UCRL-MA-128569, Manual 4

The Python Graphics Interface, Part IV

Python Gist Graphics Manual

Written by

Zane Motteler
Lee Busby
Fred N. Fritsch

November 23, 1998

Python Gist Graphics Manual

Copyright (c) 1996.
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, pro-
vided that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under contract
no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of California for the op-
eration of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference
herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for advertising or product endorsement
purposes.

Table of Contents

CHAPTER 1: The Python Graphics Interface 1
Overview of the Python Graphics Interface 1

Using the Python Graphics Interface 2

About This Manual 3

CHAPTER 2: Introduction to Python Gist Graphics 5
PyGist 2-D Graphics 5

PyGist 3-D Graphics 7

General overview of module pl3d 7

Overview of module plwf 8

Overview of module slice3 9

movie.py: PyGist 3-D Animation 9

Function Summary 12

CHAPTER 3: Control Functions 17
Device Control 17

Window Control 17

Hard Copy and File Control 19

Other Controls 21

animate: Control Animation Mode 21

palette: Set or Retrieve Palette 21

plsys: Set Coordinate System 22

redraw: Redraw X window 22

CHAPTER 4: Plot Limits and Scaling 23
Setting Plot Limits 23

limits: Save or Restore Plot Limits 23

ylimits: Set y-axis Limits 24

Scaling and Grid Lines 24

logxy: Set Linear/Log Axis Scaling 24

gridxy: Specify Grid Lines 25

Zooming Operations 25

CHAPTER 5: Two-Dimensional Plotting Functions 27
Output Primitives 27
plg: Plot a Graph 27

plmesh: Set Default Mesh 29
plm: Plot a Mesh 30

plc: Plot Contours 32

plv: Plot a Vector Field 33
plf: Plot a Filled Mesh 35
plfc: Plot filled contours 37
plfp: Plot a List of Filled Polygons 39
pli: Plot a Cell Array 40

pldj: Plot Disjoint Lines 42
plt: Plot Text 43

pltitle: Plot a Title 44

Plot Function Keywords 45

CHAPTER 6: Inquiry and Miscellaneous Functions 49
Inquiry and Editing Functions 49

plg: Query Plot Element Status 49

pledit: Change Plotting Properties 49
pldefault: Set Default Values 50
Miscellaneous Functions 52

bytscl: Convert to Color Array 52
histeq_scale: Histogram Equalized Scaling 52
mesh_loc: Get Mesh Location 52

mouse: Handle Mouse Click 53

moush: Mouse in a Mesh 54

pause: Pause 54

CHAPTER 7: Three-Dimensional Plotting Functions 55
Setting Up For 3-D Graphics 55

The Plotting List 55

Functions For Setting Viewing Parameters 56
Lighting Parameters 57

Display List 58

3-D Graphics Control Functions 58

Getting a Window 58

Displaying the Gnomon 58

Plotting the Display List 59

The variable _draw3 and the idler 60

Data Setup Functions for Plotting 61

Creating a Plane 61

Creating a mesh3 argument 61

The Slicing Functions 64

slice3mesh: Pseudo-slice for a surface 64

slice3: Plane and Isosurface Slices of a 3-D mesh 65

slice2 and slice2x: Slicing Surfaces with planes 66
At Last - the 3-D Plotting Functions 67

plwf: plot a wire frame 67

pl3surf: plot a 3-D surface 71

pl3tree: add a surface to a plotting tree 74

Contour Plotting on Surfaces: plzcont and pl4cont 77
Animation: movie and spin3 80

The movie module and function 80

The spin3 function 83

Syntactic Sugar: Some Helpful Functions 85
Specifying the palette to be split: split_palette 85
Saving and restoring the view and lighting: save3, restore3 85

CHAPTER 8: Useful Functions for Developers 87
Find 3D Lighting: get3_light 87

Get Normals to Polygon Set: get3_normal 87

Get Centroids of Polygon Set: get3_centroid 88

Get Viewer’s Coordinates: get3_xy 88

Add object to drawing list: set3_object 88

Sort z Coordinates: sort3d 89

Set the cmax parameter: lightwf 89

Return a Wire Frame Specification: xyz_wf 90

Calculate Chunks of Mesh: iterator3 90

Get Vertex Values of Function: getv3 91

Get Cell Values of Function: getc3 92

Controlling Points Close to the Slicing Plane: _slice2_precision 92
Scale variables to a palette: bytscl, split_bytscl 93

Return Vertex Coordinates for a Chunk: xyz3 93

Find Corner Indices of List of Cells: to_corners3 94

Timing: timer, timer_print 94

CHAPTER 9: Maintenance: Things You Really Didn’'t Want to Know 95
The Workhorse: gistCmodule 95

Memory Maintenance: PyObjects 95

Memory Management: ArrayObjects 97

Memory Management: naked memory 98

Computing contour curves: contour 98

Computing slices: slice2, slice2x, _slice2_part 99

Some Yorick-like Functions: yorick.py 101

Additional Array Operations: arrayfnsmodule 102

Counting Occurrences of a Value: histogram 102
Assigning to an Arbitrary Subset of an Array: array_set 103
Sorting an array: index_sort 103

Interpolating Values: interp 103

Digitizing an array: digitize 104

Reversing a Two-Dimensional array: reverse 104

Obtaining an Equally-Spaced Array of Floats: span 104
Effective Length of an Array: nz 105

Finding Edges Cut by Isosurfaces: find_mask 105

Order Cut Edges of a cell: construct3 105

Expand cell-centered values to node-centered values: to_corners 106
More slice3 details 107

Standard ordering for the four types of mesh cells 107
Standard numbering of cells in a regular rectangular mesh 108
How slice3 works 109

UCRL-MA-128569, Manual 4

CHAPTER 1: The Pyth()n GraphiCS
Interface

1.1 Overview of the Python Graphics Interface

The Python Graphics Interface (abbreviated PyGraph) provides Python users with capabilities for
plotting curves, meshes, surfaces, cell arrays, vector fields, and isosurface and plane cross sections o
three dimensional meshes, with many options regarding line widths and styles, markings and labels,
shading, contours, filled contours, coloring, etc. Animation, moving light sources, real-time rotation,
etc., are also available. PyGraph is intended to supply a choice of easy-to-use interfaces to graphics
which are relatively independent of the underlying graphics engine, concealing the technical details
from all but the most intrepid users. Obviously different graphics engines offer different features, but
the intention is that when a user requests a particular type of plot which is not available on a particular
engine, the low level interface will make an intelligent guess and give some approximation of what
was asked for.

There are two such graphics packages which are relatively independent of the underlying plotting
library. The Object-Oriented Graphics (OOG) Package defines geometric objects (Curves, Surfaces,
Meshes, etc.), Graph objects which can be given one or more geometric objects to plot, and Plotter ob-
jects, which receive geometric objects to plot from Graph objects, and which interface with the graph-
ics engine(s) to do the actual plotting. A Graph can create its own Plotter, or the more capable user can
create one or more, handy when one wishes (for instance) to plot on a remote machine, or to open
graphics windows of different types at the same time. The second such package is called EZPLOT; it
is built on top of OOG, and provides an interface similar to the command-line interface of the Basis
EZN package. Some of our long-time users may be more comfortable with this package, until they
have mastered the concepts of object-oriented design.

As mentioned above, a Graph object needs at least one Plotter object to plot itself; only the Plotter
objects need know about graphics engines. At present we have two types of Plotter objects, one which
knows about Gist and one which knows about Narcisse. Some power users may prefer to use the lower-
level library-specific function calls, but most users will use EZPLOT or OOG.

Gist is a scientific graphics library written in C by David H. Munro of Lawrence Livermore Na-
tional Laboratory. It features support for three common graphics output devices: Xwindows, (color)
PostScript, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small (writ-
ten directly to Xlib), portable, efficient, and full-featured. It produces x-vs.-y plots with “good” tick
marks and tick levels, 2-D quadrilateral mesh plots with contours, vector fields, or pseudocolor maps
on such meshes. 3-D plot capabilities include wire mesh plots (transparent or opaque), shaded and col-
ored surface plots, isosurface and plane cross sections of meshes containing data, and real-time anime

November 23, 1998

CHAPTER 1: The Python Graphics Interface

tion (moving light sources and rotations). The Python Gist maglsteoy and the associated Py-
thon extensiogistCmodule provide a Python interface to this library (referred to as PyGist).

Narcisse is a graphics library developed at out sister laboratory at Limeil in France. It is especially
strong in high-quality 3-D surface rendering. Surfaces can be colored in a variety of ways, including
colored wire mesh, colored contours, filled contours, and colored surface cells. Some combinations of
these are also possible. We have also added the capability of doing isosurfaces and plane sections o
meshes, which is not available in the original Narcisse. The Python Narcisse nardidgsemod-
ule (referred to as PyNarcisse) provides a low-level Python interface to this library. Unlike Gist, Nar-
cisse does not currently write automatically to standard files such as PostScript or CGM, although it
writes profusely to its own type of files unless inhibited from doing so, as described below. However,
there is a "Print" button in the Narcisse graphics window, which opens a dialog that allows you to write
the current plot to a postscript file or to send it to a postscript printer.

1.2 Using the Python Graphics Interface

In order to use PyGraph, you first need to have Python installed on your system. If you do not have
Python, you can obtain it free from the Python pagdgtpt//www.python.org . You may

need the help of your system administrator to install it on your machine. Once you have Python, you
have to know at least a smattering of the language. The best way to do this is to download the excel-
lent tutorial from the Python pages, sit down at your computer or terminal, and work your way
through it.

Before using the Python Graphics Interface, you should set some environment variables as follows.
« Your PATHvariable should contain the path to gy¢hon executable.

« You should set Y THONPATHvariable to point to all directories that contain Python exten-
sions or modules that you will be loading, which may include the OOG modafgst , and
narcissemodule orgistCmodule . Check with your System Manager for the exact speci-
fications on your local systems.

« Unless you create your own plotter objects, PyGraph will create a default Gist Plotter which will
plot to a Gist window only. If you want your default Plotter to be a Narcisse Plotter, then set the
variablePYGRAPHo Nar or Narcisse

A Gist Plotter object automatically creates its own Gist window and then plots to that window. Nar-
cisse, however, works differently. Narcisse is established as a separately running process, to which the

Plotter communicates via sockets. Thus, to run a Narcisse Plotter, you must first open a NBocisse.
do so, you need to go through the following steps:

1. Set your environment variabRORT_SERVEURo 0.

1. Iam going to assume that you already have Narcisse installed on your system, and its directory pa@iifHariable.
2. We did tell you that Narcisse was French, didn’t we?

About This Manual

2. Start up Narcisse by typing in the commayafcisse & . It will take a few moments for the
Narcisse GUI to open, then immediately afterwards it will be covered by an annoying window
which you can eliminate by clicking i@Kbutton.

3. You will note that there is a server port number given on the GUI. SePyoRi _SERVEUfRari-
able to this value.

4. Narcisse has an annoying habit of saving everything it does to a multitude of files, and notifying
you on the fly of all its computations. If you do a lot of graphics, these files can quickly fill up your
guota. In addition, the running commentary on file writing and computation on the GUI is time-
consuming and slows Narcisse down to a truly glacial pace. To avoid this, you need to turn off a
number of options via the GUI before you begin. They are all und&TAdEsubmenu of the
FILE menu, and should be set as follows: sebtket compute " to “ no,” set “File
save " to “ nothing ,” set “Config save " to “ no,” and set lhm compute " to “ no.”

(“IHM” are the French initials for “GUL.”)

1.3 About This Manual

This manual is part of a series of manuals documenting the Python Graphics Interface (PyGraph).
They are:

o | EZPLOT User Manual

[I. Object-Oriented Graphics Manual

* lll. Plotter Objects Manual

IV. Python Gist Graphics Manual

V. Python Narcisse Graphics Manual

EZPLOT is a command-line oriented interface that is very similar to the EZN graphics package in
Basis. The Object-Oriented Graphics Manual provides a higher-level interface to PyGraph. The re-
maining manuals give low-level plotting details that should be of interest only to computer scientists
developing new user-level plot commands, or to power users desiring more precise control over their
graphics or wanting to do exotic things such as opening a graphics window on a remote machine.

PyGraph is available on Sun (both SunOS and Solaris), Hewlett-Packard, DEC, SGI workstations,
and some other platforms. Currently at LLNL, Narcisse is installed only on the X Division HP and So-
laris boxes, however, and Narcisse is not available for distribution outside this laboratory. Our French
colleagues are going through the necessary procedures for public release, but these have not yet bee
crowned with success. Gist, however, is publicly available as part of the Yorick release, and may be
obtained by anonymous ftp frofftp-icf.linl.gov ; look in the subdirectoryftp/pub/

Yorick

A great many people have helped create PyGraph and its documentation. These include

« Lee Busbhy of LLNL, who wrotgistCmodule , and wrought the necessary changes in the Py-
thon kernel to allow it to work correctly;

CHAPTER 1: The Python Graphics Interface

« Zane Motteler of LLNL, who wrot@arcissemodule , ezplot , the OOG, and some other
auxiliary routines, and who wrote much of the documentation, at least the part that was not bla-
tantly stolen from David Munro and Steve Langer (see below);

« Paul Dubois of LLNL, who wrote thEeDBandRanf modules, and who worked with Konrad
Hinsen (Laboratoire de Dynamique Moleculaire, Institut de Biologie Structurale, Grenoble,
France) and James Hugunin (Massachusetts Institute of Technoldgyid?y the numeric ex-
tension to Python, without which this work could not have been done;

« Fred Fritsch of LLNL, who produced the templates and did some of the writing of this documen-
tation;

« Our French collaborators at the Centre D’Etudes de Limeil-Valenton (CEL-V), Commissariat A
L’Energie Atomique, Villeneuve-St-Georges, France, among whom are Didier Courtaud, Jean-
Philippe Nomine, Pierre Brochard, Jean-Bernard Weill, and others;

« David Munro of LLNL, the man behind Yorick and Gist, and Steve Langer of LLNL, who col-
laborated with him on the 3-D interpreted graphics in Yorick. We have also shamelessly stolen
from their Gist documentation; however, any inaccuracies which crept in during the transmission
remain the authors’ responsibility.

The authors of this manual stand as representative of their efforts and those of a much larger num-
ber of minor contributors.

Send any comments about these documentsupport@icf.linl.gov " on the Internet or
to “support " on Lasnet.

UCRL-MA-128569, Manual 4

CHAPTER 2: Introduction to
Python Gist Graphics

Gist is a scientific graphics library written in C by David H. Munro of Lawrence Livermore National
Laboratory. It features support for three common graphics output devices: X-Windows, (color) Post-
script, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small (written
directly to Xlib), portable, efficient, and full-featured. It produces x-vs-y plots with “good” tick
marks and tick labels, 2-D quadrilateral mesh plots with contours, filled contours, vector fields, or
pseudocolor maps on such meshes. Some 3-D plot capabilities are also available. The Python Gist
modulegist.py and the Python extensigistCmodule provide a low-level Python interface to

this library as far as 2-D is concerned. In addition, there are several other Python modules which
interface with the 2-D graphics to produce 3-D graphics and animatmrne.py (supporting ani-
mation), pl3d.py (basic 3-D plotting algorithms)plwf.py (wire frame plotting), and
slice3.py (providing mesh capability with isosurface and plane slicing). Collectively all of these
interface modules are known as PyGist.

This chapter will summarize the plotting features that are available in PyGist, and list (in the final
section) the functions that are to be described in future chapters.

2.1 PyGist 2-D Graphics

In two dimensions, PyGist supplies functions to plot curves, meshes (with various combinations of
contours, filled mesh cells, and vector fields on the mesh, with-tiltéal contours in the future), sets

of filled polygons, cell arrays, sets of disjoint lines, text strings, and a title. These are all provided by
the Python modulgist.py

We will show a couple of simple examples below to give the reader a flavor of the interface.

Example 1

In the first example we simply plot a straight line fr¢tm 0) to (2, 1) . Note that only two coor-
dinates are specified fgr; x is not specified. In such a case, the values défault to the integers
from1 tolen (y) .

from gist import * # Put plot functions in name space.

pldefault (marks = 1, width = 0, type = 1, style = "work.gs",
dpi = 100) # Set some defaults.

winkill (0) # Kill any existing window.

window (0, wait = 1, dpi = 75)

November 23, 1998

CHAPTER 2: Introduction to Python Gist Graphics

plg ([0, 1]) # The first positional argument isy.

1.DJ'|'|'|'|'|'|'|'|'|'

08—

D.D|||||||||||||||||||
1.0 1.2 1.4 16 1.8 2

N

As can be deduced from this example, most PyGist function calls can be augmented with a number
of optional keyword arguments. These can (usually) be supplied in any order, and each is of the form
keyword= value . Throughout this manual, a list of the available keywords for a function is given
with the description of the function.

Example 2

The next example computes and plots a set of nested cardioids in the primary and secondary colors.

fma()
X = 2 * pi * arange (200, typecode = Float) / 199.0
foriinrange (1, 7):
r=05*i-(5-0.5%*i)*cos (x)
s ='curve '+ 'i" #Backticks produce something printable.
plg (r * sin (x), r * cos (x), marks = 0, color = -4 - |,
legend =s) # Curves unmarked, in colors.
(See next page.)

PyGist 3-D Graphics

1 |
r-a —_ —_ 2 %)
—

|
L)

(]
Crlbrrrebrerr oot brzorbrroeb el
LU e e e eyl

UL b bt
-4 -3 -2 -1 0 1

2.2 PyGist 3-D Graphics

2.2.1 General overview of modul@I|3d

The Python modulpl3d.py contains the basic 3-D plotting algorithms and is the workhorse of the
PyGist 3-D graphics. The philosophy behind 3-D plotting is to instruct the 3-D plotting functions to
accumulate information about the plot until such time as the information is complete, and then ask
that the picture be drawn. The information about the plot is stored in a Python list containing the fol-
lowing information:

« The orientation of the axes, the location of the origin, and the distance of the viewpoint;
« A set of pairs of plot functions to call and their argument lists; and

« A collection of one or more quintuples specifying the lighting (it is possible to specify multiple

light sources).
The first and third items above default to reasonable values if the user does not call functions (e. g.,
rot3 , mov3, aim3, set3_light ., etc.) to set them. The list described in the second bullet is built
by a set of one or more calls to the various plotting functions, which create the list of arguments for
each call and then add the function name and argument list pair to the plot list for future execution.
When the list is complete, a calldoaw3 causes the list to be traversed, and at this point each plot-
ting function on the list executes with the argument list that was built when it was first called.

2.2.2 Overview of moduleplwf

The main function of interest plwf.py is the functiorplwf (“plot wire frame”), which enables
the user to plot an arbitrary wire frame on a quadrilateral grid. The grid may be see-through or not
(cells filled with the background color). In the latter case, the drawing order of the zones is deter-

CHAPTER 2: Introduction to Python Gist Graphics

mined by a simple “painter’s algorithm”, which works fairly well if the mesh is reasonably nearly

rectilinear, but can fail even then if the viewpoint is chosen to produce extreme fisheye perspective
effects. One must look at the resulting plot carefully to be sure the algorithm has correctly rendered

the model in each case.

A 3-D wire mesh can also be plotted using shading and lighting effects as determined by values set
in thepl3d module; or the zones can be colored (using the current palette) by their average height or

by the values of some function, which may be zone-centered or node-centered.

Examples
The following is a fairly simple example of a wire mesh plot.

from pl3d import *

set_draw3_ (0)

x =span (-1, 1, 64, 64)

y = transpose (X)

Z = (x+y)* exp (-6.%(x*x+y*y))
orient3 ()

light3 ()

from plwf import *

plwf (z, y, X)

[Xmin, xmax, ymin, ymax] = draw3(1)
limits (xmin, xmax, ymin, ymax)

-
s
e
s
At o
giasia
AR s
A A L
TR “=“1'l “1

sizey facd SieEratals
L, it o,
T P e

Calling set_draw3_ with argument zero tells the 3d plotting routines not to draw the graph until
asked (by a call tdraw3). orient3 andlight3 set the orientation and lighting parameters to
default values when called with no argumeriigh{3 is irrelevant for this durface, since it is not
shaded.) Theplwf call puts this surface on the drawing liptwf = “plot wire frame.”) The

movie.py: PyGist 3-D Animation

draw3 call then causes the drawing list to be plottkdw3 returns the maxima and minima of the
x and y variables, which must then be sent tdithigs function to prevent the plot appearing dis-
torted. (Ah, the perils of using low level graphics.)

2.2.3 Overview of moduleslice3

Module slice3.py contains two plotting functions of interest. Finsk3surf can be used for
graphing surfaces on an arbitrary two-dimensional mesh with filled cells and no mesh lines. (Cur-
rently plwf can be used to do the same thing in the case of a mesh all of whose cells are quadrilat-
eral, and has more flexibility, in that it allows mesh lines to be drawn and/or allows for the mesh to be
see-through.) Secondlpi3tree s a plotting function that can be called multiple times in order to
have several surfaces drawn on the same gpdigtinee (as its name suggests) creates a tree of val-
ues sorted as to when they will be plotted on the screen; if the algorithm works correctly, then more
distant cells are plotted first, then covered by closer cells which are plotted later, giving the surface the
correct appearance.

