UCRL-MA-128569, Manual 4

The Python Graphics Interface, Part I

Object-Oriented Graphics
Manual

Written by

Zane C. Motteler
Lee Busby
Fred N. Fritsch

11/23/98

Object-Oriented Graphics Manual

Copyright (c) 1996.
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, pro-
vided that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under contract
no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of California for the op-
eration of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference
herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for advertising or product endorsement
purposes.

Table of Contents

CHAPTER 1: The Python Graphics Interface 1
Overview of the Python Graphics Interface 1

Using the Python Graphics Interface 2

About This Manual 3

CHAPTER 2: Introduction to Object-Oriented Graphics 5
Object Oriented Graphics 5

Running OOG 7

Class Summary 8

CHAPTER 3: Two-Dimensional Geometric Objects 9
Curve Objects 9

Lines Objects 16

QuadMesh Objects 22

Plots of Mesh Lines 26

Contour Plots 28

Region Objects 34

Polymap Objects 39

CellArray Objects 41

CHAPTER 4: Three-Dimensional Geometric Objects 47
Surface Objects 47

Mesh3d Objects 60

Structured vs. Nonstructured Meshes 61

Regular (or Structured) Meshes 63

Irregular (Unstructured) Meshes 66

Plane objects 72

Slice objects 73

3D Animation 77

CHAPTER 5: Graph Objects 79
Graph2d Objects 79
Graph3d Objects 92

CHAPTER 6: Animation2d Objects 109

CHAPTER 7: Plotters: A Brief Primer 113

UCRL-MA-128569, Manual 4

cHAPTER 1. I NE Pyth()n GraphiCS
Interface

1.1 Overview of the Python Graphics Interface

The Python Graphics Interface (abbreviated PyGraph) provides Python users with capabilities for
plotting curves, meshes, surfaces, cell arrays, vector fields, and isosurface and plane cross sections o
three dimensional meshes, with many options regarding line widths and styles, markings and labels,
shading, contours, filled contours, coloring, etc. Animation, moving light sources, real-time rotation,
etc., are also available. PyGraph is intended to supply a choice of easy-to-use interfaces to graphics
which are relatively independent of the underlying graphics engine, concealing the technical details
from all but the most intrepid users. Obviously different graphics engines offer different features, but
the intention is that when a user requests a particular type of plot which is not available on a particular
engine, the low level interface will make an intelligent guess and give some approximation of what
was asked for.

There are two such graphics packages which are relatively independent of the underlying plotting li-
brary. The Object-Oriented Graphics (OOG) Package defines geometric objects (Curves, Surfaces,
Meshes, etc.), Graph objects which can be given one or more geometric objects to plot, and Plotter ob-
jects, which receive geometric objects to plot from Graph objects, and which interface with the graph-
ics engine(s) to do the actual plotting. A Graph can create its own Plotter, or the more capable user can
create one or more, handy when one wishes (for instance) to plot on a remote machine, or to open
graphics windows of different types at the same time. The second such package is called EZPLOT; it
is built on top of OOG, and provides an interface similar to the command-line interface of the Basis
EZN package. Some of our long-time users may be more comfortable with this package, until they
have mastered the concepts of object-oriented design.

As mentioned above, a Graph object needs at least one Plotter object to plot itself; only the Plotter ob-
jects need know about graphics engines. At present we have two types of Plotter objects, one which
knows about Gist and one which knows about Narcisse. Some power users may prefer to use the lower-
level library-specific function calls, but most users will use EZPLOT or OOG.

Gist is a scientific graphics library written in C by David H. Munro of Lawrence Livermore National
Laboratory. It features support for three common graphics output devices: Xwindows, (color) Post-
Script, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small (written di-
rectly to Xlib), portable, efficient, and full-featured. It produces x-vs.-y plots with “good” tick marks
and tick levels, 2-D quadrilateral mesh plots with contours, vector fields, or pseudocolor maps on such

11/23/98 1

meshes. 3-D plot capabilities include wire mesh plots (transparent or opaque), shaded and colored sur-
face plots, isosurface and plane cross sections of meshes containing data, and real-time animation
(moving light sources and rotations). The Python Gist mogiglepy and the associated Python
extensiorgistCmodule provide a Python interface to this library (referred to as PyGist).

Narcisse is a graphics library developed at out sister laboratory at Limeil in France. It is especially
strong in high-quality 3-D surface rendering. Surfaces can be colored in a variety of ways, including
colored wire mesh, colored contours, filled contours, and colored surface cells. Some combinations of
these are also possible. We have also added the capability of doing isosurfaces and plane sections o
meshes, which is not available in the original Narcisse. The Python Narcisse nardidgsemod-

ule (referred to as PyNarcisse) provides a low-level Python interface to this library. Unlike Gist, Nar-
cisse does not currently write automatically to standard files such as PostScript or CGM, although it
writes profusely to its own type of files unless inhibited from doing so, as described below. However,
there is a "Print" button in the Narcisse graphics window, which opens a dialog that allows you to write
the current plot to a postscript file or to send it to a postscript printer.

1.2 Using the Python Graphics Interface

In order to use PyGraph, you first need to have Python installed on your system. If you do not have
Python, you can obtain it free from the Python pagdgtpt//www.python.org . You may

need the help of your system administrator to install it on your machine. Once you have Python, you
have to know at least a smattering of the language. The best way to do this is to download the excel-
lent tutorial from the Python pages, sit down at your computer or terminal, and work your way
through it.

Before using the Python Graphics Interface, you should set some environment variables as follows.

« Your PATHvariable should contain the path to ghy¢hon executable.

« You should set Y THONPATH/ariable to point to all directories that contain Python exten-
sions or modules that you will be loading, which may include the OOG modaj#st , and
narcissemodule orgistCmodule . Check with your System Manager for the exact spec-
ifications on your local systems.

« Unless you create your own plotter objects, PyGraph will create a default Gist Plotter which
will plot to a Gist window only. If you want your default Plotter to be a Narcisse Plotter, then
set the variabl®YGRAPHo Nar or Narcisse

A Gist Plotter object automatically creates its own Gist window and then plots to that window. Nar-
cisse, however, works differently. Narcisse is established as a separately running process, to which the

Plotter communicates via sockets. Thus, to run a Narcisse Plotter, you must first open a NBocisse.

1. I am going to assume that you already have Narcisse installed on your system, and its directory
path in youlPATHvariable.

do so, you need to go through the following steps:

1. Set your environment variabRORT_SERVEURo 0.

2. Start up Narcisse by typing in the commayafcisse & . It will take a few moments for the
Narcisse GUI to open, then immediately afterwards it will be covered by an annoying window
which you can eliminate by clicking i@Kbutton.

3. You will note that there is a server port number given on the GUI. SePyoRi _SERVEUfRari-
able to this value.

4. Narcisse has an annoying habit of saving everything it does to a multitude of files, and notifying
you on the fly of all its computations. If you do a lot of graphics, these files can quickly fill up your
guota. In addition, the running commentary on file writing and computation on the GUI is time-
consuming and slows Narcisse down to a truly glacial pace. To avoid this, you need to turn off a
number of options via the GUI before you begin. They are all und&TAdEsubmenu of the
FILE menu, and should be set as follows: sebtket compute " to “ no,” set “File
save " to “ nothing ,” set “Config save " to “ no,” and set ‘lhm compute " to“ no.”

(“IHM” are the French initials for “GUL.”)

1.3 About This Manual

This manual is part of a series of manuals documenting the Python Graphics Interface (PyGraph).
They are:

* |. EZPLOT User Manual
* |Il. Object-Oriented Graphics Manual
* lll. Plotter Objects Manual

* IV. Python Gist Graphics Manual

* V. Python Narcisse Graphics Manual

EZPLOT is a command-line oriented interface that is very similar to the EZN graphics package in
Basis. The Object-Oriented Graphics Manual provides a higher-level interface to PyGraph. The re-
maining manuals give low-level plotting details that should be of interest only to computer scientists
developing new user-level plot commands, or to power users desiring more precise control over their
graphics or wanting to do exotic things such as opening a graphics window on a remote machine.

PyGraph is available on Sun (both SunOS and Solaris), Hewlett-Packard, DEC, SGI workstations, and
some other platforms. Currently at LLNL, Narcisse is installed only on the X Division HP and Solaris
boxes, however, and Narcisse is not available for distribution outside this laboratory. Our French col-

1. We did tell you that Narcisse was French, didn't we?

leagues are going through the necessary procedures for public release, but these have not yet bee
crowned with success. Gist, however, is publicly available as part of the Yorick release, and may be
obtained by anonymous ftp frofftp-icf.linl.gov ; look in the subdirectoryftp/pub/

Yorick

A great many people have helped create PyGraph and its documentation. These include

Lee Busby of LLNL, who wrotgistCmodule , and wrought the necessary changes in the
Python kernel to allow it to work correctly;

Zane Motteler of LLNL, who wrotearcissemodule ,ezplot , the OOG, and some other
auxiliary routines, and who wrote much of the documentation, at least the part that was not bla-
tantly stolen from David Munro and Steve Langer (see below);

Paul Dubois of LLNL, who wrote theDBandRanf modules, and who worked with Konrad
Hinsen (Laboratoire de Dynamique Moleculaire, Institut de Biologie Structurale, Grenoble,
France) and James Hugunin (Massachusetts Institute of Technoloyyd?y the numeric
extension to Python, without which this work could not have been done;

Fred Fritsch of LLNL, who produced the templates and did some of the writing of this docu-
mentation;

Our French collaborators at the Centre D’Etudes de Limeil-Valenton (CEL-V), Commissariat
A L’Energie Atomique, Villeneuve-St-Georges, France, among whom are Didier Courtaud,
Jean-Philippe Nomine, Pierre Brochard, Jean-Bernard Weill, and others;

David Munro of LLNL, the man behind Yorick and Gist, and Steve Langer of LLNL, who col-
laborated with him on the 3-D interpreted graphics in Yorick. We have also shamelessly stolen
from their Gist documentation; however, any inaccuracies which crept in during the transmis-
sion remain the authors’ responsibility.

The authors of this manual stand as representative of their efforts and those of a much larger number
of minor contributors.

Send any comments about these documentsapport@icf.linl.gov " on the Internet or to
“support " on Lasnet.

UCRL-MA-128569, Manual 4

cnarter 2:INtroduction to ObjeCt'
QOriented Graphics

Graphics objects consist of instances of one or more of the geometric oBjects (Surface
Mesh3d, etc.), and of objects to which they can be given to create a potentiaGpdg@hed for
Curve s, Graph3d for Surface s and/ofMesh3ds). A Graph object containing at least one geo-
metric object needs to hand itself over to a third kind of objeetper object, in order for the
actual plot to appear somewhere (in an Xwindow or in a file, for example).

2.1 Object Oriented Graphics

The idea behind object oriented graphics (OOG) is to supply the user with classes of geometric
objects and graph objects which are completely independent of the underlying graphics engine, mak-
ing it unnecessary for the user to have to learn details of low level interfaces to graphics. Most users
do not wish to be bothered with the low-level and often arcane methods of dealing with a graphics
engine, let alone having to know the properties of more than one graphics engine, since typically they
differ so radically from one another. We believe that the typical user would like to do something like
the following: take the results of some calculations and use them to specify geometric objects; hand
the geometric objects to graph objects; ask the graph objects to plot themselves.

Unfortunately the goal of a set of high-level graphics objects which are independent of the underlying
graphics engines is difficult (nearly impossible) to reach. This is particularly true of the two graphics
engines, Gist and Narcisse, which currently underlie the OOG. Gist has far more and better capabiliti-
ues for 2-D graphics than does Narcisse. This means that to supply relatively equivalent 2-D graphics
with Narcisse, it would be necessary to write a Python or C wrapper for Narcisse which does the nec-
essary computations. Likewise, although there is considerable overlap, each engine supplies some 3-
D capabilities that the other does not, so wrappers supplying extensions to each must be written. At the
time of the writing of this manual, only a small part of this work has been done, but we hope to proceed
with this work in the future.

Another intrinsic difficulty is that Narcisse is much slower than Gist, so, in particular, real-time ani-
mations involving complex figures are simply not feasible in Narcisse. Part of this slowness is due to
the fact that the user program and Narcisse (a separate process) communicate data back and forth vi
sockets, and part is simply that Narcisse internal computations, for whatever reasons, are very slow.

A third problem is that plotting solely to a file is impossible in Narcisse; it is designed to be used in-
teractively. Narcisse plots can be sent to either a binary or ascii file in addition to being sent to a win-
dow, but these files are in a format peculiar to Narcisse. A particular Narcisse plot can be sentto a Post-

11/23/98 S

Script file only by clicking a button in the Narcisse GUI currently displaying that plot. On the other
hand, Gist plots can be sent to an arbitrary choice of windows, PostScript files, and CGM files without
interctive intervention.

The tables below indicate to the user which capabilities are available in PyGist and PyNarcisse cur-
rently, and what types of devices can be plotted to. We use the term “not yet” for features which will
someday be implemented, and “never” for those which are essentially impossible.

TABLE 1 Geometry Capabilities of PyGist and PyNarcisse
PyGist PyNarcisse

curves, including multiple yes yes
multiple disjoint lines yes not yet
guadrilateral mesh--line plot yes not yet
guadrilateral mesh--contour plot yes not yet
guadrilateral mesh--filled contour plot not yet yes
region plots yes not yet
filled polygons yes not yet
cell arrays yes not yet
2-D animation, real time yes never
color bar yes yes
axes in 3d plots gnoméBmonly yes
surfaces--wire mesh, monochrome yes yes
surfaces--wire mesh, colored by data never yes
surfaces--flat (color filled cells) yes yes
surfaces--contours, filled contours not yet yes
surfaces--shaded by light source yes not yet
3-D mesh--complete cells never yes
3-D mesh--isosurface and plane slices yes yes
3-D mesh--isosurface and plane slices, split palette yes not yet
3-D realtime animation--moving light source yes maybe someday
3-D realtime animation--rotation yes yes (slow)

a. The gnomon is a small representation of the coordinate axes at the lower left of the
picture. The name of an axis is reverse video if it points into the plane of the graph.

TABLE 2 Device Capabilities of PyGist and PyNarcisse

PyGist PyNarcisse

Xwindow yes yes

multiple Xwindows yes yes

Xwindow on remote machine yes yes

file(s) only, no Xwindow yes never

CGM file(s) yes never
PostScript file(s) yes only from GUI
multiple files yes never

file in self-specific format no yes

2.2 Running OOG

Please read Chapter 1 first and follow the instructions there regarding the setting of various environ-
ment variables before running Python and PyGraph. Then, once you have fired up python, you need
to executamport statements for each component of the OOG which you intend to use. There are
two forms of thamport statement.

« from xxxx import *

(xxxx is the name of the file imported, but without the@y " suffix.) This form imports the
name space from filexxx into the name space where the import statement is executed. Thus,
if foo is a name ixxxx 's name space, then it may be referred to simpfpas

e IMpOrt XxXxx

This form imports only the namexx , so that ifoo is a variable in thexxx name space, then
it must be referred to asxx.foo

Following is a list of the OOG files available in PyGraph, and the names of the classes (capitalized)
and functions (lower case) which are declared in the files which you may want to use:

curve.py: Curve

lines.py: Lines

guadmesh.py: QuadMesh

region.py: Region

polymap.py: Polymap

cellarray.py: CellArray

surface.py: Surface

mesh3d.py: Mesh3d, Slice, slice

plane.py: Plane

graph.py: Graph (not normally instantiated alone)

graph2d.py: Graph2d
graph3d.py: Graph3d
animation2d.py: Animation2d
Nar.py: Plotter

Gist.py: Plotter

Note that if you want to instantiate both a PyNarcisse and a PyGist Plotter, you must ursgdre *
xxxx " form of theimport statement.

2.3 Class Summary

Here is a summary of the PyGraph classes which are described in the remainder of this manual.
« Two-dimensional geometric objects (CHAPTER 3: “Two-Dimensional Geometric Objects”)

cl = Curve (<keylist>)

|1 = Lines (<keylist>)

gm = QuadMesh (<keylist>)
rg = Region (<keylist>)
pm = Polymap (<keylist>)

ca = CellArray (<keylist>)
. Three-dimensional geometric objects (CHAPTER 4: “Three-Dimensional Geometric Ob-
jects”)
sf = Surface (<keylist>)
m3 = Mesh3d (<keylist>)
pl = Plane (<normal> , <point>)
sl = slice (m val [, wvarno]) #sliceisa function
sl = slice (m plane [, wvarno]) #sliceisa function
sl = slice (s, plane [, nslices])#sliceisa function
sl = Slice (nv, xyzv [, wval [, plane [, iso]]])
« Graph objects (CHAPTER 5: “Graph Objects”)
g2 = Graph2d (<object list> , <keylist>)
g3 = Graph3d (<object list> , <keylist>)
« Animation objects (CHAPTER 6: “Animation2d Objects”)
anim = Animation2d (<keylist>)
« Plotter objects (CHAPTER 7: “Plotters: A Brief Primer”)
pl = Nar.Plotter ([<filename> 1], <keylist>)
pl = Gist.Plotter ([<filename>][, <keylist>])

UCRL-MA-128569, Manual 4

chaprTer 3: | WO-Dimensional
Geometric Objects

Two-dimensional geometric objects available in OOG incl@ieve , Lines (a collection of dis-

joint lines),QuadMesh (as its name implies, a quadrilateral meB@gion (a sub-part of uad-

Mesh), PolyMap (a two-dimensional layout of polygons, each with an associated color),
CellArray (a two-dimensional array of rectangular cells, each with an associated color), and
Animation2d (a specification of an animation, which includes initialization, calculation, and
update functions). All of these objects are available in PyGist, but PyNarcisse suppo@siroely
objects in two dimensions (Narcisse is primarily a three and four dimensional plotting engine).

Animation2d objects are the subject of a separate chapter; see CHAPTER 6: “Animation2d Ob-
jects” on page 1009.

3.1 Curve Objects

To useCurve objects, you must import the Python module contained icditee.py

Instantiation

from curve import *
cl = Curve (<keylist>)

Description

A Curve object consists of the coordinates and other characteristics of a geometric curve. You use
“ Curve " to create one, and the other methods of@leve class to make a ne@urve out of the
old one or chang@urve characteristics. Here is a short description of the methods of the Curve class:

set : used to set one or more keyword arguments to new values. Warning--very little error checking
is done; it may be possible to set keywords to conflicting values using this method.

new: reinitializes aCurve object for reuse. The arguments are the same &ufoe .

The keyword arguments are all of the forikeyword = <value> . Most are optional and will
be assigned sensible values if omitted.

Keyword Arguments

11/23/98 9

The following keyword arguments can be specified fGuave object:
Y, X, color ,axis ,label ,type ,marks, marker ,width , hide
Descriptions of the keywords are as follows:
y =<sequence of floating pointvalues> (required): the y coordinates of the curve.

