labeling each with a number.

x=2*pi*arange(200, typecode = Float)/199.0
crvs = []
for i in range (1,7) :
 r = 0.5*i -(5-0.5*i)*cos(x)
 s = `i`
 crvs.append(Curve(y=r*sin(x),x=r*cos(x),marks=0,
 color=-4-i,label=s))
g1=Graph2d(crvs,plotter = pl,
 titles="Nested cardioids in colors")
g1.plot ()
90

91

 list
n

 graph
),
d/4d
ich mix
es as if

ods in
5.2 Graph3d Objects

Instantiation

from graph3d import *
g3 = Graph3d (<object list> , <keylist>)

Description

A Graph3d is a container for one or more three dimensional geometric objects (Surface s,
Mesh3ds, and/or Slice s) as well as global information about the graph. It will accept one or a
of Plotter objects or Plotter identifiers, or will try to complete generic connection(s) of its ow
if asked to plot without having been given a plotter specification.

<object list> is one or a sequence of 3d geometric objects. It makes sense sometimes to
several such objects on one plot. By means of link ing two or more objects (see description below
it is possible though somewhat difficult in PyNarcisse to plot two or more objects with different 3
options, palettes, etc. on the same graph. PyGist does not allow this; however, in mesh plots wh
isosurfaces and plane slices, PyGist allows a split palette option, which shades the isosurfac
from a light source, but colors plane slices according to the specified function.

A list of keyword arguments accepted by Graph3d is:

plotter, filename, display, titles, title_colors, grid_type,
axis_labels, x_axis_label, y_axis_label, z_axis_label,
c_axis_label, yr_axis_label, axis_limits, x_axis_limits,
y_axis_limits, z_axis_limits, c_axis_limits, yr_axis_limits,
axis_scales, x_factor, y_factor, x_axis_scale, y_axis_scale,
z_axis_scale, c_axis_scale, yr_axis_scale, text, text_color,
text_size,text_pos, phi, theta, roll, distance, link, connect,
sync, ambient, diffuse, specular, spower, sdir, color_bar,
color_bar_pos

Graph3d objects inherit from base class Graph , as does Graph2d . The following methods are in-
herited from Graph : add_file , delete_file , add_plotter , delete_plotter , and
change . See “Description” on page 79. for details. In addition, a Graph3d has the following meth-
ods which, except where noted, are similar to the Graph2d methods with the same names: new, add ,
delete , replace , change_plot , quick_plot , and plot .

Notes:

• new has the same arguments as Graph3d.new .

• add , delete , and replace have the same calling sequence as the same-named meth
Graph2d , except, of course, that the number refers to a 3d object in the Graph .
92

he

s
ar-

change

ade,

hese

 ro-

h is

ted

der

on
• change_plot carries the same caveats as the Graph2d method by the same name.

• quick_plot is used to change some Graph3d characteristics which do not demand that t
graph be recomputed. You can change the characteristics of a Surface (or other object) in
the graph by specifying its number (surface = n) and any combination of the trait
color_card , opt_3d , mesh_type , or mask. Or you can change such overall graph ch
acteristics as titles , title_colors , text , text_color , text_size , text_pos ,
color_card , grid_type , sync , theta , phi , roll , and axis_labels . Or you can
do both. The changes will be effected and the graph redrawn. Things that you cannot
include axis limits and scales, and the coordinates of a Surface . Use change_plot if axis
limits and scales are among the things you want to change, and use add , delete , or re-
place followed by a call to plot , if you wish to add, delete, or change a Surface .
quick_plot will not work right for link ed Surfaces. Once the changes have been m
you will have to call plot .

3d Animation Methods

Finally, Graph3d has two methods which have to do with real time animation of 3d plots. T
methods are as follows:

move_light_source (<keylist>) The keyword arguments are:

nframes (default 30): the number of frames in the proposed movie.

angle (default 360 / nframes): the angle (in degrees) through which the light source
tates for each frame.

This method is not yet implemented in PyNarcisse.

rotate (<keylist>) The keyword arguments are:

axis (default [-1., 1., 0.]): the direction numbers of the axis about which the grap
rotated.

nframes (default 30): the number of frames in the proposed movie.

angle (default 360 / nframes): the angle (in degrees) through which the graph is rota
for each frame.

This method is not yet implemented in PyNarcisse.

Keyword Arguments

The following keywords inherited from Graph have exactly the same behavior as described un
Graph2d (See “Keyword Arguments” on page 81.):

plotter, filename, display, titles, title_colors, grid_type
(PyNarcisse only), text, text_color, text_size, text_pos, color_bar,
color_bar_pos

Up to four axes are possible in 3d and 4d plots : x , y , z or c (depending on whether we chose the opti
93

t
xis char-
li-

 three
These

word

 edge
-

gin

 on

 the
right
gers

yGist,

his
umber,
ount of

 will
re sur-
tions

 objects
of switching z and c), and the right y axis (when the left and right sides of the plot have differeny
axis scales, with some objects plotted on one and some on another), so the specifications of a
acteristics are different from those for Graph2d . The axis characteristic keywords (primarily app
cable to PyNarcisse, but see the next paragraph) are:

axis_labels, axis_limits, axis_scales

Each should be specified as a list of up to five items, in the order x , y, z , c , yr ; items omitted from
the right will be defaulted. axis_labels are strings; axis_limits are pairs of floats; and
axis_scales are one of the two strings "lin" or "log" .

PyGist does not currently support full axes display in 3d. Instead, it is capable of displaying a gnomon
in the lower left corner of a 3d plot, i. e., a small representation showing the orientation of the
coordinate axes, with the labels in reverse video if they are pointed ‘‘into’’ the plane of the plot.
labels default to ‘‘X’’, ‘‘ Y’’, and ‘‘ Z’’, but the defaults can be overruled by the axis_labels key-
word. PyGist will only use the first letter of each specified label, if longer than one letter. The key
gnomon (if set to nonzero) turns on the gnomon display.