Surfaces to be plotted py3surf ~ orpl3tree can be generated by taking plane sections of an
arbitrary mesh or by creating isosurfaces for some function or functions defined on the mesh. These
planes and isosurfaces can themselves be sliced and portions discarded, to enhance visibility of the in-
terior. The functionsnesh3 andslice3mesh take raw input data and put it into the form accepted
by slice3 , which can form plane sections or isosurfaces through the mesh. Furslite2s
(which returns the portion of a surface in front of the slicing planesirelx (which returns the
two parts of a surface sliced by a plane) complete the triumvirate of slicing functions.

The algorithms irslice3 are independent of the underlying graphics. ®lige3 may equal-
ly well be used with Narcisse graphics.

2.3 movie.py : PyGist 3-D Animation

The modulemovie.py supports 3-D real time animation. Functimovie accepts as argument
the name of a drawing function which has as its single argument a frame nombr; then calls
this drawing function within a loop, halting when the function returns zero. The idea is that the drawing
function increments from the previous frame and draws the new frame, returning zero when some pre-
defined event takes place, e. g., some set number of frames has been drawn, or a certain amount of tim
has elapsed. The functigpin3 in modulepl3d callsmovie ; the drawing functionspin3 draws
the successive frames of a rotating 3-D plot. The demonstration naealeb.py contains an ex-
ample of a shaded surface with a moving light source; the drawing furdgiom5_light , moves
the light and draws the next frame.

Examples

The following example is explained by comments in the code. It is takendemno5.py . (To
repeatdemo5_light is a function which appears demo5.py .)

First we define the mesh and functions on it.
(Note: nx == ny == nz == 20)

CHAPTER 2: Introduction to Python Gist Graphics

xyz = zeros ((3, nx, ny, nz), Float)
xyz [0] = multiply.outer (span (-1, 1, nx),
ones ((ny, nz), Float))
xyz [1] = multiply.outer (ones (nx, Float),
multiply.outer (span (-1, 1, ny), ones (nz, Float)))
Xyz [2] = multiply.outer (ones ((nx, ny), Float),
span (-1, 1, nz))
r =sqrt (xyz [0] ** 2 + xyz [1] **2 + xyz [2] **2)
theta = arccos (xyz [2] / 1)
phi = arctan2 (xyz [1] , xyz [O] + logical_not (r))
y32 = sin (theta) ** 2 * cos (theta) * cos (2 * phi)
mesh3 creates an object which slice3 can slice. The
isosurfaces will be with respect to constant values
of the function r * (1. + y32)].
m3 = mesh3 (xyz, funcs =[r * (1. + y32)])
[nv, xyzv, dum] = slice3 (m3, 1, None, None, value = .50)
(inner isosurface)
[nw, xyzw, dum] = slice3 (m3, 1, None, None, value = 1.)
(outer isosurface)
pxy = plane3 (array ([0, 0, 1], Float), zeros (3, Float))
pyz = plane3 (array ([1, O, O], Float), zeros (3, Float))
[np, xyzp, vp] = slice3 (m3, pyz, None, None, 1)
(pseudo-colored plane slice)
[np, xyzp, vp] = slice2 (pxy, np, Xyzp, vp)
(cut slice in half, discard "back" part)
[nv, xyzv, d1, nvb, xyzvb, d2] =\
slice2x (pxy, nv, xyzv, None) # halve inner isosurface
[nv, xyzv, d1] =\
slice2 (- pyz, nv, xyzv, None)
(...halve one of those halves)
[nw, xyzw, d1, nwb, xyzwb, d2] =\
slice2x (pxy , nw, xyzw, None)
(split outer isosurface in halves)
[nw, xyzw, d1] =\
slice2 (- pyz, nw, xyzw, None) # discard half of one half
fma () # frame advance
split_palette causes isosurfaces to be shaded in grey
scale, plane sections to be colored by function values
split_palette ("earth.gp”)
gnomon (1) # show small set of axes
clear3 () # clears drawing list
set_draw3_ (0) # Make sure we don't draw till ready
Create a tree of objects and put on drawing list
pl3tree (np, xyzp, vp, pyz)
pl3tree (nvb, xyzvb)

10

movie.py: PyGist 3-D Animation

pl3tree (nwb, xyzwb)

pl3tree (nv, xyzv)

pl3tree (nw, xyzw)

orient3 ()

set lighting parameters for isosurfaces
light3 (diffuse = .2, specular = 1)

limits (square=1)

demob5_light (1) # Causes drawing to appear

demo5.py also contains code which rotates the above object in real-time animation. It is not pos-
sible to illustrate that here.

11

CHAPTER 2: Introduction to Python Gist Graphics

2.4 Function Summary

Here is a summary of the functions which are described in the remainder of this manual.
« Control functions (CHAPTER 3: “Control Functions”)

window ([n] [, <keylist>]) # open or select device n
keywords:display, dpi, dump, hcp, legends, private,

style, wait
winkill ([n]) # delete device n
n = current_window () # determine active device
fma () # frame advance

« Plot limits and scaling (CHAPTER 4: “Plot Limits and Scaling”)

old_limits = limits ()

old_limits = limits (xmin [, xmax[, ymin[, ymax]]]
[, <keylist>])
keywords:square, nice, restrict

limits (old_limits)

ylimits (ymin[, ymax])

logxy (xflag[, yflag])

gridxy (flag)

gridxy (xflag, yflag)
zoom_factor (factor)

unzoom ()
« Two-dimensional plotting functions (CHAPTER 5: “Two-Dimensional Plotting Functions”)

plg (v [, X][, <keylist>]) # plot a graph
keywords:legend, hide, type, width, color, closed,
smooth, marks, marker, mspace, mphase, rays
plmesh ([y, x][, ireq][, triangle=tri_array])
set default mesh
plmesh () # delete default mesh
pIm ([y,][, ireg][, <keylist>])
plot mesh
keywords:boundary, inhibit, legend, hide, type, width,
color, region
plc (z[, y, X][, ireg][, <keylist>])
plot contours
keywords:levs, triangle, legend, hide, type, width,
color, smooth, marks, marker, mspace, mphase,
region
plfc (z[, y, X][, ireg][, <keylist>])
plot filled contours
keywords:contours, colors, region, triangle, scale

12

Function Summary

plv (vy, vx[, y, X][, ireg][, <keylist>])
plot vector field
keywords:scale, hollow, aspect, legend, hide, type,
width, color, smooth, marks, marker, mspace,
mphase, triangle, region
plf (z[, y, X][, ireq][, <keylist>])
Plot a filled mesh
keywords:edges, ecolor, ewidth, legend, hide, region,
top, cmin, cmax
plfp (z, y, x, n[, <keylist>])
Plot filled polygons
keywords:legend, hide, top, cmin, cmax
pli (z[[, x0, y0], x1, y1][, <keylist>])
Plot a cell array
keywords:legend, hide, top, cmin, cmax
pldj (x0, y0, x1, y1[, <keylist>])
Plot disjoint lines
keywords:legend, hide, type, width, color
plt (text, x, y[, <keylist>])
keywords:tosys, font, height, opaque, path, justify,
legend, hide, color
pltitle (title) # Plot a title

« Inquiry and Miscellaneous functions (CHAPTER 6: “Inquiry and Miscellaneous Functions”)

plg () # Query plot element status
legend_list = plq ()
**** RETURN VALUE NOT YET IMPLEMENTED ****
plg (n_element[, n_contour])
properties = plg (n_element[, n_contour])
pledit ([n_element[, n_contour],] <keylist>)
Change Plotting Properties of Current Element
The keywords can be any of the keywords that apply to the current element.
pldefault (keyl=valuel, key2=value2, ...)
Set default values
The keywords can be most of the keywords that can be passed to the plotting
commands
bytscl (z[, top=max_byte][, cmin=lower_cutoff]
[, cmax=upper_cutoff])
Convert data to color array
histeq_scale (z[, top=top_value][, cmin=cmin][,
cmax=cmax]) *** NOT YET IMPLEMENTED ****
Histogram Equalized Scaling
mesh_loc (y0, xO0[, y, X[, ireq]])
Get zone index of (x0, y0)
result = mouse (system, style, prompt)

13

CHAPTER 2: Introduction to Python Gist Graphics

Handle Mouse Click
moush ([y, x[, ireg]])

Return zone index of point clicked in mesh
pause (milliseconds) # self-explanatory

« Three-dimensional plotting functions (CHAPTER 7: “Three-Dimensional Plotting Functions”)

orient3 (phi = angle 1, theta = angle 2)
rot3 (xa = angle <, ya =angle ys» Za=angle 7)
mov3 (xa = val 1, ya=val >, za = val 3)
aim3 (xa = val 1, ya=val 2, za = val 3)

light3 (ambient=a_level, diffuse=d_level,
specular=s_level, spower=n, sdir=xyz)

clear3 ()

window3 ([n] [, dump = val] [, hcp = filename])

gnomon ([onoff] [, chr = <labels>])

set_default_gnomon ([onoff])

[lims =] draw3 ([called_as_idler = <val>])

limits (lims [O], lims [1], lims [2], lims [3])

set_draw3 (n)

n = get_draw3 ()

clear_idler ()

set_idler (func_name)

set_default_idler ()

call_idler ()

plane3 (<normal>, <point>)

mesh3 (x, vy, z)

mesh3 (X, Y, z, funcs = [f1, 12, ...], [verts = <spec>])

mesh3 (xyz, funcs = [f1, 12, ...])

mesh3 (nxnynz, dxdydz, x0y0z0, funcs = [f1, f2, ...])

slice3mesh (z [, color])

slice3mesh (nxny, dxdy, x0yO0, z [, color])

slice3mesh (x, y, z [, color])

slice3 (m3, fslice, nv, xyzv [, fcolor [, flg 1]
[, value = <val>] [, node =flg 5])

[nverts, xyzverts, values] = slice2 (plane, nv, xyzv, vals)

[nverts, xyzverts, values, nvertb, xyzvertb, valueb] =
slice2x (plane, nv, xyzv, vals)

plwf (z [, y, X] [, <keylist>])
keywordsfill, shade, edges, ecolor, ewidth, cull,

scale, cmax

pl3surf (nverts, xyzverts [, values] [, <keylist>])

keywords:cmin, cmax

14

Function Summary

pl3tree (nverts, xyzverts [, values] [, <keylist>])
keywords:plane, cmin, cmax, split

« Animation functions (7.7 “Animation: movie and spin3”)

movie (draw_frame [, time_limit = 120.]
[, min_interframe = 0.0]
[, bracket_time = array ([2., 2.], Float)]
[, lims = None]
[, timing = 0])
spin3 (nframes = 30,
axis = array ([-1, 1, 0], Float),
tlimit = 60.,
dtmin = 0.0,
bracket_time = array ([2., 2.], Float),
lims = None,
timing = 0,
angle = 2. * pi)

« Syntactic Sugar (7.8 “Syntactic Sugar: Some Helpful Functions”)

split_palette ([palette_name])
view = save3 ()
restore3 (view)

15

CHAPTER 2: Introduction to Python Gist Graphics

16

UCRL-MA-128569, Manual 4

CHAPTER 3: Control Functions

This chapter contains all the information you need to control PyGist deldeeserefers to an X
window or a hard copy file. In addition, we describe functions which control some aspects of the
appearance of the graph.

3.1 Device Control

3.1.1 Window Control

Calling Sequences

window ([n] [, <keylist>])
winkill ([n)

n = current_window ()

fma()

Description

Thewindow function selects deviae as the current graphics devicemay range from 0 to 7, inclu-

sive. Each graphics device corresponds to an X window, a hardcopy file, or both, depending on the
values of the keyword arguments described below. i§ omitted, it defaults to the current active
device, if anywindow returns the number of the currently active dewaekill deletes the cur-

rent graphics device, or devigdf n is specifiedcurrent_window returns the number of the cur-

rent active device, ol if there is nonefma frame advances the current graphics device. The
current picture remains displayed in the associated X window (if any) until the next element is actu-
ally plotted. Anfma must be given after the last plot to a hardcopy file for that plot to appear when
the file is printed.

The keywords accepted by ttvndow function are
display, dpi, dump, hcp, legends, private, style, wait
and are described in the next subsection.

Keyword Arguments
The following keyword arguments can be specified with this function.
display
A string of the form"host:server.screen” which tells where the X window will

November 23, 1998

CHAPTER 3: Control Functions

appear (for exampléijcf.linl.gov:0.0"). If not specified, uses your default display
(which it gets from youDISPLAY environment variable). Usgisplay = ™ (the null

string) to create a graphics device which has no associated X window. (You should do this if
you want to make plots in a non-interactive batch mode.)

dpi

The allowed values fapi are75 and100. The X window will appear on your default dis-
play at 75 dpi, unless you specify tisplay and/ordpi keywords. Adpi =100 X win-
dow is larger than dpi =75 X window; both represent the same thing on paper.

dump

Thedump keyword, if present, controls whether all colors are converted to a graycioale (

= 0, the default), or the current palette is dumped at the beginning of each page of hardcopy
output. Sedumpto 1 if you are doing color plots. Threump keyword applies only to the spe-

cific hardcopy file defined using thep keyword (see below) -- use tdamp keyword in the
hcp_file command to get the same effect in the default hardcopy file.

hcp

The value of this keyword is a quoted string giving a file name. By default, a graphics window
does NOT have a hardcopy file of its own -- any requests for hardcopy are directed to the
default hardcopy file, so hardcopy output from any window goes to a single file. By specify-
ing thehcp keyword, however, a hardcopy file unique to this window will be created. If the
hcp filename ends inps ”, then the hardcopy file will be a PostScript file; otherwise, hard-
copy files are in binary CGM format. Ukep ="" (the null string) to revert to the default
hardcopy file (closing the window specific file, if any).

In the next section of this manual we shall consider the hardcopy and file functions. Note that
the PyGist default is to write to a hardcopy file only on demand. (See fuhcpgrpage 20.)

legends

Thelegends keyword, if present, controls whether the curve legendslegends =1,

the default) or are notggends = 0) dumped to the hardcopy file. Tlegends keyword
applies to all pictures dumped to hardcopy from this graphics window. Legends are never plot-
ted to the X window.

private

By default, an X window will attempt to use shared colors, which permits several PyGist
graphics windows (including windows from multiple instances of Python) to use a common
palette. You can force an X window to post its own colormap (set its colormap attribute) with
theprivate =1 keyword. You will most likely have to fiddle with your window manager to
understand how it handles colormap focus if you do this. gdsate = 0 to return to
shared colors.

style

Thestyle keyword, if present, specifies (as a quoted string) the name of a Gist stylesheet
file; the default iswork.gs" . The style sheet determines the number and location of coor-

Device Control

dinate systems, tick and label styles, and the like. Here are brief descriptions of the available
stylesheets:

axes.gs : axes with labeled tick marks along bottom and left of graph.

boxed.gs :lines all the way around the plot with tick marks, labeled along bottom and
left.

boxed2.gs :same as boxed.gs but no tick marks on the top and right sides.
|_nobox.gs :no box, axes, or ticks; graph extends all the way to edge of window.
nobox.gs :indistinguishable fronh_nobox.gs

vg.gs large tick marks all the way around the graph, but no lines, with large in-
frequent labels on the bottom and left.

vgbox.gs :same awvg.g s except with lines all the way around as well
work.gs : small tick marks with small, frequent labels on bottom and left, no lines.
work2.gs :similar towork.gs , but no ticks along top and right.

wait

By default, Python will not wait for the X window to become visible. Code which creates a
new window, then plots a series of frames to that window should/aise = 1 to assure that
all frames are actually plotted.

Examples

The first example ensures that an old window 0 is not hanging around, and then creates a new 100 dpi
window.

winkill(0)
window (0O, wait = 1, dpi = 100)
The second example changes the style sheet of window 2.

window (2, style = "vgbox.gs")
3.1.2 Hard Copy and File Control

Calling Sequences

eps (name)

hep ()

hcp_file ([filename] [, dump = 0/1])
filename = hcp_finish ([n])
hcp_out ([n] [, keep = 0/1])

hcpon ()

hcpoff ()

19

CHAPTER 3: Control Functions

Descriptions

eps (name)
Write the picture in the current graphics window to the Encapsulated PostScriprike+
".epsi” (i.e., the suffix.epsi is added toname). The eps function requires the

ps2epsi utility which comes with the project GNU Ghostscript program. Any hardcopy file
associated with the current window is first closed, but the default hardcopy file is unaffected.
As a side effect, legends are turned off and color table dumping is turned on for the current
window. The environment variabRS2EPSI_FORMATcontains the format for the command

to start theps2epsi program.

hep ()
Thehcp function sends the picture displayed in the current graphics window to the hardcopy
file. (The name of the default hardcopy file can be specified tmipgfile ; each individ-
ual graphics window may have its own hardcopy file as specified lwititeow function.)

hcp_file ([filename][, dump = 0/1])

Sets the default hardcopy file fliename . If filename ends with “ps ”, the file will

be a PostScript file, otherwise it will be a binary CGM file. By default, the hardcopy file name
will be “ Aa00.cgm ”, or “ Ab0O.cgm " if that exists, or “Ac00.cgm " if both exist, and so

on. The default hardcopy file gets hardcopy from all graphics windows which do not have
their own specific hardcopy file (see tmndow function). If thedump keyword is present

and non-zero, then the current palette will be dumped at the beginning of each frame of the
default hardcopy file. This is what you want to do when you want color plots owftip = 0,

the default behavior of converting all colors to a gray scale is restored.

filename = hcp_finish ([ny)

Close the current hardcopy file and return the filename.i# specified, close thlecp file
associated with window and return its name; udep_finish (-1) to close the default
hardcopy file.

hcp_out ([n] [, keep = 0/1])

x* NOT YET IMPLEMENTED **

Finishes the current hardcopy file and sends it to the printersispecified, prints thhcp

file associated with window; usehcp_out (-1) to print the default hardcopy file. Unless
the keep keyword is supplied and non-zero, the file will be deleted after it is processed by

gist and sent tdpr .
hcpon ()

Thehcpon function causes evefyna (frame advance) function call to do an implietp ,
so that every frame is sent to the hardcopy file.

hcpoff ()
Thehcpoff command reverts to the default “demand only” mode.

20

Other Controls

3.2 Other Controls

3.2.1 animate : Control Animation Mode

Calling Sequence
animate ([0/1])

Description

Without any arguments, toggle animation mode; with argument 0O, turn off animation mode; with
argument 1 turn on animation mode. In animation mode, the X window associated with a graphics
window is actually an offscreen pixmap which is bit-blitted onscreen whémaf) command is

issued. This is confusing unless you are actually trying to make a movie, but results in smoother ani-
mation if you are. Generally, you should turn animation on, run your movie, then turn it off.

3.2.2 palette : Setor Retrieve Palette

Calling Sequence

palette (filename)

palette (source_window_number)

palette (red, green, blue [, gray][, query =1]
[, ntsc = 1/0])

Description

Set (or retrieve witlquery = 1) the palette for the current graphics window. Tleame is
the name of a Gist palette file; the standard paletteSear¢h.gp” , "stern.gp” , "rain-
bow.gp" , "heat.gp” , "gray.gp” , and"yarg.gp"” . Use themaxcolors keyword in the

pldefault command to put an upper limit on the number of colors which will be read from the pal-
ette infilename

In the second form, the palette for the current window is copied from window number
source_window_number . If the X colormap for the window is private, there will still be two sep-
arate X colormaps for the two windows, but they will have the same color values.

In the third formsed , green , andblue are 1-D arrays of unsigned char (Python typecbte
and of the same length specifying the palette you wish to install; the values should vary between 0 and
255, and your palette should have no more than 240 colongscHO , monochrome devices (such
as most laser printers) will use the average brightness to translate your colors into gray; otherwise, the
NTSC (television) averaging will be used (.38 +.59*green +.11*blue). Alternatively, you can
specifygray explicitly.

Ordinarily, the palette is not dumped to a hardcopy file (color hardcopy is still rare and expensive),
but you can force the palette to dump usingwireow() or hcp_file() commands.

21

CHAPTER 3: Control Functions

3.2.3 plsys : Set Coordinate System

Calling Sequence
plsys (n)

Description

Set the current coordinate system to number the current graphics window. Afequals 0, subse-

guent elements will be plotted in absolute NDC coordinates outside of any coordinate system. The
default style sheétvork.gs" defines only a single coordinate system, so the only other chaice is
equal 1.

You can make up your own style sheet (using a text editor) which defines multiple coordinate sys-
tems. You need to do this if you want to display four plots side by side on a single page, for example.
The standard style sheétgork2.gs" and"boxed2.gs" define two overlayed coordinate sys-
tems with the first labeled to the right of the plot and the second labeled to the left of the plot. When
using overlayed coordinate systems, it is your responsibility to ensure that the x-axis limits in the two
systems are identical.

3.2.4 redraw : Redraw X window

Calling Sequence

redraw ()

Description

Redraw the X window associated with the current graphics window.