X =<sequence of floating point values> (optional): the x coordinates of the curve.
If not specified, y will be plotted versus its subscript range.

color=<value> where<value> is aninteger from 0 to 63 (PyNarcisse) or 0 to 199 (PyGist)
representing an entry in a color chart, or else a string giving a common color name. The com-
mon color names refer to colors on the default color caathbowhls ” (PyNarcisse) or

“rainbow.gp " (PyGist). The allowed names atieackground” , "foreground" (the
default), "blue™ , "green" , "yellow" , "orange" , "red" , "purple"” , "cyan" ,
"magenta” , "gold" , "yellowgreen" , "orangered" , "redorange" , "black"

and"white" . The abbreviationsg"” and"bg" are also allowed. On this color card the
numbers and their corresponding colors for PyNarcisse are roughly: 10-23: dark shading to
light blue; 24-39: greens; 40-43: yellow to gold; 44-47: oranges; 48-57: reds; and 58-63: pur-
ples. PyGist shades will be similar but scaled from 0 to 199.

axis ="left" or'"right" tells whether the left or right y axis will be assigned to this curve.
(Narcisse allows two y axes with different scales, one on the left of the plot and one on the right;
this option is not available in PyGist.)

label = <string> represents the label of this curve. In PyGist, the label will be a single char-
acter appearing periodically along the curve. In PyNarcisse, the label may be more than one
character, and will appear opposite the right end of the curve.

type = <value> tells how the curve will be plottetline” , "solid" (same aSline"),
"step” , "dash" , "dashdot" , "dashdotdot" , "none" ,"+" ,™" "o" ,"x" , and
"" are allowed. If the option is not available in a particular graphics package, a good guess
will be substituted. Ifype = "none" andmarks =1 , the plot will be a polymarker plot,
if supported by the graphics. Note that because of disparities among graphics packages sup-
ported, you can specify plotting a curve pointwise with symbols'tike "*" | etc., either by
use of thetype variable or by usingnarks andmarkers in conjunction withtype =
"none" .

marks=0 or1; select unadorned lines (0) or lines with occasional markers (1). PyNarcisse does
not support this option. The markers default to letters of the alphabet, but can be changed by
themarker keyword.

marker=character or integer value for character used to mark this cumaekE =1 . Special
values\l' ,'\2" ,\3" ,"4" ,and\5' stand for point, plus, asterisk, circle, and cross,
which sometimes look prettier than characters on some deVites!+" , ™" | "o" , and
"X" are also allowed.

width = real number; specifies the width of a curve if this is supported by the graphics. 1.0 gives
a finely drawn curve and is the default.

10

hide =0

orl; if set to 1, this curve will be hidden on the plot.

11

Examples

In the following example, two curves with different characteristics are created and plotted. The com-
ments in the code explain what is going on. We use only the simplest (and minimal) properties of a
Graph2d object for this example.

from curve import *

from graph2d import *

instantiate first Curve:

cl = Curve (y = arange (1, kmax+1, typecode = Float) ,
color = "yellow" , width = 4)

create a Graph2d containing this curve:

g2 = Graph2d (cl)

plot this curve (Graph2d creates a default Plotter):

g2.plot ()

3I:]JE||||||||||||||||||||||||||||

I
o

I
o

—
Lo]

o
L e b e

aEEREE RN

T
0 5] 10 15 20 25

12

Create a second Curve:

c2 = Curve (
y = sqrt (arange (1, kmax+1, typecode = Float)**3) ,
color = "blue")

Add it to the Graph:

g2.add (c2)

Plot the two curves:

g2.plot ()

150 — ~
100 — =
T —— =

RN
0 5] 10 15 20 25

13

Change the two curves to have markers:
cl.set (marks = 1, marker = "A")

c2.set (marks = 1, marker = "B")

Replot with new characteristics:

g2.plot ()

A

— —

Lo o

Lo] Lo]
|

o
o

e o

0) 10 15

20

25

14

change yet again:
cl.set (marks = 0, width = 3.0, type = "dash")
c2.set (marks = 0, width = 4.0, type = "dashdot")

Replot:
g2.plot ()
frrrrbrerrbrerebrerebrrrrbrrny
. 7
_ P
150 — J -
— S-
- 7 -
= s -
- s —
= rd -
= s _
- y4 -
100 — . —
— _/’ -
E g -
— s -
- p _
— s _
= 7 -
— 7 —
= g -
5':]_. .. _f .. R
- % -
BE K -
= # -
— e —
- - _
— o _
: o
- - -
ERa -
Crrr et rr e
0 5] 10 15 20 25

Note that the changes we made to curve instacitesndc2 did not need to be transmitted to the
Graph2d instanceg2. g2 hasreferencesocl andc2, notcopiesof them; hence any changes made
to the curves will be known @2. This is characteristic of Python: it passes objects by reference rather
than by value, which, particularly for large objects, saves a lot of copying overhead.

At this point we used only very simpleraph2d properties so as not to distract from the fact that we
are currently emphasizing curves. For thorough discussions and exam@lepb®2d , Section 5.1
on page 79.

15

3.2 Lines Objects

This class is not currently supported by PyNarcisse.

Instantiation

from lines import *
|1 = Lines (<keylist>)

Description

A Lines object contains the specifications for a set of disjoint lines. It has only keyword arguments,
in the form “keyword = <value> ”. It has methodset andnew, which function the same as the
Curve methods by the same name (Section on page 9). The following keywords arguments are al-
lowed:

x0, y0, x1, y1, color, hide, width, type

These keywords are described in the next subsection.

Keyword Arguments
The following keyword arguments can be specified fomas object:
x0 = <sequence of floating point values>
y0 = <sequence of floating point values>
x1 = <sequence of floating point values>
y1 = <sequence of floating point values>

x0,y0, x1, and y1 can actually be scalars, but if arrays must match in size and shape.
(xo[] , yofip represents the starting point of th& line, and
(x1[i] ,y1[i]) represents its endpoint.

color = one of the legal values for PyGist (currently the only package suppbitieg). See
gist.help for details.

hide = 0/1 (1 to hide this part of the graph)

width = width of the lines. 1.0 (pretty narrow) is the default. Successive values 2.0, 3.0, ...
roughly represent width in pixels.

type = "solid" ,"dash” ,"dot" ,"dashdot" ,"dashdotdot” , and'none" (in which
case the lines will be plotted as characters).

16

Example 1

The first example draws a series of lines starting at a set of equally spaced points along the x axis and
ending at a set of equally spaced points along the verticak line49 . Subsequent commands
change the plot as explained in the comments.

from lines import *

Set up the points along x axis:

x0 = arange(50, typecode = Float)

y0 = zeros(50, Float)

Set up the points along the line x = 49:
x1 =49 * ones(50, Float)

y1l = arange(50, typecode = Float)

Instantiate the Lines object ly:

ly = Lines (xO0 = x0,y0 = y0, x1 = x1, y1 =yl)
Instantiate a graph2d containing ly, with
(bottom) title "Just Lines™:

g0 = Graph2d (ly, titles = "Just Lines")

Plot the graph:

g0.plot ()

17

i

w
=]
gt e Lo

- ol
=
e]

i 7
i

I L L O O W o

.

20

Just Lines

30

18

Set the color of the lines to red; note that Lines,
like Curve, has a method set:

ly.set (color = "red")

Change the title to reflect this:
g0.change (titles = "Lines colored red")

Plot the new graph:
g0.plot ()

w
=]
gt e Lo

20 30

Lines colored red

o
A
e A
DS e e
o s i T
VN e s

“I‘m“

AL N

P
T
o

N
O

I T L O O W o

h
o
R

iy
ey

X
1]

i
ey
Bt

Now make the lines wider and change their type:
ly.set (width=4.0,type="dashdotdot")

Change the title to reflect this:

g0.change(titles = "Wide lines, dashdotdot style")
Plot the new graph:

gO0.plot ()

||4_

E

w
=]
gt e Lo

o

10 20 30 40
Wide lines. dashdotdot stvle

Note once again that tii&raph2d objectg0 contains aeferencdoly ; hence when we change some
of the characteristics &f , g0 will know about these changes.

Example 2

20

The second example is more complicated, but is worth studying. It uses two functions to compute the
endpoints of the lines; let us examine these functions first. Note that fuatiassumes that the
Numeric module’s name space has been imported.

def a2 (Ib, ub, n) :
return reshape (array ((n - 1) * spanz (lb, ub, n),
Float), (n-1, n-1))

This function takes whapanz returns (which is a sequencerof 1 items, as we shall see below),
concatenates it to itseff - 1 times (the *” is not multiplication, but replication), turns it into an
array, then reshapes it into a two-dimensional amrayl byn - 1.

Thespanz function is as follows:

def spanz (Ib, ub, n) :
if n < 3 : raise ValueError, \

"3rd argument must be at least 3"
c=05*(ub-1Ib)/(n-1.0)
b=Ib+c
a=(ub-c-b)/(n-2.0)
return map (lambda x, A=a, B =bh:
A*x + B, range (n - 1))

Thespanz function divides the interval frohb to ub into n parts, such that the interior subinter-
vals are of equal length, and the two end subintervals are each half of that length.and returns the
sequence of - 1 equally spaced points which divide it into thesparts. If you do not understand
how this function works, we recommend it as an excellent exercise to learn about the application of

themap function and théambda operator in Python.

Although this manual is not a Python text, it might be instructive to study the following version of func-
tion a2, which does the same thing as the als®@ndspanz together:

def a2 (Ib, ub, n) :
return multiply.outer (ones (17, Float),
arange (n - 1, typecode = Float) * (ub - Ib) / (n-1) +
(ub-1b)/(2*(n-1))

With the help of these two auxiliary functions, or just the latter one, if you prefer, the following code
will draw the graph of an interesting seventeen-pointed star:

Create the endpoints:
theta = a2 (0, 2*pi, 18)
X = cos (theta)

1. See th@ython Library Referenc@age 17, for a description mfap. ThePython Reference
Manual, p. 29, describelambda forms.

21

oot b chota bt
E—— | i

e e

sin (theta)

Instantiate the lines object:

from lines import *
In = Lines (x0

y

X, YO =

y, X1 = transpose (x),

y1l = transpose (y))
Instantiate a Graph2d object containing In, with the x

and y axes in equal scale, and an informative title:

=1,

= Graph2d (In, xyequal

titles = "Seventeen pointed star")
Plot the graph:
gl.plot ()

gl

— =

R

i

—

A

2

i

__,J-FE

!

0.o

0.5

_ J - w
_) K il
- AT S -
- TR [AR, -
E —x 9% n
|| o
I
L = L
(] (] (]

seventeen pointed star,

3.3 QuadMesh Objects

Currently only PyGist suppor@@uadMeshes.

Instantiation

)

<keylist>

from quadmesh import *
= QuadMesh (

agm

22

Description

The QuadMesh class provides a means of encapsulating information about two-dimensional, quadri-
lateral meshes and plotting the information connected with these meshes in various ways. Information
can be plotted as contour lines, filled contours, or filled cells; different regions of the mesh can be
plotted with different characteristics; and vector fields can be plotted on all or part of the mesh. The
keyword arguments for QuadMesh objects are:

X, Y, ireg, boundary, boundary_type, boundary_color, regions,
region, inhibit, tri, z, levels, filled, contours, edges,
ecolor, ewidth, vx, vy, type, color, hide, width, marks, marker

QuadMesh, like all other 2d classes, also has mettssds andnew.

Keyword Arguments

x andy, matching two-dimensional sequences of floating point values. These arguments are re-
guired and give the coordinates of the nodes of the mesh.

ireg , the region map: optional two-dimensional sequence of integer values with the same dimen-
sions ax andy, giving positive region numbers for the cells of the mesh, zero where the mesh
does not exist. The first row and columnireig should be zero (although these values will
be ignored), since there are one fewer cells in each direction than there are nodes.

boundary =0/1 ; 0: plot entire meshl: plot only the boundary of the selected region(s).

boundary _type ,boundary_color :these matter only fboundary =1, and tell how the
boundary will be plotted"¢olid* , "dash" , "dot" , "dashdot" ,"dashdotdot” , or
"none") and what its color will be.

region =n: if n =0, plot entire mesh; if any other number, plot the region specified (according
to the settings iireg).

regions ={[r 4, ro,...] :this option allows the user to specify tQaadMesh a list ofRe-

gion objects (Section 3.4 on page 34) to plot. Each object may have different plotting charac-
teristics (Section on page 35). Only regioisr », ... will be plotted.

regions ="all" (the default): plot all regions of the mesh.
inhibit =0/1/2 ;0: Plot all mesh linesl: Do not plottheéx [:, jl, Y[, j) lines;2:
Do not plot the(x [i,:], Y [)) lines;3: If boundary =1, do not plot boundaries.

(Default: 0.)0, 1, and2 only apply ifedges =1.

tri , optional two-dimensional sequence of values with the same dimensioag astriangula-
tion array used for contour plotting.

z = optional two-dimensional sequence of floating point values. Has the same skagredgs If
present, the contours piwill be plotted (default: 8 contours unldesels (see below) spec-
ifies otherwise), or a filled mesh will be plottedilfed = 1. In the latter case may be
one smaller thar andy in each direction, and represents a zone-centered quantity.

23

levels = either:

(1) optional one-dimensional sequence of floating point values. If present, a list of the values
of z at which you want contours; or

(2) if a single integer, represents the number of contours desired. They will be computed (at
equal levels) by the graphics.

filled =0/1 :1If 1, plot a filled mesh using the valueszoif contours =0, or plot filled con-
tours ifcontours =1 (this option is not available at the time of writing of this manual, but
will be added soon). i is not present, the mesh zones will be filled with the background color,
which allows plotting of a wire frame. (default val@e)

contours =0/1 :if 1, contours will be plotted filled =0, and filled contours will be plotted
if filled =1 (this option is not available at the time of writing of this manual, but will be
added soon)contours normally defaults td®, but will default tol if edges = 0 and
filled =0.

The table below summarizes the effects of these two keywords (assumipgesent):

TABLE 3 flled and contours
contours =0 cgntours =1
filled =0 k and/orl lines if contour lines
edges =1
filled = 1 filled mesh ("bg" fill if | filled contours
z = None)
edges, if nonzero, draw a solid edge around each zoreddes = 0 andfilled =0, draw
contour lines. (Default valué..)
ecolor ,ewidth --the color and width of the mesh lines wlitled = 1 andedges is non-
zero.

VX, vy --optional two-dimensional sequences of floating point values. Has the same skapel as
y. If present, represents a vector field to be plotted on the mesh.

scale = floating point value. When plotting a vector field, a conversion factor from the units of
(vx, vy) totheunits ofx, y) .Ifomitted,scale is chosen so thatthe longest vectors have
a length comparable to a “typical” zone size.

z_scale = specifies'log” ,"lin" , or"normal” for howz is to be plotted.
type , color ,width ,label ,hide , andmarks are as for curves.

marker is different, since you would not want to specify the same marker for all contours in a
contour plot. Instead, you can usarker to designate the letter (or number) which you want
to mark the lowest contour curve; then the remaining contours will be lettered or numbered
consecutively from that point on.

Methodsnew andset are as in th€urve class. Remember the warning abgeit : very little error
checking is done, so if you are not careful, you could assign conflicting values to keywords.

24

Examples

The following Python code computes a mesh and some data on the mesh to be us@dadNesh
examples which follow. This same code will be assumed in the examples given in the next section on
Region s. Note themport statements, which bring in the necessary name spaces to do the compu-
tations.

from quadmesh import *

from graph2d import *

from Ranf import *

from Numeric import *

from shapetest import *

s =1000.

kmax = 25 # The mesh is going to be 25 by 35

Imax = 35 # (24 cells by 34)

xr = multiply.outer (arange (1, kmax + 1, typecode = Float),
ones (Imax))

yr = multiply.outer (ones (kmax), arange (1, Imax + 1,
typecode = Float))

zt = 5. + xr + .2 * random_sample (kmax, Imax)

rt = 100. + yr + .2 * random_sample (kmax, Imax)

z=s*(rt+zt)

z =2z + .02 *z *random_sample (kmax, Imax)

z [3:10, 3:12] =z [3:10, 3:12] * .9

z[5,5]=z[5,5]*.9

z[17:22,15:18] =z [17:22,15:18] * 1.2

z[16, 16] =z [16, 16] * 1.1

Define a vector field on the mesh:

ut = rt/sqrt (rt ** 2 + zt ** 2)

vt = zt/sqrt (rt ** 2 + zt ** 2)

Define the region map:

ireg = multiply.outer (ones (kmax), ones (Imax))

The first row and column should be 0:

ireg [0:1, O:lmax]=0

ireg [0:kmax, 0:1]=0

ireg [1:15, 7:12]=2

ireg [1:15, 12:Imax]=3

Create a void in the mesh:

ireg [3:7, 3:7]=0

25

3.3.1 Plots of Mesh Lines

The following code plots the mesh lines in three different ways, as described in the comments:

Instantiate a QuadMesh object gm with the mesh defined
by zt, rt, and ireg; its lines to be of width 1,
and blue in color:
gm = QuadMesh (x = zt, y = rt, ireg = ireg, width = 1.,
color = "blue™)
Create a Graph2d object gr with a reference to gm:
gr = Graph2d (gm)
Plot the graph. Note the void area in the graph.
gr.plot ()

s RN

26

Change to a red-colored mesh:
gm.set (color = "red", width = 1.)
Change the plot so that the x and y axes have the same

scale (the mesh will appear narrower) L
gr.change_plot(xyequal = 1)

RN AR R RN RN

B, || REENEN
T T NEENRAREN
10 15 20 25 30 35 40

1. Note: theGraph methodchange_plot changes the appearance of the existing plot; there is
no need to issue another plot call. See “Description” on page 79.