Another peculiarity of PyGist is its tendency to stretch the plotted surface so that it extends from
to edge of the plotting area. The keywords x_factor and y_factor can be used to force the dis
play to appear in proper perspective; in most cases leave x_factor alone, and set y_factor to 2.0.
Both keywoirds default to 1.0.

Other keywords which are peculiar to Graph3d objects are:

phi = <integer value> specifies the angle that the line from the view point to the ori
makes with the positive z axis. The angle is in degrees.

theta = <integer value> specifies the angle made by the projection of the line of view
the xy plane with the positive x axis. The angle is in degrees.

roll = <integer value> specifies the angle of rotation of the graph around the line from
origin to the view point. The angle is measured in the positive direction, i. e., if your
thumb is aligned outwards along the line from the origin to the view point, then your fin
curl in the positive direction. The angle is in degrees. (This keyword is not available in P
and will be ignored if supplied.)

distance = <integer value> specifies the distance of the view point from the origin. T
is an integer between 0 and 20. 0 makes the distance infinite; otherwise the smaller the n
the closer you are. This number does not affect the size of the graph, but rather the am
distortion in the picture (the closer you are, the more distortion).

The following keywords are applicable only in PyNarcisse:

link = 0 or 1: Used to link surfaces of different 3d options. normally all surfaces in a graph
have the same 3d options. This value should be set to 1 if you want to graph two or mo
faces with different 3d options. otherwise multiple surface graphs will appear with the op
of the last surface specified. This may not always work as expected, since successive
94

t be
nother

 line

aphs

ently
ts own
lected

 facing
ay, if

urface,

wing

c-

-

tly,
cour-

es are
ile plane
palette
in a link ed Graph are plotted on top of whatever is in the current window. That may no
where they are positioned; e. g., it would be easy to have an object that is really behind a
be drawn on top of it.

connect = 0 or 1: set to 1 for graphs of more than one 3d object to provide better hidden
removal. Must not be used with link .

sync = 0 or 1: set to 1 to synchronize with Narcisse before plotting the next graph. Keeps gr
sent in rapid succession from becoming garbled. Defaults to 1; set it to 0 if you don't have a
timing problem.

The following lighting keywords are applicable only in PyGist:

ambient = <value> is a light level (arbitrary units) that is added to every surface independ
of its orientation. High values of this argument cause the surface to appear to glow with i
light, making it so bright as to lose contrast. Low values of this argument mean that ref
and diffuse light are more important in visualizing the surface.

diffuse = <value> is a light level which is proportional to cos (theta) , where theta is
the angle between the surface normal and the viewing direction, so that surfaces directly
the viewer are bright, while surfaces viewed edge on are unlit (and surfaces facing aw
drawn, are shaded as if they faced the viewer, so that if we are looking at the inside of a s
it will look properly three-dimensional).

specular = <value>

spower = <value>

sdir = <value>

specular = S_LEVEL is a light level proportional to a high power spower = N of 1 + cos
(alpha) , where alpha is the angle between the specular reflection angle and the vie
direction. The light source for the calculation of alpha lies in the direction sdir = XYZ (a
3 element vector) in the viewer's coordinate system at infinite distance. You can have ns light
sources by making S_LEVEL, N, and XYZ (or any combination) be vectors of length ns (ns -
by-3 in the case of XYZ).

The four parameters ambient , diffuse , specular , and spower act together to produce
interesting effects. if diffuse and specular are both 0, then the surface will not be refle
tive, and all three dimensional appearance will be lost. specular and spower together de-
termine how reflective the surface is; large spower with specular not 0 gives small, bright
highlights with most of the surface appearing black. As spower decreases, the highlights be
come somewhat larger and darker portions of the surface become lighter. If diffuse is not
zero but specular and ambient are zero, then the surface will appear shaded gen
brighter on the side(s) toward the light source(s), but not highly reflective. The user is en
aged to experiment to find the desired effect.

split = 0 or 1 (default 1) If 1, causes the palette to be split when both planes and isosurfac
present in a graph, so that isosurfaces are shaded according to current light settings, wh
sections of the mesh are colored according to a specified function. (The lower half of the
95

etric

 border
is grey scale, and the upper half is (usually) rainbow.

Example 1. Surface plots.

All of the plots illustrated in this example are of the following surface; it is an interesting symm
surface with a peak and a valley.

x = span (-1, 1, 64, 64)
y = transpose (x)
z = (x + y) * exp (-6.*(x*x+y*y))
s1 = Surface (z = z, opt_3d = "wm", mask = "sort")

In each case, the title describes how the surface is displayed. We have set the y_factor keyword to
2.0 so that the surface will show in proper perspective; otherwise it would be stretched out from
to border in the vertical direction.

g1 = Graph3d (s1, color_card = "gray.gp",
 titles = "opaque wire mesh", y_factor = 2.)
g1.plot ()
paws ()
96

s1.set (mask = "none")
g1.change (titles = "transparent wire mesh")
g1.plot ()
paws ()

97

s1.set (ecolor = "red")
g1.change (titles = "transparent wire mesh in red")
g1.plot ()
paws ()

98

s1.set (mask = "sort", shade = 1)
g1.change (titles = "opaque shaded mesh with red lines")
g1.plot ()
paws ()

99

s1.set (opt_3d = "none")
g1.change (titles = "opaque shaded mesh with no lines")
g1.plot ()
paws ()

100

ructured
The next example is interesting in that it shows a back-lit surface.

g1.change (titles = "same with different lighting")
g1.quick_plot (diffuse=.1, specular = 1.,
 sdir=array([0,0,-1]))
paws ()

Example 2. Plane cross sections of imploding sphere.