22

UCRL-MA-128569, Manual 4

CHAPTER 4: Plot Limits and
Scaling

4.1 Setting Plot Limits

4.1.1 Ilimits : Save or Restore Plot Limits

Calling Sequence

old_limits = limits()

old_limits = limits(xmin [, xmax, ymin[, ymax]]]
[, <keylist>])

limits(old_limits)

Description

In the first form, restore all four plot limits to extreme values, and save the previous limits in the tuple
old_limits

In the second form, set the plot limits in the current coordinate systemiio, xmax, ymin ,
ymax, which may each be a number to fix the corresponding limit to a specified value, or the string
"e" to make the corresponding limit take on the extreme value of the currently displayed data. Argu-
ments may be omitted from the right end only. (Butydieeits , below, to set limits on the y-axis.)

limits() always returns a tuple of 4 doubles and an integér;imits [0:3] are the previ-
ousxmin , xmax, ymin , andymax, andold_limits ~ [4] is a set of flags indicating extreme values
and thesquare , nice , restrict ,andlog flags. This tuple can be saved and passed baick-to
its() in a future call to restore the limits to a previous state.

In an X window, the limits may also be adjusted interactively with the mouse. Drag left to zoom
in and pan (click left to zoom in on a point without moving it), drag middle to pan, and click (and drag)
right to zoom out (and pan). If you click just above or below the plot, these operations will be restricted
to the x-axis; if you click just to the left or right, the operations are restricted to the y-axis. A shift-left
click, drag, and release will expand the box you dragged over to fill the plot (other popular software
zooms with this paradigm). If the rubber band box is not visible with shift-left zooming, try shift-mid-
dle or shift-right for alternate XOR masks. Such mouse-set limits are equivalelnnitsa com-
mand specifying all four limitexceptthat theunzoom command (see “Zooming Operations” on
page 25) can revert to the limits before a series of mouse zooms and pans.

The limits you set using tHenits orylimits functions carry over to the next plot; that is, an

November 23, 1998

CHAPTER 4: Plot Limits and Scaling

fma operation doenot reset the limits to extreme values.

Keyword Arguments

The following keyword arguments can be specified with this function.
square = 0/1

If present, thesquare keyword determines whether limits marked as extreme values will be
adjusted to force the x and y scales to be eggalafe=1) or not gquare=0 , the default).

nice = 0/1

If present, thenice keyword determines whether limits will be adjusted to nice values
(nice=1) or not fice=0 , the default).

restrict = 0/1

There is a subtlety in the meaning of "extreme value" when one or both of the limits on the
OPPOSITE axis have fixed values: does the "extreme value" of the data include points which
will not be plotted because their other coordinate lies outside the fixed limit on the opposite
axis (estrict=0 , the default), or notréstrict=1)?

4.1.2 ylimits : Sety-axis Limits

Calling Sequence

ylimits (ymin[, ymax])

Description

Set the y-axis plot limits in the current coordinate systeypmtm , ymax, which may each be a num-
ber to fix the corresponding limit to a specified value, or the stefigto make the corresponding
limit take on the extreme value of the currently displayed data.

Arguments may be omitted only from the right. Usats(xmin, xmax) toaccomplish
the same function for the x-axis plot limits.

Note that the corresponding Yorick function fdimits isrange . Since this word is a Python
built-in function, the name has been changed to avoid the collision.

4.2 Scaling and Grid Lines

4.2.1 logxy : Set Linear/Log Axis Scaling

Calling Sequence
logxy(xflag [, yflag])

24

Zooming Operations

Description

logxy sets the linear/log axis scaling flags for the current coordinate sysflag. andyflag
may be 0 to select linear scaling, or 1 to select log scalifalg may be omitted (but notflag).

4.2.2 gridxy : Specify Grid Lines

Calling Sequence

gridxy(flag)
gridxy(xflag , yflag)

Description

Turns on or off grid lines according flag . In the first form, both the x and y axes are affected. In

the second formxflag andyflag may differ to have different grid options for the two axes. In
either case, dag value of 0 means no grid lines (the default), a value of 1 means grid lines at all
major ticks (the level of ticks which get grid lines can be set in the style sheet)flagd &alue of 2

means that the coordinate origin only will get a grid line. In styles with multiple coordinate systems,
only the current coordinate system is affected. The keywords can be used to affect the style of the
grid lines.

You can also turn the ticks off entirely. (You might want to do this to plot your own custom set of
tick marks when the automatic tick generating machinery will never give the ticks you want. For ex-
ample a latitude axis in degrees might reasonably be labeled "0, 30, 60, 90", but the automatic machin-
ery considers 3 an "ugly” number - only 1, 2, and 5 are "pretty” - and cannot make the required scale.
In this case, you can turn off the automatic ticks and labels, amdayse , pldj , andplt to gen-
erate your own.)

To fiddle with the tick flags in this general manner, set@k200 bit of flag (or xflag or
yflag), and "or-in" thedx1ff bits however you wish. The meaning of the various flags is described
in the"work.gs" Gist style sheet. Additionally, you can use @400 bit to turn on or off the
frame drawn around the viewport. Here are some examples:

gridxy(0x233) work.gs default setting

gridxy(0, 0x200) like work.gs , but no y-axis ticks or labels
gridxy(0, 0x231) like work.gs , but no y-axis ticks on right
gridxy(0x62b) boxed.gs default setting

4.3 Zooming Operations

Calling Sequences

zoom_factor(factor)
unzoom()

25

CHAPTER 4: Plot Limits and Scaling

Descriptions

zoom_factor sets the zoom factor for mouse-click zoom in and zoom out operations. The default
factor is 1.5;factor should always be greater than 1.0.

unzoom restores limits to their values before zoom and pan operations performed interactively us-
ing the mouse. Use

old_limits = limits()
limits(old_limits)

to save and restore plot limits generally.

26

UCRL-MA-128569, Manual 4

CHAPTER 5: Two-Dimensional
Plotting Functions

This chapter describes the Gist output primitives are available for drawing two-dimensional plots.
Keyword arguments that apply only to a single function are described with that function; those that
apply to several are collected in a separate section at the end of the chapter.

5.1 Output Primitives

5.1.1 plg : Plot a Graph

Calling Sequence
plgC y [X[<keylist>])

Description

Plot a graph oy versusx. y andx must be 1-D arrays of equal lengthxIfs omitted, it defaults to
1,2, ..len(y)]

Keyword Arguments

The following keyword argument(s) apply only to this function.

rspace = <float value>
rphase = <float value>
arroww = <float value>
arrowl = <float value>

Select the spacing, phase, and size of occasional ray arrows placed along polylines. The spac-
ing and phase are in NDC units (0.0013 NDC equals 1.0 point); the dsfaade is 0.13,

and the defaultphase is 0.11375, butphase is automatically incremented for successive
curves on a single plot. The arrowhead widtinpww , and arrowhead lengtarrowl are in

relative units, defaulting to 1.0, which translates to an arrowhead 10 points long and 4 points
in half-width.

The following additional keyword arguments can be specified with this function.

legend, hide, type, width, color, closed, smooth,
marks, marker, mspace, mphase, rays

November 23, 1998

CHAPTER 5: Two-Dimensional Plotting Functions

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords.

Examples

The following example simply plots two straight lines..

>>> from gist import *

>>> window (0, wait=1, dpi=75)
0

>>> plg([0, 1])

>>> plg([1, O])

28

Output Primitives

The following draws the graph of a sine curve:

fma()
x = 10*pi*arange(200, typecode = Float)/199.0
plg(sin(x), x)

mJ_||||I||||I||||I||||I||||I||||I|

(o
o
_|I|I|I|||I|I|I|I
Pprprprprpeprprpg

0.o

|

=

o
Clolalolebororo o

10 e e e e e e
a a 10 15 20 28 3a

5.1.2 plmesh : Set Default Mesh

Calling Sequence
plmesh([vy, x][, ireg][, triangle= tri_array 1)
plmesh()

Description

Set the default mesh for subsequpim, plc , plv , plf , andplfc calls. In the second form,
plmesh deletes the default mesh (until you do this, or switch to a new default mesh, the default mesh
arrays persist and takes up space in memory). yTke andireg arrays should all be the same
shapey andx will be converted to double, amég will be converted to int.

If ireg is omitted, it defaults toeg (0,)= ireg (,0)=0 ,ireg (1:1:)=1 ;thatis, region
number 1 is the whole mesh. The triangulation atrayarray is used byplc andplfc ; the

29

CHAPTER 5: Two-Dimensional Plotting Functions

correspondence betweémn array indices and zone indices is the same aséy , and its de-

fault value is all zero. Théeg or tri_array arguments may be supplied withgutand x to

change the region numbering or triangulation for a given set of mesh coordinates. However, a default
y andx must already have been defined if you do thig. i supplied x must be supplied, and vice-
versa.

Example

The following example creates a mesh whose graph we will see later (see the example on page 31).
For convenience, we show the functiepsn anda3, which are used to build the data.

def span(lb,ub,n):
if n < 2: raise ValueError, '3rd arg must be at least 2'
b=Ib
a = (ub-1Ib)/(n-1.0)
return map(lambda x,A=a,B=b: A*x + B, range(n))
def a3(Ib,ub,n):
return reshape (array(n*span(lb,ub,n), Float), (n,n))
fma()
limits()
x =a3(-1, 1, 26)
y = transpose (X)
z = x+1j*y
z = 5.*z/(5.+7*z)
XX = z.real
yy = z.imaginary
plmesh(yy, xx)

5.1.3 pim: Plot a Mesh

Calling Sequence
pim([y, x][, ireg][, <keylist>])

Description

Plot a mesh oy versusx. y andx must be 2-D arrays with equal dimensions. If preseag, must

be a 2-D region number array for the mesh, with the same dimensianaralsy. The values of

ireg should be positive region numbers, and zero for zones which do not exist. The first row and
column ofireg never correspond to any zone, and should always be zero. The gefaulis 1
everywhere else.

They, x, andireg arguments may all be omitted to default to the mesh set by the most recent
plmesh call.

30

Output Primitives

Keyword Arguments

The following keyword argument(s) apply only to this function.
boundary = 0/1

If present, theboundary keyword determines whether the entire mesh is to be plotted
(boundary=0 , the default), or just the boundary of the selected redpoundary=1).

inhibit = 0/1/2/3

If present, theinhibit keyword causes théx(,)), V() lines to not be plotted
(inhibit=1), the(x(i,), y(i,)) lines to not be plottednhibit=2), or both sets of
lines not to be plottedn(hibit=3). By default {nhibit=0), mesh lines in both logical
directions are plotted.

The following additional keyword arguments can be specified with this function.
legend, hide, type, width, color, region
See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords.
Example

The mesh set by th#mesh function call in the preceding example (page 30) may be plotted simply
by callingplm with no arguments:

pim ()

—
)

o
o

o
=

|
o
o

|
—
)

R RN RN TV
-1.0 -0.5 0.0 0.5 1.0

31

CHAPTER 5: Two-Dimensional Plotting Functions

5.1.4 plc : Plot Contours

Calling Sequence
plc(z[, y, x][, ireg][, <keylist>])

Description

Plot contours of on the mesly versusx. y, x, andireg are as foplm. Thez array must have the
same shape gsandx. The function being contoured takes the vaus each pointx,y); that is,
the z array is presumed to be point-centered. ¥he, andireg arguments may all be omitted to
default to the mesh set by the most regdmtesh call.

Keyword Arguments

The following keyword argument(s) apply only to this function.
levs = z values

Thelevs keyword specifies a list of the valueszoat which you want contour curves. The
default is eight contours spanning the range.of

triangle = triangle
Set the triangulation array for a contour pldtiangle must be the same shape as the

ireg (region number) array, and the correspondence between mesh zones and indices is the
same as foireg . The triangulation array is used to resolve the ambiguity in saddle zones, in
which the functiorz being contoured has two diagonally opposite corners high, and the other
two corners low. The triangulation array element for a zone is O if the algorithm is to choose a
triangulation, based on the curvature of the first contour to enter the zone. If zone (i,) is to be

triangulated from point (i-1,j-1) to point (i,j), theérnangle (i,j)=1, while if it is to be trian-
gulated from (i-1,j) to (i,j-1), thewriangle (i,j)=-1. Contours will never cross this “trian-
gulation line”.

You should rarely need to fiddle with the triangulation array; it is a hedge for dealing with

pathological cases.

The following additional keyword arguments can be specified with this function.

legend, hide, type, width, color, smooth, marks, mark-
er, mspace, mphase, region

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords.

Examples

The following example gives a contour plot of the same mesh used in the preceding two examples.
Calling plm with boundary = 1 and region = 1 plots the boundary of the mesh (which, by default, is

one region); then calling plc plots a default number of contours (8).

32

Output Primitives

fma()
def mag(*args):

r=0

for i in range(len(args)):

r =r + argsliJ*argsi]

return sqrt(r)
plm(region=1,boundary=1)
plc (mag(x+.5,y-.5), marks=1, region=1)
plm(inhibit=3,boundary=1,region=1)
plm(boundary=1,region=1)

1.0

o
on
|

0.o

S
o
|

L
o
|

_|||||||||||||||||||||| TEUPv ey
-1.0 -0.5 0.0 0.5 1.0

5.1.5 plv : Plot a Vector Field

Calling Sequence
piv(vy, w[, y, x]l, ireg][, <keylist>])
Description

Plot a vector field¥x,vy) on the meshx,y). y, x, andireg are as foplm. Thevy andvx arrays
must have the same shapg/andx. They, x, andireg arguments may all be omitted to default to
the mesh set by the most recpimesh call.

33

CHAPTER 5: Two-Dimensional Plotting Functions

Keyword Arguments
The following keyword argument(s) apply only to this function.

scale = at

Thescale keyword is the conversion factor from the unitswf,{y) to the units ofX,y) --
atime interval if ¢x,vy) is a velocity andX,y) is a position -- which determines the length of
the vector "darts" plotted at the,{) points.

If omitted,scale is chosen so that the longest ray arrows have a length comparable to a "typ-
ical" zone size. You can use teealem keyword inpledit to make adjustments to the
scale factor computed by default.

hollow = 0/1
aspect = <float value>

Set the appearance of the "darts" of a vector field plot. The default hialitsy=0 , are
filled; usehollow=1 to get just the dart outlines. The defaulispect=0.125 ; aspect

is the ratio of the half-width to the length of the darts. Usedl® keyword to control the
color of the darts.

The following additional keyword arguments can be specified with this function.

legend, hide, type, width, color, smooth, marks, mark-
er, mspace, mphase, triangle, region

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords.

Example
This example applies to the same mesh that we have considered in the last three examples.
plv(x+.5, y-.5)
The plot appears on the next page.

34

Output Primitives

I'I'l'I'I'I'I'l'I'I';I'I-'|'-|'I,'I'I'l'l'l'l'l'l'l'l
- -~

1.0— : _—
F

= ¢ M -

— R —

— PRI S

— Ty J'jj__
—. i —

~ |Il‘J PR

—_ 1 | —_
0.5— N I M IR
— 1 by I|||II -

= LLLILLIL[III —

— o -

e "|-|.|,L|'iI|||' l

— | lI-|..iII L -

— vy b -

- Ll e Mt way g -
0.0— e e vaaaaiiy -
- - T \\\\"-"-':':". -

— - i \-‘\\\“x\.\ —

— <o — - —

= AT T T e R Y -

- i e e R -

— i - NN RN —

Z e e W z
Qe - R "
-, - - T - — e e et W .\\\ _

— T = T T m - -\'\\\.\\ -
T T T ey
_ - - - -) - _

— - e e e ™ ™ -

= - T o “ - —
10— e DR T T TN -
- —- - _ L - -
= - L T ~ -

— - - -

- — - -] —

PULCpEp e T g

-1.0 -05 0.0 05 1.0

5.1.6 plf : Plot a Filled Mesh

Calling Sequence
pif(z[, y., x][, ireg][, <keylist>])

Description

Plot a filled mesly versusx. y, x, andireg are as foplm. Thez array must have the same shape
asy andx, or one smaller in both dimensions.zlfs of type unsigned char (Python typecdule),

it is used "as is"; otherwise, it is linearly scaled to fill the current palette, as witlytde¢ func-
tion. The mesh is drawn with each zone in the color derived frorn thection and the current pal-
ette; thux is interpreted as a zone-centered array. Yilxe andireg arguments may all be omitted
to default to the mesh set by the most repénesh call.

A solid edge can optionally be drawn around each zone by settiedgee keyword non-zero.
ecolor andewidth determine the edge color and width. The mesh is drawn zone by zone in order
from ireg (2+imax) toireg (jmax*imax) (the latter isireg (imax,jmax)), SO you can
achieve 3D effects by arranging for this order to coincide with back-to-front ordeis til, the mesh
zones are filled with the background color, which you can use to produce 3D wire frames.

35

CHAPTER 5: Two-Dimensional Plotting Functions

Keyword Arguments
The following keyword argument(s) apply only to this function.

edges = 0/1
ecolor = <color value>
ewidth = <float value>

Set the appearance of the zone edges in a filled mesipiflo}. By default,edges=0 , and
the zone edges are not plottededigyes=1 , a solid line is drawn around each zone after it is
filled; the edge color and width are givendwgolor andewidth , which are'fg” and 1.0
by default.
The following additional keyword arguments can be specified with this function.
legend, hide, region, top, cmin, cmax
See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords. (See the
bytscl function description on page 52 for explanatiomopf , cmin , cmax.)
Examples

The following gives a filled mesh plot of the same mesh we have been considering in the preceding
examples.

plf (mag(x+.5,y-.5))

36

Output Primitives

-0.5—

-1.0

e R e e I I B B L L L R N L L
-1.0 -0.5 0.0 0.5 1.0

5.1.7 plfc : Plot filled contours

Calling Sequence

plfc (z, y, X, ireg, contours = 20, colors = None,
region = 0, triangle = None, scale = "lin")

Description

Unlike the other plotting primitiveglfc is implemented in Python code. It calls a C module to
compute the contours, then ugdfp (described in the next subsection) to draw the filled contour
lines. It does not use the mesh plotting routines; hence the arguments andireg must be given
explicitly. They will not default to the values set foiynesh .

Keyword Arguments

The values given above for the keyword arguments are the defaults. The meanings of the keywords
are as follows:
contours

If an integer, specifies the number of contour lines desired. The contour levels will be com-
puted automatically. If an array of floats, specifies the actual contour levels.

37

CHAPTER 5: Two-Dimensional Plotting Functions

colors

An array of unsigned char (Python typecode 'b’) with values between 0 and 199 specifying
the indices into the current palette of the fill colors to use. The size of this array (if present)
must be one larger than the number of contours specified.

triangle
As described for the mesh plots.
scale

If the number of contours was given, this keyword specifies how they are to be computed:
“lin" (linearly),"log" (logarithmically) and'normal® (based on the normal distribu-
tion; the minimum and maximum contours will be two standard deviations from the mean).

38

Output Primitives

Example

In the following example, we have to explicitly compute and pasegn array. We plot filled con-

tours and then plot contour lines on top of them. Note that the contour divisions do not coincide, since
the two routines use different algorithms for computing contour levels. Perhaps someday this defect
will be remedied.

ireg = ones (xx.shape, Int)

ireg[0,:]=0

ireg[;,0]=0
plfc(mag(x+.5,y-.5),yy,xx,ireg,contours=8)
plc (mag(x+.5,y-.5), marks=1)

—
Lo]

e
o

|
e
o

o

|
—_
o

[}
Lo}
|||

-1.0 -0.5 0.0 0.5 1.0

39

CHAPTER 5: Two-Dimensional Plotting Functions

5.1.8 plfp :Plot a List of Filled Polygons

Calling Sequence
plip(z, y, x, n[<keylist>])

Description

Plot a list of filled polygony versusx, with colorsz. Then array is a 1D list of lengths (number of
corners) of the polygons; the 1D colors armapias the same length as Thex andy arrays have
length equal to the sum of all dimensiongiof

If z is of type unsigned char (Python typecddé), it is used “as is”; otherwise, it is linearly
scaled to fill the current palette, as with bytscl function.

Keyword Arguments
The following keyword arguments can be specified with this function.
legend, hide, top, cmin, cmax

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords. (See the
bytscl function description on page 52 for explanatiomopf , cmin , cmax.)

Example

This example gives a sort of "stained glass window" effect;.

z = array([190,100,130,100,50,190,160,100,50,100,130],'b")
y = array ([1.0, 2.0, 7.0, 8.0, 1.0, 1.0, 2.0, 0.0, 1.0, 1.0,
1.0,1.0,2.0,1.0,20,20,20,1.0,8.0,7.0, 2.0, 2.0,
7.0,7.0,7.0,8.0,8.0,7.0,7.0,8.0, 7.0, 8.0, 8.0, 8.0,
8.0, 9.0))

x = array ([0.0, 1.0, 1.0, 0.0, 0.0, 1.5, 1.0, 1.5, 3.0, 0.0,
15,3.0,20,15,20,1.0,2.0,3.0,3.0, 2.0, 1.0, 2.0,
2.0,1.0,20,30,15,1.0,2.0,15,1.0,1.5,0.0,0.0,
3.0, 1.5))

n=array ([4,3,3,3,3,4,4,3,3,3, 3]

plfp (z, y, X, n)

40

Output Primitives

4|||||||||||||||||||||||||||||

___ﬂ_jlIII|IIII|IIII|IIII|§IIII|IIII
0.0 0.5 1.0 1.5 2.0 2.5 3.

D_lIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|_

5.1.9 pli :Plota Cell Array

Calling Sequence
plit z[[, x0,y0], x1, y1][, <keylist>])

Description

Plot the image as a cell array: an array of equal rectangular cells colored according to the 2-D array
z. The first dimension af is plotted along x, the second dimension is along y.