27

Change the color of the mesh to yellow:

gm.set (color = "yellow")

Let Gist calculate the x and y scales depending
on the data:

gr.change_plot(xyequal = 0)

s NN R R RN

3.3.2 Contour Plots

In this example, we create a uniform 25 by 35 mesh, and do a contour plot of the values of z computed
above. Then we go back to the, yr) mesh used above. We use the s@raph2d object as the
preceding example, deleting object 1 and then adding th&uedMesh object each time.

sh = shape (z)
shl = sh[0]

28

sh2 = sh[1]

x = multiply.outer (arange (shl, typecode = Float),
ones (sh2, Float))

y = multiply.outer (ones (shl, Float),
arange (sh2, typecode = Float))

gm2 will have twenty yellow contour levels

with default labels (capital letters):

gm2 = QuadMesh (z =z, y =y, X = X, color = "yellow",
width = 3., levels = 20, marks = 1)

Delete object 1 (the only one) from gr:

gr.delete (1)

Add the new object to gr, and plot it:

gr.add (gm2)

gr.plot ()

J_|||I_

30 —
25 —
20—

—
o
|

L

—
Lo]
|

on
L

0 _i.]..l..r.l.]..l..r.l..I..[.I.]..I..[.I.]..I..[.I..|..r.l.]..l..r.l.]..l..r.|..I..[.I.]..I..[.I.]..I..[.I..l..r.l.]..l..r.
0 5 10 15 20

aEERRE RN RN AR NN

29

Now change back to (xr, yr), mesh plotted with dashes
in the foreground color:
gm2 = QuadMesh (z = z - zlkmax / 2, Imax / 2],

y = yr, X = xr, type = "dash",

color = "fg", levels = 20, width = 2., marks = 1)
gr.delete (1)
gr.add (gm2)

gr.plot ()

35—"""!_‘!""@""'|'|~J|'|'|',|'|'|'\|L|¢«'|'|'|';'|—

|
- -~
. o i t 1 \—ﬂ—.\‘ K_.-—'s.‘ 1

J— . N | - j p—
S : '-G -

- : “ _—— - | ! Y n\
—_— ~ . -

_ o k“"‘ 2.1: *-;, -H'l'l - H\l. —
j‘|||||“|||||||||"‘|||||||||||||||||||||||||||||||||r
5 10 15 20 25

30

Now plot the same thing as a filled contour plot:
gm2.set(filled=1)
gr.plot ()

|I|I|I|I.|I|I|I|I|I|I|I|I|I|Ir

) 10 15

20

25

31

Next, plot the default number of contours (8) in

purple with width 3; start marking with letter "O™:

gm2 = QuadMesh (z =z, y = yr, x = xr, color = "purple" ,
marks = 1, marker = "O", width = 3.)

gr.delete (1)

gr.add (gm2)

gr.plot ()
35_||||||||!|||||||||||||||||||||||||||L|| |||||||||_
o S
25 — —
20 — _

mAREEERERR RN

—|I|I|I|IiI|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I| |I
5] 10 15 20

I
o

Finally, plot four specified contour levels (three

contours) in cyan, width 3:

gm2 = QuadMesh (z =z, y = yr, x = xr , color = "cyan"
marks = 1, width = 3., levels = [0., max (ravel (z)) / 4.,
3. *max (ravel (z)) / 4., 7. * max (ravel (z)) / 8.])

gr.delete (1)

gr.add (gm2)

gr.plot ()

35_|||_

30 —

25 —

20—

15—

—|I|I|I|IiI|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|I|Ir
5] 10 15 20 25

33

3.4 Region Objects

Currently only PyGist supporiegion s.

Instantiation

from region import *
rg = Region (<keylist>)

Description

Region objects are used to specify graphing modes for some or all of the regio@uadilesh

plot. As we shall show in the examples later in this section, subsets of the regiGhsidNesh can

be selected for plotting, and different regions can be plotted with different keyword options. The
QuadMesh keywordregions is used to specify a list &egion objects to uadMesh. If such

a list ofRegion objects is given, then only those regions on the list will be plotted, even though the
QuadMesh may contain others.

The keywords arguments recognized are:

number, boundary, boundary_type, boundary_color, inhibit, lev-
els, filled, contours, vectors, z_scale, edges, type, color,
width, label, hide, marks, marker

Note that there are no keywords for specifying the mesh iReffion s are never plotted unless they
belong to an already-defin€guadMesh, which has all the necessary information.

Region , like other 2d classes, also has the metisetisandnew.

Keyword Arguments

The keyword arguments for Region object instantiation are as follows:

number = <positive integer> : the number of th&®egion being specified. must corre-
spond to one or more entries in itheg array of theQuadMesh to which thisRegion be-
longs.

boundary =0/1 --0: plot portion of mesh for the selected regibnplot only the boundary of
the selected region.

boundary_type ,boundary_color :these matter only fboundary =1, and tell how the
boundary will be plotted and what its color will be.

inhibit = 0/1/2 --0: plot both sets of mesh linek; do not plotthéx [, jl, Yy [1)
lines;2: do not plot thex [i,:], yli,:]) lines;3: if boundary =1, do not plot the
boundary (default 0). Only appliesatiges = 1.

levels = either:

34

(1) optional one-dimensional sequence of floating point values. If present, a list of the values
of z at which you want contours; or

(2) a single integer specifying the number of contours, in which case the graphics will compute
the contour levels.

filled = 0/1 --If 1, plot a filled mesh using the valuesaif contours =0, or plot filled
contours ifcontours =1 (this option is not available at the time of writing of this manual,
but will be added soon). #f is not present, the mesh zones will be filled with the background
color, which allows plotting of a wire frame. (default valQe:

contours =0/1 --if 1, contours will be plotted filled =0, and filled contours will be plot-
ted iffilled =1 (this option is not available at the time of writing of this manual, but will
be added soonkontours normally defaults td, but will default tol if edges = 0,
filled = 0, andvectors =0 on the theory that you must want to plot something.

The user should Table 3, “filled and contours,” on page 24 to understand how these last two

parameters relate.

z_scale ="lin" (default),"log" , or"normal® specifies how the contours are to be com-
puted.

vectors = 0/1 --This keyword is only meaningful if th@uadMesh containing thisRegion
has the vectorex andvy defined. If O, the vectors defined on tRiegion will not be plotted;
if 1, they will be. (defaultl)

edges , if nonzero wheffiled =1, draw a solid edge around each zone, as controlled by key-
wordinhibit . ewidth andecolor may also be used.

type , color , width ,label ,hide , marks, marker as forQuadMesh. Remember that a
marker specified for a contour plot represents the first of a consecutive series of markers for
the contours.

Methodsnew andset are as in th€urve andQuadMesh classes. Remember to beware of setting
conflicting values for keywords witbet .

Examples

The following examples illustrate (on the same mesh as before) how you can plot the regions of the

mesh in differing styles. Study the code and comments carefully, and run the examples yourself.

from region import *
Region 1 will have a solid, foreground-colored boundary:
rl = Region (number = 1, width = 1., color = "fg",
boundary = 1)
Region 2 will be plotted with no boundary and with its
mesh lines colored green and dashed in appearance:
r2 = Region (number = 2, width = 1., color = "green”,
type = "dash")
Region 3 will be plotted in the same style as Region 1:
r3 = Region (number = 3, width = 1., color = "fg",

35

boundary = 1)

We now send the region list to the existing QuadMesh gm:

gm.set (regions = [r1, r2, r3])

Change the graph to print Region 2 in red on top

of Region 2, then plot the graph:

gr.change(text = "Region 2", text_pos = [0.25,0.54],
text_size = 18, text_color = "red")

gr.plot ()

s NN R R RN

36

1)

1)

0)

vt, vy = ut, scale

The next plot will be a vector plot, so send vectors

to the QuadMesh gm:

gm.set (vx
Change the color of r2’'s mesh to foreground, and

give it a solid boundary. Its vectors will also be

foreground.
r2.set (color = "fg", type = "solid", boundary

Suppress the plotting of vectors over r3
r3.set (vectors

Erase the text and plot:

gr.change(text = ")

Plot r1’'s vectors in red:
gr.plot ()

rl.set (color = "red")

gl tvrerbveeebrroe e e b

30

T T gy T gy T gy T TR TR TN g T T ey g iy T T T oy Ty T gy gy ™y iy T Ty

g T g T e g o T T iy T g T g g T gy g ey e R T "y " g ™

J]aj]fujajajajajajajajajajajajal.lajf...._.:....._.I.I...._..._._.I..._m._.f..._._.f ol

TR T oy T T T TR gy T T gy gy T TR Ty oy Ty T TR T oy gy T T iy TR

37

Change gm back to the rectangular mesh, and change

the vector field:

gm.set(z =z, X = Xr, y = yr, vX = xr + yr/5.,
vy = yr + xr/10., scale = .05)

change rl to have orange vectors:

rl.set (color = "orange", width = 3.)

r2 will have red contours, no vectors:

r2.set (color = "red", width = 3., vectors = 0,
contours = 1, type = "solid", levels = 20)

r3 will have cyan colored vectors:

r3.set (color = "cyan”, width = 3., vectors = 1)

gr.plot ()

gg bl b b b b b b bl

) 10 15

20 25

38

3.5 Polymap Objects

CurrentlyPolymap objects are only available in PyGist.

Instantiation

from polymap import *
pm = Polymap (<keylist>)

Description
A Polymap is a set of arbitrary color-filled pgdons. The allowed keywords are

X, Y, n, z, hide, label

In addition, like all 2d geometric class&alymap s have the methodet andnew.

Keyword Arguments

The following keyword arguments can be specified#olymap s:
X = <sequence of floating point values>
y = <sequence of floating point values>

These are the coordinates of the vertices of the polygons. (The way this data is set up, vertices
of adjacent polygons will be repeated.)

n = <sequence of integer values>

Entryn [i] in this array tells how many vertices polygomhas. Thus the first [0] entries
in X andy are the vertices of the first polygon, the nexl] entries, of the second, etc. The
sum of all the entries in is the length of vectors andy.

z = <sequence of numerical or unsigned character values> (this vector is
the same length amg tells how to color the polygons. Numbers are interpolated into a palette;
the integer values of unsigned characters (Python typelbodgare used as indices into the
palette.

hide =0/1 --(1 to hide this part of the graph)
label = <string> --label for this part of the graph.

Methodsnew andset have the same function as in the other 2d classes.

Example
The following simple polymap example shows something like a stained glass window.

from polymap import *

39

>

1]

)]

=

3

<
—
~
w
w
w
Cw
SJIN
__-l>
w
w
w
w
=

x=array ([0.,1.,1.,,0.,0., 1.5,

1.,15,3,0.,1.5,
3.,2.,152,1.,2.,3.,3.,2.,1.,2.,2.,1., 2.,
3.,15,1.,2,15,1,,15,0.,0., 3., 1.5)])
y=[1,2,7,8,1,1,2,0,1.,1,,1,,1,,2.,1.,
2.,2.,2.,1.,8.,7.,2.,2.,7.,7.,7.,8.,8., 7.,
7.,8.,7.,8.,8.,8.,8.,9])]
z=array ([2.5,1.2,15,1.2,.5,25,2.,1.2,.5,1.2,

1.5])
pl=Polymap (x=X,y=y,z=2z,n=n)
g0 = Graph2d (p1, titles = "Stained glass window")
g0.plot ()

dnnn

T S———— o —

0.0 0.5 1.0 1.5 2.0

Stained glass window

2.5

3.

D_|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|_

40

3.6 CellArray Objects

Currently,CellArray objects are only available in PyGist.

Instantiation

from cellarray import *
ca = CellArray (<keylist>)

Description

A CellArray is a regular two dimensional rectangular mesh whose cells are color filled as speci-
fied by the keyword argument The keywords accepted BellArray are:

z, X0, y0, x1, y1, hide, label

In addition,CellArray objects have the methodsw andset , like all other 2d geometric objects.

Keyword Arguments
The following keyword arguments can be specifieddelArray s:
z = <2d sequence of numeric or unsigned character values>

specifies the coloring to be given to tGellArray . If numeric, the values are interpolated
onto a palette. If unsigned character, the values are used to index into the Padettsyu-
ment z is required. If the dimensions o aren; andn,, then the cell array will be; by n,

cells in size.

x0, y0 -- floating point scalars; if present, the coordinates of the lower left corner of the cell array.
The default ig0., 0.) .

These coordinates are optional, but if they are present then x1, y1 must be also (see below).

x1,y1 --floating point scalars; if present, the coordinates of the upper right corner of the cell array.
If these optional keywords are missing, th@ny0 must be also missing, and their default val-
ues(1.0, 1.0) will be used.

hide =0/1 (1 to hide this part of the graph)
label = <string> label for this part of the graph.

Methodsnew andset are as in the other 2d classes.

Example
The following simple example creates a 10 byCEllArray ~ object and plots it.

from cellarray import *

41

nx= 10

ny= 19

#'b’ (byte) is the typecode used by Python for

unsigned character:

ndx = reshape (arange (nx * ny, typecode ='b’), (nx, ny))

Instantiate a CellArray object:

cla = CellArray (z = ndx)

Create a Graph2d object containing it:

gca = Graph2d (cla, titles = "Cell Array",
axis_scales = "linlin") # (axis scales is redundant)

Plot it:

gca.plot ()

0 5 10
Cell Array

15

42

Another (and more interesting) example @ellArray is given below. First we show the functions
mag anda3, which are used to calculate the data plotted.

def mag (*args):
r=0
for i in range (len (args)) :
r =r + argsli] * argsli]
return sqrt (r)
def a3 (Ib, ub, n) :
return reshape (array(n*span(lb,ub,n), Float), (n,n))
The following computation produces the plot
x=a3(-6,6,200)
y=transpose (X)
r=mag(y,X)
theta=arctan2(y,x)
funky=cos(r)**2*cos(3*theta)
from cellarray import *
cl = CellArray(z=funky)
g1 = Graph2d (c1, color_card = "earth.gp",
tittes ="Cell array, three cycles in theta,r",
axis_limits = "defaults”)

gl.plot()

43

200

150

100

ad

a ad 100 150 200

Cell array, three cycles in thetar

A final example of the CellArray is the sombrero function.

nz =20
x = arange (-nz, nz+1, typecode = Float)
y=X

z = zeros ((2*nz + 2, 2*nz + 2), Float)
foriinrange (len (x)):
for jin range (len (y)) :

r=sqart (x[i]*x[i]+y[l*yl[])+ 1le-12
z[i,jl=sin(r)/r

cell array plot

cla = CellArray (z = z)

gca = Graph2d (cla, titles = "Sombrero Function”,
color_card = "rainbow.gp", axis_limits="defaults")

gca.plot ()

44

Sombrero Function

45

46

UCRL-MA-128569, Manual 4

cuaptEr 4. 1 Hree-Dimensional
Geometric Objects

Three dimensional objects are instantiated similarly to two dimensional objects, and have many simi-
lar sounding keywords and methods. However, concatenating or linking multiple 3d objects on the
same graph--sometimes with different 3d options, color cards, etc.--is more complicated.

4.1 Surface Objects

Instantiation

from surface import *
sf = Surface (<keylist>)

Description

A Surface represents a two-dimensional object in three-dimensional space. It may be purely geo-
metric, or there may be a function defined onSheface which needs representation too, in which
case we have essentially a four dimensional objectSTinace itself is projected on the plane of

the graph from some angle; its third dimension may be represented by shading (as if it is shiny and
there is a light source from some direction), by superimposing a wire mesh Surtaee , or by

coloring it according to height (when there isn’'t a function on it which needs representation). A func-
tion defined on th&urface may have its values denoted by coloring $lueface or by drawing
contours on th&urface .

The following keyword arguments may be used in the instantiatiorbafface
z, X, Y, c, color_card, opt_3d, mesh_type, mask, z_c_switch,
z_contours_scale, c_contours_scale, z_contours_array,
c_contours_array, number_of_z_contours, number_of_c_contours

In addition,Surface s have two methodsew (for clearing out a use8urface to an empty shell
and redefining its geometry) asdt (for changing the value of arbitrary keywords). These methods
work exactly as they do for two dimensional objects.

Keyword Arguments

The following keyword arguments can be specified fSugace object. Note that not all keywords

11/23/98 47

are available in both PyGist and PyNarcisse. Generally, using an inapproriate keyword will not cause
an error; it will be ignored or else the graphics engine will make a clever guess.

z =<value> (required)z is a two dimensional array.Xfandy are not specified, thenwill be
graphed on equally spaced mesh points.

x = <value> ,y = <value> (if one is present, then so must the other bec) (lfelow) is not
present, this represents a 3d plot. Eith@ndy have dimensions matchizg or else they are
one-dimensional and’'s length matches the first dimensionzgfandy’s length matches the
second.

c = <value> If present, then the Surface will be colored according to the valieqTihis is a
so-called four-dimensional graphc) must have the same dimensionz as

color card = <value>

specifies which color card (another name for palette) you wish to use;rairgppwhls”

(the default);random" , etc. Although a characteristic ozaaph2d , it can be &urface
characteristic sincdink’ ed surfaces can have different color cards (valid for Narcisse
only). Following is a list of color cards available in Narcisse and Gist, with a brief description
of each. The graphics interface is intelligent enough to make a good guess if you specify a Gist
color card to Narcisse or vice versa; and if there is no near equivalent, it will simply assign the
default color card.

First we list the Narcisse Color Cards. Narcisse color cards contain 64 colors. The first ten, in
order, are always bg, fg, blue, green, yellow, orange, red, purple, black, and white. The other
54 are described roughly in the table, starting with the lowest index.

TABLE 4 Narcisse Color cards

absolute
from black to light grey in the middle of the palette, then back down to dark grey at the end.

binary repeatedly runs through the colors light blue, blue, cyan, green, purple, red, yellow, and orange.

bluegreen continuously shading from light green to deep blue.

default grey scale, from black at the low end to white at the top

negative first half is black; second is grey scale from white to dark grey

positive first half shades from dark grey to white; second is black

rainbow shades through the rainbow colors from purple at the low end through red at the high.

rainbowhls low end is blue, shades through rainbow colors to red, then purple.

random different every time you use it.

redblue shades from blue at the low end to red at the high end.

redgreen shades from light green at the low end to red at the high end.

shifted shades from medium grey at the low end to white in the middle, then from black in the mitrdle to
medium grey at the high end.

48

Next we describe the Gist color cards. Gist color cards contain 200 colors. There are no re-
served spots at the start for special colors.

TABLE 5 Gist Color Cards
earth.gp black, dark to light blues and then greens, all brown-tinged, tan, beige, some grey, pink, iyory,
and white at the top.
stern.gp black, grey, red, magenta, purple, lightening into blue, bluegreen, green, ivory, light grey, |white.
rainbow.gp red through purple, in the normal rainbow order.
heat.gp very dark red, lightens up through shades of red to orange, yellow, ivory, and white.
gray.gp grey scale running from black at the low end to white at the high.
yarg.gp same, but white at the bottom to black at the top.

opt_3d =<value> where<value> is a string or a sequence of strings giving the 3d or 4d sur-
face characteristics. A surface is colored by heightiina 3d option is specified, and by the
value of the functior if a 4d option is specified. With a wire grid option, the grid is colored
(Narcisse only); with a flat option, the quadrilaterals set off by grid points are colored; with a
smooth option, the surface itself is colored by height (filled contours); and with an iso option,
the contour lines are colored (Narcisse only). flat and iso options may be used together in any
combination. wire grid options are independent of the other options. Legal arguments for
opt_3d are:

'wm' --monochrome wire grid (the defaulty3' and'w4' --3d and 4d coloring of wire grid.
'w3' and'w4' are not currently available in Gist.

3" and'f4' --flat 3d and 4d coloring options.

13 and'i4' --3d and 4d isoline (contour line) options. Colored isolines are not currently
available in Gist.

's3' and's4' --3d and 4d smooth coloring (filled contour) options.

mesh_type =<string> in one of the wire modes, tells what form the wire grid takés: x
lines only;"y" :y lines only;"xy" : both x lines and y lines (the default). Only the latter is
available in Gist.

mask = <string> : specifies whether hidden lines will be eliminated, and if so, how complex the
algorithm that will be used to determine what is hiddanne" : transparent wire grid (the
default);"min" : simple masking;max" : better maskingsort" : slowest but most sophis-
ticated. Only'none” and"sort" are available in Gist.

z_c_switch =0orl:settol means switckz andc in the plot.
Z_contours_scale , C_contours_scale ="lin " or"log"

Z_contours_array , C_contours_array = actual array of numbers to use for contours, if
you don't want them computed automatically.