The user may recall this example. An imploding sphere has been decomposed into an unst
(but hexahedral) mesh. The data is read in from a pdb file as follows:

f = PR ('./bills_plot')
n_nodes = f.NumNodes
n_z = f.NodesOnZones
x = f.XNodeCoords
y = f.YNodeCoords
z = f.ZNodeCoords
c = f.ZNodeVelocity
n_zones = f.NumZones

 Now we build a Mesh3d object from the data:
101

m1 = Mesh3d (x = x, y = y, z = z, c = c, avs = 1,
 hex = [n_zones, n_z])

Create three Plane objects with which to perform cross sections:

pyz = Plane (array ([1., 0., 0.], Float),
 array ([0.0001, 0., 0.], Float))
pxz = Plane (array ([0., 1., 0.], Float),
 array ([0., 0.0001, 0.], Float))
p2 = Plane (array ([1., 0., 0.], Float),
 array ([0.35, 0., 0.], Float))

Slice the mesh three times:

s2 = sslice (m1, pyz, varno = 1, opt_3d = ["wm", "s4"])
s22 = sslice (m1, p2, varno = 1, opt_3d = ["wm", "s4"])
s23 = sslice (m1, pxz, varno = 1, opt_3d = ["wm", "s4"])

g1 = Graph3d([s2, s22, s23], color_card = "rainbow.gp",
 opt_3d = ["wm", "s4"], mask = "min", color_bar = 1,
 split = 0, hardcopy = "talk.ps")
g1.plot ()

The resulting graph is shown below.
102

ource
 next
Example 3. Moving light source on surface.

In this example, we will illustrate how to set up a graph with a moving light source. The light s
will apparently move over the surface in real time. You will have to take our word for this; the
two figures show different views of the surface as the light progresses.

s1 = Surface (z = z, opt_3d = "none", mask = "sort",
 shade = 1) # Same surface as Example 1

g1 = Graph3d (s1, ambient = 0.2, diffuse = .2, specular = 1.,
 color_card = "gray.gp", titles = "moving light source",
 y_factor = 2.)

g1.move_light_source ()
103

ifferent
sh, each
 a por-

ng over
ng the
slicing.

colors
lues on

ing it be-
Imagine the light source as moving from right to left just behind the viewer.

Example 4. Rotating isosurfaces and cutting plane.

We cannot show you the actual rotation in these pages, but we shall show you a couple of d
snapshots of the rotating surface. This example consists of a couple of isosurfaces in a me
sliced horizontally and vertically, with parts discarded so that we can see inside the figure, and
tion of one of the slicing planes. The isosurfaces are shaded in greyscale as if by a light shini
the viewer’s right shoulder, and the polygons of the portion of the slicing plane are colored usi
rainbow palette by the values of the same function that was used to perform the isosurface
This figure illustrates the so-called ‘‘split palette’’, where half of the palette is set to greyscale
and is used to shade isosurfaces, while the other half is set to colors used to plot function va
plane slices.

The edges of the polygons on the plane slice are also shown. The figure and the code generat
104

s

gin below.

The following code computes the coordinates of the mesh, the function c defined on it, and then create
the Mesh3d object.

nx = 20
ny = 20
nz = 20
xyz = zeros ((3, nx, ny, nz), Float)
xyz [0] = multiply.outer (span (-1, 1, nx),
 ones ((ny, nz), Float))
xyz [1] = multiply.outer (ones (nx, Float),
 multiply.outer (span (-1, 1, ny), ones (nz, Float)))
xyz [2] = multiply.outer (ones ((nx, ny), Float),
 span (-1, 1, nz))
r = sqrt (xyz [0] ** 2 + xyz [1] **2 + xyz [2] **2)
theta = arccos (xyz [2] / r)
phi = arctan2 (xyz [1] , xyz [0] + logical_not (r))
105

y32 = sin (theta) ** 2 * cos (theta) * cos (2 * phi)

m1 = Mesh3d (x = span (-1, 1, nx), y = span (-1, 1, ny),
 z = span (-1, 1, nz), c = r * (1. + y32))

The following code sequence performs the slicing. We do not specify opt_3d for the isosurfaces,
since with the split palette option they will automatically be shaded.

s1 = sslice (m1, .50, varno = 1) # (inner isosurface)
s2 = sslice (m1, 1.0, varno = 1) # (outer isosurface)

pxy = Plane (array ([0., 0., 1.], Float), zeros (3, Float))
pyz = Plane (array ([1., 0., 0.], Float), zeros (3, Float))

create a pseudo-colored plane slice, then cut it in half
and save only the front half. "f4" specifies that the
cells be colored by the function assigned to the c
keyword of the mesh m1. "wm" (wire monochrome) causes the
edges of the cells to be shown.
s3 = sslice (m1, pyz, opt_3d = ["wm", "f4"])
s3 = sslice (s3, pxy, nslices = 1, opt_3d = ["wm", "f4"])

cut the inner isosurface in half so that we can slice the
top off one of the halves and discard it:
[s1, s4] = sslice (s1, pxy, nslices = 2)
Note the use of - pyz to keep the "bottom" slice:
s1 = sslice (s1, - pyz)

do the same with the outer isosurface:
[s2, s5] = sslice (s2, pxy, nslices = 2)
s2 = sslice (s2, - pyz)

Create Graph object with split palette (rainbow/greyscale)
g1 = Graph3d ([s3, s1, s4, s2, s5], gnomon = 1,
 color_card = "rainbow.gp", diffuse = .2, specular = 1,
 mask = "min", split = 1)
g1.plot ()

The code which generates the rotating figure is given below. We change the x_factor and
y_factor of g1 so that the figure will appear smaller.

g1.change (x_factor = 2., y_factor = 2.)
g1.rotate ()

Snapshots of the rotating figure are shown on the next page.
106

107

108

UCRL-MA-128569, Manual 4

 user
 in the
 anima-

other

 an-

ations
rom
l-
The
 of
sued

vari-
CHAPTER 6:Animation2d Objects

An Animation2d object is a container for the controls for a two dimensional animation. The
supplies these controls, which are functions (written in Python) that initialize internal variables
object, compute the coordinates for each frame, and update the internal variables. To see the
tion performed, give the object to a Graph2d and ask the Graph to plot itself.