If z is of type unsigned char (Python typecddé), it is used “as is”; otherwise, it is linearly
scaled to fill the current palette, as with tygscl function.

If x1 andyl are given, they represent the coordinates of the upper right corner of the image. If
X0, andyO are given, they represent the coordinates of the lower left corner, which is at (0,0) by de-

41

CHAPTER 5: Two-Dimensional Plotting Functions

fault. If only thez array is given, each cell will be a 1x1 unit square, with the lower left corner of the
image at (0,0).

Keyword Arguments

The following keyword arguments can be specified with this function.

legend, hide, top, cmin, cmax
See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords. (See the
bytscl function description on page 52 for explanatiomopf , cmin , cmax.)

Example

The following example computes and draws an interesting cell array.

fma()

unzoom()

x = a3 (-6,6,200)

y = transpose (X)

r = mag(y,x)

theta = arctan2 (y, x)

funky = cos(r)**2 * cos(3*theta)
pli(funky)

200

150

100

50

0 50 100 150 200

42

Output Primitives

5.1.10 pldj : Plot Disjoint Lines

Calling Sequence
pldj(x0,y0, x1, yi1], <keylist>])

Description

Plot disjoint lines from X0,y0) to (x1,y1). x0, y0, x1, andyl may have any dimensionality, but
all must have the same number of elements.

Keyword Arguments

The following keyword arguments can be specified with this function.
legend, hide, type, width, color

See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords. (See the
bytscl function description on page 52 for explanatiomopf , cmin , cmax.)

Example

This example draws a set of seventeen-pointed stars.

theta = a2(0, 2*pi, 18)

X = cos(theta)

y = sin(theta)

pldj(x, y, transpose (x), transpose (y))
pltitle("Seventeen Pointed Stars")
limits(square = 1)

Sevaniean Fointed Stars

43

CHAPTER 5: Two-Dimensional Plotting Functions

5.1.11 plt : Plot Text

Calling Sequence
plt(text , x, Yyl <keylist>])

Description

Plottext (a string) at the poinix(y). The exact relationship between the poingy] and thefext
is determined by thgustify keyword. text may contain newline"{n") characters to output
multiple lines of text with a single call.

The coordinatesx(y) are NDC coordinates (outside of any coordinate system) unlessjise
keyword is present and non-zero, in which casedke will be placed in the current coordinate sys-
tem. However, the character heighheveraffected by the scale of the coordinate system to which
the text belongs.

Note that thepledit command (see “pledit: Change Plotting Properties” on page 49)dakes
and/ordy keywords to adjust the position of existing text elements.

Keyword Arguments
The following keyword argument(s) apply only to this function.
tosys = 0/1

Establish the interpretation of,f). If tosys=0 (the default), use Normalized Device Coor-
dinates; if nonzero, use the current coordinate system.

font =

height = <float value>
opaque = 0/1

path = 0/1

orient = <integer value>
justify = (see text description)

Select text properties. THent can be any of the stringsourier" |, "times" , "hel-

vetica" (the default),"symbol” , or "schoolbook™ . Append"B" for boldface and

"I for italic, so"courierB" is boldface Couriefitimes!” is Times italic, andhel-

veticaBl" is bold italic (oblique) Helvetica. Your X server should have the Adobe fonts
(available free from the MIT X distribution tapes) for all these fonts, preferably at both 75 and
100 dpi. Occasionally, a PostScript printer will not be equipped for some fonts; often New
Century Schoolbook is missing. Tfumt keyword may also be an integer: 0 is Courier, 4 is
Times, 8 is Helvetica, 12 is Symbol, 16 is New Century Schoolbook, and you add 1 to get
boldface and/or 2 to get italic (or oblique).

Theheight is the font size in points; 14.0 is the default. X windows only has 8, 10, 12, 14,
18, and 24 point fonts, so don't stray from these sizes if you want what you see on the screen
to be a reasonably close match to what will be printed.

44

Output Primitives

By default,opaque=0 and text is transparent. Sgtaque=1 to white-out a box before
drawing the text.

The default pathpath=0) is left-to-right text; sepath=1 for top-to-bottom text.

The default text justificationjustify="NN" is normal in both the horizontal and vertical
directions. Other possibilities ate" ,"C" , or"R" for the first character, meaning left, cen-
ter, and right horizontal justification, ati@" ,"C" ,"H" ,"A" , or"B" for the second charac-

ter, meaning top, capline, half, baseline, and bottom vertical justification. The normal
justification"NN" is equivalent t6LA" if path=0 , and to"CT" if path=1 . Common val-

ues aréLA" ,"CA", and'RA" for garden variety left, center, and right justified text, with the

y coordinate at the baseline of the last line in the string presenfdt to The characters
labeling the right axis of a plot atRH" , so that the y value of the text will match the y value
of the corresponding tick. Similarly, the characters labeling the bottom axis of a plot are
"CT" . The justification may also be a numbeoyizontalvertical, wherehorizontalis O for

"N", 1for"L" , 2 for"C", or 3 for"R" , andverticalis O for"N" , 4 for"T" , 8 for"C" , 12

for "H" , 16 for"A" , or 20 for"B" .

The integer valuerient (default 0) specifies one of four angles that the text makes with the
horizontal (0 is horizontal, 1 is ninety degrees, 2 is 180 degrees, and 3 is 270 degrees).

The following additional keyword arguments can be specified with this function.
legend, hide, color
See “Plot Function Keywords” on page 45 for detailed descriptions of these keywords.

Example

Description of example(s).

first line of code
middle lines of code
last line of code

Whatever.
5.1.12 piltitle : Plot a Title

Calling Sequence
pltitle(titte)

Description

Plottitle centered above the coordinate system for any of the standard Gist styles. You will need
to customize this for other plot styles.

45

CHAPTER 5: Two-Dimensional Plotting Functions

Example

Description of example(s).

first line of code
middle lines of code
last line of code

Whatever.

5.2 Plot Function Keywords

In addition to the keyword arguments described above with individual Gist primitive plotting com-
mands, the following keywords are available to modify the details of the plots.

legend = "text destined for the legend”

Set the legend for a plot. There are no default legends in PyGist. Legends are never plotted to
the X window; use thplg command to see them interactively. Legends will appear in hard-
copy output unless they have been explicitly turned off.

Plotting Commandslg , plm, plc , plv , plf ,pli ,plt , pldj
See Alsohide

hide = 0/1

Set the visibility of a plotted element. The defauhige=0 , which means that the element
will be visible. Usehide=1 to remove the element from the plot (but not from the display
list).

Plotting Commandwlg , plm, plc , plv , pIf , pli ,plt , pldj

See Alsolegend

type = <line type value>

Select line type. Valid values are the stringslid* , "dash” , "dot" , "dashdot"
"dashdotdot” , and"none" . The"none" value causes the line to be plotted as a poly-
marker. The type value may also be a number;'0dse" , 1 is"solid" , 2 is"dash"” , 3

is"dot" , 4is'dashdot” , and 5 is'dashdotdot”
Plotting Commandslg , plm, plc , pldj
See Alsowidth , color , marks, marker ,rays , closed , smooth

width = <floating point value>

Select line width. Valid values are positive floating point numbers giving the line thickness
relative to the default line width of one half point, whichvidth = 1.0

Plotting Commandslg , plm, plc , pldj , plv (only if hollow=1)
See Alsotype , color , marks , marker ,rays , closed , smooth

46

Plot Function Keywords

color = <color value>

Select line or text color. Valid values are the stritigg’ , "fg" , "black" , "white"
"red" ,"green" ,"blue" ,"cyan" ,"magenta" , "yellow" , or a 0-origin index into
the current palette. The default"fg” . Negative numbers may be used instead of the

strings: -1 is'bg” (background), -2 i$fg" (foreground), -3 is black, -4 is white, -5 is red, -
6 is green, -7 is blue, -8 is cyan, -9 is magenta, and -10 is yellow.

Plotting Commandslg , plm, plc , pldj , plt

See Alsotype , width , marks , marker , mcolor , rays , closed , smooth

marks = 0/1

Select unadorned linem@rks=0), or lines with occasional markemsgrks=1). Ignored if

type is"none" (indicating polymarkers instead of occasional markers). The spacing and
phase of the occasional markers can be altered usingsfiece andmphase keywords; the
character used to make the mark can be altered usinggitker keyword.

Plotting Commandslg , plc
See Alsotype , width , color , marker ,rays , mspace, mphase, msize , mcolor

marker = <character or integer value>

Select the character used for occasional markers along a polyline, or for the polymarker if
type="none" . The special valuesl' ,"\2" ,\3" ,"4'" ,and\5 stand for point,

plus, asterisk, circle, and cross, which are prettier than text characters on output to some
devices. The default marker is the next available capital I&&ter;'B' , ...,'Z'

Plotting Commandslg , plc

See Alsotype , width , color , marks, rays , mspace, mphase, msize , mcolor
mspace = <float value>

mphase = <float value>
msize = <float value>

Select the spacing, phase, and size of occasional markers placed along polylimasiz&he
also selects polymarker sizetyfpe is"none" . The spacing and phase are in NDC units
(0.0013 NDC equals 1.0 point); the defaukpace is 0.16, and the defautiphase is 0.14,
butmphase is automatically incremented for successive curves on a single plomsite

is in relative units, with the defauttsize of 1.0 representing 10 points.

Plotting Commandslg , plc
See Alsotype , width |, color , marks, marker , rays

mcolor = <color value>

The mcolor keyword is the same as tkelor keyword, but controls the marker color
instead of the line color. Setting tbelor automatically sets thacolor to the same value,
so you only need to usacolor if you want the markers for a curve to be a different color
than the curve itself.

Plotting Commandslg , plc

See Alsotype , width |, color , marks , marker , rays

47

CHAPTER 5: Two-Dimensional Plotting Functions

rays = 0/1

Select unadorned linesfs=0), or lines with occasional ray arrowsys=1). Ignored if

type is"none" . The spacing and phase of the occasional arrows can be altered using the
rspace andrphase keywords; the shape of the arrowhead can be modified using the
arroww andarrowl keywords.

Plotting Commandslg , plc
See Alsotype , width |, color , marker , marks, rspace , rphase , arroww , arrowl

closed = 0/1
smooth = 0/1/2/3/4

Select closed curvesl¢sed=1) or default open curveglpsed=0), or Bezier smoothing
(smooth>0) or default piecewise linear curvesr(ooth=0). The value obmooth can be

1, 2, 3, or 4 to get successively more smoothing. Only the Bezier control points are plotted to
an X window; the actual Bezier curves will show up in PostScript hardcopy files. Closed
curves join correctly, which becomes more noticeable for wide lines; non-solid closed curves
may look bad because the dashing pattern may be incommensurate with the length of the
curve.

PLOTTING COMMANDS:plg , plc (smooth only)
SEE ALSO:type , width , color , marks, marker , rays

region = <region number>

Select the part of mesh to consider. The region should match one of the numbeire the
array. Puttingregion=0 (the default) means to plot the entire mesh; that is, everything
EXCEPT region zero (non-existent zones). Any other number means to plot only the speci-
fied region numbemegion=3 would plot region 3 only.

Plotting Commandslm, plc , plv , plf

UCRL-MA-128569, Manual 4

CHAPTER 6: |ﬂQ_Uiry and
Miscellaneous
Functions

This chapter describes functions that are available to inquire about the state of PyGist control vari-
ables and set their values. It also describes other miscellaneous functions.

6.1 Inquiry and Editing Functions

6.1.1 plq : Query Plot Element Status

Calling Sequence

plg()
legend_list = plq() *** RETURN VALUE NOT YET IMPLEMENTED ****
pla(n_element [, n_contour 1])
properties = plq(n_element [, n_contour 1)
Description

Called as a subroutin@lg prints the list of legends for the current coordinate system (with an
"(H)" to mark hidden elements), or prints a list of current properties of elemel@ment (such

as line type, width, font, etc.), or of contour numbecontour of element numben_element
(which must be contours generated usingpice command). Elements and contours are both num-
bered starting with one; hidden elements or contours are included in this numbering.

Theplg function always operates on the current coordinate system in the current graphics win-
dow; usewindow andplsys to change these.

6.1.2 pledit : Change Plotting Properties
Calling Sequence

pledit([n_element [, n_contour 1],] <keylist>)

where, as usuakkeylist> has the fornkeyl= valuel , key2= value2 , ...

November 23, 1998

CHAPTER 6: Inquiry and Miscellaneous Functions

Description

pledit changes some property or properties of element numle#ement (and contour number
n_contour of that element). Ih_element andn_contour are omitted, the default is the most
recently added element, or the element specified in the most pégeiguery command.

The keywords can be any of the keywords that apply to the current element. These are:

plg: color, type, width, marks, mcolor, marker,
msize, mspace, mphase, rays, rspace, rphase, arrowl,
arroww, closed, smooth

plm: region, boundary, inhibit, color, type, width

plc: region, color, type, width, marks, mcolor, marker,
msize, mspace, mphase, smooth, levs
(For contours, if you aren't talking about a particulacontour , any changes will
affect ALL the contours.)

plv: region, color, hollow, width, aspect, scale

plf: region

pldj: color, type, width

plt: color, font, height, path, justify, opaque

A plv (vector field) element can also take fualem keyword to multiply all vector lengths by
a specified factor.

A plt (text) element can also take the and/ordy keywords to adjust the text position by
(dx,dy).

6.1.3 pldefault : Set Default Values

Calling Sequence
pldefault(keyl= valuel , key2= value2 , ...)

Description

Set default values for the various properties of graphical elements.
The keywords can be most of the keywords that can be passed to the plotting commands:

plg: color, type, width, marks, mcolor, msize, mspace,
mphase, rays, rspace, rphase, arrowl, arroww

plm: color, type, width

plc: color, type, width, marks, mcolor, marker, msize,
mspace, mphase

plv: color, hollow, width, aspect

plf: edges, ecolor, ewidth

pldj: color, type, width

plt: color, font, height, path, justify, opaque

50

Inquiry and Editing Functions

The initial default values are:

color="fg", type="solid", width=1.0 (1/2 point)

marks=1, mcolor="fg", msize=1.0 (10 points) mspace=0.16,
mphase=0.14,

rays=0, arrowl=1.0 (10 points)arroww=1.0 (4 points) rspace=0.13,

rphase=0.11375,
font="helvetica", height=12.0, path=0, justify="NN",

opaque=0,
hollow= 0, aspect=0.125,
edges=0, ecolor="fg", ewidth=1.0 (1/2 point)
Additional default keywords are:
dpi, style, legends (seewindow command)
palette (to set defaultilename as inpalette = command)

maxcolors (default 200)

CHAPTER 6: Inquiry and Miscellaneous Functions

6.2 Miscellaneous Functions

6.2.1 Dbytscl : Convertto Color Array

Calling Sequence
bytscl(z[,top= max_byte][, cmin= lower_cutoff |
[, cmax= upper_cutoff 1)
Description

bytscl returns an unsigned char array of the same shapewash values linearly scaled to the
range 0 to one less than the current palette sizeal byte is specified, the scaled values will run
from O tomax_byte instead.

If lower_cutoff and/or upper_cutoff are specifiedz values outside this range are
mapped to the cutoff value; otherwise the linear scaling maps the extreme valudas 06f and
max_byte .

6.2.2 histeq_scale: Histogram Equalized Scaling
wok NOT YET IMPLEMENTED **+*

Calling Sequence

histeq_scale(z[,top= top_value][, cmin= cmin][,cmax= cmax])

Description

histeq_scale returns a byte-scaled version of the arrapaving the property that each byte
occurs with equal frequencyz (is histogram equalized). The result bytes range from 0 to
top_value , which defaults to one less than the size of the current palette (or 258iif nplf , or
palette command has yet been issued).

If non-nil cmin and/orcmax is supplied, values of beyond these cutoffs are not included in the
frequency counts.

6.2.3 mesh_loc : Get Mesh Location

Calling Sequence

mesh_loc(yO0, xO[, vy, x[, ireg 1])

52

Miscellaneous Functions

Description

mesh_loc returns the zone indexifrimax*(j-1)) of the zone of the mesk,f/) (with optional
region number arrayeg) containing the pointx0,y0). If (x0,y0) lies outside the mesh, returns 0.
For examplejreg (mesh_loc(xO, y0, y, x, ireg)) is the region number of the region con-
taining x0,y0). If no mesh specified, uses defaukO andy0 may be arrays as long as they are
conformable.

6.2.4 mouse: Handle Mouse Click

This function is useful in developing interactive graphics applications.

Calling Sequence

result = mouse(system , style , prompt)

Description

mouse displays the specifiedrompt , then waits for a mouse button to be pressed, then released. It
returns a tuple of length eleven:

result = [x_pressed, y_pressed, x_released, y_released,
xndc_pressed, yndc_pressed, xndc_released,
yndc_released, system, button, modifiers]

If system >=0, the first four coordinate values will be relative to that coordinate system. For
system <0, the first four coordinate values will be relative to the coordinate system under the mouse
when the button was pressed.

The second four coordinates are always normalized device coordinates, which start at (0,0) in the
lower left corner of the 8.5x11 sheet of paper the picture will be printed on, with 0.0013 NDC unit be-
ing 1/72.27 inch (1.0 point). Look in the style sheet for the location of the viewport in NDC coordi-
nates (see thatyle keyword).

If style is 0O, there will be no visual cues that theuse command has been called; this is in-
tended for a simple click. Htyle is 1, a rubber band box will be drawnsifle is 2, a rubber band
line will be drawn. These disappear when the button is released.

Clicking a second button before releasing the first cancels the mouse function, which will then re-
turn nil. Ordinary text input also cancels the mouse function, which again returns nil.

The left button reverses forground for background (by XOR) in order to draw the rubber band (if
any). The middle and right buttons use other masks, in case the rubber band is not visible with the left
button.

result[8] is the coordinate system in which the first four coordinates are to be interpreted.

result[9] is the button which was pressed, 1 for left, 2 for middle, and 3 for right (4 and 5 are
also possible).

result[10] is a mask representing the modifier keys which were pressed during the operation:

53

CHAPTER 6: Inquiry and Miscellaneous Functions

1 for shift, 2 for shift lock, 4 for control, 8 for mod1 (alt or meta), 16 for mod2, 32 for mod3, 64 for
mod4, and 128 for mod5.

6.2.5 moush: Mouse in a Mesh

Calling Sequence
moush([y, x[, ireg 1)

Description

moush returns the 1-origin zone index for the point clicked in for the default mesh, or for the mesh
(x,y) (region arrayreg).

6.2.6 pause : Pause

Calling Sequence

pause(milliseconds)

Description

Pause for the specified number of milliseconds of wall clock time, or until input arrives from the key-
board. This is intended for use in creating animated sequences.

Examples

Description of example(s).

first line code
middle lines of code
last line of code

Whatever.

54

UCRL-MA-128569, Manual 4

CHAPTER 7: Three-Dimensional
Plotting Functions

The PyGist 3-D graphics uses the PyGist 2-D graphics to draw its pictures; most of the 3-D routines
are computational, and take 3-D data in one form or another and massage it until, when plotted, it will
appear to be a correct two-dimensional projection of a three-dimensional graph. The usual order of op-
eration in 3-D PyGist is

* retrieve or compute your data;

« tell PyGist orientation and lighting information;

« call the appropriate PyGist computational routines;

« call one or more PyGist 3-D plotting routines;

- call the master functiodraw3 , which actually displays the graph.

PyGist builds a list of information about the graph which you wish to plot, but in its normal oper-
ating mode, does not actually draw the graph until you ask it to do so, by indo&mg . Meanwhile,
it stores the information about the graph in a Python list. In this chapter we shall describe the contents
of this list in general terms, and the commands which you use to build it (orientation and lighting func-
tions); the setup functions for complicated 3-D plots; and the plotting functions themselves. In a final
section, for people who may some day be maintaining or adding to this code, we describe the auxiliary
functions which everyday users will seldom if ever use.

7.1 Setting Up For 3-D Graphics

7.1.1 The Plotting List

The 3-D PyGist graphics keeps an internal list callédhw3_list ~ containing complete informa-

tion about the currently active frame (which may or may not be visible depending on vdrath@&r

has been invoked). Regular users should never need to access this list; however, there is an acces
function available calledet_draw3_list_ which code developers and maintainers may use to

get at the listget_draw3_n_ returns the number of elements in the viewing and lighting portion of

the list, described below. Likewise, ordinary users do not really need to know the structure of this list
in detail; however, every user of the 3-D graphics should be aware of the contents of the list, how it
affects the graph, and what functions to use to alter it.

_draw3_list is a Python list, organized as follows:

[rotation, origin, camera_dist, ambient, diffuse, specular,
spower, sdir, fnc 1.args ¢,fnc 5 args ,,...]

November 23, 1998

CHAPTER 7: Three-Dimensional Plotting Functions

The elements of this list are divided into thewingtransformationlighting specifications, andis-
play information, as follows:

Viewing:

rotation : a 3-by-3 rotation matrix giving the angles of view.

origin : a 3-vector giving the coordinates of the origin in the user’s coordinate system.
camera_dist : A real number giving the camera distance; the villoee (the default)
translates to infinity.