49

number_of z contours ,humber_of c_contours =<integer> specifies how many
contours to use; they will be computed automatically depending on the data.

Examples

The following set of computations defines a surface and functional values on the surface, which will
be used in the subsequent plots. Note that this is very similar tQubhdMesh example. (See
“Examples” on page 25..) However, now we shall see the surface in three-dimensional space, with
contours and contour lines. We will do many plots of this surface, in order to show the many available
options.

s =1000.

kmax = 25

Imax = 35

xr = multiply.outer (arange (1, kmax + 1, typecode = Float),
ones (Imax, Float))

yr = multiply.outer (ones (kmax, Float), arange (1, Imax + 1,
typecode = Float))

zt = 5. + xr + .2 * random_sample (kmax, Imax)

rt = 100. + yr + .2 * random_sample (kmax, Imax)

z=s*(rt+zt)

z =2z + .02 * z * random_sample (kmax, Imax)

ut =rt/sqrt (rt** 2 + zt ** 2)

vt =zt /sqrt (it ** 2 + zt ** 2)

ireg = multiply.outer (ones (kmax), ones (Imax))

ireg [0:1, O:lmax] = O

ireg [0:kmax, 0:1] =0

ireg [1:15, 7:12] = 2

ireg [1:15, 12:Imax] = 3

ireg [3:7,3:7]=0

freg = ireg.astype (Float) + .2 * (1. -
random_sample (kmax, Imax))

z [3:10, 3:12] =z [3:10, 3:12] * .9

z[5,5]=z[5,5]*.9

z[17:22,15:18] =z [17:22,15:18] * 1.2

z[16, 16] = z [16, 16] * 1.1

sl = Surface (z = z, mask = "max", opt_3d = ["wm", "i3"])

g1l = Graph3d (s1, titles = "Surface with contour lines",
xyequal = 1.,
theta = 45., phi = 10., roll = 0.)

gl.plot ()

The plot appears on the next page.

50

Surface with contour lines

51

In the following plot, we change the 3d optionswan" (wire mode, i. e., mesh lines are plotted) and
"f3" (flat 3d, meaning cells are colored according to their average height).

sl.set (opt_3d = ["'wm", "f3"])
gl.change (titles = "Flat mode™)
gl.plot ()

52

(smooth 3d, i. e., the surface is drawn with contours

Now let us leavéwm" set, and switch tts3"

filled with color according to height.

gl.change (titles = "Smooth mode")

sl.set (opt_3d =['wm", "s3"])
gl.plot ()

Smooth mode

53

54

The next plot illustrates how we can usedhes_limits keyword to trim off a portion of the fig-

ure, when plotting contours. If both axis limits are given as 0.0, then PyGist takes this as a signal to
compute limits based on the data. if either or both limits are nonzero, then PyGist will not display parts
of the graph whose values fall outside the limits. In this particular example, we have set the minimum

z value to 0.0, so the part of the surface below the xy plane will be suppressed. The same thing may
be done with 4d plots, by specifying a fourth set of limits, which apply to the variable being plotted.
The scale is exaggerated in théirection; a largey_factor = might ameliorate this problem.

sl.new (X =xr,y =yr, z =2z - z [kmax/2, Imax/2],
mask = "max", opt_3d = ["'wm" , "i3"])

gl.change (titles = "Part of surface above xy plane”,
phi = 30., y_factor = 2.0,

axis_limits = [[0., 0.],[0., 0.], [0., 100000.]])

‘“ﬁ

S

L= =
L

g P‘““"
Mo

'ﬁl

e

R

s S PR e,
T Tl Jan o PR T
*v‘r{“!!ﬁh vy, .
TVt T S ST TSRy
KRN TN

X
: P AV o7
e J&A}?f{} s

o ‘;?"f{
e 2y o, e
R AT

Part of surface above xy plane

If we try to do the same plot in flat mode, theaxis limits do not work as advertised. Plots can be
trimmed as above only in one of the contour plotting maot@’s: , "i4" ,"s3" , or"s4" . We are
going to use the sansurface andGraph3d objects, changing only ti@raph3d ’s title, but there-
fore leaving the axis limits unchanged. Thus we have the following:

sl.set (opt_3d = ["'wm", "f3"])
gl.change (titles = "Flat mode")

gl.plot ()

A
e
N

%
A
S

AR
s

S
S

A
W
W

$
i

A

Flat mode

55

Next we go to smooth (filled contour) mode. The contours are colored based on the maximum and min-
imumz values taken over the whole surface, not on the ones plotted.

sl.set (opt_3d =['wm", "s3"])
gl.change (titles = "Smooth mode")
gl.plot ()

il PN e

P __%g’l ?{'}#.WF

b *%"ﬁ‘hf*tﬂ'm‘h A5
Ve avaNE v

! ifb}'..‘%(SRl

Smooth mode

56

Below is a plot of the same surface, but this time it is a so-called 4d plot, meaning that contours are
drawn and filled according to the value of a variable on the mesh, rather than its height. In this case the
variable isfreg , defined a few pages previously (see page 50). Note that all axis limits are set back

to defaults.

sl.set (z = z, c = freg, opt_3d =["wm", "s4"])
gl.change (titles = "Surface colored by mesh values”,
phi = 20., xyequal = 1,
axis_limits = [[0., 0.], [0., 0.], [O., O.], [0., O.]])
gl.plot ()

surface colored by mesh values

57

Here is an illustration of a plot of a single region of the previous plot, namely region 2.

xrl = xr [0:16, 6:13]

yrl =yr [0:16, 6:13]

z1 =2z [0:16, 6:13]

zsl = freg [0:16, 6:13]

slset(x=xrl,y=yrl, z=1z1,c=1zsl)

gl.change (titles = "Region 2 colored by mesh values”,
phi = 10.)

gl.plot ()

Fegion 2 colored by mesh values

58

Here is the same geometric object plotted with height contours:

sl.new (x =xrl,y=yrl, z = z1, opt_3d = ["wm", "s3"],
mask = "max")

gl.change (titles = "Region 2 with mesh and contours",
phi = 10.)

gl.plot ()

Fegion 2 with mesh and contours

59

Our final example is a plot of regions 2 and 3, with height contours.

zsl =z [0:16, 6:Imax - 1]

sl.new (z = zs1, opt_3d = ["wm", "s3"], mask = "max")

gl.change (titles = "Regions 2 and 3, mesh and contours",
theta = 70., phi = 10., roll = 0.)

gl.plot ()

Fegions 2 and 3, mesh and contours

4.2 Mesh3d Objects

Surface andMesh3d objects differ in that &urface is really the two-dimensional boundary of

a three-dimensional object (if it is closed) or the topological equivalent of a plane (if not closed). In
other words, it is a two dimensional object which has been twisted, bent, or deformed through a third
dimension. In contrast, Mesh3d consists of a partition of a three-dimensional object into smaller
three-dimensional objects called cells. WitBwaface , only what is happening on the two dimen-

60

sions of theSurface itself is of interest to us, whereas witMash3d, what is happening inside the

three dimensional object is of interésEhis leads to a problem in visualization, because how can you
see the inside of an object? The answer, usually, is that cells have to be stripped away to view what is
going on underneath them. Alternatively, we can take sections througytestedd, the most com-

mon of these being plane slices and isosurface slices. (Isosurfaces are slices upon which some speci
fied function is equal to some constant.)

At any rate, Mesh3d is a generalization of &urface , and in fact &Mesh3d is a derived class of
aSurface

4.2.1 Structured vs. Nonstructured Meshes

There are two kinds d¥lesh3d objects:

« A structuredMesh3d consists of rectangular hexahedra with sides parallel to the axes, and is spec-
ified by three one dimensional vectors of coordinatey, andz. Associated with eadiWlesh3d
point is a component of a three-dimensional array of data aalled

« A nonstructuredMesh3d in principle could consist of cells of arbitrary shape, but we limit our-
selves to the four standard shapes: hexahedra, tetrahedra, pyramids (with square bases) and prism
(with triangular bases). A nonstructurlbtbsh3d is specified by one-dimensional arraysxofy,

andz coordinates, thé" component ok, y, andz being the coordinates of ti® node in the

mesh. There is an associated one-dimensional arohgata, one value for each node point. Natu-

rally the points alone are not sufficient to specify the connectivity of the mesh. Hence we need con-
figuration information which, for each cell in the mesh, tells which nodes belong to the cell. The
Mesh3d class accepts two formats, the Narcisse format peculiar to itself which we will not go into
here (See “The Narcisse Format and Keywords” on page 68.), and the AVS format. In the case of
the AVS format, for each shape of cell in tesh3d, the user must supply a count of the cells,

and a one-dimensional array of integer node numbers for each of the cells, in a standard order, as
follows:

tetrahedra--apex, then base nodes, in inward normal order.
pyramids--apex, then base nodes, in inward normal order.

prisms--one triangular face, in outwards normal order, then the corresponding nodes of the oppo-
site face, in inward normal order.

hexahedra--one face, in outwards normal order, then the corresponding nodes of the opposite face,
in inward normal order.
All Mesh3d objects are instantiated as described below; the keyword parameters are how PyGist dis-
tingushes what kind dlesh3d it is.

Instantiation

1. Normally there is a function defined on the mesh--e. g., a physical quantity such as pressure,
density, or velocity--that we want to visualize. These function values really add a fourth dimen-
sion to the plot.

61

from mesh3d import *
m3 = Mesh3d (<keylist>)

Description
The list of keywords recognized by all typedvt#sh3d objects are as follows:

color_card, opt_3d, mesh_type, mask, z_c_switch,
z_contours_scale, c_contours_scale, z_contours_array,
c_contours_array, number_of_z_contours, number_of_c_contours

Since aMesh3d is aSurface , it also accepts all the keywords that defirBugface object, ignor-
ing any that might not be sensible (Section on page 47).

In addition, theMesh3d class has two methodst (inherited fromSurface) andnew (not inher-
ited, but having exactly the same functionality).

Keyword Arguments

The following keyword arguments can be specified fdtesh3d object. Note that not all keywords
are available in both PyGist and PyNarcisse. Generally, using an inapproriate keyword will not cause
an error; it will be ignored or else the graphics engine will make a clever guess.

color_card =<value> specifies which color card (another name for palette) you wish to use,
e. g., "rainbowhls" (the default),"random” , etc. Although a characteristic of a
Graph2d , it can be &urface characteristic sincéink’ ed surfaces can have different
color cards (valid for Narcisse only). For a full description of available color cards, see
“color_card = <value>" on page 48. The graphics interface is intelligent enough to make a
good guess if you specify a Gist color card to Narcisse or vice versa; and if there is no near
equivalent, it will simply assign the default color card.

opt_3d =<value> where<value> is a string or a sequence of strings giving the 3d or 4d sur-
face characteristics. A surface is colored by heightiina 3d option is specified, and by the
value of the functiom if a 4d option is specified. With a wire grid option, the grid is colored,;
with a flat option, the cells set off by grid lines are colored; with a smooth option, the surface
itself is colored by height; and with an iso option, the contour lines are colored. Flat and iso
options may be used together in any combination. Wire grid options are independent of the oth-
er options. Legal arguments fopt_3d are:

«'wm' --monochrome wire grid (the default)y3’ and'w4' --3d and 4d coloring of wire
grid. The latter two are not currently available in Gist.

«'f3' and'f4' --flat 3d and 4d coloring options.

«'iI3' and'i4’ --3d and 4d isoline (contour line) options. Colored isolines are currently not
available in Gist.

«'s3' and's4" --3d and 4d smooth coloring options (filled contours).

62

mesh_type =<string> in one of the wire modes, tells what form the wire grid takés: x
lines only;"y" :y lines only;"xy" : both x lines and y lines (the default). Gist currently sup-
ports only the default.

mask = <string> : specifies whether hidden lines will be eliminated, and if so, how complex the
algorithm that will be used to determine what is hidden. Allowed valuesare" : see-
through wire mesh (the defaultjnin” : simple masking;max" : better maskind'sort"
slowest but most sophisticated. Gist currently supports“oolye” and"sort" ; spefifica-
tions of"'min" and"max" are equivalent tésort"

z_c_switch =0 orl: set tol means switclz andc in the plot.
Z_contours_scale , C_contours_scale ="lin"" or"log"

Z_contours_array , C_contours_array = actual array of numbers to use for contours, if
you don't want them computed automatically.

number_of z contours ,humber_of c_contours =<integer> specifies how many
contours to use; they will be computed automatically based on the data.

4.2.2 Regqular (or Structured) Meshes

Instantiation

from mesh3d import *
m3 = Mesh3d (<keylist>)

Where<keylist> contains keywords peculiar to regular meshes.

Description

A structuredMesh3d consists of rectangular hexahedra with sides parallel to the axes, and is specified
by three arrays of coordinates,y, andz. Associated with eaddlesh3d point is a component of a
three-dimensional array of data calledThus the keywords uniquely associated with structured (or
regular)Mesh3ds are:

X,Y¥,Z,C

Keyword Arguments

X = <values> ,y =<values> ,z =<values> To establish notation, assume that the mesh
isk byl bym(i. e., there ark nodes in the direction,| nodes in thg direction, anannodes
in thez direction.) Then there are three options for these keywordg;, §1,)andz equally
spacedx is a vector consisting of the three inteders1,| - 1, m- 1 (the cell dimensions),
y is a vector of thre€loat s givingdx, dy, dz (the increments in each direction), and
an array of thre€loat s givingx0, y0, zO (the starting values of, y, andz); (2) x, y, and
z not equally spaced;, y, andz are one dimensional arrays of tyjleat specifying & by
| bymmeshk=Ilen (x) ,I =len (y) ,m=len (z) ;or (3)x,y, andz are eaclk byl
by m specifying a completely general hexahedral mesh.

63

c =<values> , athree-dimensional array dimensiokeloy| by m whosd]i, |, k] element

gives the associated data value at thg (k) th point of the mesic may also be one less in
each direction, giving a cell-centered quantitynay also be a list of such arrays, when isos-
urfaces of more than one function are to be plotted.

Examples

A pdb file namederts.py contains temperature data for filamentary flow in a plasma on a regular
mesh. In this example we illustrate how to plot an isosurface slice trhrough the mesh, illustrating the
filaments at a constant temperature. In order to get the isosurface slice, we use the function sslice,
which is described later in the chapter (see 4.4 “Slice objects” on page 73). In this plot, we use the
rainbow palette to shade the surface as if a light source were shining from behind and slightly to the
right of the viewer. Polygons facing or nearly facing the viewer will be at the blue-violet end of the
spectrum, and closer to the red end the closer they get to facing perpendicular to the line of sight. The
code to produce this plot is as follows:

f = PR ("./berts_plot’)

x = -80.0 + arange (64, typecode = Float) * 2.5

y =-80.0 + arange (64, typecode = Float) * 2.5

z = arange (50, typecode = Float) * 10.

c=f.c

m3 = Mesh3d (x =X,y =Y, z =z, ¢ = transpose (C))

s3 = sslice (m3, 6.5, opt_3d = ["none"))

g3 = Graph3d (s3, color_card = "rainbow.gp", gnomon =1,
xyequal = 1, diffuse = .2, specular = 1)

g3.plot ()

64

(e J
- . | | i
i;" . l‘ T i ll
'l | " .“I_‘l‘ LI Iﬁ .‘ | ;‘ -I y ‘ﬁ
i fi‘ y Ji vt rr!i a
7 { { [§| ‘ oy r !
i 1I S0 i r! i ll..
2N I; .5 g /R B
| y i ‘i$ l I ﬁ |
i .h‘ :

Note the use obpt_3d ="none" . Isosurfaces are shaded, so we use none of the usual 3d options.
The plot looks a bit chaotic; it is possible that the PyGist sorting algorithm was a bit puzzled by the
complexity of this plot. At any rate, if the user is interested in getting a closer look at this plot (or any
PyGraph plot), place the cursor within the window and click the left mouse button a couple of times.
Doing so causes the graph to zoom in, and you get something like the following:

65

|y b
I

You can zoom back out by clicking the third mouse button. To shift the plot around the window, click
and drag with the middle button.

4.2.3 Irregular (Unstructured) Meshes

Instantiation

from mesh3d import *
m3 =Mesh3d (<keylist>)

Where<keylist> contains keywords peculiar to irregular meshes.

Description

A nonstructuredMesh3d in principle could consist of cells of arbitrary shape, but we limit ourselves
to the four standard shapes: hexahedra, tetrahedra, pyramids (with square bases) and prisms (with tri
angular bases). A nonstructurgeésh3d is specified by one-dimensional arrayxo¥/, andz coor-

dinates of the same length, ih@ component ok, y, andz being the coordinates of th& node in
the mesh. There is an associated one-dimensional@ohglata, one value for each node point. Nat-
urally the points alone are not sufficient to specify the connectivity of the mesh. Hence we need con-

66

figuration information which, for each cell in the mesh, tells which nodes belong to the cell. The
Mesh3d class accepts two formats, the Narcisse format peculiar to itself which we will not go into
here (See “The Narcisse Format and Keywords” on page 68.), and the AVS format. In the case of the
AVS format, for each shape of cell in tMesh3d, the user must supply a count of the cells, and a
one-dimensional array of integer node numbers for each of the cells, in a standard order, as follows:

- tetrahedra--apex, then base nodes, in inward normal order

« pyramids--apex, then base nodes, in inward normal order

« prisms--one triangular face, in outwards normal order, then the corresponding nodes of the
opposite face, in inward normal order

- hexahedra--one face, in outwards normal order, then the corresponding nodes of the opposite
face, in inward normal order

The allowed keywords for irregular meshes are:

X, Y,2,C
The following keywords apply if the mesh is in AVS format:
avs = 1, hex, tet, prism, pyr
The following keywords apply if the mesh is given in Narcisse internal format:

avs = 0, no_cells, cell_descr

Keyword Arguments

The following explains the keyword arguments in detail:
Description of example(s).

X =<values> ,y =<values> ,z =<values> : three vectors of equal lengths giving the co-
ordinates of the nodes of a nonstructuvkesh3d.

c = <values> : a vector of the same sizexasy, andz giving a data value at each of the node
points.c could also be an array of such vectors, when isosurfaces of more than one function
are to be plottect is also allowed to be one smaller thgry, andz in each dimension, for
cell-centered values.

avs = 0 or1:if 1, the input data represents a nonstructiviesh3d in a sort of AVS format,
which will be explained in more detail below. The data will be translated into the Narcisse for-
mat prior to being sent to Narcisse.

cell_descr =<integer array> :if present, this keyword signifies a nonstructuviesh3d
submitted in the Narcisse format, also explained in more detail bal®vmust be zero (or
absent) if this keyword is present.