Currently Animation2d is not implemented in PyNarcisse.

Instantiation

from animation2d import *
anim = Animation2d (<keylist>)

Description

Animation2d accepts the following keyword arguments:

initialize, calculations, update, animation, nsteps, color

It also has methods new and set , which work the same as the methods with the same names in
2d objects. See “Description” on page 9., for instance.

Keyword Arguments

The following keyword arguments can be specified with Animation2d :

initialize = <name of an initialization function> . This function should have
one argument, the name of an Animation2d instantiation, say ‘anim ’, and when called
should initialize any of anim ’s internal variables needed before beginning to compute the
imation.

calculations = <calculation function(s) for coordinates> : the value of this
keyword is the name of a function, or a list of names of functions. Each of the calcul
routines should have ‘anim ’ as the argument. This routine (or these routines) are called f
within a loop in the Plotter (s) associated with anim . They should compute the current va
ues of anim.x and anim.y , the coordinates of the curve(s) in this step of the animation.
first frame starts with the results of initialize , then in subsequent calls, use the results
update (below). If more than one calculation is specified, then a plot command will be is
after each one.

update = <function to update the variables used in calculations> . This
function, when called with ‘anim ’ as its sole argument, updates (increments, decrements)
11/23/98 109

r a
,

p up
ables used in calculating the frames.

animation = 0/1 (If 1, supplies a smoother, less jerky animation. Default value 1.)

nsteps = number of animation steps desired. Default: 100 .

color = <value> where <value> is an integer representing an index into a color chart, o
common color name like "red" , "blue" , "background" , etc. In the interest of speed
other keywords relating to curve type , thickness , etc., are currently not allowed.

Examples

The following is an interesting example of ‘‘dancing curves’’, sine waves which appear to jum
and down and go around in circles.

def init (self) :
 self.t = 2*pi*arange (400, typecode = Float) / 399.0
 self.na1 = 1
 self.nb1 = 5
 self.na2 = 2
 self.nb2 = 7
 self.rc1 = 40.
 self.rc2 = 160.
 self.size = 40.
 self.phase = self.theta = 0.
 self.dtheta = pi / (self.nsteps - 1)
 self.dphase = 2 * pi / (self.nsteps - 1)
def calc1 (self) :
 self.cost = cos (self.theta)
 self.sint = sin (self.theta)
 self.x = self.rc1 * self.cost + \
 self.size * cos (self.na1 * self.t)
 self.y = self.rc1 * self.sint + \
 self.size * sin (self.nb1 * self.t + self.phase)
def calc2 (self) :
 self.x = self.rc2 * self.cost + \
 self.size * cos (self.na2 * self.t)
 self.y = self.rc2 * self.sint + \
 self.size * sin (self.nb2 * self.t + self.phase)
def incr (self) :
 self.theta = self.theta + self.dtheta
 self.phase = self.phase + self.dphase

from animation2d import *
instantiate an Animation2d without smoothness
anim = Animation2d (initialize = init,
 calculations = [calc1, calc2], update = incr,
110

 the two
redible
 animation = 0, nsteps = 200)

g1 = Graph2d (anim)
g1.plot ()

Now animate smoothly to see the difference.
anim.set (animation = 1)
g1.plot ()

We have been unable to capture steps in the animation for this document; below is a pisture of
curves after the animation has finished. You will have to try this example yourself to see the inc
effects!
111

112

UCRL-MA-128569, Manual 4

to learn

wledge
rrently
er

aning

. g.,
s

ise,

e

CHAPTER 7:Plotter s: A Brief
Primer

The purpose of this chapter is to give a quick and dirty introduction on how to instantiate a Plotter
object and use it. It is currently not possible to induce a Graph object to create Plotter s of every
conceivable type; the user who may not be satisfied with what is supplied can use this chapter
how to create Plotter s which can be passed as the values of keyword arguments to Graph objects
upon instantiation.

In general we recommend against anybody using the full capability of Plotter objects who is not
on the computer science team. They are a low-level interface and require a lot of work and kno
of low-level graphics engine intrinsics on the part of the user. If there is some capability not cu
offered by Graph objects, then rather than using a Plotter , I recommend that you contact a memb
of the computer science team to add the capability which you desire.

Instantiation

Uncomment one of the following depending on which
graphics you are going to use (or both if you want
both kinds of plotter)
For a Narcisse plotter use:
import NarPlotter
plN = NarPlotter.Plotter ([<filename>] [, <keylist>])
For a Gist plotter use:
import GistPlotter
plG = GistPlotter.Plotter ([<filename>] [, <keylist>])

Description

The only argument to instantiate a PyNarcisse Plotter is <filename> ; it is also the first ar-
gument to instantiate a PyGist Plotter . <filename> is a string which specifies plotting
associated with a particular filename. PyGist and PyNarcisse differ dramatically in the me
of this argument, as explained below.

PyGist: <filename> specifies a host where the PyGist window is to be displayed (e
"icf.llnl.gov:0.0"). If the argument <filename> is missing or if the user specifie
" " (a single blank) as the < filename>, then PyGist will attempt to obtain the user’s DIS-
PLAY environment variable; no window will be opened if this variable is undefined. Likew
no window will be opened if the user specifies "" (a blank), "none" , or None as the < file-
name>. If the user wants a Plotter which plots to a given CGM or PostScript file (or on
11/23/98 113

-

d,

t val-

ue

t, oth-

lled
of each), then the user must instantiate one or more Plotter objects using the keyword ar
gument hcp (described below) and hand it to a Graph via the plotter keyword. Eventually
this will be changed to make it easier on the user to ask the Graph to plot to a file only.