Lighting:

ambient : a light level (in arbitrary units) that is added to every part of the surface regardless
of its orientation. It might be said to be the amount of light which a surface exudes on its own.
A surface withambient of O is totally black unless illuminated.

diffuse : alight level which is proportional to cos(theta), where theta is the angle between
the surface normal and the viewing direction, so that surfaces directly facing the viewer are
bright, while surfaces viewed edge on are unlit (and surfaces facing away, if drawn, are shaded
as if they faced the viewer).

specular : a light level proportional to a high powspower of 1 + cos (alpha), where
alpha is the angle between the specular reflection angle and the viewing direction. The light
source for the calculation of alpha lies in the direcsoir (a 3 element vector) in the
viewer's coordinate system at infinite distance. You can havéght sources by making
specular , spower , andsdir (or any combination) be vectors of length (3-byns in

the case o$dir).

Display:

fnc 1, fnc ,, etc.: Plotting function(s) (whose argument lists ange ¢, arg », etc., respec-

tively) defining the component(s) of this graph. During its normal operating mode, the 3-D
graphics accumulates information about calls to plotting functions until the user calls the
functiondraw3 . These calls are then executed wHeaw3 is invoked.

7.1.2 Functions For Setting Viewing Parameters

Angular orientation

orient3 (phi = angle 1, theta = angle 2)
rot3 (xa = angle <, ya =angle ys» Za=angle 7)
Description

Note that most of the functions in 3-D PyGist accept keyword arguments. These arguments may be
entered in any order; omitted arguments will default to a sensible value.

orient3 sets the orientation of the objectéamgle ,, angle). Orientations are a subset of the

56

Setting Up For 3-D Graphics

possible rotation matrices in which the z axis of the object appears vertical on the screen (that is, the
object z axis projects onto the viewer y axis). Tieta angle is the angle from the viewer y axis to
the object z axis, positive if the object z axis is tilted towards you (toward viewghtzjs zero when
the object x axis coincides with the viewer x axis. If neigfter northeta is specifiedphi defaults
to- pi / 4 andtheta defaults topi / 6. If only phi is specifiedtheta remains unchanged,
unless the curretheta is neapi / 2, in which cas¢heta returnst@i / 6, or unless the current
orientation does not have a vertical z axis, in which case theta returns to its defaultthetalyis
specifiedphi retains its current value. Unliket3 , orient3 is not a cumulative operation.

rot3 rotates the current 3D plot laygle about viewer's x axigingle y about viewer's y axis,
andangle , about viewer's z-axis.

Physical orientation
mov3 (xa = val 1, ya=val >, za = val 3)
aim3 (xa = val 1, ya=val 2, za = val 3)
setz3 (zc = dist)

Description

mov3 moves the current 3D plot lwal ; along the viewer's x axisal , along the viewer's y axis,
andval 3 along the viewer's z axiaim3 moves the current 3D plot to put the powl(¢, val »,

val 3) in object coordinates at the point (0, O, 0) -- the aim point -- in the viewer's coordinates. In both
functions, if any of theal 1, val 5, orval 3 is missing, it defaults to 0.

setz3 sets the camera positiondst (x =y = 0) in the viewer's coordinate systendi#t is
None or if zc is missing, set the camera to infinity (default).

Examples

Our examples are postponed until later in the chapter, when we have covered enough material to give
complete sequences of computations and PyGraph function calls, and show the resulting plots.

7.1.3 Lighting Parameters

Calling Sequence

light3 (ambient=a_level, diffuse=d_level, specular=s_level,
spower=n, sdir=xyz)

This function is used to set the lighting parameters for the current drawing list.

57

CHAPTER 7: Three-Dimensional Plotting Functions

7.1.4 Display List

Calling Sequences

<plot function> (arg 1,arg o,arg g, ...)
clear3 ()
When one of the plotting functionplf , pl3surf , pl3tree) is called and the internal variable
draw3 has been set to zero, or else if it is nonzero and the idler is a do-nothing routine, Then this

Elot call will add<plot function> to the display list, and will process the arguments into a
Python list, which will be added to the display list after the function name.

The functiorclear3 clears the display list of all plotting functions. It leaves orientation and light-
ing information unchanged.

7.2 3-D Graphics Control Functions

7.2.1 Getting a Window

Calling Sequence

window3 ([n] [, dump = val] [, hcp = filename])

Description

If n is specified, make window the active window (open a window if necessaryh I§ not speci-

fied, connect to the active window, or open one if none is active. Associate the hardopy file named
filename with the window ifhcp is specified; this will be postscript if the name endgs, or

cgm if it ends in.cgm . The style sheet associated with the window will'b@ox.gs" ,i. e., a

plain window with no axes (except possibly a gnomon). din@p keyword, if 1, causes the color
palette to be dumped to the hcp file with each frame that is sent there (otherwise hardcopy plots will
be in greyscale).

7.2.2 Displaying the Gnomon

Webster’s defines gnomonas “an object that by its position...serves as an indicator.” In 3-D PyGist,
the gnomon is a small diagram of the coordinate axes that appears in the lower left corner of a 3-D
plot, if this capability has been turned on.

Calling Sequence

gnomon ([onoff] [, chr = <labels>])
set_default_gnomon ([onoff])

58

3-D Graphics Control Functions

Description

gnomon toggles the gnomon displayahoff is omitted. Ifonoff is present and non-zero turn on

the gnomon. If zero, turn it ofet_default_gnomon allows the user to specify what the default
gnomon is to be when the default idler is called (see the discussion in “The variable _draw3 and the
idler” on page 60, and “The Default Idler” on page 60.)

The gnomon shows the y, andz axis directions in the object coordinate system. The directions
are labeled. The labels defaultXpY, andZ, but may be specified to be something else by using the
keywordchr . <labels> must be a Python list consisting of three character strings.The gnomon is
always infinitely far behind the object (away from the camera).

There is a mirror-through-the-screen-plane ambiguity in the display which is resolved in two ways:
(1) the &, vy, z) coordinate system is right-handed, and (2) If the tip of an axis projects into the screen,
its label is drawn in opposite polarity to the other text in the screen.

7.2.3 Plotting the Display List

The only way that the display list can be plotted is by an invocation of the fudctis3 . The user

may control when this function gets called. To have a new plot appear totally under user control, set
_draw3 to O (i. e., executset_draw3_ (0)) and then caliraw3 only when you want the plot to
appear. To have a plot appear automatically after each plot command is gr&an3 should be set

to 1 and the idler should be set to some function which dadls3 . The details are in “The variable
_draw3 and the idler” on page 60.

Calling Sequence

[lims =] draw3 ([called_as_idler = <val>])
limits (lims [0], lims [1], lims [2], lims [3])

Description

The functiondraw3 traverses the display list and executes each function on the list with the list
of arguments supplied. Assuming that the list is not empty, this means that the frame specified by this
list will be displayed. If the parametealled_as_idler IS present and is nonzero, thefma
(frame advance) call will be made first, meaning that the current display will be erased before the new
one is plotted. Otherwise the new display will appear on top of the old.

draw3 always attempts to return a list of four itepasin, xmax, ymin, ymax] which give
the maximum and minimum of the x and y coordinates actually plotted to the PyGist window. Calling
thelimits function with these four values as limits will scale the graph properly. One could also per-
form computations with these limits (for example, to force x and y to the same scale, or to shrink the
graph a little to force it well inside the borders of the window). If you like the way your graphs look,
then there is no reason to deal with these numbers.

We apologize for this messy kludge; we have encountered timing problems and other difficulties
with the Gist limits calculating process which we have not been able to solve except by computing our
own limits.

59

CHAPTER 7: Three-Dimensional Plotting Functions

7.2.4 The variable draw3 and the idler

_draw3 is an internal 3-D PyGist variable accessible to the user only by means of the access func-
tions described below.draw3 , in conjunction with a function called an idler, determines whether,
after a plot function and its arguments have been placed on the display list, some further action takes
place. Thalefault idler(see below) will cause the graph to be plotted each time it is called; and it will

be called immediately after the plot function has been added to the display list, pralided is

nonzero.

Calling Sequences for draw3 Access Functions

set_draw3 (n)
n = get_draw3 ()

Description

The first function is used to setiraw3 ton (default 0), and the second, to read its current setting.

Calling Sequences to Set Idlers

clear_idler ()
set_idler (func_name)
set_default_idler ()
call_idler ()

Description

The functionclear_idler sets the idler function to a routine which does nothing. It will be called
after each plot function adds to the display list_(dfraw3 is nonzero), but will do nothing.
set_idler allows the user to define an action for 3-D PyGist to take after each plot function call
adds to the display listunc_name must be callable with no arguments. It will be called only if
_draw3 is nonzeroset_default_idler will set the idler to call the function whose code is
given belowcall_idler gives you the capability to call the idler yourself, if you wish.

The Default Idler

Below is the code for the default idler.

def _draw3_idler () :
global _default_gnomon
orient3 ()
if current_window () ==-1:
window3 (0)
else :
window3 (current_window ())
gnomon (_default_gnomon)
lims = draw3 (1)

60

Data Setup Functions for Plotting

if ims == None :
return
else :
limits (lims [O], lims [1], lims [2], lims [3])

7.3 Data Setup Functions for Plotting

7.3.1 Creating a Plane

Calling Sequence

plane3 (<normal>, <point>)

Description

This function returns the coefficients of the equation of a plane as a vector of length four. This is the
form of a plane argument as expected by the slicing funcgmmsmal> is a vector of length three
giving the direction numbers of the normal to the plamp=int> is a vector of length three giving

the coordinates of a point in the plane.

7.3.2 Creating amesh3 argument

The functionmesh3 is used to createraesh3 object from your data. mesh3 object is required as
an input to a number of routines, most importantly, the various slicing functions.

Calling Sequence (1)

mesh3 (X, Y, z)
mesh3 (X, Y, z, funcs = [f1, 12, ...], [verts = <spec>])

Description

mesh3 creates anesh3 object as expected by the various functisise3 |, xyz3 , getv3 , etc.

The form of amesh3 object will be described below (See “Description of a mesh3 object” on
page 63). Note that Python is able to determine which of the above calls is intended because it can
check for the presence of optional and keyword arguments and can check the dimensions and types o
the arguments.

In the first two forms of the calk, y, andz are coordinate arrays specifying the mesk, ¥f, and
z are three dimensional of the same shape, then they represent the coordinates of the vertices of a reg
ular rectangular mesh.{f, y, andz are one dimensional of the same size, then the keyword argument
verts determines how they are interpretedleits is not present, then we have a structured reectan-
gular mesh with unequally spaced nodeselts is present, then they represent the coordinates of
an unstructured mesh, and the keyword arguwemns must be used to pass information about the
cells to thamesh3 function.<spec> can be either a single two dimensional array of integer subscripts
into x, y, andz, or a Python list of up to four such objects, one for each type of cell in the mesh. The

61

CHAPTER 7: Three-Dimensional Plotting Functions

format of the two dimensional array for each type of cell shape is as follows:

« hexahedra: the arrayn®_hex_cells by 8. The first subscript is the hexahedron cell number;
for each value of this subscript, the second indexes the vertices in canonical order (the first side
in outward normal order, the opposite side’s correcponding vertices in inward normal order).

e prisms: the array iso_prism_cells by 6. The first subscript is the prism cell number; for
each value of this subscript, the second indexes the vertices in canonical order (the first side in
outward normal order, the opposite side’s correcponding vertices in inward normal order).

« pyramids: the array 130_pyr_cells by 5. The first subscript is the pyramid cell number; for
each value of this subscript, the second indexes first the apex, then the vertices of the base in in-
ward normal order.

« tetrahedra: the arraym_tet cells by 4. The first subscript is the tetrahedron cell number;
for each value of this subscript, the second indexes first some arbitrary cell as the apex, then the
vertices of the base in inward normal order.
Each type of cell has a relative cell number running fromnotaelltype_cells - 1. Thecells
are also assumed to have absolute cell numbers, which depend on the order in which the defining
arrays appear, but will run consecutively starting from 0 in the first cell of the first type up to the total
number of cells 1 for the last cell of the last type.

The optional keyworduncs definesfl , f2 , etc., which are arrays of function values (e.g. den-
sity, temperature) defined on the mesh. In the case of a regular (or structured) rectangular mesh, these
functions are 3-D arrays. If they represent cell-centered data, they will have one less value along each
dimension than the coordinate arrays. If they are vertex-centered data, then they will have the same
dimensions. In the case of an unstructured nfésh2 , etc. are one-dimensional arrays. If they rep-
resent cell-centered data, then they are indexed by the absolute cell number, and must be the sam:
length as the number of cells. If they represent vertex-centered data, then they are indexed the same a
the vertices, and must be the same length as the vertex arrays.

Calling Sequence (2)
mesh3 (xyz, funcs = [f1, 12, ...])

Description

In this caseyz is a four dimensional array specifying the mesiz; [0] is the three dimensional
coordinatexyz [1] is the three dimensionglcoordinate, andyz [2] is the three dimensional
coordinate.hesh3 actually converts the, y, z arguments of the first two calls into thxigz form in
amesh3 object; see “Description of a mesh3 object” on page 63.fUies keyword operates as
previously described.

Calling Sequence (3)
mesh3 (nxnynz, dxdydz, x0y0z0, funcs = [f1, f2, ...])

62

Data Setup Functions for Plotting

Description

nxnynz is a vector of 3 integers, specifying the numbecedls of a uniform 3D mesh in the, vy,
andz directions, respectivelylxdydz is an array of three reals, specifying the size of the entire
mesh, not the size of one cell, in each of the three directionx0g0ad0 is an array of three reals,
representing the point of minimuxy y, andz where the mesh begins. Thumcs keyword operates

as previously described.

Description of amesh3 object

The form of anesh3 object varies according to whether the mesh specified was uniform, structured,
or unstructured.

Uniform case, node equally spaced:

[[xyz3_unif, getv3_rect, getc3_rect, iterator3_rect],
[(nxnynz [0], nxnynz [1], nxnynz [2]),
array ([dxdydz, x0y0zO0])], [f1, f2, ...]]

The four items in the first list are the names of functions. The details of these need not concern us at
this time except in their broad outlines. Titexrator3 function will split the mesh into chunks for
processing by the slicing functions, if necessary, in order to save gpa8ereturns the vertex coor-

dinates of a chunigetv3 returns the vertex values of a function on the chgek;3 returns cell

values. Because these routines necessarily differ depending on the type of mesh, their names are
passed along with the mesh specifications to that the apporopriate ones can be called. The remainde
of the items in the object specify the mesh and the function(s) defined on the mesh (if any; if there are
none, the final list will bg]).

Uniform case, nodes unequally spaced:

[[xyz3_unif, getv3_rect, getc3_rect, iterator3_rect],
[(len (X)-1,len (y)-1,len (z) - 1),
array ([x,y, z])], [f1, 12, ...]]

The functions’ purpose is as described abwyg, andz are one-dimensional arrays, possibly of dif-
ferent lengths, specifying the node coordinates of a uniform rectangular mesh, which might be
unequally spaced. The triple consisting of the three array lengths minus one gives the size of the mesh
in cells.

Structured case:

[[xyz3_rect, getv3_rect, getc3_rect, iterator3_rect],
[dim_cell, xyz], [f1, f2, ...]]

The functions’ purpose is as described abdua. cell is an integer vector of length three giving
the size of the mesh in celdim_cell [0] being thex direction sizedim_cell [1] they, and
dim_cell [2] thez.xyz is a four dimensional array of coordinategz [0] is the three dimen-
sionalx coordinate arrayyz [1] is the three dimensionglcoordinate array, andyz [2] is the
three dimensiona coordinate array.

63

CHAPTER 7: Three-Dimensional Plotting Functions

Unstructured case:

[[xyz3_irreg, getv3_irreg, getc3_irreqg, iterator3_irreq],
[dims, array ([x, Y, z]), sizes, totals], [f1, 2, ...]]

The functions’ purpose is as described abduas is the value of the keyword argumenetrts | i.

e., it represents one array, or a list of up to four arrays, specifying the subscripts of the cell vertices
into arraysx, Yy, andz in canonical order. If there is only one type of cell in the unstructured mesh,
thensizes andtotals will not be present; otherwise, they are used to help recover the absolute
cell number from a cell’s index in the list of cells of the same siges [i] is the number of cells

of typei ;totals [i] is the total number of cells up to and including type

7.4 The Slicing Functions

The slicing functions must be called in order to create data appropriate fd8shef (plot a 3-D
surface) angl3tree (add a plot to a tree) routines. In general, the slicing routines take a mesh
specification of some sort and return a list of the form

[nverts, xyzverts, color]

which specifies a set of polygonal cells and how to color them.

nverts isno_cells long and thetf entry tells how many vertices tHB ¢ell has.

xyzverts issum (nverts) by 3 and gives the vertex coordinates of the cells in order, i. e.,
thefirstnverts [0] entriesirkyzverts are the coordinates of the first polygon’s vertices, the next
nverts [1] entries are the coordinates of the second polygon’s vertices, etc.

color , if present, is10_cells long and contains a color value for each cell in the mesh.

7.4.1 slice3mesh : Pseudo-slice for a surface

The functionslice3mesh is designed specifically to produce an input argumenpli@gsurf
although if you want more than one surface in a picture, it can also bepi@tré® . It has several
distinct calling sequences, which Python can distinguish with its type savvy.

Calling Sequence (1)

slice3mesh (z [, color])

Description

z is a two dimensional array of function values, assumed to be on a uniforrmnmésmy cells
(assumingz is nx by ny) nx being the number of cells in tixedirection,ny the number in thg
direction.color , if specified, is either anx by ny array of cell-centered values by which the sur-
face is to be colored, or axx + 1 by ny + 1 array of vertex-centered values, which will be averaged
over each cell to give cell-centered values.

64

The Slicing Functions

Calling Sequence (2)

slice3mesh (nxny, dxdy, x0y0, z [, color])

Description

In this caseslice3mesh accepts the specification for a regular 2-D meshy is the number of
cells in thex direction and thg direction;x0y0 are the initial values of andy; anddxdy are the
incrementsn the two directionsz is the height of a surface above #ye plane and must be dimen-
sionednx + 1 byny + 1. color , if specified, is as above.

Calling Sequence (3)

slice3mesh (x, y, z [, color])

Description

z is as above, anx byny array of function values on a mesh of the same dimensions. There are two
choices forx andy: they can both be one-dimensional, dimensiomedandny respectively, in
which case they represent a mesh whose edges are parallel to the axes; or else they car bgth be
ny, in which case they represent a general quadrilateral mesh.

Examples

Postponed until later in the chapter.

7.4.2 slice3 :Plane and Isosurface Slices of a 3-D mesh

Calling Sequence

[nverts, xyzverts, color] =\

slice3 (m3, fslice, nv, xyzv [, fcolor [, flg 1]
[, value = <val>] [, node =flg 5])
Description

Slice the 3-D mesm3as specified byslice , returning the lisjnverts , xyzverts , color]

nverts is the number of vertices in each polygon of the slice,»gaslerts is the3-by-sum

(nverts) list of polygon vertices. If thicolor argument is present, the values of that coloring
function on the polygons are returned as the valueotwir . color will have the same size as

nverts , i. e., the number of polygons in the slice, except that the keyword arguodsi if

present and nonzero, is a signal to return node-centered values rather than cell-centered values. In th
latter casecolor will be sum (nverts) long and entries icolor will be associated with the
corresponding coordinates xyzverts .nv andxyzv are not neededjone should be passed as

their values (this is a leftover from an older version of the code).

fslice can be a function, a vector of 4 reals, or an integer numidslicé is a function, it

65

CHAPTER 7: Three-Dimensional Plotting Functions

should be of the form:

def fslice (m3, chunk)
or, in the case of an isosurface slice,

def fslice (m3, chunk, iso_index, _value)
or for a plane slice,

def fslice (m3, chunk, normal, projection)

and should return a list of function values on the specified chunk of them3stoduleslice3

offers plane and isosurface slicers (for descriptions, see page 110). If you wish to write your own slice
routine, you should bear in mind that the formatlmink depends on the type of3mesh, so you
should use only the approriate mesh functioy®s3 andgetv3d which take that type ah3 and

chunk as arguments. The return valuefglice should have the same dimensions as the return
value ofgetv3 ; the return value ofyz3 has an additional first dimension of length 3.

If fslice is alist of 4 reals, it is taken as a slicing plane as returnpthbg3 .

If fslice is a single integer, the slice will be an isosurface fofsiee ™ function associated
with the mesim3 In this case, the keywokdlue must also be present, representing the value of
that function on the isosurface.