The AVS Format and Keywords

67

If avs =1, then one or more of the following keywords must also be present; these are used to spec-
ify the types of cells present, and their node coordinates, in a standard order. These keywords are:

hex =[<list of hexahedral cell data>] The two entries in the list (in order) must be:
(1) an integer number_zones , which is the number of hex cells in thkesh3d; and (2) a
matrixnz whose dimensions are zones by 8; nz [i][0] , Nz [i][1] , Nz [i][7]
give the indices of the 8 vertices of th® zone in canonical order (one side in the outward
normal direction, then the corresponding vertices of the opposite side in the inward normal di-
rection).

tet =[<list of tetrahedral cell data>] The listis the same format as feex data.
The matrixnz willnow ben_zones by4, and each row gives the indices of the apex and then
the base in inward normal order.

prism =[<list of prismatic cell data>] The listis the same format as fex data.
The matrixnz will now ben_zones by 6, and each row gives the indices of one of the trian-
gular sides in the outward normal direction, then the corresponding vertices of the opposite side
in the inward normal direction.

pyr =[<list of pyramidal cell data>] The list is the same format as fugx data.
The matrixnz willnow ben_zones by5, and each row gives the indices of the apex and then
the base in inward normal order.

Warning--your numbering of cells must be consistent: all cells of a particular type must be listed
together; the actual ordering of the four cell types, however, is irrelevant.

The Narcisse Format and Keywords

The special Narcisse keywords, which apply waes = 0, and their descriptions are:

no_cells = <integer value> , the total number of two-dimensional cells in Mesh3d.
(Here “cells” really refers to faces of 3d cells).

cell_descr =<integer array> , a vector of integers giving the description of the cells of
the Mesh3d, as follows:
cell_descr [0] , call_descr [1] , ... ,cell_descr [no_cells - 1] tell how
many verticegell [0] ,cell [1] ,...,cell [no_cells - 1] have.

cell_descr [no_cells] throughcell_descr [no_cells +cell_descr [0] -

1] are the subscripts of the vertex coordinatesetif [0] ; cell_ descr [no_cells +
cell_descr [0]] through cell_descr [no_cells + cell_descr [0] +
cell_descr [1] - 1] are the subscripts of the vertex coordinatesetif [1] , etc. Cell
vertices must be given in the outward normal order.

Example 1 (a PyNarcisse plot):

In general, PyGist does not support graphing an entire mesh. Instead, PyGist includes support for
graphing plane cross-sections and isosurface slices of meshes, which we will discuss later in the chap-
ter.

68

The following example first reads data from a pdb file catlifld_plot L The object partitioned

by the mesh is an imploding sphere, and the intent is to graghdatponent of the velocity of im-
plosion. Although the mesh is unstructured, it has only hexahedral cells, and the data is already in an
order accepted by PyNarcisse, so need not be rearranged. When PyNarcisse is given an entire mesh t
plot, it will plot every face of every cell from front to back; if the mask is other'thame" , then the

front faces will cover the back ones. If one plots the entire sphere, all that will remain visible at the end
is the portion of the exterior of the sphere facing the observer. Therefore in this example we strip away
the “front” half of the sphere so that we can observe a cross section.

f= PR (“/bills_plot')

n_nodes = f.NumNodes
n_z = f.NodesOnZones
x = f.XNodeCoords
y = f.YNodeCoords
z = f.ZNodeCoords
¢ = f.ZNodeVelocity
n_zones = f.NumZones

Now we're going to plot it with all cells missing which
have an x coordinate greater than 0.005.
n_zones_used =0
zones_not_used = [] # subscripts of zones to ignore
zones_used =]
for i in range (n_zones) :
nz=n_zI[i
used =1
for j in range (8) :
if X [nz [j]] > 0.005 :
zones_not_used.append (i)
used =0
break
ifused ==1:
zones_used.append (i)
n_zones_used =n_zones used + 1

new_n_z = zeros ((n_zones_used, 8), Int32)
foriin range (n_zones_used) :
new_n_z [i] = n_z [zones_used [i]]

ml=Mesh3d (x=X,y=y,z=2z,c=c,avs =1,

1. bills_plot and other files mentioned in this chapter are available on kristbnrime/
cs/motteler/wrk/EB.KEEP

69

hex = [n_zones_used, new_n_z],
mask = "max”, opt_3d = "s4")
Uncomment below when we take the front face away
g2 = Graph3d (m1,
titles = ["Vertical component of velocity",
"Imploding Sphere"])
g2.plot ()

Example 2 (A PyNarcisse Plot):

In the next example, we read in imploding sphere data from file "ball.s0001", which is represented by
an unstructured mesh containing all four kinds of cells. The data is not supplied in AVS order, so it is
necessary to convert it into AVS format. We then do a number of plots of the data.

f = PR ("ball.s0001")
ZLss = f.ZLstruct_shapesize
ZLsc = f.ZLstruct_shapecnt
ZLsn = f.ZLstruct_nodelist
x = f.sap_mesh_coordO
y = f.sap_mesh_coordl
z = f.sap_mesh_coord2
c =f.W_vel data
Now we need to convert this information to avs-style data
istart = 0 # beginning index into ZLstruct_nodelist
NodeError = "NodeError"
ntet =0
nhex =0
npyr = 0
nprism =0
nz_tet =]
nz_hex =[]
nz_pyr =]
nz_prism = []
foriinrange (4) :
if ZLss [i] == 4 : # TETRAHEDRON
put node coords into 4 by no_tet_nodes array
nz_tet = reshape (ZLsn [istart: istart + ZLss [i] *
ZLsc [i]], (ZLsc [i], ZLss [i]))
ntet = ZLsc [i]
istart = istart + ZLss [i] * ZLsc [i]
elif ZLss[i] == 5 : # PYRAMID
put node coords into 5 by no_pyr_nodes array
nz_pyr = reshape (ZLsn [istart: istart + ZLss [i] *
ZLsc [i]], (ZLsc [i], ZLss [i]))
npyr = ZLsc [i]
Now reorder the points (data has the apex last

70

instead of first)
for ip in range (npyr) :
tmp = nz_pyr [ip, 4]
for jp in range (4) :
nz_pyr [ip, 4 - jp] = nz_pyr [ip, 3 - jp]
nz_pyr [ip, 0] = tmp
istart = istart + ZLss [i] * ZLsc [i]
elif ZLss[i] == 6 : # PRISM
put node coords into 6 by no_prism_nodes array
nz_prism = reshape (ZLsn [istart: istart + ZLss [i] *
ZLsc [i]], (ZLsc [i], ZLss [i]))
nprism = ZLsc [i]
now reorder the points (data has a square face first)
for ip in range (nprism) :
tmp = nz_prism [ip, 1]
tmpp = nz_prism [ip, 2]
nz_prism [ip, 1] = nz_prism [ip, 4]
nz_prism [ip, 2] = nz_prism [ip, 3]
nz_prism [ip, 3] = tmp
nz_prism [ip, 4] = nz_prism [ip, 5]
nz_prism [ip, 5] = tmpp
istart = istart + ZLss [i] * ZLsc |[i]
elif ZLss[i] == 8 : # HEXAHEDRON
put node coords into 8 by no_hex_nodes array
nz_hex = reshape (ZLsn [istart: istart + ZLss [i] *
ZLsc [i]], (ZLsc [i], ZLss [i]))
hex points are in proper avs order
nhex = ZLsc [i]
istart = istart + ZLss [i] * ZLsc [i]
else :
raise NodeError, "ZLss[i]" + "is an incorrect number of
nodes."
Create entire mesh, then create one mesh for each cell type
ml=Mesh3d (x=X,y=y,z=2z,c=c,avs =1,
hex = [nhex, nz_hex] ,
pyr = [npyr, nz_pyr] ,
tet = [ntet, nz_tet] ,
prism = [nprism, nz_prism] , mask = "max",
opt_3d =["s4","wm"])
m2 = Mesh3d (x=X,y=y,z=2z,c=c, avs =1,
hex = [nhex, nz_hex] , mask = "max",
opt_3d =["s4","wm"])
m3 =Mesh3d (x=X,y=y,z=2z,c=c,avs =1,
pyr = [npyr, nz_pyr] , mask = "max",
opt_3d =["s4","wm"])

71

m4 = Mesh3d (x=X,y=y,z=2z,c=c¢,avs =1,
tet = [ntet, nz_tet] , mask = "max",
opt_3d =["s4","wm"])

m5 =Mesh3d (x=X,y=y,z=2z,c=c, avs =1,
prism = [nprism, nz_prism] , mask = "max",
opt_3d =["s4","wm"])

Now we graph the cells of each type, and then draw the

whole sphere. N. B. "paws" is a function which halts

until user enters a carriage return.

g1 = Graph3d (m5)

gl.plot () # draw prisms

paws ()

g1 = Graph3d (m4)

gl.plot () # draw tetrahedra

paws ()

g1 = Graph3d (m3)

gl.plot () # draw pyramids

paws ()

g1 = Graph3d (m2)

gl.plot () # draw hexahedra

paws ()

g1 = Graph3d (m1)

gl.plot () # draw the entire mesh

4.3 Plane objects

Instantiation

from plane import *
pl = Plane (<normal> , <point>)

Description

A Plane object is used as an auxiliary geometric object to enable plane slices through structured and
unstructured meshes, as described in the next seltaome s cannot be directly passed tGeaph

object to be plotted; they can, however, be plotted if they are a Plam@e object. The two posi-

tional arguments used to instantiatélane are:

<normal> : the direction numbers of the normal to the plane. If both arguments are omitted, this
defaults to the positive x axis.

<point> : coordinates of a point through which the plane passes. If this argument is omitted, then
the origin is the default.

A Plane object’s data is actually stored as the coefficients of the plane’s equation.

72

4.4 Slice objects

A Slice object is created by taking a slice throughlesh3d object or perhaps an earlier-created
Slice . There are two types dflesh3d Slice s: an isosurface slice (i. e., a surface where some
specified function on th&lesh3d has a constant value), and a plane slice (as created by slicing with
aPlane object). A pre-existinglice can be sliced only by Rlane , and the user has the option

of retaining both slices, or of discarding one or the other (useful for seeing inside closed isosurfaces,
for example).

The user will not normally instantiateéSice directly, but rather, by invoking tleslice function,
which does all the work and returns the resulgtge

Creation of aSlice

Isosurface Slice

from mesh3d import *
sl = sslice (m val [, wvarno))

The arguments are as follows:
m aMesh3d object to be sliced.
val : the value of the function on the isosurface.

varno : the number of the variable for the isosurface; defaulisitaot specified. (Recall that the
argument to aMesh3d can be a vector of values, in which case isosurfaces for several different func-
tions can be plotted on the same graph.)

Upon return from functiosslice , sl will be assigned the specifi&lice object, orNone, if it
does not exist.

Plane Slice of Mesh3d

from mesh3d import *
sl = sslice (m plane [, varno)

The arguments are as follows:
m aMesh3d object to be sliced.
plane : aPlane object by which to slice the specifidtesh3d.

varno :the number of the variable used to color the slicing plane; defadlistot specified. (Recall
that the argumert to aMesh3d can be a vector of values, in which case isosurfaces for several dif-

73

ferent functions can be plotted on the same graph.)

Upon return from functiosslice , sl will be assigned the specifi&lice object, orNone, if it
does not exist.

Plane Slice of a Slice

from mesh3d import *
sl = sslice (s, plane [, nslices)

The arguments are as follows:
s: aSlice object to be sliced.

plane : aPlane object by which to slice the specifi&dice

nslices :if nslices =1 (the default) then return the piece in front of Bh@ne ; if nslices =
2, return the paif front , back] of slices. (If you want just th#back" surface, you can achieve
this by calling slice witmslices =1 and - plane instead oplane .)

Upon return from functiosslice , sl will be assigned the specifi&lice object(s), oNone, or
[None , None] , if it (they) does (do) not exist.

Instantiation

The user will most likely use trsslice function to creat&lice objects, rather than instantiating
them directly; but here, for the sake of completeness, is direct instantiation.

from mesh3d import *
sl = Slice (nv, xyzv [, wval [, plane [, iso]]])

Description
The arguments are as follows:

nv is a one-dimensional integer array who&k entry is the number of vertices of th# face of
the object being sliced.

Xyzv is a two-dimensional array dimensiorsedn (nv) by 3. The firstnv [0] triples inxyzv
are the coordinates of the verticedafe [0] , the nexinv [1] triples are the coordinates
of the vertices oface [1] , etc.

val (if present) is an array the same lengthasvhosei ! entry specifies a color for face
plane (if present) says that this is a plane slice, and all the vexlyz®s lie in this plane.
iso (if present) says that this is the isosurface for the given value.

A Slice object or twoSlice objects are created by a call to the funcselice (See “Creation

74

of a Slice” on page 73). The functieslice accepts either a mesh and a specification of how to slice
it (isosurface or plane), or else a previously created slice, a plane to slice it with, and whether you want
to keep the resultingfront” slice or both slices.

Example 1 (a PyGist plot):

This example reads in the same data as the first PyNarcisse example (“Example 1 (a PyNarcisse
plot):” on page 68). The data is already in AVS order, so it does not need to be rearranged. This exam-
ple takes three plane sections through the imploding sphere, and graphs them with color-filled con-

tours and a color bar. The actual plot is shown in Chapter 5, page 102.

from mesh3d import *
from plane import *
from graph3d import *
f = PR ("./bills_plot")
n_nodes = f.NumNodes
n_z = f.NodesOnZones
x = f.XNodeCoords
y = f.YNodeCoords
z = f.ZNodeCoords
¢ = f.ZNodeVelocity
n_zones = f.NumZones
ml=Mesh3d (x=X,y=y,z=2z,c=c¢,avs =1,
hex = [n_zones, n_z])
Now define the three planes:
pyz = Plane (array ([1., 0., 0.], Float),
array ([0.0001, 0., 0.], Float))
pxz = Plane (array ([O., 1., 0.], Float),
array ([0., 0.0001, 0.], Float))
p2 = Plane (array ([1., 0., 0.], Float),
array ([0.35, 0., 0.], Float))
Now define the three slices
s2 = sslice (m1, pyz, varno = 1, opt_3d = ["wm", "s4"])
s22 = sslice (m1, p2, varno = 1, opt_3d = ["wm", "s4"])
s23 = sslice (m1, pxz, varno = 1, opt_3d = ["wm", "s4"])
Create the graph
g1 = Graph3d([s2, s22, s23], color_card = "rainbow.gp",
opt_3d = ["'wm", "s4"], mask = "min", color_bar =1,
split = 0, hardcopy = "talk.ps")
plot the graph
gl.plot ()

75

Example 2 (a PyGist plot):

Now we shall plot three isosurfaces of the same sphere shaded by a lightspu@e (= "none").
The isosurfaces are nested and one will block our view of another, so we slice it for better visibility.
Note that the slices isosurface is disconnected, because you see two sliced pieces!

sl = sslice (m1, .9 * max (c), varno = 1)

s2 = sslice (m1, .9 * min (c), varno = 1, opt_3d = "none")
s5 = sslice (m1, .5 * max (c), varno = 1, opt_3d = "none")
s6 = sslice (s5, -pyz, opt_3d = "none")
gl.set_surface_list ([s1, S2, s6])

gl.plot ()

76

Example 3 (a PyGist plot):

The next plot consists of a number of isosurfaces of the above imploding sphere shaded by a light
source ¢pt_3d = "none"). The isosurfaces are nested and some are closed, so we slice all of them

in half and keep the “back” halves for visibility.

foriinrange (8):
sl = sslice (m1, 9*min(c)+i*(9*max(c)-.9*
min (c)) / 8., varno = 1, opt_3d = "none")
slice_list.append (sslice (sl, pxz))
gl.set_surface_list (slice_list)

gl.plot ()

4.5 3D Animation

Graph3d objects have two methods that enable realtime animation of 3D plots. These are described in
the Graph3d chapter; see “3d Animation Methods” on page 93.

77

78

UCRL-MA-128569, Manual 4

CHAPTER 5: Graph ObjeCtS

A Graph object is defined as a container for geometric objects which also contains the type of infor-
mation common to all graphs (for example, titles, axis labels and scales, and the IxgpA

object can be asked to plot itself; the user can supply one oRfudter objects to thé&raph, or

else leave it up to th@raph to try to obtain its own defauRlotter object. The base cla&aph

is not normally instantiated as is. Instead, the user will normally instantiate its derived classes,
Graph2d andGraph3d .

5.1 Graph2d Objects

Instantiation

from graph2d import *
g2 = Graph2d (<object list> , <keylist>)

Description

A Graph2d is a two-dimensional graphics object which contains one or more 2d geometric objects
plus a global environment. It will accept one or a lisPuitter objects or plotter identifiers, or

will try to complete generic connection(s) of its own if asked to plot without having been given a plot-
ter specification.

<object list> is one or a sequence of 2d geometric objects. It makes sense sometimes to graph
severalCurve objects on one plot; the user can specify several 2d objects of other types, or even of
mixed types, but does so at his/her own risk.

A list of keyword arguments accepted Gyaph2d is:

plotter, filename, display, graphics, style, label_type,

titles, title_colors, grid_type, axis_labels, x_axis_label,
y_axis_label, yr_axis_label, axis_limits, x_axis_limits,
y_axis_limits, yr_axis_limits, axis_scales, x_axis_scale,
y_axis_scale, yr_axis_scale, text, text_color, text_size,
text_pos, color_card, xyequal, sync, color_bar, color_bar_pos

There are a number of methods availabl&mph2d to enable the user to reconfigure an existing
object. Let’s say thag2 is aGraph2d object.

g2.new (<objectlist> , <keylist>) :hasthe same argumentsGraph2d , and simply

11/23/98 79

reinitializes an existingsraph2d object, instead of instantiating a separate one.

g2.add (<2d object>) adds the specified 2d object to the others already iGtaph2d .
(2d objects are numbered in the order that they are put into the graph, beginning with 1.)

g2.delete (n) : deletes the nth 2d object from tGeaph2d .

g2.replace (n, <2d object>) :replaces the nth 2d object in tGeaph2d with the one
specified.

g2.change_plot (<keyword arguments>) : used to change aryraph2d characteris-
tics except the 2d objects being graphed. Usadide delete , and/oreplace methods to
do that.change_plot will draw the graph without sending object coordinates, unless key-
word send is 1. Generallychange_plot should be used when the graph needs to be re-
computed, anduick_plot (below) when it does nathange_plot does no error check-
ing and does not convert user-friendly names of colors and such into numbers.

g2.quick_plo t(<keyword arguments>) is used to change some Graph2d characteris-
tics which do not demand that the graph be recomputed. You can change the characteristics of
a 2d object in the graph by specifying its numlbarfe =n) and any combination of the traits
type , color , andlabel . Or you can change such overall graph characteristics as
label_type , titles , title_colors , text , text color , text size
text_pos ,color_card ,grid_type , sync,andaxis labels . The changes will be
effected and the graph redrawn.