PyNarcisse: < filename> can be used in two different ways.

(1) As a way to specify a Narcisse process to connect to. In this case, the < filename> should
be in the form "machine+port_serveur++user@ie.32" where machine specifies
where the display is to take place (e. g., "icf.llnl.gov:0.0"), port_serveur is the
port number displayed on the Narcisse GUI, and user is the userid of the person running.

(2) As a filename where Narcisse is to dump its plots. In this case, use the file suffix ".spx"
to specify a binary file, or ".spc" for an ascii dump file. If a filename of this form is specifie
PyNarcisse attempts a connection to Narcisse using the value of the DEST_SP3 environment
variable, if it exists, and if not, attempts to construct a connection filename using DISPLAY
environment variable for machine , the value of the PORT_SERVEUR environment variable
(or the default 2101 if PORT_SERVEUR is not defined) for port_serveur , and the value of
USER for user .

Keyword Arguments

Currently only PyGist Plotter s accept keyword arguments; these arguments (with their defaul
ues, if not specified) are as follows:

n (0) -- the number of the graphics window (0 to 7 are allowed). each Plotter object corre-
sponds to a separate window.

dpi (100 for 2d; 75 for 3d.) -- the size of the window wanted. 100 and 75 are allowed; 100
is the larger size. This does not affect the size of hardcopy plots.

wait (1) -- used to make sure everything is plotted before changing frames.

private (0) -- use a common colormap (palette) for all windows.

hcp -- if not present, or if set to "" , there will be no hardcopy file. If present, names a file uniq
to this window. This will be PostScript if the < filename> ends in ".ps" and CGM if the
< filename> ends in ".cgm" . Note that if both < filename> and hcp are "" , then you
will have a Plotter with no window and no file, a circumstance of doubtful utility.

dump (0) -- if 1, dumps the color palette at the beginning of each page of hardcopy outpu
erwise converts to grey scale.

legends (0) -- controls whether (1) or not (0) curve legends are dumped to the hardcopy.

style ("work.gs" for 2d; "nobox.gs" for 3d.) -- name of a Gist style sheet.

Example

The following will create a plotter with a window and a hardcopy file for color plots ca
talk.ps :

pl = GistPlotter.Plotter (" ", hcp = "talk.ps", dump = 1, dpi = 75)
114

115

116

Index

A

add
example 85, 89
Graph2d 80

example 29, 30, 32, 33
Graph3d 92

add_display
Graph 80

add_file
Graph 80

add_plotter
Graph 81

ambient 95
example 103

animation 110
example 111

Animation2d
example 110
examples 110
instantiation 109
keyword arguments 109

Animation2d.set
example 111

arguments
iso (Slice) 74
nv (Slice) 74
plane (Slice) 74
Slice 74
val (Slice) 74
xyzv (Slice) 74

avs
example 69, 102

AVS format 61
avs keyword 67
axis 10
axis_limits

example 43, 44, 87, 88
axis_scales

example 42, 86

B

backlit surface 101
Basis 1
boundary 23, 34

example 35, 37
boundary_color 23, 34
boundary_type 23, 34

C

c_contours_array 49, 63
c_contours_scale 49, 63
calculations 109

example 110
CallArray

example 42
1

cardioids
example 90

cell_descr 67, 68
CellArray

example 41, 43, 44
Instantiation 41
keywords 41

CellArray.new 41
CellArray.set 41
CGM 1
change

example 85, 86, 87, 88, 89, 98, 99, 100, 101, 106
Graph 81
Graph2d

example 19, 36, 37
change_plot

Graph2d 80
example 27, 28

Graph3d 93
click and drag plot 66
color 10, 24, 27, 32, 35, 110

example 13, 19, 30, 32, 33, 35, 37, 38, 90
names 10
numbers 10

color card
description (Gist) 49
description (Narcisse) 48

color_bar
example 102

color_card 48, 62
example 43, 44, 96, 102, 103, 106

config save 3
connect 95
contour plots

example 28
contours 24, 35

example 38
table vs. filled 24

Curve
example 12, 84, 85, 89, 90
instantiation 9
keywords 9
methods 9

Curve.marker
example 89

Curve.marks
example 89

Curve.set
example 14, 15, 86

D

delete
example 89
Graph2d 80

example 29, 30, 32, 33
Graph3d 92

delete_file
Graph 80

delete_plotter
Graph 81

DEST_SP3 environment variable 81, 82, 114
device capabilities 7
2

diffuse 95
example 101, 103, 106

DISPLAY environment variable 81, 82, 113, 114
distance 94
dpi 114

example 84
dump 114

E

ecolor 24
example 98

edges 24, 35
environment variables 2

DEST_SP3 81, 82, 114
DISPLAY 81, 82, 113, 114
PATH 2
PORT_SERVEUR 3, 81, 82, 114
PYGRAPH 2, 82
PYTHONPATH 2
USER 82, 114

ewidth 24
Examples

Graph2d 83
examples

animation 111
Animation2d 110
Animation2d.set 111
avs 69
axis_limits 43, 44
axis_scales 42
boundary 35, 37
c (Mesh3d) 64
c (Mesh3d, irregular) 71, 72
calculations 110
CellArray 41, 42, 43, 44
color 12, 13, 19, 26, 27, 28, 29, 30, 32, 33, 35, 37, 38
color_card 43, 44
contour plots 28
contours 38
Curve 12
Curve.set 14, 15
filled 31
Graph2d 42, 43, 44
Graph2d.add 29, 30, 32, 33
Graph2d.change 36, 37
Graph2d.change