If fcolor is omitted or has valugone, thenslice3 returnsNone as the value afolor .. If
you want to color the polygons in a manner that depends only on their vertex coordinates (e. g., by a
3-D shading calculation), use this mode.

fcolor can be a function or a single integerfclilor is a function, it should be of the form:
def fcolor (m3, cells, |, u, fsl, fsu, ihist)

and should return a list of function values on the specified cells of them&edlfithe optional argu-
mentflg ; afterfcolor is not missing oNone and is non-zero, then theolor function is

called with only two arguments:
def fcolor (m3, cells)

Thecells argument will be the list of cell indices m3at which values are to be returndd. u,

fsl , fsu , andihist are interpolation coefficients which can be used to interpolate from vertex
centered values to the required cell centered values, ignoringelise argument. Segetc3
source code. The return values should always have the same size and sblpe as

th

If fcolor is a single integer, then the slice will be an isosurface fdcidter variable asso-

ciated with the mesm3

7.4.3 slice2 andslice2x : Slicing Surfaces with planes

The functionsslice2 andslice2x allow one to slice surfaces specifieddtge3 -type output.
slice2 will return the portion on one side of the slicing plaslese2x will return both portions.

66

At Last - the 3-D Plotting Functions

Calling Sequences

[nverts, xyzverts, values] = slice2 (plane, nv,
Xyzv, vals)

[nverts, xyzverts, values, nvertb, xyzvertb, valueb] =
slice2x (plane, nv, xyzv, vals)

Description

The argumenplane can be either a scalar oplane3 (see “Creating a Plane” on page 61y; is

an array of integers, th¥ entry of which gives the number of vertices of tA@olygonal cellxyzv
are the vertices of the coordinatesof the cells, with each consecut[le entries representing the

vertices of the'f cell; andvals being a set of values as explained below. These arguments are the
same format as returned bljce3 andslice3mesh

If plane is aplane3 , thenvals (if not None) is a cell-centered set of values expressing the
color of each cell, and the outputgerts , xyzverts , andvalues represent the polygons and
their colors (if any) describing the portion of the sliced surface that is on the positive side of the plane.
That's all you get withslice2 . With slice2x , you get in additiomvertb , xyzvertb , and
valueb , which describe the part of the surface on the negative side of the slicing plane. Warning: one
of these specifications could biwne, None, None if the entire surface lies on one side of the plane.

If plane is a scalar value, themals must be present and must be node-centered. In this case, the
outputsnverts ,xyzverts , andvalues representthe polygons and their colors (if any) describing
the portion of the sliced surface wheeds on the vertices are greater than or equal to the scalar value
plane . (This actually allows you to form an arbitrary two-dimensional slice of a surface.) With
slice2x ,you getin additiomvertb ,xyzvertb , andvalueb , which describe the part of the sur-
face wherevals on the vertices are less than the scalar yahee .

7.5 At Last - the 3-D Plotting Functions

7.5.1 plwf : plot a wire frame

Calling Sequence
piwf (z [, y, X] [, <keylist>])

Description

plwf plots a 3-D wire frame of the given 2-D arraylf x andy are given, then they must be the
same shape asor elselen (x) should be the first dimension bfandlen (y) the second. Ik

andy are not given, they default to the first and second indices, oéspectivelyplwf calls

clear3 before putting the plot command on the display list, which means that PyGist can only show
one wire frame at a time using this function. (BEBtree for graphs with multiple components).

plwf accepts the following keyword arguments:

67

CHAPTER 7: Three-Dimensional Plotting Functions

fill, shade, edges, ecolor, ewidth, cull, scale, cmax
A description of the keywords follows:

fill : optional colors to use (default is to make zones have background color), same dimension
options as for z argument to plf function, i. e., it should be the same dimension as the mesh (vertex-
centered values) or one smaller in each dimension (cell-centered values).

shade : set non-zero to compute shading from the current 3-D lighting sources.

edges : default is 1 (draw edges), but if you provide fill colors, you may set to O to supress the
edges.

ecolor ,ewidth : color and width of edges.
cull :defaultis 1 (cull back surfaces), but if you want to see the “underside” of the model, set to

scale : by defaultz is scaled to “reasonable” maximum and minimum values related to the scale
of (x ,y) . This keyword alters the default scaling factor, in the sensedhlt = 2.0 will produce
twice thez-relief of the defaulscale =1.0 .

cmax: theambient keyword inlight3 can be used to control how dark the darkest surface is;
use this to control how light the lightest surface is. llgl@wf routine can change this parameter
interactively.

Examples

The following example computes the information for a surface with a peak and a valley, and then
plots the resulting wire frame with various options. In the first case, we see simply an opaque wire
frame.

set_draw3_ (0)

x =span (-1, 1, 64, 64)

y = transpose (X)

z = (x +y)*exp (-6.(x*x+y*y))
orient3 ()

light3 ()

plwf (z, y, X)

[Xmin, xmax, ymin, ymax] = draw3(1)
limits (xmin, xmax, ymin, ymax)
plt("opagque wire mesh", .30, .42)

68

At Last - the 3-D Plotting Functions

AR

o
W
e
‘_“‘;}- ‘}t‘“ “‘

St

e

i =

e e o

i
ey A o

N
sy

opadque wire mesh

69

CHAPTER 7: Three-Dimensional Plotting Functions

Next, we see the same surface shaded from a default light source (roughly over the viewer’s right
shoulder) and with the mesh lined in red.

plwf(z,y,x,shade=1,ecolor="red")
[Xmin, xmax, ymin, ymax] = draw3(1)
limits (xmin, xmax, ymin, ymax)

SR b
e
%33 SR
At
T

Finally, the following sequence plots the same surface with no edges, and with lighting coming
from the back.

plwf(z,y,x,shade=1,edges=0)

light3 (diffuse=.1, specular=1., sdir=array(]0,0,-1]))
[xmin, xmax, ymin, ymax] = draw3(1)

limits (xmin, xmax, ymin, ymax)

70

At Last - the 3-D Plotting Functions

7.5.2 pl3surf : plota 3-D surface

Calling Sequence

pl3surf (nverts, xyzverts [, values] [, <keylist>])

Description

Perform simple 3-D rendering of an object createcslige3 (possibly followed byslice2).
nverts and xyzverts are polygon lists as returned Ilglice3 , so xyzverts is sum
(nverts) -by-3, wherenverts is a list of the number of vertices in each polygon. If present, the
values should have the same lengthnagrts ; they are used to color the polygon.vélues is

not specified, the 3-D lighting calculation set up usindigt@3 function will be carried out. Key-
wordscmin andcmax as forplf , pli , orplfp are also accepted. (If you do not supmjues ,

you probably want to use tlambient keyword tolight3 instead oftmin here, butmax may

still be useful.)

pl3surf callsclear3 before putting the plot command on the display list, which means that
PyGist can only show one surface at a time using this functionp($&teee below for graphs with
multiple components).

Example

The following example is the familiar sombrero function. The first few lines of code compute its
value.

ncl =100

71

CHAPTER 7: Three-Dimensional Plotting Functions

nvi=ncl+1

br=-(ncl/2)

tr=ncl/2+1

x = arange (br, tr, typecode = Float) * 40. / ncl
y = arange (br, tr, typecode = Float) * 40. / ncl
z = zeros ((nv1, nvl1), Float)

r = sqgrt (add.outer (x ** 2, y **2)) + 1e-6
z=sin(rn/r

In order to us@I3surf , we need to construct a mesh ugimgsh3. The way we shall do that is
to define a function on the 3d mesh so that the sombrero function is its O-isosurface.

z0 = min (ravel (z))

z0 =z0 - .05 * abs (z0)

maxz = max (ravel (z))

maxz = maxz + .05 * abs (maxz)

zmult = max (max (abs (x)), max (abs (y)))

dz = (maxz - z0)

nxnynz = array ([ncl, ncl, 1], Int)

dxdydz = array ([1.0, 1.0, zmult*dz], Float)
x0y0z0 = array ([float (br), float (br), zO*zmult], Float)
meshf = zeros ((nv1, nvl, 2), Float)

meshf [:, :, 0] = zmult*z - (xOy0zO0 [2])

meshf [;, :, 1] = zmult*z - (xOy0z0 [2] + dxdydz [2])

Finally, we create the mesh and call the plotting functions.

m3 = mesh3 (nxnynz, dxdydz, x0y0z0, funcs = [meshf])
fma ()

Make sure we don't draw till ready

set_draw3_ (0)

pldefault(edges=0)

[nv, xyzv, col] = slice3 (m3, 1, None, None, value = 0.)
orient3 () # (default orientation)

pl3surf (nv, xyzv)

lim = draw3 (1)

dif = 0.5 * (lim [3] - lim [2])

dif is used to compress the y scale a bit.

limits (lim [0], lim [1], lim [2] - dif, lim [3] + dif)

palette ("gray.gp")

The graph that results from this sequence of code is on the next page.

72

At Last - the 3-D Plotting Functions

This next sequence of functions uses slice3mesh to draw the same surface; this time the polygons
that make up the surface are colored according to height (using the rainbow palette).

Try new slicing function to get color graph

[nv, xyzv, col] = slice3mesh (nxnynz [0:2], dxdydz [0:2],
x0y0z0 [0:2], zmult * z, color = zmult * z)

pl3surf (nv, xyzv, values = col)

lim = draw3 (1)

dif = 0.5 * (lim [3] - lim [2])

limits (lim [O], lim [1], lim [2] - dif, lim [3] + dif)

palette ("rainbow.gp")

73

CHAPTER 7: Three-Dimensional Plotting Functions

7.5.3 pl3tree :add a surface to a plotting tree

pl3tree accepts surfaces and slices of surfaces irslibe2 /slice3 format, and, as its name
suggests, builds a b-tree. Its purpose is to attempt to analyze multiple surface plots in such a way as tc
determine the order of plotting, so that hidden portions of the surfaces will be graphed first, and this
covered by later portionpl3tree may be called multiple times to build plots of arbitrary complex-

ity.

Calling Sequence

pl3tree (nverts, xyzverts [, values] [, <keylist>])

Description

pl3tree accepts the following keywords:
plane, cmin, cmax, split

pl3tree adds the polygon list specified byerts (number of vertices in each polygon) and
xyzverts (3-bysum(nverts) vertex coordinates) to the currently displayed b-tregalifes
is specified, it must have the same dimensionvasts , and represents the color of each polygon.
If values is not specified, then the polygons are assumed to form an isosurface which will be shaded
by the current 3-D lighting model; the isosurfaces are at the leaves of he b-tree, sliced by all of the
planes. Iplane (in the format returned by a callptane3) is specified, then theyzverts must
all lie in that plane, and that plane becomes a new slicing plane in the b-tree.

Each leaf of the b-tree consists of a set of sliced isosurfaces. A node of the b-tree consists of some
polygons in one of the planes, a b-tree or leaf entirely on one side of that plane, and a b-tree or leaf on
the other side. The first plane you add becomes the root node, slicing any existing leaf in half. When
you add an isosurface, it propagates down the tree, getting sliced at each node, until its pieces react
the existing leaves, to which they are added. When you add a plane, it also propagates down the tree
getting sliced at each node, until its pieces reach the leaves, which it slices, becoming the nodes closes
to the leaves.

This structure is relatively easy to plot, since from any viewpoint, a node can always be plotted in
the order from one side, then the plane, then the other side.

If keywordsplit is set nonzero (the default), then this routine assumes a “split palette’”; the cur-
rent palette will be “split” or truncated so that its colors are numbered 0 to 99, while colors 100 to 199
will be greyscale. Colors for thalues will be scaled to fit from color O to color 99, while the colors
from the shading calculation will be scaled to fit from color 100 to color 199. (If values is specified
as an unsigned char array (Python typecbte), however, it will be used without scaling.) You may
specifiy acmin or cmax keyword to affect the scalingmin is ignored ifvalues is not specified
(use theambient keyword fromlight3 for that case).

74

At Last - the 3-D Plotting Functions

Example

In the following examplenx, ny, andnz are each 20. First we compute the mesh and some data on
the mesh.

xyz = zeros ((3, nx, ny, nz), Float)
xyz [0] = multiply.outer (span (-1, 1, nx),
ones ((ny, nz), Float))
xyz [1] = multiply.outer (ones (nx, Float),
multiply.outer (span (-1, 1, ny),
ones (nz, Float)))
Xyz [2] = multiply.outer (ones ((nx, ny), Float),
span (-1, 1, nz))
r =sqrt (xyz [0] ** 2 + xyz [1] **2 + xyz [2] **2)
theta = arccos (xyz [2] / 1)
phi = arctan2 (xyz [1] , xyz [O] + logical_not (r))
y32 = sin (theta) ** 2 * cos (theta) * cos (2 * phi)
m3 = mesh3 (xyz, funcs = [r * (1. + y32)])

Next we construct two isosorfaces, an inner (function value .5) and an outer (function value 1.0)
usingslice3

[nv, xyzv, dum] = slice3 (m3, 1, None, None, value = .50)
(inner isosurface)

[nw, xyzw, dum] = slice3 (m3, 1, None, None, value = 1.)
(outer isosurface)

Now we create two planes, use one to form a plane slice through the mesh, then the second to slice
the first in half.

pxy = plane3 (array ([0, O, 1], Float), zeros (3, Float))
pyz = plane3 (array ([1, O, 0], Float), zeros (3, Float))
[np, xyzp, vp] = slice3 (m3, pyz, None, None, 1)

(pseudo-colored plane slice)
[np, xyzp, vp] = slice2 (pxy, np, Xyzp, vp)

(cut slice in half)

Finally, we slice each isosurface in half, keeping both halsiee®x calls), then slice the
“top” half of each in half again, discarding the front of easlicé2 calls).

[nv, xyzv, d1, nvb, xyzvb, d2] =\
slice2x (pxy, nv, xyzv, None)
[nv, xyzv, d1] = slice2 (- pyz, nv, xyzv, None)
(...halve one of those halves)
[nw, xyzw, d1, nwb, xyzwb, d2] =\
slice2x (pxy , nw, xyzw, None)
(split outer in halves)
[nw, xyzw, d1] = slice2 (- pyz, nw, xyzw, None)

75

CHAPTER 7: Three-Dimensional Plotting Functions

Now, a sequence of calls pi3tree sets up the graph, and a calldemo5_light actually
plots it. For completeness, we give the functiemo5_light first.

making_movie = 0
def demo5_light (i) :
global making_movie
ifi >=30 : return O
theta=pi/ 4+ (i-1)*2*pi/29
light3 (sdir = array ([cos(theta), .25, sin(theta)],
Float))
draw3 (not making_movie)
return 1
fma ()
split_palette ("earth.gp”)
gnomon (1)
clear3 ()
Make sure we don't draw till ready
set_draw3_ (0)
pl3tree (np, xyzp, vp, pyz)
pl3tree (nvb, xyzvb)
pl3tree (nwb, xyzwb)
pl3tree (nv, xyzv)
pl3tree (nw, xyzw)
orient3 ()
light3 (diffuse = .2, specular = 1)
limits (square=1)
demo5_light (1)

76

Contour Plotting on Surfaces: plzcont and pl4cont

7.6 Contour Plotting on Surfacesplzcont and pld4cont

Contour lines can be plotted on a surface, or filled contours can be drawn, or both, by means of the
two functionsplzcont (plot z contours, i. e., contours according to height in the z direction) and
pldcont (plot 4D contours, i. e., contours determined by some other function defined on the sur-
face.

Calling Sequences

plzcont (nverts, xyzverts, contours = 8, scale = "lin",
clear = 1, edges = 0, color = None, cmin = None,
cmax = None, zaxis_min = None, zaxis_max = 0, split = 0)
pl4cont (nverts, xyzverts, values, contours = 8, scale =
"lin", clear = 1, edges = 0, color = None, cmin = None,
cmax = None, caxis_min = None, caxis_max = 0, split = 0)

Description

plzcont plots z contours, andpldcont plots contours derived from the functimalues .
nverts andxyzverts specify the polygons which define the surfaoseerts is an array of inte-

gers, thel' entry of which gives the number of vertices of theblygonal cellxyzverts are the
vertices of the coordinatesof the cells, with each conseautiy§ entries representing the vertices

of the i" cell; andvalues (for pl4cont) being a set of values, one for each vertex. These argu-
ments are the same format as returnedlime3 andslice3mesh (see Section 7.4.2 "slice3:
Plane and Isosurface Slices of a 3-D mesh" on pagegp®gont andpldcont actually do
repeated calls telice2x (see Section 7.4.3 "slice2 and slice2x: Slicing Surfaces with planes” on
page 66) in order to obtain the contour curves.

Keyword Arguments

contours

can be one of the followingy, an integer: Pldi contours (thereforéy+1 col-
ored components of the surfacgyYALS a vector of floats: draw the contours
at the specified levels.

scale

can bélin" ,"log" ,or"normal" specifying the contour scale. (Only ap-
plicable ifcontours = N, of course).

clear

If CLEAR== 1, clear the display list first. Otherwise the current contour plot
will be added to the display list.

edges
If EDGES== 1, plot the edges.

77

CHAPTER 7: Three-Dimensional Plotting Functions

color
If color == None, thenbytscl the palette intdN + 1 colors and send each
of the slices t@I3tree with the appropriate color. Holor == "bg" , will

plot only the edges. See alsplit (below).
cmin, cmax

If CMINis given, use it instead of the minimwractually being plotted in the
computation of contour levels. GMAXs given, use it instead of the maximum

¢ actually being plotted in the computation of contour levels. This is done so
that a component of a larger graph will have the same colors at the same levels
as every other component, rather than its levels being based on its own maxi-
mum and minimum, which may lie inside or outside those of the rest of the
graph.

zaxis_min, zaxis_max

ZAXIS_MIN andZAXIS_MAXrepresent axis limits on as expressed by the
user. If presentZAXIS_MIN will inhibit plotting of all lesserz values, and
ZAXIS_MAXwill inhibit the plotting of all greatez values.

caxis_min, caxis_max

CAXIS_MIN andCAXIS_MAXrepresent axis limits oo as expressed by the
user. If presentCAXIS_MIN will inhibit plotting of all lesserc values, and
CAXIS_MAXwill inhibit the plotting of all greatec values.

split
If split ==1, thenitis intended to plot this portion of the graph as if the pal-
ette has been split, so only colors 0-99 will be used to color the contours. If
split == 0, then all colors from 0 to 199 will be used.
Example

In the following example, we compute the sombrero function and then use plzcont to draw it with
contours in"normal” scale. In"normal” scale, the top and bottom contours are two standard
deviations away from the mean. Thus the peak of the sombrero is all the same color because its few
points contribute very little to the standard deviation.

compute sombrero function

x = arange (-20, 21, typecode = Float)

y = arange (-20, 21, typecode = Float)

z = zeros ((41, 41), Float)

r = sqgrt (add.outer (x ** 2, y **2)) + 1e-6
z=sin(rn/r

fma ()

clear3 ()

gnomon (0)

Make sure we don't draw till ready

78

Contour Plotting on Surfaces: plzcont and pl4cont

set_draw3_ (0)

palette ("rainbow.gp")

[nv, xyzv, dum] = slice3mesh (x, vy, z)

plzcont (nv, xyzv, contours = 20, scale = "normal")
[Xmin, xmax, ymin, ymax] = draw3 (1)

limits (xmin, xmax, ymin, ymax)

To draw the same function in "lin" scale, with edges visible, enter the following code:

plzcont (nv, xyzv, contours = 20, scale ="lin", edges=1)
[Xmin, xmax, ymin, ymax] = draw3 (1)
limits (xmin, xmax, ymin, ymax)

The resulting graph is shown on the next page.

79

CHAPTER 7: Three-Dimensional Plotting Functions

7.7 Animation: movie andspin3

7.7.1 Themovie module and function

Calling Sequence

movie (draw_frame [, time_limit = 120.]
[, min_interframe = 0.0]
[, bracket_time = array ([2., 2.], Float)]
[, lims = None]
[, iming = 0])

Description

Note: All but the first argument are keyword arguments, with defaults as shown.

This function runs a movie based on the gidesaw_frame function. The movie stops after a
total elapsed time ofime_limit seconds, which defaults to 60 (one minute), or when the
draw_frame function returns zero. (N. B. Currently the timing option described here and in a sub-
sequent paragraph is not completely implemented.)

draw_frame is a function described as follows:

def draw_frame (i) :

80

Animation: movie and spin3

Input argument i is the frame number.

draw_frame should return non-zero if there are more

frames in this movie. A zero return will stop the

movie.

draw_frame must NOT include any fma command if the
making_movie variable is set (movie sets this variable
before calling draw_frame)

If min_interframe is specified, a pause will be added as necessary to slow down the movie.
min_interframe is a time in seconds (default 0). The keyworacket time (again atime in
seconds) can be used to adjust the duration of the pauses after the first and last frames. It may also b
a two element arrajpeg, end] . If the pause at the end is greater than five seconds, you will be
prompted to explain that hittirgRETURN>will abort the final pause. (Well, the Python version does
not currently have this capability due to the difficulty of implementing it consistently over various plat-
forms.)

timing =1 enables a timing printout for your movie.

If every frame of your movie has the same limits, usdit® keyword argument to fix the limits
during the movie.

Example

In the following example, the movie demonstrates the effect of a moving light source on the currently
drawn surface. (The plot functions creating the surface have not been shown; it is assumed that the
data for the surface is on the current display list.)