Things that you cannot change include axis limits and scales, and the coordinates of a curve.
Usechange_plot if axis limits and scales are among the things you want to change, and use
add, delete , orreplace followed by a call tglot , if you wish to change the 2d object

list.

g2.plot () plots a2d graph. If the user has not by now spediietler (s) orfilename (s)
then a generiPlotter object will be created, if it is possible to find a local Graphics routine.

Graph2d objects inherit from base claGsaph , as doe$sraph3d . The following methods are in-
herited fromGraph :

g2.add_file ("filename"”) allows the user to addRiotter contacted vidfilename™
to the list ofPlotter s being used to draw the curr&raph object.

filename has different (and incompatible) meanings for PyNarcisse and PyGist, because the
two graphics packages are so fundamentally different in the way that the user program commu-
nicates with them. Please consult the discussion of keyword arguments in the following sec-
tion.

g2.delete_file ("filename™) allows the user to delete Rlotter contacted via
"filename” from the list ofPlotter s being used by this object.
g2.add_display ("host") and gl.delete_display ("host") adds or deletes a

Plotter displaying on the specifidtibst . Currently, these are the same asaithe file
anddelete_file for PyGist.

80

g2.add_plotter (pl) allows the user to add the specifiéldtter to the list ofPlotter s
being used by this object.

g2.delete_plotter (pl) allows the user to delete the specifigddtter from the list of
Plotter s being used by this object.

g2.change (<keyword arguments>) allows some of the graph's generic characteristics

to be changed. These async, titles , title_colors , style (PyGist only),
grid_type , axis_labels (and x_axis_labels , etc.), axis_limits (and
X_axis_limits , etc.), axis_scales (and x_axis_scales , etc.), text ,

text_color ,text_size , andtext_pos

Keyword Arguments

This section describes tli&raph2d keyword arguments. The first three keywords are used to iden-
tify where and how you want the graph plottedGraph2d will create a default plotter if none of
these keywords is specified; see below.

plotter = <Plotter object> or a sequence cfPlotter object> s if you have a
Plotter object or a sequence of them that you wan&tsph2d to use when plotting itself.
In particular, if you want to plot only to CGM or PostScript files and not interactively (i. e., in
batch mode), then you will need to instantiate your Bletter and give it to th&raph2d
object. CurrentlyGraph objects cannot instantiate their own ba@tbtter s, although this
feature will eventually be added.

flename =<string> or a sequence e&fstring> s specifies plotting associated with a par-
ticular filename. PyGist and PyNarcisse differ dramatically in the meaning of this keyword, as
explained below.

PyGist: currently filename is synonymous with theisplay keyword, which specifies a

host where the PyGist window is to be displayed. If the user wants a plotter which plots to a
given CGM or PostScript file (or one of each), then the user must instantiate one or more
Plotter objects and hand them to tGeaph2d via theplotter keyword. Eventually this

will be changed to make it easier on the user. But for future compatibility, udespihay

keyword to specify where PyGist will open its window, and instanti&letser yourself if

you wish to have PyGist send plots to a file. (See “Plotters: A Brief Primer” on page 113..)

PyNarcisse:filename can be used in two different ways.

(1) As a way to specify a Narcisse process to connect to. In this caBkerame should
be in the form'machine+port_serveur++user@ie.32" wheremachine specifies
where the display is to take place (e."gf.lInl.gov:0.0"), port_serveur is the
port number displayed on the Narcisse GUI, aser is the userid of the person running.

(2) As a filename where Narcisse is to dump its plots. In this case, use the fil&.spKix

to specify a binary file, dt.spc” for an ascii dump file. If a filename of this form is specified,
PyNarcisse attempts a connection to Narcisse using the valueRESE SP3environment
variable, if it exists, and if not, attempts to construct a connection filenameDRISR§AY
environment variable fanachine , the value of th€ ORT_SERVEUBnvironment variable
(or the default 2101 PORT_SERVEUR not defined) foport_serveur , and the value of

81

USERfor user .

display =<string> ora sequence &fstring> s if you want to display on the named hosts.
(This keyword is ignored by PyNarcisse, since the desired display is specifiefilerthe
mekeyword.) The form okstring> is the usual

"hostname:server.screen”

The purpose of this argument is to allow you to continue without exiting Python if you have to
open a Gist window without thBISPLAY environment variable having been set, or if you
want to open Gist windows on more than one host.

If none of the above three keywords is specified, then when asked to plot, a Graph2d will attempt to
connect to a plotter as follows:

« It first examines the environment varial#®¥ GRAPHo see what type of graphics is desired
(the allowed values ar&ist" and"Nar"). If this variable is undefined, then the default is
"Gist"

« Ifthe graphics isGist" , it attempts to open a Gist graphics window on the host specified by
the DISPLAY environment variable.

« If the graphics iSNarcisse"” , it attempts a connection using the value ofDEST_SP3
environment variable, if it exists, and if not, attempts to construct a connection filename using
DISPLAY environment variable fomachine , the value of th¢ ORT_SERVEURnNviron-
ment variable (or the default 2101AORT_SERVEUR not defined) foPORT_SERVEUR
and the value dSERfor user .

The remainingsraph2d keyword arguments are as follows:

graphics =<string> orasequence &itring> s if you want to specify which graphics the
Plotter orPlotter s associated with thiSraph2d will connect to. Currently the values
allowed aré'Nar" and"Gist" . This argument is meaningless if you supply one or a list of
Plotter s via theplotter keyword. If<string> is a scalar and you have supplied a list
of filename s, then allPlotter s opened will be that type. If it is a vector, then it must
match the list ofilename s in size and correspond to filename |, i. e., don’t give a Nar-
cisse-style flename and specify@ist” Plotter for it.

style = one of'vg.gs" , "boxed.gs" , "vgbox.gs" ,"nobox.gs" ,"work.gs" . For
Gist only, and only if &lotter has not already been specified, then ¢dotter opened
will have axes plotted in the specified style. The defatlk.gs"

grid_type = <string> :where"none" means no axis gridaxes" means a pair of axes
with tick marks,"'wide" means a widely spaced 2d grid, &fudl" means a closely spaced
2d grid. (By a “grid” here, we mean a set of lines parallel to the coordinate axes which overlay
the graph when plotted.)

label_type ="end" (to label the curve at its endhox" (to put the labels in a box) Appli-
cable to PyNarcisse only.

titles = <value> where<value> is a string or a sequence of up to four strings, giving the

82

titles in the order bottom, top, left, right.

title_colors = <value> where value is an integer or string or a sequence of up to four in-
tegers or strings giving the colors of the titles.

axis_labels = <value> where<value> is a string or sequence of up to three strings repre-
senting the labels of the x axis, the y axis, and the right y axis.

X_axis_label ,y_axis_label , andyr_axis_label may be used to label individual ax-
es.

axis_limits = <value> where<value> is a pairffxmin, xmax] or a sequence of up to

three pairs, where the second would be the y limits, and the third the yr limits.

x_axis_limits , y_axis_limits , andyr_axis_limits may be used to specify limits
on individual axes.

axis_scales = "linlin" , "linlog" , "loglin” , or"loglog" or, if all three axes are
to be specified, a triple of the valuds" and"log"

X_axis_scale ,y axis_scale , andyr_axis_scale may be used to specify individual
axis scales.

text = <value> where<value> is a string or a sequence of strings representing texts to be
placed on the plot.

text_color = <value> where<value> is a color number or name, or a sequence of color
numbers or names giving colors for the texts.

text_size =<value> where<value> is an integer or a sequence of integers giving (rough-
ly) the number of characters in a line on the graph (PyNarcisse) or the point size (PyGist).

text_ pos = <value> where<value> is a pair or a sequence or reals betw@emndl1.0
giving the relative position of the lower left corner of a text in the graphics window.

color_card = <value> specifies which color card you wish to use, e!'mginbowhls"
(the default),'random" , etc. Note that foGraph2d , color_card is a keyword, since it
is not possible to specify different color cards on the same 2d graph, wirgkeasd 3d and
4d graphs can have different color cards. For details on color cards, See “Narcisse Color cards”
on page 48. and See “Gist Color Cards” on page 49..

xyequal =0/1 :If 1, the axis limits will be adjusted so that both axes are to the same scale.

sync =0 or 1: (1 to synchronize before sending a plot) default§,totherwise plots may get
garbled. Only applicable to PyNarcisse.

color_bar =0 orl: (1 enables plotting of a color bar on any graphs for which it is meaningful
(colored contour plots, filled contour plots, cell arrays, filled meshes and polygons).

color_bar_pos (ignored unless a color bar is actually plotted) is a 2d drfaynin, ym-
in], [xmax, ymax]] specifying where (in window coordinates) the diagonally opposite
corners of the color bar are to be placed.

Examples

83

The following sequence of instructions creates a simple curve (a straight line), a 75 dpi plot window,
passes both objects to a n@raph2d object with a blue title, and does the plot:

cl =Curve (y =[0,1], marks = 1, marker ="A")
pl = Plotter (dpi=75)
gl = Graph2d (c1, plotter = pl , titles =

"Curve marked with A", title_colors = "blue")
gl.plot ()

-|IDJ_|I|||I|||I|||I|||I|

Curve marked with A

84

This next sequence adds a second curve to the &rapd2d , and changes the title:

c2 =Curve (y =[1,0], marks = 1, marker = "B")
gl.add (c2)
gl.change (titles = "New curve marked B.")

gl.plot ()

Mew curve marked B.

85

Now we set the coordinates of the two curvegl has already been given referenceslicandc?2,
so the changes will be visiblegd and will be reflected in the new plofl’s title is changed, and the
x scale is changed to logarithmic.

clset(x=1[1,2])
c2.set(x=1[1,2])
gl.change (axis_scales = "loglin",
tittes = "Same, x axis now logarithmic.")
gl.plot ()

same, ¥ axis now logarithmic,

86

Change the axis scale back to linear, and change the axis limits to show only a part of the graph:

gl.change (x_axis_scale = "lin",
axis_limits=[[1.2,1.8],[0.2,0.8]],
titles="Limits now 1.2<x<1.8, 0.2<y<0.8.")
gl.plot ()

08 Prrrlrorr ool oo berer e

_
n
vl e e b

1.2 1.3 1.4 1.5 1.6 1.7 1.8

Limits now 1.2<x<1.8, 0.Z2<y<0.8.

87

Change the axis limits back to defaults, i. e., values computed from the data by PyGist:

gl.change(axis_limits="defaults",
tittes="Limits now back to extreme values.")

gl.plot ()

Limits now back to extreme values.,

88

The next example shows how you can change the curve or curves associatedraythzal object.
Here we delete the two curves associated giththen add the new one, change the title, and plot.

x=10*pi*arange(200, typecode = Float)/199.0

cl = Curve (X =X, Yy = sin(x),marks = 1, marker="A")
gl.delete (2)

gl.delete (1)

gl.add (cl)

gl.change (titles = "Five cycles of a sine wave, marked A.")

gl.plot ()

o v beerebr e brreeLverr b b

=
cn
_.|.I.|.I.J.J.J.].J..I..l..l..l..l..t.l

oo—-- g N N S PR O R R P

&
on
I I.|.I.J.J.J.J.J..|..|..I..|..I..|..l.L.l.L

_1-D—iIIII|IIII|III|IIII|IIII|IIII|I
0 = 10 15 20 s 40

Five cycles of a sine wave, marked A,

89

The next sequence of code creates a li€lw¥e objects which are nested cardioids with different
parameters. It then creates a r@aph2d containing thes€urve s, and plots them in different col-
ors, labeling each with a number.

x=2*pi*arange(200, typecode = Float)/199.0
crvs =]
foriinrange (1,7) :
r = 0.5* -(5-0.5%)*cos(x)
S=i
crvs.append(Curve(y=r*sin(x),x=r*cos(x),marks=0,
color=-4-i,label=s))
g1=Graph2d(crvs,plotter = pl,
titles="Nested cardioids in colors")
gl.plot ()

90

0a

ra

—_—8

=

||||||||||||||||||||||||i|||||
-4 -3 —Z -1 0 1

Mested cardioids in colors

91

5.2 Graph3d Objects

Instantiation

from graph3d import *

g3 = Graph3d (<object list> , <keylist>)
Description

A Graph3d is a container for one or more three dimensional geometric objgatface s,
Mesh3ds, and/ofSlice s) as well as global information about the graph. It will accept one or a list
of Plotter objects oPlotter identifiers, or will try to complete generic connection(s) of its own
if asked to plot without having been given a plotter specification.

<object list> is one or a sequence of 3d geometric objects. It makes sense sometimes to graph
several such objects on one plot. By mearigkf ing two or more objects (see description below),

it is possible though somewhat difficult in PyNarcisse to plot two or more objects with different 3d/4d
options, palettes, etc. on the same graph. PyGist does not allow this; however, in mesh plots which mix
isosurfaces and plane slices, PyGist allows a split palette option, which shades the isosurfaces as if
from a light source, but colors plane slices according to the specified function.

A list of keyword arguments accepted Gyaph3d is:

plotter, filename, display, titles, title_colors, grid_type,
axis_labels, x_axis_label, y_axis_label, z_axis_label,
c_axis_label, yr_axis_label, axis_limits, x_axis_limits,
y_axis_limits, z_axis_limits, c_axis_limits, yr_axis_limits,
axis_scales, x_factor, y_factor, x_axis_scale, y_axis_scale,
z_axis_scale, c_axis_scale, yr_axis_scale, text, text_color,
text_size,text_pos, phi, theta, roll, distance, link, connect,
sync, ambient, diffuse, specular, spower, sdir, color_bar,
color_bar_pos

Graph3d objects inherit from base claGsaph , as doessraph2d . The following methods are in-
herited fromGraph: add_file , delete_file , add_plotter , delete_plotter , and
change . See “Description” on page 79. for details. In additio&raph3d has the following meth-
ods which, except where noted, are similar tadGhegph2d methods with the same namesw, add,
delete ,replace ,change_plot ,quick_plot , andplot

Notes:

« new has the same argumentsGsph3d.new .

« add,delete ,andreplace have the same calling sequence as the same-named methods in
Graph2d , except, of course, that the number refers to a 3d object Gréph .

92

« change_plot carries the same caveats as@naph2d method by the same name.

e quick_plot isused to change sor@eaph3d characteristics which do not demand that the
graph be recomputed. You can change the characteristicSwface (or other object) in

the graph by specifying its numbesu(face = n) and any combination of the traits
color_card ,opt_3d ,mesh_type , ormask. Or you can change such overall graph char-
acteristics afitles |, title_colors ,text ,text_color ,text _size ,text pos

color_card ,grid_type ,sync,theta ,phi,roll , andaxis_labels . Oryou can

do both. The changes will be effected and the graph redrawn. Things that you cannot change
include axis limits and scales, and the coordinatesSoirtace . Usechange_plot if axis

limits and scales are among the things you want to change, arddisdelete , orre-

place followed by a call toplot , if you wish to add, delete, or changeSarface .
quick_plot will not work right forlink ed Surfaces. Once the changes have been made,
you will have to calplot .

3d Animation Methods

Finally, Graph3d has two methods which have to do with real time animation of 3d plots. These
methods are as follows:
move_light_source (<keylist>) The keyword arguments are:
nframes (default30): the number of frames in the proposed movie.

angle (default360 / nframes): the angle (in degrees) through which the light source ro-
tates for each frame.

This method is not yet implemented in PyNarcisse.
rotate (<keylist>) The keyword arguments are:

axis (default[-1., 1., 0.]):the direction numbers of the axis about which the graph is
rotated.

nframes (default30): the number of frames in the proposed movie.

angle (default360 / nframes): the angle (in degrees) through which the graph is rotated
for each frame.

This method is not yet implemented in PyNarcisse.

Keyword Arguments

The following keywords inherited frorGraph have exactly the same behavior as described under
Graph2d (See “Keyword Arguments” on page 81.):

plotter, filename, display, titles, title_colors, grid_type
(PyNarcisse only}ext, text_color, text_size,text_pos, color_bar,
color_bar_pos

Up to four axes are possible in 3d and 4d plrty; z orc (depending on whether we chose the option

93

of switchingz andc), and the righy axis (when the left and right sides of the plot have diffeyent

axis scales, with some objects plotted on one and some on another), so the specifications of axis char:
acteristics are different from those f6raph2d . The axis characteristic keywords (primarily appli-

cable to PyNarcisse, but see the next paragraph) are:

axis_labels, axis_limits, axis_scales

Each should be specified as a list of up to five items, in the grderz, c, yr ; items omitted from
the right will be defaultedaxis_labels are strings;axis_limits are pairs of floats; and
axis_scales are one of the two stringbn" or"log"

PyGist does not currently support full axes display in 3d. Instead, it is capable of displgyormgan

in the lower left corner of a 3d plot, i. e., a small representation showing the orientation of the three
coordinate axes, with the labels in reverse video if they are pointed “into” the plane of the plot. These
labels default to X”, “ Y”, and *“Z”, but the defaults can be overruled by #ras_labels key-

word. PyGist will only use the first letter of each specified label, if longer than one letter. The keyword
gnomon (if set to nonzero) turns on the gnomon display.

Another peculiarity of PyGist is its tendency to stretch the plotted surface so that it extends from edge
to edge of the plotting area. The keywoxrd$actor andy_factor can be used to force the dis-

play to appear in proper perspective; in most cases ¥edaetor alone, and sat factor to 2.0.

Both keywoirds default to 1.0.

Other keywords which are peculiar@aph3d objects are:

phi = <integer value> specifies the angle that the line from the view point to the origin
makes with the positive z axis. The angle is in degrees.

theta = <integer value> specifies the angle made by the projection of the line of view on
the xy plane with the positive x axis. The angle is in degrees.

roll = <integer value> specifies the angle of rotation of the graph around the line from the
origin to the view point. The angle is measured in the positive direction, I. e., if your right
thumb is aligned outwards along the line from the origin to the view point, then your fingers
curl in the positive direction. The angle is in degrees. (This keyword is not available in PyGist,
and will be ignored if supplied.)

distance = <integer value> specifies the distance of the view point from the origin. This
is an integer between 0 and 20. 0 makes the distance infinite; otherwise the smaller the number,
the closer you are. This number does not affect the size of the graph, but rather the amount of
distortion in the picture (the closer you are, the more distortion).

The following keywords are applicable only in PyNarcisse:

link =0 orl: Used to link surfaces of different 3d options. normally all surfaces in a graph will
have the same 3d options. This value should be set to 1 if you want to graph two or more sur-
faces with different 3d options. otherwise multiple surface graphs will appear with the options
of the last surface specified. This may not always work as expected, since successive objects

94

in alink edGraph are plotted on top of whatever is in the current window. That may not be
where they are positioned; e. g., it would be easy to have an object that is really behind another
be drawn on top of it.

connect =0 orl: settol for graphs of more than one 3d object to provide better hidden line
removal. Must not be used wilihk

sync =0 orl: settol to synchronize with Narcisse before plotting the next graph. Keeps graphs
sent in rapid succession from becoming garbled. Defaults ¢et it toO if you don't have a
timing problem.