19
Graph2d.change_plot 27, 28
Graph2d.delete 30, 32, 33
Graph3d.set_surface_list 76, 77
hex 70, 71
imploding sphere 68, 70, 75, 76, 77
initialize 110
ireg 26
isosurface slice 76, 77
isosurface slicing 64
levels 29, 30, 33, 38
Lines 17, 21
Lines.set 19, 20
marker 14, 32
marks 14, 15, 29, 30, 32, 33
mask 70, 72
3

mesh computation 25
mesh plot 26
Mesh3d 64
Mesh3d (unstructured) 71
Mesh3d (unstructured) 69, 71, 72
n (Polymap) 40
nsteps 111
number 35
opt_3d 64, 70, 71, 72, 76, 77
PolyMap 39, 40
prism 71, 72
pyr 71
QuadMesh 26, 29, 30, 32, 33
QuadMesh.set 31, 37, 38
Region 35
region map computation 25
Region.set 37, 38
regions 36
scale 37, 38
set

Lines 19, 20
sslice 64, 76, 77
tet 71, 72
text 36
text_color 36
text_pos 36
text_size 36
titles 17, 19, 20, 22, 40, 42, 43, 44

multiple 70
type 15, 20, 30, 35, 37, 38
update 110
varno 76, 77
vector field computation 25
vector plot 37
vectors 37, 38
vx, vy (QuadMesh) 37, 38
width 12, 15, 20, 26, 27, 29, 30, 32, 33, 35, 38
x, y (Polymap) 40
x, y (QuadMesh) 26, 30, 32, 38
x, y, z (Mesh3d) 64
x, y, z (Mesh3d, irregular) 69, 71, 72
xyequal 22, 27
z (CellArray) 42, 43, 44
z (Polymap) 40
z (QuadMesh) 29, 30, 32, 33
z(QuadMesh) 38

EZN 1
EZPLOT 1
ezplot 3

F

FILE menu 3
File save 3
filename

Plotter parameter 113
PyGist 113
PyNarcisse 114

filled 24, 35
example 31
table vs. contours 24

filled contour plot
example 31
4

G

geometry capabilities, table 6
Gist 1, 3

color card description 49
gist.py 2
gnomon 94

example 106
Graph

methods 80
Graph2d 79

example 42, 43, 44, 84, 90
Examples 83
instantiation 79
keywords 79, 81
methods 79

Graph2d.add
example 29, 30, 32, 33, 85, 89

Graph2d.change
example 19, 36, 37, 85, 86, 87, 88, 89

Graph2d.change_plot
example 27, 28

Graph2d.delete
example 29, 30, 32, 33, 89

Graph2d.plot
example 84, 85, 86, 87, 88, 89, 90

Graph3d 92
example 96, 102, 103, 106
instantiation 92
keywords 92, 93
methods 92
move_light_source 93
rotate 93

Graph3d.change
example 98, 99, 100, 101, 106

Graph3d.move_light_source
example 103

Graph3d.plot
example 96, 97, 98, 99, 100, 102, 106

Graph3d.quick_plot
example 101

Graph3d.rotate
example 106

Graph3d.set_surface_list
example 76, 77

H

hardcopy
example 102

hcp 114
hex 68

example 70, 71, 102
hide 10, 11, 24, 39, 41

I

Ihm compute 3
imploding sphere

example 68, 70, 75, 76, 77, 101
graph 76, 77, 103

inhibit 23, 34
initialize 109

example 110
5

instantiation
Animation2d 109
CellArray 41
Curve 9
Graph2d 79
Graph3d 92
Lines 16
Mesh3d 61
Mesh3d (irregular) 66
Mesh3d (regular) 63
Plane 72
Plotter 113
Polymap 39
QuadMesh 22
Region 34
Slice 74
Surface 47

irregular meshes 66
iso 74
isosurface slice

example 106
isosurface slicing 73

example 64

K

keywords
ambient 95

example 103
animation 110

example 111
Animation2d 109
avs 67

example 69, 102
axis 10
axis_limits

example 43, 44, 87, 88
axis_scales

example 42, 86
boundary 23, 34

example 35, 37
boundary_color 23, 34
boundary_type 23, 34
c (Mesh3d)

example 64
c (Mesh3d, irregular) 67

example 71, 72
c (Mesh3d, regular) 64
c (Surface) 48
c_contours_array 49, 63
c_contours_scale 49, 63
calculations 109

example 110
cell_descr (PyGist) 67
cell_descr (PyNarcisse) 68
CellArray 41
color 10, 16, 24, 32, 110

example 12, 13, 19, 26, 27, 28, 29, 30, 32, 33, 35, 37, 38, 90
color_bar

example 102
color_card 48, 62

example 43, 96, 102, 103, 106
examples 44
6

connect 95
contours 24, 35

example 38
contours vs.filled 24
Curve 9
diffuse 95

example 101, 103, 106
distance 94
dpi 114

example 84
dump 114
ecolor 24

example 98
edges 24, 35
ewidth 24
filled 24, 35

example 31
filled vs. contours 24
gnomon 94

example 106
Graph2d 79, 81
Graph3d 92, 93
hardcopy

example 102
hcp 114
hex 68

example 70, 71, 102
hide 10, 11, 16, 24, 39, 41
inhibit 23, 34
initialize 109

example 110
ireg 23

example 26
label 10, 24, 39, 41

example 90
legends 114
levels 24, 34

example 29, 30, 33, 38
lighting 95
Lines 16
link 94
marker 10, 24

example 14, 32, 84, 85, 89
marks 10, 24

example 14, 15, 29, 30, 32, 33, 84, 85, 89, 90
mask 49, 63

example 70, 72, 96, 97, 99, 102, 103, 106
mesh_type 49, 63
Mesh3d 62
Mesh3d (irregular) 67
Mesh3d (regular) 63
n (Plotter) 114
n (Polymap) 39