Thedraw_frame function is as follows:

def demo5_light (i) :
global making_movie
ifi >=30 : return O
theta=pi/4+(i-1)*2*pi/l29
light3 (sdir =
array ([cos(theta), .25, sin(theta)], Float))
without an explicit call to draw3, the light3
function would cause no changes until Python
paused for input from the keyboard, since
unlike the primitive plotting functions (plg, plf,
plfp, ...) the fma call made by the movie function
will not trigger the 3-D display list. any movie
frame display function which uses the 3-D drawing
functions in pl3d.py will need to do this. the
Imaking_movie flag supresses the fma in draw3 if
this function is called by movie (which issues
its own fma), but allows it otherwise

draw3 (not making_movie)

81

CHAPTER 7: Three-Dimensional Plotting Functions

return 1

Here is the Python code necessary to run a movie. This particular animation shows the surface with a
peak and valley which we saw earlier in this chapter(See “Examples” on page 68), with a moving
light source. A few frames of the movie are shown on the next page.

set_draw3_ (0)

x =span (-1, 1, 64, 64)

y = transpose (X)

Z = (x+y)* exp (-6.%(x*x+y*y))
orient3 ()

light3 (diffuse=.2,specular=1)
limits_(square = 1)

plwf (z,y,x,shade=1,edges=0)

[Xmin, xmax, ymin, ymax] = draw3 (1)
limits (xmin, xmax, ymin, ymax)
making_movie = 1
movie(demo5_light, lims = [xmin, xmax, ymin, ymax])
making_movie = 0

TABLE 1. Selected Frames Showing Moving Light Source

82

Animation: movie and spin3

7.7.2 Thespin3 function

spin3 is a function which takes an existing 3-D plot and spins it about an axis. It actually calls
movie for you, with adraw_frame function which is internal to the!l3d module and not avail-
able outside this module, because its name begins with an underscore.

Calling Sequence

spin3 (nframes = 30,
axis = array ([-1, 1, 0], Float),

tlimit = 60.,
dtmin = 0.0,
bracket_time = array ([2., 2.], Float),
lims = None,
timing = 0,
angle = 2. * pi)
Description

Spin the current 3-D display list abcagis (default[-1, 1, O]) overnframes (default 30).
Note that all arguments are keywords. Also note that the timing keywords are allowed but are not cur-
rently implemented. Their meanings are:

tlimit : the total time allowed for the movie in seconds (default 60).
dtmin : the minimum allowed interframe time in seconds (default 0.0).
bracket_time : (as formovie function inmovie.py).

lims : the axis limits, if you wish to specify them.

timing =1 if you want timing measured and printed out, O if not.

angle : the total angle about the axis through which the object will be rotated. During each step
of the rotation, the object will rotatngle / (nframes - 1).

Example

In this example, we take the surface discussed previously (see “Example” on page 75) and rotate it
about an axis. Assume that the sequence of code given there has been executed, giving the figure
shown there. Then we do the following to run the movie:

spin3 () # (lims =[O, 11, 12, I3])
Four frames from the resulting movie are shown on the next page.

83

CHAPTER 7: Three-Dimensional Plotting Functions

TABLE 2. Frames from Movie of Rotating Isosurfaces

84

Syntactic Sugar: Some Helpful Functions

7.8 Syntactic Sugar: Some Helpful Functions

7.8.1 Specifying the palette to be splisplit_palette

Calling Sequence

split_palette ([palette_name])

Description

Split the current palette (ifpalette_name is not present) or the specified palette (if
palette_name is present) into two parts; colors 0 to 99 will be a compressed version of the origi-
nal, while colors 100 to 199 will be a gray scale. For details on the available palettes, see “palette: Set
or Retrieve Palette” on page 21.

If you usesplit_palette to split the palette yourself, then be sure tol8iree with key-
wordsplit =0, because otherwig#3tree will split it again, with bizarre results. Alternatively,
you can use thpalette function referenced above to set the palette to your choice, then call
pl3tree with split =1.

7.8.2 Saving and restoring the view and lightingsave3 , restore3

Calling Sequences and Example

view = save3 ()
movie (_spin3, ... <other arguments>)
restore3 (view)

Description

In the above, theave3 function returns a copy of the current 3-D viewing transformation and light-
ing, so that the user can put it aside in the variabl® . The_spin3 function does actually change
the viewing transformation and lighting; the callréstore3 with argumenwiew sets it back to

its previous configuration.

85

CHAPTER 7: Three-Dimensional Plotting Functions

86

UCRL-MA-128569, Manual 4

CHAPTER 8: Useful Functions for
Developers

In this chapter we describe more of the available functions in detail, for those who are really inter-
ested in plumbing the depths of the low-level 3D graphics.

8.1 Find 3D Lighting: get3_light

Calling Sequence
get3_light(xyz [, nxyz])

Description

Return 3D lighting for polygons with verticeXYZ If NXYZ is specified,XYZ should be
sum(nxyz) -by-3, with NXYZbeing the list of numbers of vertices for each polygon (as for the
plfp function; see page 39). NXYZis not specifiedXYZ should be a quadrilateral mesin,-by-

nj -by-3 (as for thelf function; see page 35). In the first case, the return valie® iS(NXYZ)

long; in the second case, the return valu@iid) -by-(nj-1)

The parameters of the lighting calculation are set byigh&8 function (see “Lighting Param-
eters” on page 57).

8.2 Get Normals to Polygon Setget3 _normal

Calling Sequence
get3_normal(xyz [, nxyz])
Description

Return 3D normals for polygons with vertic¥Z If NXYZis specified,XYZ should be
sum(nxyz) -by-3, withNXYZbeing the list of numbers of vertices for each polygon (as fqlifjpe
function; see page 39). MXYZis not specifiedXYZ should be a quadrilateral mesin -by-nj -by-3
(as for theplf function; see page 35). In the first case, the return valea(NXYZ) -by-3;in the
second case, the return valuénsl) -by-(nj-1) -by-3.

The normals are constructed from the cross product of the lines joining the midpoints of two edges
which as nearly quarter the polygon as possible (the medians for a quadrilateral). No check is made

November 23, 1998

CHAPTER 8: Useful Functions for Developers

that these not be parallel; the returned “normal” is [0,0,0] in that case. Also, if the polygon vertices
are not coplanar, the “normal” has no precisely definable meaning.

8.3 Get Centroids of Polygon Setget3 centroid

Calling Sequence
get3_centroid(xyz [, nxyz])
Description

Return 3D centroids for polygons with verticBY¥Z If NXYZis specified,XYZ should be
sum(nxyz) -by-3, withNXYZbeing the list of numbers of vertices for each polygon (as fqlifjpe
function; see page 39). MXYZis not specifiedXYZshould be a quadrilateral mesin -by-nj -by-3
(as for theplf function; see page 35). In the first case, the return valae(idXYZ) inlength; in
the second case, the return valugisl) -by-(nj-1) -by-3.

The centroids are constructed as the mean value of all vertices of each polygon.

8.4 Get Viewer’'s Coordinates.get3 xy

Calling Sequence

get3_xy(xyz [, 1])
Description

Given 3-by-anything coordinat&s'Z returnX andY in viewer's coordinate system (setrby3
mov3, orient3 , etc.; see “Functions For Setting Viewing Parameters” on page 56). If the second
argument is present and non-zero, also refuffor use insort3d orget3_light , for example;
see “Sort z Coordinates: sort3d” on page 89 and “Find 3D Lighting: get3_light” on page 87.). If the
camera position has been set to a finite distancessit8 (see “Physical orientation” on page 57),
the returned coordinates will be tangents of angles for a perspective drawigw#hide scaled by
1/zc). x,y, and z can be either 1D or 2D, so this routine is written in two cases.

8.5 Add object to drawing list: set3_object

Calling Sequence
set3_object(drawing_function, [argl,arg2,...])
Description

Set up to trigger a call wraw3 , adding a call to the3D display list of the form:
DRAWING_FUNCTION ([ARG1, ARG2, ...]))

88

Sort z Coordinates: sort3d

Whendraw3 callsDRAWING_FUNCTIQNhe external variabldraw3_ will be non-zero, so
DRAWING_FUNCTIObBEaN be written like this:

def drawing_function(arg) : if (draw3_) :
argl=arg [0]
argl=arg [1]

...<calls to get3_xy, sort3d, get3_light, etc.>...
...<calls to graphics functions plfp, plf, etc.>...
return

...<verify args>...
...<do orientation and lighting independent calcs>...
set3_object (drawing_function, [argl,arg2,...])

8.6 Sortz Coordinates:sort3d

Calling Sequence
sort3d(z, npolys)
Description

GivenZ andNPOLY Swith len(Z)==sum(npolys) , return a 2-element liftIST , VLIST]
such thatake(Z, VLIST) andtake (NPOLYS, LIST) are sorted from smallest averageo
largest averagg, where the averages are taken over the clusters of IfRgh Y SWithin each clus-
ter (polygon), the cyclic order ¢tdke (Z, VLIST) remains unchanged, but the absolute order may
change.

This sorting order produces correct or nearly correct orderdifip a call to make a plot involving
hidden or partially hidden surfaces in three dimensions. It works best when the polygons form a set of
disjoint closed, convex surfaces, and when the surface normal changes only very little between neigh-
boring polygons. (If the latter condition holds, then evepiit3d mis-orders two neighboring poly-
gons, their colors will be very nearly the same, and the mistake won't be noticeable.) A truly correct
3D sorting routine is impossible, since there may be no rendering order which produces correct surface
hiding (some polygons may need to be split into pieces in order to do that). There are more nearly
correct algorithms than this, but they are much slower.

8.7 Set thecmax parameter: lightwf

Calling Sequence
lightwf (cmax)

Description

89

CHAPTER 8: Useful Functions for Developers

Sets themax parameter interactively, assuming the current 3D display list contains the result of
a previouplwf call. This changes the color of the brightest surface in the picture. The darkest surface
color can be controlled using taenbient keyword tolight3 (see “Lighting:” on page 56).

8.8 Return a Wire Frame Specification:xyz_ wf

Calling Sequence
xyz_wf (z, [y, X] [,scale = 1.0])
Description

Returns a 3-byt -by-nj array whose 8 entry isx, 1" entry isy, and 2" entry isz. z isni -by-
nj . x andy, if present, must be the same shape. If not present, integer ranges will be used to create an
equally spaced coordinate gridxmnandy. The function which scales the “topography” z(,y)
is potentially useful apart froplwf .

For example, theyz array used bplwf can be converted from a quadrilateral mesh plotted us-
ing pif to a polygon list plotted usingfp like this:

xyz= xyz_wf(z,y,x,scale=scale)

ni= z.shape[1]

nj= z.shape[2]

list = ravel (add.outer (
ravel(add.outer (adders,zeros(nj-1, Int))) +
arange((ni-1)*(nj-1), typecode = Int),
array ([[0, 1], [nj + 1, nj]])))

xyz=array([take(ravel(xyz[0]),list),
take(ravel(xyz[1]),list),
take(ravel(xyz[2]),list)])

nxyz= ones((ni-1)*(nj-1)) * 4;

The resulting arraxyz is 3-by{4*(nj-1)*(ni-1)) . Xyz[0:3,4*i:4*(i+1)] are the
clockwise coordinates of the vertices of cell nunmber

8.9 Calculate Chunks of Meshiterator3

Calling Sequences

iterator3 (m3)

iterator3 (m3, chunk, clist)
iterator3_rect (m3)
iterator3_rect (m3, chunk, clist)
iterator3_irreg (m3)
iterator3_irreg (m3, chunk, clist)

90

Get Vertex Values of Function: getv3

Description

The iterator3 functions combine three distinct operations:

1. If only theM3argument is given, return the initial chunk of the mesh. The chunk will be no more
thanchunk3_limit cells of the mesh.

2. If only M3andCHUNKare given, return the ne®HUNKor None if there are no more chunks.

3. If M3 CHUNKandCLIST are all specified, return the absolute cell index list corresponding to the
index listCLIST of the cells in th€ HUNKDo not increment the chunk in this case.

The form of theCHUNKargument and return value for cases (1) and (2) is not specified, but it must
be recognized by theyz3 andgetv3 functions (see “Return Vertex Coordinates for a Chunk: xyz3”
on page 93 and “Get Vertex Values of Function: getv3” on page 91) which go along with this
iterator3 . (For case (3)CLIST and the return value are both ordinary index lists.) In the irregular
case, it is guaranteed that the returned chunk consists of only one type of cell (tetrahedra, hexahedra
pyramids, or prisms).

8.10 Get Vertex Values of Functiongetv3

Calling Sequence

getv3(i, m3, chunk)
getv3_rect(i, m3, chunk)
getv3_irreg (i, m3, chunk)

Description

getv3 returns vertex values of thd function attached to 3D mest3for cells in the specified
CHUNK The CHUNKmay be a list of cell indices, in which caggetv3d returns a
2x2x2x(CHUNK.shape) list of vertex coordinate€HUNKnay also be a mesh-specific data structure
used in theslice3 routine (see “slice3: Plane and Isosurface Slices of a 3-D mesh” on page 65), in
which casggetv3 may return gni) x(nj) x(nk) array of vertex values. For meshes which are
logically rectangular or consist of several rectangular patches, this is up to 8 times less data, with a
concomitant performance advantage. gew3 when writing slicing functions faslice3

getv3_rect does the job for a regular rectangular mesh.
getv3_irreg , for an irregular mesh, returns a 3-list whose elements are:

1. the function values for the” function on the vertices of the givelHUNK(The function values
must have the same dimension as the coordinates; there is no attempt to convert zone-centered val
ues to vertex-centered values.)

2. an array of relative cell numbers within the list of cells of this type.

3. a number that can be added to these relative numbers to give the absolute cell numbers for correct
access to their coordinates and function values

91

CHAPTER 8: Useful Functions for Developers

8.11 Get Cell Values of Functiongetc3

Calling Sequence

getc3(i, m3, chunk)
getc3(i, m3, clist, I, u, fsl, fsu, cells)

Description

Returns cell values of tHe" function attached to 3D mesh3for cells in the specifie@HUNK
The CHUNKmay be a list of cell indices, in which cagetc3 returns aCHUNK.shape) array of
vertex coordinatesCHUNKmay also be a mesh-specific data structure used iglit®@8 routine
(see “slice3: Plane and Isosurface Slices of a 3-D mesh” on page 65), in whightc8samay return
a(ni) x(nj) x(nk) array of vertex values. There is no savings in the amount of data for such a
CHUNKbut the gather operation is cheaper than a general list of cell indicegetd®e when writing
coloring functions foslice3

If CHUNHKs aCLIST, the additional arguments U, FSL, andFSU are vertex index lists which

override theCLIST if thel 1 attached function is defined on mesh vertidesndU are index arrays

into the CLIST.shape)x2x2x2 vertex value array, saya , andFSL andFSUare corresponding
interpolation coefficients; the zone centered value is computed as a weighted average of involving
these coefficients. Th€ELLS argument is required dyistogram to do the averaging. See the
source code for details. By default, this conversion (if necessary) is done by averaging the eight vertex-
centered values.

getc3_rect does the job for a regular rectangular mesh.

getc3_irreg : Same thing agetc3_rect |, i. e., returns the same type of data structure, but
from an irregular mesm3 [1] is a 2-list;m3[1] [0] is an array whosie" element is an array of
coordinate indices for thie" cell, or a list of up to four such arrays3 [1] [1] is the 3 bynverts

array of coordinatesn3 [2] is a list of arrays of vertex-centered or cell-centered datmk may

be a list, in which casehunk [0] is a 2-sequence representing a range of cell indices; or it may be

a one-dimensional array, in which case it is a nonconsecutive set of cell indices. It is guaranteed that
all cells indexed by thehunk are the same type.

8.12 Controlling Points Close to the Slicing Plane:
_slice2_precision

Calling Sequences

precision = get_slice2_precision ()
set_slice2_precision (precision)

Description

92

Scale variables to a palette: bytscl, split_bytscl

Internal variable slice2_precision controls howslice2 (orslice2x) handles points
very close to the slicing plane or surfadRECISION should be a positive number or zero. Zero
PRECISION means to clip exactly to the plane, with points exactly on the plane acting as if they were
slightly on the side the normal points toward. PosiRECISION means that edges are clipped to
parallel planes a distanB&RECISION on either side of the given plane. (Polygons lying entirely be-
tween these planes are completely discarded.)

Default value is 0.0.

8.13 Scale variables to a palettdoytscl , split_bytscl

Calling Sequence

bytscl(z, top=max_byte, cmin=lower_cutoff,
cmax=upper_cutoff)
split_bytscl (x, upper, cmin = None, cmax = None)

Description

bytscl returns an unsigned char array (Python typetbtgof the same shape Aswith values
linearly scaled to the range 0 to one less than the current palette B12eX IBYTHSs specified, then
the scaled values will run from OMAX_BYTEnstead. LOWER_CUTOFRd/otUPPER_CUTOFF
are specifiedZ values outside this range are mapped to the cutoff value; otherwise the linear scaling
maps the extreme valuesoto 0 andVIAX_BYTE

split_bytscl is as theoytscl function, but scales to the lower half of a split palette (0-99,
normally the color scale) if the second parameter is zero or nil, or the upper half (100-199, normally
the gray scale) if the second parameter is non-zero.

8.14 Return Vertex Coordinates for a Chunk:xyz3

Calling Sequence
xyz3 (m3, chunk)
Description

Return vertex coordinates f@HUNKof 3D mesiM3 TheCHUNKnay be a list of cell indices, in
which casexyz3 returns aCHUNK.shape))x3x2x2x2 list of vertex coordinate€CHUNKmnay also
be a mesh-specific data structure used irslike3 routine (see “slice3: Plane and Isosurface Slices
of a 3-D mesh” on page 65), in which cayg3 may return a 3xi) x(nj) x(nk) array of vertex
coordinates. For meshes which are logically rectangular or consist of several rectangular patches, this
is up to 8 times less data, with a concomitant performance advantageyzBse/hen writing slicing
functions or coloring functions fatice3

93

CHAPTER 8: Useful Functions for Developers

8.15 Find Corner Indices of List of Cells:to_corners3

Calling Sequence
to_corners3(list, nj, nk)
Description

Convert an array of cell indices in @m-1) -by-(NJ-1) -by-(NK-1) logically rectangular grid
of cells into the array dén(LIST) -by-2-by-2-by-2 cell corner indices in the correspondingby-
NJ-by-NKarray of vertices. The algorithm used is described in section 9.4 “More slice3 details”. Note
that this computation in Yorick gives an absolute offset for each cell quantity in the grid. In Yorick it
is legal to index a multidimensional array with an absolute offset. In Python it is not. However, an array
can be flattened if necessary.

Other changes from Yorick were necessitated by row-major order and 0-origin indices, and of
course the lack of Yorick array faclilities.

8.16 Timing: timer ,timer_print

Calling Sequences

timer (elapsed)
timer (elapsed, split)
timer_print (labell, splitl [,label2, split2, ...])

Description

timer returns a triple consisting of the timgpu , system , wall] . If argumentsplit is
present, a sequence is returned whose first elempqus, system , wall] and whose second el-
ement is the sum ddplit and the difference between the new and old valueglapsed .
timer_print prints out a timing summary for splits accumulatediimer .

94

UCRL-MA-128569, Manual 4

cnaptero;. Maintenance: Things
You Really Didn't
Want to Know

In this chapter we discuss in even more gory detail how the PyGist graphics are put together.

9.1 The Workhorse:gistCmodule

The reader should be familiar with many of the functiongigitCmodule from CHAPTER 5:
“Two-Dimensional Plotting Functions”, page 27. Most of tistCmodule functions discussed

there, and many of the helper functions, are pretty close to literal translations of the equivalent func-
tions in Gist, the main difference geing the superstructure built on top of them in order to handle
PyObject s.. In addition to the plotting functions, a number of functiongistCmodule are
essential for maintenance of that module, and are discussed here. We also discuss briefly a few other
functions which are not literal translations of Gist functions.

9.1.1 Memory Maintenance:PyObject s

One of the primary challenges facing the developer of Python extensions is correct management of
the reference counting for Python objects. Memory leaks will result if the programmer fails to decre-
ment the reference count in temporary objects. On the other hand, decrementing the reference count
too early can cause an object to go away that is referred to later, which can cause a segmentation faul
when it is referenced. We have semi-automated the process in gistCmodule by maintaining a list of all
PyObjects created in the process of running one of the module’s functions. This list is declared as fol-
lows:

#define ARRAY_LIST_SIZE 30
static PyObject * PyArrayList [ARRAY_LIST_SIZE];
static int array_list_length = 0O;

There is a suite of functions for manipulatifgArrayList

Function Prototypes

static int addToArrayList (PyObject * obj)
static void clearArrayList ()

November 23, 1998

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

static void removeFromArrayList (PyObject * obj)
static void takeOffArrayList (PyObject * obj)

Description

addToArrayList placesobj onPyArrayList and returns 1 if successful.dbj is NULL
or the list is full, returns OclearArrayList DECREF everything on the list, and sets
array_list_length to 0. This needs to be done prior to any error retemoveFromArray-

List DECREFs obj (ifitis on the list), removes it from the list, and compresses theéalstOf-
fArrayList removesobj from the list and compresses the list, but doe®EG@REFOD] . This is
done, for example, wheobj is to be returned to the caller.

addToArrayList occurs throughowistCmodule primarily in macros which create arrays.
All of these macros use tAdRY macro, which is defined as follows:

#define TRY(e, m) do{if(!(e)){clearArrayList(); \
clearFreelList(0);clearMemList();return m;}} while(0)

The idea behindRY is that generally Python functions return ON®LL if an error occurred. In this

case it is necessary to get rid of all temporary objects and memory which was allocated up to this
point. clearArrayList was discussed aboweearFreeList andclearMemList are dis-

cussed later in the chapter.