The following lighting keywords are applicable only in PyGist:

ambient =<value> is alightlevel (arbitrary units) that is added to every surface independently
of its orientation. High values of this argument cause the surface to appear to glow with its own
light, making it so bright as to lose contrast. Low values of this argument mean that reflected
and diffuse light are more important in visualizing the surface.

diffuse = <value> is a light level which is proportional tws (theta) , wheretheta is
the angle between the surface normal and the viewing direction, so that surfaces directly facing
the viewer are bright, while surfaces viewed edge on are unlit (and surfaces facing away, if
drawn, are shaded as if they faced the viewer, so that if we are looking at the inside of a surface,
it will look properly three-dimensional).

specular = <value>
spower = <value>
sdir = <value>

specular =S_LEVELIis a light level proportional to a high powsgrower = Nof1+cos

(alpha) , wherealpha is the angle between the specular reflection angle and the viewing
direction. The light source for the calculationadfiha lies in the directiorsdir = XYZ(a

3 element vector) in the viewer's coordinate system at infinite distance. You cars Heyle
sources by makin§_LEVEL, N, andXYZ (or any combination) be vectors of length (ns -

by-3 in the case oKY2).

The four paramete@mbient , diffuse , specular , andspower act together to produce
interesting effects. dliffuse andspecular are both 0, then the surface will not be reflec-
tive, and all three dimensional appearance will be gpsicular andspower together de-
termine how reflective the surface is; lagg@wer with specular notO gives small, bright
highlights with most of the surface appearing blackspewer decreases, the highlights be-
come somewhat larger and darker portions of the surface become lighi#usé is not

zero butspecular andambient are zero, then the surface will appear shaded gently,
brighter on the side(s) toward the light source(s), but not highly reflective. The user is encour-
aged to experiment to find the desired effect.

split =0 orl (defaultl) If 1, causes the palette to be split when both planes and isosurfaces are
presentin a graph, so that isosurfaces are shaded according to current light settings, while plane
sections of the mesh are colored according to a specified function. (The lower half of the palette

95

is grey scale, and the upper half is (usually) rainbow.

Example 1. Surface plots.

All of the plots illustrated in this example are of the following surface; it is an interesting symmetric
surface with a peak and a valley.

x =span (-1, 1, 64, 64)

y = transpose (X)

z = (x +y)*exp (-6.(x*x+y*y))

sl = Surface (z = z, opt_3d = "wm", mask = "sort")

In each case, the title describes how the surface is displayed. We have/sttdte keyword to
2.0 so that the surface will show in proper perspective; otherwise it would be stretched out from border
to border in the vertical direction.

g1 = Graph3d (s1, color_card = "gray.gp",
titles = "opaque wire mesh", y_factor = 2.)

gl.plot ()
paws ()

SR

ok
oAl e e
fiﬂ**fﬁgﬁﬁ’:ﬁfx‘%ﬁﬁ%&g;ﬁr‘
2 g g e
g R B T R e R D
-¢+ ++1-‘ o :‘EEEE:#*
5

ettt
S

bttt et
e LR R R s
e Rk

opague wire mesh

96

sl.set (mask = "none")
gl.change (titles = "transparent wire mesh")

gl.plot ()
paws ()

sl
e

o
v
e L G

At AT

A
W

transparent wire mesh

97

sl.set (ecolor = "red")
gl.change (titles = "transparent wire mesh in red")

gl.plot ()
paws ()

L A
g
S
SR

Ir;::ﬁ;:;t:ﬁ“ﬁ“

.
PN
2

S T
T
e
e e
o
=

e
S

transparent wire mesh in red

98

sl.set (mask = "sort", shade = 1)
gl.change (titles = "opaque shaded mesh with red lines")

gl.plot ()
paws ()

oo
::tf- 2
W
e
gk h

o
R

opague shaded mesh with red lines

99

sl.set (opt_3d = "none")
gl.change (titles = "opaque shaded mesh with no lines")

gl.plot ()
paws ()

opague shaded mesh with no lines

100

The next example is interesting in that it shows a back-lit surface.

gl.change (titles = "same with different lighting")

gl.quick_plot (diffuse=.1, specular = 1.,
sdir=array([0,0,-1]))

paws ()

same with different lighting

Example 2. Plane cross sections of imploding sphere.

The user may recall this example. An imploding sphere has been decomposed into an unstructured
(but hexahedral) mesh. The data is read in from a pdb file as follows:

f=PR ("./bills_plot)
n_nodes = f.NumNodes
n_z = f.NodesOnZones
x = f.XNodeCoords
y = f.YNodeCoords
z = f.ZNodeCoords
¢ = f.ZNodeVelocity
n_zones = f.NumZones

Now we build aMesh3d object from the data:

101

ml=Mesh3d (x=%X,y=y,z=2z,c=c,avs =1,
hex = [n_zones, n_z])

Create thre®lane objects with which to perform cross sections:

pyz = Plane (array ([1., 0., 0.], Float),
array ([0.0001, 0., 0.], Float))

pxz = Plane (array ([0., 1., 0.], Float),
array ([0., 0.0001, 0.], Float))

p2 = Plane (array ([1., 0., 0.], Float),
array ([0.35, 0., 0.], Float))

Slice the mesh three times:

s2 = sslice (m1, pyz, varno = 1, opt_3d = ["wm", "s4"])
s22 = sslice (m1, p2, varno = 1, opt_3d = ["wm", "s4"])
s23 = sslice (m1, pxz, varno = 1, opt_3d = ["wm", "s4"])

g1 = Graph3d([s2, s22, s23], color_card = "rainbow.gp",
opt_3d = ["wm", "s4"], mask = "min", color_bar =1,
split = 0, hardcopy = "talk.ps")

gl.plot ()

The resulting graph is shown below.

102

Example 3. Moving light source on surface.

In this example, we will illustrate how to set up a graph with a moving light source. The light source
will apparently move over the surface in real time. You will have to take our word for this; the next

two figures show different views of the surface as the light progresses.
sl = Surface (z = z, opt_3d = "none", mask = "sort",
shade = 1) # Same surface as Example 1

g1 = Graph3d (s1, ambient = 0.2, diffuse = .2, specular = 1.,
color_card = "gray.gp", titles = "moving light source",
y_factor = 2.)

gl.move_light_source ()

103

Imagine the light source as moving from right to left just behind the viewer.

Example 4. Rotating isosurfaces and cutting plane.

We cannot show you the actual rotation in these pages, but we shall show you a couple of different
snapshots of the rotating surface. This example consists of a couple of isosurfaces in a mesh, eact
sliced horizontally and vertically, with parts discarded so that we can see inside the figure, and a por-
tion of one of the slicing planes. The isosurfaces are shaded in greyscale as if by a light shining over
the viewer’s right shoulder, and the polygons of the portion of the slicing plane are colored using the
rainbow palette by the values of the same function that was used to perform the isosurface slicing.
This figure illustrates the so-called “split palette”, where half of the palette is set to greyscale colors
and is used to shade isosurfaces, while the other half is set to colors used to plot function values on
plane slices.

The edges of the polygons on the plane slice are also shown. The figure and the code generating it be-

104

gin below.

1.0028

i
0.091161
kS

The following code computes the coordinates of the mesh, the fundfieimed on it, and then creates
theMesh3d object.

nx =20
ny =20
nz =20

xyz = zeros ((3, nx, ny, nz), Float)

xyz [0] = multiply.outer (span (-1, 1, nx),
ones ((ny, nz), Float))

xyz [1] = multiply.outer (ones (nx, Float),
multiply.outer (span (-1, 1, ny), ones (nz, Float)))

Xyz [2] = multiply.outer (ones ((nx, ny), Float),
span (-1, 1, nz))

r =sqrt (xyz [0] ** 2 + xyz [1] **2 + xyz [2] **2)

theta = arccos (xyz [2] / 1)

phi = arctan2 (xyz [1] , xyz [O] + logical_not (r))

105

y32 = sin (theta) ** 2 * cos (theta) * cos (2 * phi)

m1 = Mesh3d (x = span (-1, 1, nx), y = span (-1, 1, ny),
z=span (-1, 1, nz),c=r* (1. + y32))

The following code sequence performs the slicing. We do not spauifif8d for the isosurfaces,
since with the split palette option they will automatically be shaded.

sl = sslice (m1, .50, varno = 1) # (inner isosurface)
s2 = sslice (m1, 1.0, varno = 1) # (outer isosurface)

pxy = Plane (array ([0., 0., 1.], Float), zeros (3, Float))
pyz = Plane (array ([1., 0., 0.], Float), zeros (3, Float))

create a pseudo-colored plane slice, then cut it in half

and save only the front half. "f4" specifies that the

cells be colored by the function assigned to the c

keyword of the mesh m1. "wm" (wire monochrome) causes the
edges of the cells to be shown.

s3 = sslice (m1, pyz, opt_3d = ["wm", "f4"])

s3 = sslice (s3, pxy, nslices = 1, opt_3d = ["'wm", "f4"])

cut the inner isosurface in half so that we can slice the
top off one of the halves and discard it:

[s1, s4] = sslice (s1, pxy, nslices = 2)

Note the use of - pyz to keep the "bottom" slice:

sl = sslice (s1, - pyz)

do the same with the outer isosurface:
[s2, s5] = sslice (s2, pxy, nslices = 2)
s2 = sslice (s2, - pyz)

Create Graph object with split palette (rainbow/greyscale)
g1 = Graph3d ([s3, s1, s4, s2, s5], gnomon =1,
color_card = "rainbow.gp", diffuse = .2, specular =1,
mask = "min", split = 1)
gl.plot ()

The code which generates the rotating figure is given below. We change fdwtor and
y_factor of gl so that the figure will appear smaller.

gl.change (x_factor = 2., y_factor = 2.)
gl.rotate ()

Snapshots of the rotating figure are shown on the next page.

106

107

108

UCRL-MA-128569, Manual 4

cuarter s ANIMation2d ObjeCtS

An Animation2d object is a container for the controls for a two dimensional animation. The user
supplies these controls, which are functions (written in Python) that initialize internal variables in the
object, compute the coordinates for each frame, and update the internal variables. To see the anima-
tion performed, give the object tdaaph2d and ask th&raph to plot itself.

CurrentlyAnimation2d is not implemented in PyNarcisse.

Instantiation

from animation2d import *
anim = Animation2d (<keylist>)

Description
Animation2d accepts the following keyword arguments:

initialize, calculations, update, animation, nsteps, color

It also has methodsew andset , which work the same as the methods with the same names in other
2d objects. See “Description” on page 9., for instance.

Keyword Arguments
The following keyword arguments can be specified Witimation2d

initialize = <name of aninitialization function> . This function should have
one argument, the name of Animation2d instantiation, sayanim’, and when called
should initialize any o&dnim ’s internal variables needed before beginning to compute the an-
imation.

calculations = <calculation function(s) for coordinates> : the value of this
keyword is the name of a function, or a list of names of functions. Each of the calculations
routines should havahim * as the argument. This routine (or these routines) are called from
within a loop in thePlotter (s) associated witanim . They should compute the current val-
ues ofanim.x andanim.y , the coordinates of the curve(s) in this step of the animation. The
first frame starts with the resultsioftialize , then in subsequent calls, use the results of
update (below). If more than one calculation is specified, then a plot command will be issued
after each one.

update = <functionto update the variables used in calculations> . This
function, when called witheinim ’ as its sole argument, updates (increments, decrements) vari-

11/23/98 109

ables used in calculating the frames.
animation =0/1 (If 1, supplies a smoother, less jerky animation. Default value
nsteps = number of animation steps desired. Defal00.

color =<value> where<value> is an integer representing an index into a color chart, or a
common color name lik&red" |, "blue" , "background" , etc. In the interest of speed,
other keywords relating to curégpe , thickness , etc., are currently not allowed.

Examples

The following is an interesting example of “dancing curves”, sine waves which appear to jump up
and down and go around in circles.
def init (self) :
self.t = 2*pi*arange (400, typecode = Float) / 399.0

selfnal =1
self.nbl =5
self.na2 =2
self.nb2 =7
self.rcl = 40.
self.rc2 = 160.

self.size = 40.
self.phase = self.theta = 0.
self.dtheta = pi / (self.nsteps - 1)
self.dphase = 2 * pi / (self.nsteps - 1)
def calcl (self):
self.cost = cos (self.theta)
self.sint = sin (self.theta)
self.x = self.rcl * self.cost + \
self.size * cos (self.nal * self.t)
self.y = self.rcl * self.sint + \
self.size * sin (self.nbl1 * self.t + self.phase)
def calc2 (self):
self.x = self.rc2 * self.cost + \
self.size * cos (self.na2 * self.t)
self.y = self.rc2 * self.sint + \
self.size * sin (self.nb2 * self.t + self.phase)
defincr (self):
self.theta = self.theta + self.dtheta
self.phase = self.phase + self.dphase

from animation2d import *
instantiate an Animation2d without smoothness
anim = Animation2d (initialize = init,

calculations = [calc1, calc2], update = incr,

110

animation = 0, nsteps = 200)

g1l = Graph2d (anim)
gl.plot ()

Now animate smoothly to see the difference.
anim.set (animation = 1)

gl.plot ()

We have been unable to capture steps in the animation for this document; below is a pisture of the two
curves after the animation has finished. You will have to try this example yourself to see the incredible
effects!

40 — Ij
3 3
20 — B
B N
- r
n__. B R S ! T 'ga'...__
—f .
_H B
. I
-20— —
: #a:
;
4n 1 1 | | | | | | | | | | | |] | | | | | | | | | | | | | | | | |
=200 -150 =100 =50 0

111

112

UCRL-MA-128569, Manual 4

cuarter 7. PlOtter s: A Brief
Primer

The purpose of this chapter is to give a quick and dirty introduction on how to instaitiateea

object and use it. It is currently not possible to induGraph object to creat®lotter s of every
conceivable type; the user who may not be satisfied with what is supplied can use this chapter to learn
how to creatdlotter s which can be passed as the values of keyword arguméaitagh objects

upon instantiation.

In general we recommend against anybody using the full capabilRiotér objects who is not

on the computer science team. They are a low-level interface and require a lot of work and knowledge
of low-level graphics engine intrinsics on the part of the user. If there is some capability not currently
offered byGraph objects, then rather than usinBlatter , | recommend that you contact a member

of the computer science team to add the capability which you desire.

Instantiation

Uncomment one of the following depending on which
graphics you are going to use (or both if you want

both kinds of plotter)

For a Narcisse plotter use:

import NarPlotter

pIN = NarPlotter.Plotter ([<filename>] [, <keylist>])
For a Gist plotter use:

import GistPlotter

plG = GistPlotter.Plotter ([<filename>] [, <keylist>])

Description

The only argument to instantiate a PyNarcBk#ter s <filename> ; it is also the first ar-
gument to instantiate a PyGRIotter . <filename> is a string which specifies plotting
associated with a particular filename. PyGist and PyNarcisse differ dramatically in the meaning
of this argument, as explained below.

PyGist: <filename> specifies a host where the PyGist window is to be displayed (e. g.,
"icf.linl.gov:0.0"). If the argumenkfilename> is missing or if the user specifies

" " (asingle blank) as thefilename>, then PyGist will attempt to obtain the uséd'ks-

PLAY environment variable; no window will be opened if this variable is undefined. Likewise,
no window will be opened if the user specifiés(a blank),'none" , orNone as the<file-

name>. If the user wants Rlotter which plots to a given CGM or PostScript file (or one

11/23/98 113

of each), then the user must instantiate one or Plmtger objects using the keyword ar-
gumenthcp (described below) and hand it tGeaph via theplotter keyword. Eventually
this will be changed to make it easier on the user to asBridgeh to plot to a file only.

PyNarcisse:< filename> can be used in two different ways.

(1) As a way to specify a Narcisse process to connect to. In this casélghame> should
be in the form'machine+port_serveur++user@ie.32" wheremachine specifies
where the display is to take place (e."gf.lInl.gov:0.0"), port_serveur is the
port number displayed on the Narcisse GUI, aser is the userid of the person running.

(2) As a filename where Narcisse is to dump its plots. In this case, use the fil&.spKix

to specify a binary file, dt.spc” for an ascii dump file. If a filename of this form is specified,
PyNarcisse attempts a connection to Narcisse using the valueRESE SP3environment
variable, if it exists, and if not, attempts to construct a connection filenameDRISR§AY
environment variable fanachine , the value of th€ ORT_SERVEUBnvironment variable
(or the default 2101 PORT_SERVEUR not defined) foport_serveur , and the value of
USERfor user .