example 40
Narcisse 68
no_cells 68
nsteps 110

example 111
number 34

example 35
number_of_c_contours 50, 63
number_of_z_contours 50, 63
opt_3d 49, 62
7

example 64, 70, 71, 72, 76, 77, 96, 100, 102, 103
phi 94
Plotter 114
plotter

example 90
exampleexamples

Graph2d84
Polymap 39
prism 68

example 71, 72
private 114
pyr 68

example 71
QuadMesh 23
Region 34
region 23
regions 23

example 36
roll 94
scale 24

example 37, 38
sdir 95

example 101
shade

example 99, 103
specular 95

example 101, 103, 106
split 95

example 102, 106
spower 95
style 114
Surface 47
sync 95
tet 68

example 71, 72
text

example 36
text_color

example 36
text_pos

example 36
text_size

example 36
theta 94
title_colors

example 84
titles

example 17, 19, 20, 40, 42, 43, 44, 84, 85, 86, 87, 88, 89, 90, 96, 98, 99, 101, 103
multiple

example70
tri 23
type 10, 16, 24

example 15, 20, 30, 35, 37
typr

example 38
update 109

example 110
varno

example 76, 77
vectors 35

example 37, 38
vx, vy (QuadMesh) 24
8

example 37, 38
wait 114
width 10, 16, 24, 32

example 12, 15, 20, 26, 27, 29, 30, 33, 35, 38
x, y (Curve) 10
x, y (Polymap)

example 40
x, y (QuadMesh) 23

example 26, 29, 32, 38
x, y (Surface) 48
x, y(QuadMesh)

example 30
x, y, z (Mesh3d)

example 64
x, y, z (Mesh3d, irregular) 67

example 71, 72
x, y, z (Mesh3d, regular) 63
x,y (Curve) 10
x,y (Polymap) 39
x_axis_scale

example 87
x_factor

example 106
x0, y0 (CellArray) 41
x0, y0 (Lines) 16
x1, y1 (CellArray) 41
x1, y1 (Lines) 16
xyequal

example 27
y_factor

example 96, 103, 106
z (CellArray) 41

example 42, 43, 44
z (Polymap) 39

example 40
z (QuadMesh) 23

example 29, 30, 32, 33, 38
z (Surface) 48
z_c_switch 49, 63
z_contours_array 49, 63
z_contours_scale 49, 63
z_scale 24, 35

L

label 10, 24, 39, 41
example 90

lambda operator 21
legends 114
levels 24, 29, 34

example 30, 33, 38
lighting keywords 95
Lines

example 17, 21
instantiation 16
keywords 16

Lines.set
example 19, 20

link 94

M

map function 21
9

marker 10, 24
example 14, 32, 84, 85, 89

marks 10, 24, 29
example 14, 15, 30, 32, 33, 84, 85, 89, 90

mask 49, 63
example 70, 72, 96, 97, 99, 102, 103, 106

mesh
regular 63
structured 63

mesh computation
example 25

mesh plot
example 26

mesh_type 49, 63
Mesh3d 60

example 64, 102, 106
Instantiation 61
instantiation (irregular) 66
instantiation (regular) 63
isosurface slice

example 76, 77
isosurface slicing

example 64
keywords 62
keywords (irregular) 67
keywords (regular) 63
nonstructured 61
structured 61
unstructured 66

example 69, 71, 72
meshes

irregular 66
unstructured 66

methods
Curve 9
Graph 80
Graph2d 79
Graph3d 92

move_light_source 93
example 103

moving light source
example 103
graphs 104

N

Narcisse 2, 3
cell format 68
color card description 48
FILE menu 3
File save 3
Ihm compute 3
process 2
socket compute 3
STATE submenu 3

nested cardioids
example 90

new
CellArray 41
Curve 9
Graph2d 79
Graph3d 92
Polymap 39
10

Quadmesh 23, 24
Region 35

no_cells 68
none, opt_3d value 65, 76, 77
nonstructured mesh 61
nsteps 110

example 111
number 34

example 35
number_of_c_contours 50, 63
number_of_z_contours 50, 63

O

Object-Oriented Graphics 1, 3
OOG 1
opaque mesh

backlit 101
opaque shaded mesh (no lines) 100
opaque shaded wire mesh (red) 99
opaque wire mesh 96
opt_3d 49, 62

"none" 65, 76, 77
example 64, 70, 71, 72, 76, 77, 96, 100, 102, 103

P

palette
description (Gist) 49
description (Narcisse) 48
split 95

PATH 2
phi 94
Plane

arguments 72
examples 102, 106
instantiation 72

plane 74
plane slice 73
plane slicing

examples 102, 106
plot

example 84, 85, 86, 87, 88, 89, 90, 96, 97, 98, 99, 100, 102, 106
Graph2d 80

Plotter
example 84
filename parameter 113
instantiation 113
keywords 114

plotter
example 84, 90

Plotter object 1
Plotter Objects 3
Polymap

example 39
instantiation 39
keywords 39

Polymap,example 40
Polymap.new 39
Polymap.set 39
PORT_SERVEUR 3, 81, 114

default value 114
PORT_SERVEUR environment variable 82
11

PostScript 1
prism 68

example 71, 72
private 114
PyGist 2, 3

colors 10
device capabilities 7
filename 113
geometry capabilities 6

PYGRAPH 2, 82
PyGraph 1, 2, 3

Documentation 3
platforms 3

PyNarcisse 2
colors 10
device capabilities, table 7
filename 114
geometry capabilities 6

pyr 68
example 71

Python 2
home page 2
lambda operator 21
map function 21

Python Narcisse 3
PYTHONPATH 2

Q

QuadMesh
example 26, 29, 30, 32, 33
instantiation 22
keywords 23
methods 24

Quadmesh
methods 23

QuadMesh.set
example 31, 37, 38

quick_plot
example 101
Graph2d 80
Graph3d 93

R

reference vs copy 15
Region

examples 35
instantiation 34
keywords 34

region 23
region map 23
region map computation

example 25
Region.new 35
Region.set 35

example 37, 38
regions 23

example 36
regular mesh 63
replace

Graph2d 80
Graph3d 92
12

roll 94
rotate 93

example 106

S

scale 24
example 37, 38

sdir 95
example 101

set
Animation2d

example 111
CellArray 41
Curve 9

example 14, 15
example 19, 20, 86, 97, 98, 99, 100
Polymap 39
QuadMesh 24

example 28, 31, 37, 38
Quadmesh 23
Region 35

example 37, 38
set_surface_list

Graph3d
example 76, 77

shade
example 99, 103

shaded opaque wire mesh (no lines) 100
shaded wire mesh, opaque (red) 99
Slice

arguments 74
creating via sslice

example 102, 106
creation 73
instantiation 74
isosurface 73
Plane 73
Slice 74

Slice objects 73
slicing

isosurface
example 106
examples 76, 77

plane
examples 75, 102, 106

socket compute 3
specular 95

example 101, 103, 106
split 95

example 102, 106
split palette 95
spower 95
sslice

example 64, 76, 77, 106
examples 102

sslice function 73
STATE submenu 3
structured mesh 61, 63
style 114
support 4
Surface 47

example 96, 103
13

instantiation 47
keywords 47

surface
backlit 101

Surface plots
examples 96

Surface.set
example 97, 98, 99, 100

sync 95

T

table
device capabilities 7
geometry capabilities 6

tet 68
example 71, 72

text
example 36

text_color
example 36

text_pos
example 36

text_size
example 36

theta 94
title_colors

example 84
titles

example 17, 19, 20, 40, 42, 43, 44, 84, 85, 86, 87, 88, 89, 90, 96, 98, 99, 101, 103
multiple

example 70
transparent wire mesh 97
transparent wire mesh (red) 98
tri 23
type 10, 24

example 15, 20, 30, 35, 37, 38

U

unstructured meshes 66
update 109

example 110
USER environment variable 82, 114

V

val 74
varno

example 76, 77
vector field computation

example 25
vector plot 37
vectors 35

example 37, 38

W

wait 114
width 10, 24, 27, 29, 32

example 12, 15, 20, 30, 33, 35, 38
wire mesh

opaque shaded (no lines) 100
wire mesh (red)
14

opaque, shaded 99
wire mesh, opaque 96
wire mesh, transparent 97
wire mesh, transparent (red) 98

X

x, y, z (Mesh3d, irregular)
example 69

x_axis_scale
example 87

x_factor
example 106

x_factor and y_factor 94
Xwindows 1
xyequal 27

Y

y_factor
example 96, 103, 106

y_factor and x_factor 94

Z

z_c_switch 49, 63
z_contours_array 49, 63
z_contours_scale 49, 63
z_scale 24, 35
zoom in 65
zoom out 66
15

	The Python Graphics Interface, Part II
	Table of Contents
	CHAPTER 1: The Python Graphics Interface�1
	Overview of the Python Graphics Interface 1
	Using the Python Graphics Interface 2
	About This Manual 3

	CHAPTER 2: Introduction to Object-Oriented Graphics�5
	Object Oriented Graphics 5
	Running OOG 7
	Class Summary 8

	CHAPTER 3: Two-Dimensional Geometric Objects�9
	Curve Objects 9
	Lines Objects 16
	QuadMesh Objects 22
	Plots of Mesh Lines 26
	Contour Plots 28

	Region Objects 34
	Polymap Objects 39
	CellArray Objects 41

	CHAPTER 4: Three-Dimensional Geometric Objects�47
	Surface Objects 47
	Mesh3d Objects 60
	Structured vs. Nonstructured Meshes 61
	Regular (or Structured) Meshes 63
	Irregular (Unstructured) Meshes 66

	Plane objects 72
	Slice objects 73
	3D Animation 77

	CHAPTER 5: Graph Objects�79
	Graph2d Objects 79
	Graph3d Objects 92

	CHAPTER 6: Animation2d Objects�109
	CHAPTER 7: Plotters: A Brief Primer�113

	CHAPTER 1: The Python Graphics Interface
	1.1 Overview of the Python Graphics Interface
	1.2 Using the Python Graphics Interface
	1.3 About This Manual

	CHAPTER 2: Introduction to Object- Oriented Graphics
	2.1 Object Oriented Graphics
	2.2 Running OOG
	2.3 Class Summary

	CHAPTER 3: Two-Dimensional Geometric Objects
	3.1 Curve Objects
	3.2 Lines Objects
	3.3 QuadMesh Objects
	3.3.1 Plots of Mesh Lines
	3.3.2 Contour Plots

	3.4 Region Objects
	3.5 Polymap Objects
	3.6 CellArray Objects

	CHAPTER 4: Three-Dimensional Geometric Objects
	4.1 Surface Objects
	4.2 Mesh3d Objects
	4.2.1 Structured vs. Nonstructured Meshes
	4.2.2 Regular (or Structured) Meshes
	4.2.3 Irregular (Unstructured) Meshes

	4.3 Plane objects
	4.4 Slice objects
	4.5 3D Animation

	CHAPTER 5: Graph Objects
	5.1 Graph2d Objects
	5.2 Graph3d Objects

	CHAPTER 6: Animation2d Objects
	CHAPTER 7: Plotters: A Brief Primer
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