Keyword Arguments

Currently only PyGisPlotter s accept keyword arguments; these arguments (with their default val-
ues, if not specified) are as follows:

n (0) --the number of the graphics windoWt 7 are allowed). eacRlotter object corre-
sponds to a separate window.

dpi (100 for 2d;75 for 3d) -- the size of the window wantetiD0 and75 are allowed;100
is the larger size. This does not affect the size of hardcopy plots.

wait (1) -- used to make sure everything is plotted before changing frames.
private (0) -- use a common colormap (palette) for all windows.

hcp -- if not present, or if set t§ , there will be no hardcopy file. If present, names a file unique
to this window. This will be PostScript if thefilename> ends in'.ps" and CGM if the
<filename> ends in'.cgm" . Note that if both< filename> andhcp are™ , then you
will have aPlotter with no window and no file, a circumstance of doubtful utility.

dump (0) --if 1, dumps the color palette at the beginning of each page of hardcopy output, oth-
erwise converts to grey scale.

legends (0) -- controls whetherl() or not Q) curve legends are dumped to the hardcopy.
style ("work.gs" for 2d;"nobox.gs" for 3d) -- name of a Gist style sheet.
Example

The following will create a plotter with a window and a hardcopy file for color plots called
talk.ps

pl = GistPlotter.Plotter (" ", hcp = "talk.ps”, dump = 1, dpi = 75)

114

115

116

Index

A

add
example 85, 89
Graph2d 80
example 29, 30, 32, 33
Graph3d 92
add_display
Graph 80
add_file
Graph 80
add_plotter
Graph 81
ambient 95
example 103
animation 110
example 111
Animation2d
example 110
examples 110
instantiation 109
keyword arguments 109
Animation2d.set
example 111
arguments
iso (Slice) 74
nv (Slice) 74
plane (Slice) 74
Slice 74
val (Slice) 74
xyzv (Slice) 74
avs
example 69, 102
AVS format 61
avs keyword 67
axis 10
axis_limits
example 43, 44, 87, 88
axis_scales
example 42, 86

B

backlit surface 101

Basis 1

boundary 23, 34
example 35, 37

boundary_color 23, 34

boundary_type 23, 34

C

c_contours_array 49, 63
c_contours_scale 49, 63
calculations 109
example 110
CallArray
example 42

cardioids
example 90
cell_descr 67, 68
CellArray
example 41, 43, 44
Instantiation 41
keywords 41
CellArray.new 41
CellArray.set 41
CGM 1
change
example 85, 86, 87, 88, 89, 98, 99, 100, 101, 106
Graph 81
Graph2d
example 19, 36, 37
change_plot
Graph2d 80
example 27, 28
Graph3d 93
click and drag plot 66
color 10, 24, 27, 32, 35, 110
example 13, 19, 30, 32, 33, 35, 37, 38, 90
names 10
numbers 10
color card
description (Gist) 49
description (Narcisse) 48
color_bar
example 102
color_card 48, 62
example 43, 44, 96, 102, 103, 106
config save 3
connect 95
contour plots
example 28
contours 24, 35
example 38
table vs. filled 24
Curve
example 12, 84, 85, 89, 90
instantiation 9
keywords 9
methods 9
Curve.marker
example 89
Curve.marks
example 89
Curve.set
example 14, 15, 86

D

delete
example 89
Graph2d 80
example 29, 30, 32, 33
Graph3d 92
delete_file
Graph 80
delete_plotter
Graph 81
DEST_SP3 environment variable 81, 82, 114
device capabilities 7

diffuse 95
example 101, 103, 106
DISPLAY environment variable 81, 82, 113, 114
distance 94
dpi 114
example 84
dump 114

E

ecolor 24
example 98

edges 24, 35

environment variables 2
DEST_SP3 81, 82, 114
DISPLAY 81, 82, 113,114
PATH 2
PORT_SERVEUR 3, 81, 82, 114
PYGRAPH 2, 82
PYTHONPATH 2
USER 82, 114

ewidth 24

Examples
Graph2d 83

examples
animation 111
Animation2d 110
Animation2d.set 111
avs 69
axis_limits 43, 44
axis_scales 42
boundary 35, 37
¢ (Mesh3d) 64
¢ (Mesh3d, irregular) 71, 72
calculations 110
CellArray 41, 42, 43, 44
color 12, 13, 19, 26, 27, 28, 29, 30, 32, 33, 35, 37, 38
color_card 43, 44
contour plots 28
contours 38
Curve 12
Curve.set 14, 15
filled 31
Graph2d 42, 43, 44
Graph2d.add 29, 30, 32, 33
Graph2d.change 36, 37
Graph2d.change

19

Graph2d.change_plot 27, 28
Graph2d.delete 30, 32, 33
Graph3d.set_surface_list 76, 77
hex 70,71
imploding sphere 68, 70, 75, 76, 77
initialize 110
ireg 26
isosurface slice 76, 77
isosurface slicing 64
levels 29, 30, 33, 38
Lines 17,21
Lines.set 19, 20
marker 14, 32
marks 14, 15, 29, 30, 32, 33
mask 70, 72

mesh computation 25
mesh plot 26
Mesh3d 64
Mesh3d (unstructured) 71
Mesh3d (unstructured) 69, 71, 72
n (Polymap) 40
nsteps 111
number 35
opt_3d 64,70, 71,72,76, 77
PolyMap 39, 40
prism 71,72
pyr 71
QuadMesh 26, 29, 30, 32, 33
QuadMesh.set 31, 37, 38
Region 35
region map computation 25
Region.set 37, 38
regions 36
scale 37, 38
set
Lines 19, 20
sslice 64, 76, 77
tet 71,72
text 36
text_color 36
text_pos 36
text_size 36
tittes 17, 19, 20, 22, 40, 42, 43, 44
multiple 70
type 15, 20, 30, 35, 37, 38
update 110
varno 76, 77
vector field computation 25
vector plot 37
vectors 37, 38
VX, vy (QuadMesh) 37, 38
width 12, 15, 20, 26, 27, 29, 30, 32, 33, 35, 38
X, ¥ (Polymap) 40
X, ¥ (QuadMesh) 26, 30, 32, 38
X, ¥, Z (Mesh3d) 64
X, ¥, Z (Mesh3d, irregular) 69, 71, 72
xyequal 22, 27
z (CellArray) 42, 43, 44
z (Polymap) 40
z (QuadMesh) 29, 30, 32, 33
z(QuadMesh) 38
EZN 1
EZPLOT 1
ezplot 3

F

FILE menu 3
File save 3
filename
Plotter parameter 113
PyGist 113
PyNarcisse 114
filled 24, 35
example 31
table vs. contours 24
filled contour plot
example 31

G

geometry capabilities, table 6
Gist 1,3

color card description 49
gist.py 2
gnomon 94

example 106
Graph

methods 80
Graph2d 79

example 42, 43, 44, 84, 90

Examples 83

instantiation 79

keywords 79, 81

methods 79
Graph2d.add

example 29, 30, 32, 33, 85, 89
Graph2d.change

example 19, 36, 37, 85, 86, 87, 88, 89
Graph2d.change_plot

example 27, 28
Graph2d.delete

example 29, 30, 32, 33, 89
Graph2d.plot

example 84, 85, 86, 87, 88, 89, 90
Graph3d 92

example 96, 102, 103, 106

instantiation 92

keywords 92, 93

methods 92

move_light_source 93

rotate 93
Graph3d.change

example 98, 99, 100, 101, 106
Graph3d.move_light_source

example 103
Graph3d.plot

example 96, 97, 98, 99, 100, 102, 106
Graph3d.quick_plot

example 101
Graph3d.rotate

example 106
Graph3d.set_surface_list

example 76, 77

H

hardcopy
example 102
hcp 114
hex 68
example 70, 71, 102
hide 10, 11, 24, 39,41

Ihm compute 3

imploding sphere
example 68, 70, 75, 76, 77, 101
graph 76, 77, 103

inhibit 23, 34

initialize 109
example 110

instantiation
Animation2d 109
CellArray 41
Curve 9
Graph2d 79
Graph3d 92
Lines 16
Mesh3d 61
Mesh3d (irregular) 66
Mesh3d (regular) 63
Plane 72
Plotter 113
Polymap 39
QuadMesh 22
Region 34
Slice 74
Surface 47
irregular meshes 66
iso 74
isosurface slice
example 106
isosurface slicing 73
example 64

K

keywords
ambient 95
example 103
animation 110
example 111
Animation2d 109
avs 67
example 69, 102
axis 10
axis_limits
example 43, 44, 87, 88
axis_scales
example 42, 86
boundary 23, 34
example 35, 37
boundary_color 23, 34
boundary_type 23, 34
¢ (Mesh3d)
example 64
¢ (Mesh3d, irregular) 67
example 71,72
¢ (Mesh3d, regular) 64
¢ (Surface) 48
c_contours_array 49, 63
c_contours_scale 49, 63
calculations 109
example 110
cell_descr (PyGist) 67
cell_descr (PyNarcisse) 68
CellArray 41
color 10, 16, 24, 32, 110
example 12, 13, 19, 26, 27, 28, 29, 30, 32, 33, 35, 37, 38, 90
color_bar
example 102
color_card 48, 62
example 43, 96, 102, 103, 106
examples 44

connect 95
contours 24, 35

example 38
contours vs.filled 24
Curve 9
diffuse 95

example 101, 103, 106
distance 94
dpi 114

example 84
dump 114
ecolor 24

example 98
edges 24, 35
ewidth 24
filled 24, 35

example 31
filled vs. contours 24
gnomon 94

example 106
Graph2d 79, 81
Graph3d 92, 93
hardcopy

example 102
hcp 114
hex 68

example 70, 71, 102
hide 10, 11, 16, 24, 39, 41
inhibit 23, 34
initialize 109

example 110
ireg 23

example 26
label 10, 24, 39, 41

example 90
legends 114
levels 24, 34

example 29, 30, 33, 38
lighting 95
Lines 16
link 94
marker 10, 24

example 14, 32, 84, 85, 89
marks 10, 24

example 14, 15, 29, 30, 32, 33, 84, 85, 89, 90
mask 49, 63

example 70, 72, 96, 97, 99, 102, 103, 106
mesh_type 49, 63
Mesh3d 62
Mesh3d (irregular) 67
Mesh3d (regular) 63
n (Plotter) 114
n (Polymap) 39

example 40
Narcisse 68
no_cells 68
nsteps 110

example 111
number 34

example 35
number_of_c_contours 50, 63
number_of_z_contours 50, 63

opt_3d 49, 62

example 64, 70, 71, 72, 76, 77, 96, 100, 102, 103
phi 94
Plotter 114
plotter

example 90

exampleexamples

Graph2ds4

Polymap 39
prism 68

example 71, 72
private 114
pyr 68

example 71
QuadMesh 23
Region 34
region 23
regions 23

example 36
roll 94
scale 24

example 37, 38
sdir 95

example 101
shade

example 99, 103
specular 95

example 101, 103, 106
split 95

example 102, 106
spower 95
style 114
Surface 47
sync 95
tet 68

example 71, 72
text

example 36
text_color

example 36
text_pos

example 36
text_size

example 36
theta 94
title_colors

example 84
titles

example 17, 19, 20, 40, 42, 43, 44, 84, 85, 86, 87, 88, 89, 90, 96, 98, 99, 101, 103

multiple

example7o

tri 23
type 10, 16, 24
example 15, 20, 30, 35, 37
typr
example 38
update 109
example 110
varno
example 76, 77
vectors 35
example 37, 38
VX, vy (QuadMesh) 24

example 37, 38
wait 114
width 10, 16, 24, 32
example 12, 15, 20, 26, 27, 29, 30, 33, 35, 38
X,y (Curve) 10
X, ¥ (Polymap)
example 40
X, ¥ (QuadMesh) 23
example 26, 29, 32, 38
X, Y (Surface) 48
X, Y(QuadMesh)
example 30
X, ¥, Z (Mesh3d)
example 64
X, ¥, Z (Mesh3d, irregular) 67
example 71, 72
X, ¥, Z (Mesh3d, regular) 63
X,y (Curve) 10
x,y (Polymap) 39
X_axis_scale
example 87
x_factor
example 106
X0, yO (CellArray) 41
X0, yO (Lines) 16
x1, y1 (CellArray) 41
x1, yl (Lines) 16
xyequal
example 27
y_factor
example 96, 103, 106
z (CellArray) 41
example 42,43, 44
z (Polymap) 39
example 40
z (QuadMesh) 23
example 29, 30, 32, 33, 38
z (Surface) 48
z_c_switch 49, 63
z_contours_array 49, 63
z_contours_scale 49, 63
z_scale 24, 35

L

label 10, 24, 39, 41
example 90
lambda operator 21
legends 114
levels 24, 29, 34
example 30, 33, 38
lighting keywords 95
Lines
example 17, 21
instantiation 16
keywords 16
Lines.set
example 19, 20
link 94

M

map function 21

marker 10, 24
example 14, 32, 84, 85, 89
marks 10, 24, 29
example 14, 15, 30, 32, 33, 84, 85, 89, 90
mask 49, 63
example 70, 72, 96, 97, 99, 102, 103, 106
mesh
regular 63
structured 63
mesh computation
example 25
mesh plot
example 26
mesh_type 49, 63
Mesh3d 60
example 64, 102, 106
Instantiation 61
instantiation (irregular) 66
instantiation (regular) 63
isosurface slice
example 76, 77
isosurface slicing
example 64
keywords 62
keywords (irregular) 67
keywords (regular) 63
nonstructured 61
structured 61
unstructured 66
example 69, 71, 72
meshes
irregular 66
unstructured 66
methods
Curve 9
Graph 80
Graph2d 79
Graph3d 92
move_light_source 93
example 103
moving light source
example 103
graphs 104

N

Narcisse 2, 3
cell format 68
color card description 48
FILE menu 3
File save 3
Ihm compute 3
process 2
socket compute 3
STATE submenu 3
nested cardioids
example 90
new
CellArray 41
Curve 9
Graph2d 79
Graph3d 92
Polymap 39

Quadmesh 23, 24

Region 35
no_cells 68
none, opt_3d value 65, 76, 77
nonstructured mesh 61
nsteps 110

example 111
number 34

example 35
number_of_c_contours 50, 63
number_of_z_contours 50, 63

0]

Object-Oriented Graphics 1, 3
000G 1
opaque mesh
backlit 101
opaque shaded mesh (no lines) 100
opaque shaded wire mesh (red) 99
opaque wire mesh 96
opt_3d 49, 62
"none" 65, 76, 77
example 64, 70, 71, 72, 76, 77, 96, 100, 102, 103

P

palette
description (Gist) 49
description (Narcisse) 48
split 95
PATH 2
phi 94
Plane
arguments 72
examples 102, 106
instantiation 72
plane 74
plane slice 73
plane slicing
examples 102, 106
plot
example 84, 85, 86, 87, 88, 89, 90, 96, 97, 98, 99, 100, 102, 106
Graph2d 80
Plotter
example 84
filename parameter 113
instantiation 113
keywords 114
plotter
example 84, 90
Plotter object 1
Plotter Objects 3
Polymap
example 39
instantiation 39
keywords 39
Polymap,example 40
Polymap.new 39
Polymap.set 39
PORT_SERVEUR 3, 81, 114
default value 114
PORT_SERVEUR environment variable 82

11

PostScript 1
prism 68
example 71, 72
private 114
PyGist 2, 3
colors 10
device capabilities 7
filename 113
geometry capabilities 6
PYGRAPH 2, 82
PyGraph 1, 2,3
Documentation 3
platforms 3
PyNarcisse 2
colors 10
device capabilities, table 7
filename 114
geometry capabilities 6
pyr 68
example 71
Python 2
home page 2
lambda operator 21
map function 21
Python Narcisse 3
PYTHONPATH 2

Q

QuadMesh
example 26, 29, 30, 32, 33
instantiation 22
keywords 23
methods 24
Quadmesh
methods 23
QuadMesh.set
example 31, 37, 38
quick_plot
example 101
Graph2d 80
Graph3d 93

R

reference vs copy 15
Region
examples 35
instantiation 34
keywords 34
region 23
region map 23
region map computation
example 25
Region.new 35
Region.set 35
example 37, 38
regions 23
example 36
regular mesh 63
replace
Graph2d 80
Graph3d 92

12

roll 94
rotate 93
example 106

S

scale 24
example 37, 38
sdir 95
example 101
set
Animation2d
example 111
CellArray 41
Curve 9
example 14, 15
example 19, 20, 86, 97, 98, 99, 100
Polymap 39
QuadMesh 24
example 28, 31, 37, 38
Quadmesh 23
Region 35
example 37, 38
set_surface_list
Graph3d
example 76, 77
shade
example 99, 103
shaded opaque wire mesh (no lines) 100
shaded wire mesh, opaque (red) 99
Slice
arguments 74
creating via sslice
example 102, 106
creation 73
instantiation 74
isosurface 73
Plane 73
Slice 74
Slice objects 73
slicing
isosurface
example 106
examples 76, 77
plane
examples 75, 102, 106
socket compute 3
specular 95
example 101, 103, 106
split 95
example 102, 106
split palette 95
spower 95
sslice
example 64, 76, 77, 106
examples 102
sslice function 73
STATE submenu 3
structured mesh 61, 63
style 114
support 4
Surface 47
example 96, 103

13

instantiation 47
keywords 47
surface
backlit 101
Surface plots
examples 96
Surface.set
example 97, 98, 99, 100
sync 95

T

table

device capabilities 7

geometry capabilities 6
tet 68

example 71, 72
text

example 36
text_color

example 36
text_pos

example 36
text_size

example 36
theta 94
title_colors

example 84
titles

example 17, 19, 20, 40, 42, 43, 44, 84, 85, 86, 87, 88, 89, 90, 96, 98, 99, 101, 103

multiple
example 70
transparent wire mesh 97
transparent wire mesh (red) 98
tri 23
type 10, 24
example 15, 20, 30, 35, 37, 38

U

unstructured meshes 66
update 109
example 110
USER environment variable 82, 114

\Y,

val 74
varno
example 76, 77
vector field computation
example 25
vector plot 37
vectors 35
example 37, 38

W

wait 114
width 10, 24, 27, 29, 32

example 12, 15, 20, 30, 33, 35, 38
wire mesh

opaque shaded (no lines) 100
wire mesh (red)

14

opaque, shaded 99
wire mesh, opaque 96
wire mesh, transparent 97
wire mesh, transparent (red) 98

X

X, Y, Z (Mesh3d, irregular)
example 69
X_axis_scale
example 87
x_factor
example 106
x_factor and y_factor 94
Xwindows 1
xyequal 27

Y

y_factor
example 96, 103, 106
y_factor and x_factor 94

4

z_c_switch 49, 63
z_contours_array 49, 63
z_contours_scale 49, 63
z_scale 24, 35

zoom in 65

zoom out 66

15

	The Python Graphics Interface, Part II
	Table of Contents
	CHAPTER 1: The Python Graphics Interface�1
	Overview of the Python Graphics Interface 1
	Using the Python Graphics Interface 2
	About This Manual 3

	CHAPTER 2: Introduction to Object-Oriented Graphics�5
	Object Oriented Graphics 5
	Running OOG 7
	Class Summary 8

	CHAPTER 3: Two-Dimensional Geometric Objects�9
	Curve Objects 9
	Lines Objects 16
	QuadMesh Objects 22
	Plots of Mesh Lines 26
	Contour Plots 28

	Region Objects 34
	Polymap Objects 39
	CellArray Objects 41

	CHAPTER 4: Three-Dimensional Geometric Objects�47
	Surface Objects 47
	Mesh3d Objects 60
	Structured vs. Nonstructured Meshes 61
	Regular (or Structured) Meshes 63
	Irregular (Unstructured) Meshes 66

	Plane objects 72
	Slice objects 73
	3D Animation 77

	CHAPTER 5: Graph Objects�79
	Graph2d Objects 79
	Graph3d Objects 92

	CHAPTER 6: Animation2d Objects�109
	CHAPTER 7: Plotters: A Brief Primer�113

	CHAPTER 1: The Python Graphics Interface
	1.1 Overview of the Python Graphics Interface
	1.2 Using the Python Graphics Interface
	1.3 About This Manual

	CHAPTER 2: Introduction to Object- Oriented Graphics
	2.1 Object Oriented Graphics
	2.2 Running OOG
	2.3 Class Summary

	CHAPTER 3: Two-Dimensional Geometric Objects
	3.1 Curve Objects
	3.2 Lines Objects
	3.3 QuadMesh Objects
	3.3.1 Plots of Mesh Lines
	3.3.2 Contour Plots

	3.4 Region Objects
	3.5 Polymap Objects
	3.6 CellArray Objects

	CHAPTER 4: Three-Dimensional Geometric Objects
	4.1 Surface Objects
	4.2 Mesh3d Objects
	4.2.1 Structured vs. Nonstructured Meshes
	4.2.2 Regular (or Structured) Meshes
	4.2.3 Irregular (Unstructured) Meshes

	4.3 Plane objects
	4.4 Slice objects
	4.5 3D Animation

	CHAPTER 5: Graph Objects
	5.1 Graph2d Objects
	5.2 Graph3d Objects

	CHAPTER 6: Animation2d Objects
	CHAPTER 7: Plotters: A Brief Primer
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