The array creation macros are as follows:

#define GET_ARR(ap,op,type,dim,cast) \
TRY (addToArrayList((PyObject *)(ap=(PyArrayObject *)\
PyArray_ContiguousFromObject(op,type,dim,dim))), \
(cast)PyErr_NoMemory ())

This macro is the usual protocol for creating a contiguous array fieypOaject which has been
sent as an argument to a function.

#define NEW_ARR(ap,n,dims,type,cast) \
TRY (addToArrayList((PyObject *)(ap=\
(PyArrayObject *)PyArray_FromDims(n,dims,type))), \
(cast)PyErr_NoMemory ())

This macro is used usually when creating an array whose dimensions are known and which is to be
filled with computed data.

#define RET_ARR(op,ndim,dim,type,data,cast)\
TRY (addToArrayList(op=\
PyArray_FromDimsAndData(ndim,dim,type,data)), \
(cast)PyErr_NoMemory ())

This final macro is used when we have a block of data and we wish to create an array containing this
data, usually as a return value from a function. In order to keep this object from being permanent, use
the following macro:

#define SET_OWN(op) \

96

The Workhorse: gistCmodule

((PyArrayObiject *) op)->flags |= OWN_DATA
This macro sets a flag in tiRyObject which tells Python that it can IRECREFed.

9.1.2 Memory Management:ArrayObjects

ArrayObjects are defined as follows:

typedef struct arrayobject {
void * data ;
int size ;
char typecode ;
} ArrayObject;

These objects are used primarily in ghiee2 routines to store temporary results during the calcu-
lation. The final results are passed backyArrayObject s created byRET_ARR Two lists of
ArrayObject s are maintained by trsdice2 suite: list O byslice2 itself, and list 1, which is
used by slice2_part , Which is called bglice2 . These lists are declared as follows:

#define MAX_NO_LISTS 2
#define MAX_LIST_SIZE 30

static ArrayObiject * freeList [MAX_NO_LISTS] [MAX_LIST_SIZE];
static int freeListLen [MAX_NO_LISTS] = {0, 0};

Function Prototypes

static ArrayObiject * allocateArray (int size, char tc,
int nlist)

static ArrayObject * copyArray (ArrayObject * a)

static ArrayObject * arrayFromPointer (int size, char tc,
void * data, int nlist)

static void freeArray (ArrayObject * a, int n)

static void clearFreeList (int n)

static int addToFreeList (ArrayObject * x, int n)

static void removeArrayOnly (ArrayObject * x, int n)

static void removeFromFreeList (ArrayObject * x, int n)

Description

allocateArray allocates an appropriate amount of spacesice items of typec . It then cre-
ates anArrayObject containing this data and puts it reeList [nlist] . CopyArray
makes and returns a copyaflt does not add to anyfreeList . arrayFromPointer creates
anarrayObject whose data pointer pointsdata ; it is assumed that the caller has supplied cor-
rectsize andtc arguments. The resulting object is placedresList [nlist] . freeArray
freesa’s data and thea itself, and removes it frofneeList ~ [n] ifitis there.clearFreeList

frees everything orfreeList [n] and sets the list length to 8ddToFreeList addsx to
freeList [n] , if it can.removeArrayOnly removes the array frormeeList [n] , then

97

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

frees x without freeing its data. This would most likely be done wiRdT_ARRcreates a
PyArrayObject which points tax’s data.removeFromFreeList freesx’s data, therx itself,
and removeg fromfreeList [n] .

9.1.3 Memory Management: naked memory

Occasionally in gistCmodule it is necessary to malloc a block of memory which is not contained
inside some type of object. MemList is used to keep track of such memory:

#define MEM_LIST_SIZE 15

static void * PyMemList [MEM_LIST_SIZE];
static int mem_list_length = 0;

MemList is maintained by its own suite of functions.

Function Prototypes

static int addToMemList (void * addr)
static void clearMemlList ()

Description

The first function adds an address to MemList; the second frees everything on MemList and sets its
length back to 0.

9.1.4 Computing contour curvesicontour

Calling Sequence

Set mesh first
plmesh (y, x, ireg, triangle = triangle)
[nc, yc, xc] = contour (level, z)

Description

The calling sequence given above emphasizes that mesh parameters should be set pyna-call to
esh prior to calling contouplmesh arguments are explained in section “plmesh: Set Default Mesh”
on page 29. Ifevel is a scalar floating point number, then the the returned values are the points at
that contour level. All such points lie on edges of the mesh. If a contour curve closes, the final point
is the same as the initial point (i.e., that point is included twice in the returned lstellf is a se-
guence of two reals, theontour returns the points of a set of polygons which outline the regions
between the two contour levels. The returned values are in the form required for arguments of plfp
(see Section 5.1.8 "plfp: Plot a List of Filled Polygons" on page 39).These will include points on the
mesh boundary which lie between the levels, in addition to the edge points for both levels. The poly-
gons are closed, simply connected, and will not contain more than about 4000 points (larger polygons
are split into pieces with a few points repeated where the pieces join).

98

The Workhorse: gistCmodule

The 2D filled contour plot routinglfc (see Section 5.1.7 "plfc: Plot filled contours" on page 37)
operates by callingontour with pairs of adjacent contour levels, and then caltitig with the
output and a single color, inside a loopntour needed to be programmed in C because it can be
called many times to do a single filled contour plot, and the calculations take too long to be performed
in interpreted codecontour calls lower level Gist routines that do most of the work.

9.1.5 Computing slicesslice2 ,slice2x , _slice2_part

The 3D graphics in Gist itself is still experimental, and virtually all the computational functions are
written in Yorick, an interpreted language. Many of the PyGist 3D computations were translated into
Python from Yorick, originally including thslice2 andslice2x functions, and their auxiliary,
_slice2_part . When we impleoemnted contours and filled contours on surfaces (which is cur-
rently not implemented in Gist itself), we usdite?2 andslice2x to compute the contours and

the polygon lists enclosed within them. These computations were much too slow, so we rewrote
slice2 inC (slice2x remains in Python; it just cakdice2 with a parameter set) and put them

into thegistCmodule . The user interface to these functions has been discussed in a previous sec-
tion (7.4.3 “slice2 and slice2x: Slicing Surfaces with planes”), but we discuss them here from the
viewpoint of implementation. We also discuss the “hidden” functishice2_part here for the

first time.

Calling Sequences

[nverts, xyzverts, values] = slice2 (plane, nv,
Xyzv, vals = None, _slice2x = 0)
[nverts, xyzverts, values, nvertb, xyzvertb, valueb] =
slice2x (plane, nv, xyzv, vals)
static int _slice2_part (ArrayObject * xyzc,
ArrayObject * keep, ArrayObject * next, ArrayObject * dp,
ArrayObject * prev, ArrayObject * last,
ArrayObject * valc, ArrayObject ** xyzc_new,
ArrayObject ** nvertc, ArrayObject ** valc_new,
int freexyzc, int freevalc)

Description

The argument plane can be either a scalaptarge3 (see “Creating a Plane” on page 61y;is an

array of integers, thdientry of which gives the number of vertices of tHepolygonal cellxyzv
are the vertices of the coordinatesof the cells, with each consecut[le entries representing the

vertices of the'f cell; andvals being a set of values, one for each cell. These arguments are the
same format as returned bljce3 andslice3mesh

If plane is aplane3 , thenvals (if not None) is a cell-centered set of values expressing the
color of each cell, and the outputgerts , xyzverts , andvalues represent the polygons and
their colors (if any) describing the portion of the sliced surface that is on the positive side of the plane.
That's all you get withslice2 . With slice2x , you get in additiomvertb , xyzvertb , and
valueb , which describe the part of the surface on the negative side of the slicing plane. Warning: one

99

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

of these specifications could biwne, None, None if the entire surface lies on one side of the plane.

If plane is a scalar value, thefals must be present and must be node-centered. In this case, the
outputsnverts ,xyzverts , andvalues representthe polygons and their colors (if any) describing
the portion of the sliced surface wheeds on the vertices are greater than or equal to the scalar value
plane . (This actually allows you to form an arbitrary two-dimensional slice of a surface.) With
slice2x ,you getin additiomvertb ,xyzvertb , andvalueb , which describe the part of the sur-
face wherevals on the vertices are less than the scalar yahee .

The optional parameteslice2x , if 1, tellsslice2 to return slices on both sides of the slicing
surface or plane; if not present, or 0, then the slice on “top” is retustied2 works by deciding
which polygons lie entirely “above” the slicing surface, which ones lie entirely “below” the slicing
surface, and which ones are cut by the surfaceslide2x is 0, then the ones “below” the surface
are discardedslice2 then calls slice2_part with the polygons to be cut by the plane; once to
get the cut polygons “above” the surface, then,sfice2x is 1, a second time to get the cut poly-
gons “below” the surface. The list of uncut and cut polygons “above” the surface is concatenated and
returned (slice2x == 0); the list of uncut and cut polygons “below” the surface is concatenated
and returned also ifslice2x s 1.

In the case of a plane slice, suppose that the equation of the slicing plane is
ax+ by+ cz= d
Then a poin{ x 1, ¥4, Z;) is considered to be on the positive side of the plane if
ax;+by;+cz;- d>=_slice2_precision
and on the negative side if
ax;+by;+cz;- d<_slice2_precision

For a discussion ofslice2_precision , and how to get and set its value, see Section 8.12 "Con-
trolling Points Close to the Slicing Plane: _slice2_precision" on page 92.

In the case of a slicing surface, verteis considered to be above the surface if
vals [i] - plane >= _slice2_precision
and below it if
vals [i] - plane < _slice2 precision

For all intents and purposes, the user may assumedheg2_precision is 0.0, as this is the
default. However, we allow you to change this if you think you have good reason.

There is a conceptual difficulty for the case of a quad face all four of whose edges are cut by the
slicing plane or surface. This can only happen when two opposite corners are above and the other two
below the slicing plane. There are three possible ways to connect the four intersection points in two
pairs: (1)// (2)\\ and (3)X. There is a severe problem with (1) and (2) in that a consistent decision
must be made when connecting the points on the two cells which share the face - that is, each face mus
carry information on which way it is triangulated. For a regular 3D mesh, it is relatively easy to come
up with a consistent scheme for triangulating faces, but for a general unstructured mesh, each face itself
must carry this information. This presents a huge challenge for data flow, which we don't believe is

100

Some Yorick-like Functions: yorick.py

worthwhile, because th¢ choice is unique, and we don’t see why we shouldn’t use it here. For con-
touring routines, we reject théchoice on aesthetic grounds, and perhaps that will prove to be the case
here as well - but we believe we should try the simple way out first. In this case, we are going to be
filling these polygons with a color representing a function value in the cell. Since the adjacent cells
should have nearly the same values,Xteaced polygons will have nearly the same color, and we
doubt there will be an aesthetic problem. Anyway, our implementatishiceB , slice2 , and
_slice2_part produces the uniqu¥ (bowtied) polygons, rather than attempting to choose be-
tween// or\\ (non-bowtied) alternatives. Besides, in the case of contours, the trivial alternating tri-
angulation scheme is just as bad aesthetically as every zone triangulated the same way!

9.2 Some Yorick-like Functions:yorick.py

The moduleyorick.py contains a few functions similar to ones in Yorick, which perform array
manipulations necessary in doing 3D graphics. Those array manipulations which were too slow to do
in interpreted code have been put into a Python extension matagnsmodule (see

Section 9.3 "Additional Array Operations: arrayfnsmodule" on page 102). We shall depart from our
usual format here, and just give the calling sequences followed by a short explanation for each of the
functions.

zcen_ (x,1=0)

Returns an array who$é" dimension is one smaller than th® dimension

of x, with the elements along thd being the averages of two adjacent ele-
ments in the originat.i cannot be larger than 5.

dif_(x,i=0)

Returns an array who$é" dimension is one smaller than th® dimension

of x, with the elements along théd being the differences of two adjacent ele-
ments in the originat.i cannot be larger than 5.

101

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

maxelt_ (*x)

maxelt_ accepts a sequence of one or more possible multi-dimensional nu-
merical objects and computes their maximum. In principle these can be of arbi-
trary complexity, since the routine recurses.

minelt_ (*x)

minelt_ accepts a sequence of one or more possible multi-dimensional nu-
merical objects and computes their minimum. In principle these can be of arbi-
trary complexity, since the routine recurses.

rem_0_(2)

rem_0O_ (z) returns a copy of arrayafter having replaced any zero elements
with 1.e-35 . Assumexz has one or two dimensions.

avg_ (2)
avg_ (z) returns the average of all elements of its array argument.
sign_ (x)
Returns 1 ix >=0, -1 otherwise.
timer_ (elapsed, *split)
timer_print (label, split, *other_args)
see Section 8.16 "Timing: timer, timer_print" on page 94.

9.3 Additional Array Operations: arrayfnsmodule

A number of functions which emulate Yorick functions are used frequently by the 3D graphics, and in
interpreted code simply run too slowly. These functions have been moved to arrayfnsmocule and writ-
ten in C. Their diescriptions form this section of the manual.

9.3.1 Counting Occurrences of a Valuehistogram

Calling Sequence
histogram (list [, weight])

Description

histogram accepts one or two arguments. The first is an array of non-negative integers and the sec-
ond, if present, is an array of weights, which must be promotable to double. Call these arguments
list andweight . Both must be one-dimensional witm (weight) >= max (list) +1.1If

weight is not present:

histogram (list) [i] isthe number of occurrencesioin list

102

Additional Array Operations: arrayfnsmodule

If weight is present:

histogram (list ,weight) [i] isthe sum of alveight [j]] wherelist [] ==1i.
9.3.2 Assigning to an Arbitrary Subset of an Array:array_set

Calling Sequence

array_set (valsl, indices, vals2)

Description

array_set accepts three arguments. The first is an array of numerics (Python characters, integers,

or floats), and the third is of the same type. The second is an array of integers which are valid sub-

scripts into the first. The third array must be at least long enough to supply all the elements called for

by the subscript array. (It can also be a scalar, in which case its value will be broadcast.) The result is
that elements of the third array are assigned in order to elements of the first whose subscripts are ele-
ments of the second.

arr_array_set (valsl, indices, vals2)
is equivalent to the Yorick assignment
valsl (indices) = vals2

We have generalized this so that the source and target arrays may be two dimensional; the seconc
dimensions must match. Then the array of subscripts is assumed to apply to the first subscript only of
the target. The target had better be contiguous.

9.3.3 Sorting an array:index_sort
Calling Sequence
index_sort (x)

Description

index_sort accepts a one-dimensional arragf some numerical type and returns an integer array

of the same length whose entries are the subscripts of the elements of the original array arranged in
increasing order. We chose to use heap sort because its worst behatlmg(is) , unlike quick-

sort, whose worst behaviorng*2 .

9.3.4 Interpolating Values:interp

Calling Sequence

interp (X, Y, z)

103

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

Description

interp (Y, X, 2) treats(x, y) as a piecewise linear function whose valug [8] forx <x

[0] andy [len (y) - 1] forx >x [len (y) - 1]. An array of floats the same lengthzass
returned, whose values are ordinates for the correspondibgcissae interpolated into the piecewise
linear function.

9.3.5 Digitizing an array: digitize

Calling Sequence
digitize (X, bins)

Description

bins is a one-dimensional array of integers which is either monotonically increasing or monotoni-
cally decreasingdigitize (x ,bins) returns an array of python integers the same length(ids

X is a one-dimensional array), or just an integex (g a scalar). The valuésreturned are such that
bins [i - 1] <=x<bins [i] if bins is monotonically increasing, &ins [i - 1] >x >=

bins [i] if bins is monotonically decreasing. Beyond the boundsid , returns either =0 or

i =len (bins) as appropriate.

9.3.6 Reversing a Two-Dimensional arrayreverse

Calling Sequence

reverse (X, n)

Description

reverse (X, n) returns aPyFloat matrix the same size and shapexabut with the elements
along then™ dimension reversed. must be two-dimensional.

9.3.7 Obtaining an Equally-Spaced Array of Floatsspan

Calling Sequence
span (lo, hi, num, d2 = 0)

Description

span (lo , hi ,num d2 = 0) returns an array of num equally spaégdFloat s starting witho
and ending withhi . if d2 is not zero, it will return a two-dimensional array, each odheows of
which is the array of equally spaced numbers.

104

Additional Array Operations: arrayfnsmodule

9.3.8 Effective Length of an Array:nz

Calling Sequence

nz (x)

Description

nz (x) :x is an array of unsigned bytes (Python typectde). If x ends with a bunch of zeros, this
returns with the index of the first zero element after the last nonzero element. It returns the length of
the array if its last element is nonzero. This is essentially the “effective length” of the array.

9.3.9 Finding Edges Cut by Isosurfacedind_mask

Calling Sequence

find_mask (fs, node_edges)

Description

This function is used to calculate a mask of integers whose corresponding entry is 1 precisely if an
edge of a cell is cut by an isosurface or plane, i. e., if the furfstios one on one of the two vertices

of an edge and zero on the other € 1 represents where some function on the mesh was found to be
negative by the calling routinds isntotal by nv, wherenv is the number of vertices of a cell (4

for a tetrahedron, 5 for a pyramid, 6 for a prism, 8 for a hexahedrot¢. edges is anv by ne

array, wherene is the number of edges on a cell (6 for a tet, 8 for a pyramid, 9 for a prism, 12 for a
hexahedron). The entries in each row are 1 precisely if the corresponding edge is incident on the ver-
tex. The exclusive or of the rows which correspond to nonzero entfesdantains 1 in entries cor-
responding to edges wheie has opposite values on the vertices. (The vertices and edges of a cell
have a standard ordering which is discussed in “Standard ordering for the four types of mesh cells” on
page 107.)

The mask returned by this function will be a one dimensional atcdgl * ne long. An entry
[i * ne+j] inthis mask will bel precisely if edge of celli is cut by the isosurface or plane.

9.3.10 Order Cut Edges of a cell:construct3

Calling Sequence

construct3 (mask, itype)

Description

Computes how the cut edges of a particular type of cell must be ordered so that the polygon of inter-
section can be drawn correcitype = 0 for tetrahedra; 1 for pyramids; 2 for prisms; 3 for hexahe-
dra. Supposav is the number of vertices of the cell type, aedis the number of edgesask has

105

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

beenravel led so that it is flat; originally it ha#**nv-2 rows, each witme entries. Each row is

ne long, and has an entry of 1 corresponding to each edge that is cut when the set of vertices corre-
sponding to the row index has negative values. (The binary number for the row ihdhes a one in
positioni if vertexi has a negative value.) The return apaymute isne by 2**nv-2 , and the
columns of permute tell how the edges should be ordered to draw the polygon properly.

9.3.11 Expand cell-centered values to node-centered valués: corners

Calling Sequence

to_corners (values, nv, sumnv)

Description

values is a one-dimensional array of floating point values defined on a set of polyyorsan
integer array of the same size telling how many vertices each of the polygossrhas.is the sum

of all the values imv. This routine takes an array of floats describing cell-centered values and returns
an array of node-centered values. It is very unsophisticated, merely creating an arraysafritoats

long, whose firshv [0] entries are aNalues [0] , nextnv [1] entries are alfalues [1] , etc.

106

More slice3 details

9.4 Moreslice3 details

The wayslice3 works depends strongly on a standard ordering of the nodes, edges, and faces of
mesh cells. In this section we shall delineate the standard ordering used. This ordering is encapsulatec
in various tables contained stice3.py ~ andarrayfnsmodule.c . The maintainer of this code

must have an understanding of this order.

9.4.1 Standard ordering for the four types of mesh cells

Tetrahedra
On the illustration at the left, the vertices are numbered

v0 through v4, and the edges, €0 through e5. The faces
are numbered as shown in the following table:

TABLE 3. tet face numbering
face
number edges on face
fO e0, el, e3
f1 e0, e2, e5
f2 el, e2,e4
f3 e3,e4,e5
Pyramids
TABLE 4. pyr face numbering
face
number edges on face
fO e0,el, e4
f1 el, e2,e5
f2 e2,e3, eb
f3 e0, e7,e3
f4 e4, e5, eb, e7

107

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

prisms
vl el V5 TABLE 5. pri face numbering
face
number edges
i fO e2, e7, e3, eb
ep | e$ f1 e0, e6, el, e8
ef f2 e4, e8, e5, e7
f3 e0, e4, e2
G f4 el, e3, e5
\ //
V2
hexahedra
v]y eb
I V3 TABLE 6. hex face numbering
I
Vo el V7 ed Licrﬁber edges
e1|3 fO e0, eb, e2, e4
WS- T £e4) f1 el, e5, e3, e7
e10 7 el Y f2 e0, e8, el, e10
_e0 2 f3 e2, ell, e3, e9
- f4 e4, e9, e5, e8
va eo ve 5 €6, €10, e7, ell

9.4.2 Standard numbering of cells in a regular rectangular mesh

Suppose we have a regular rectangular mesh whose cell dimensions-atebynj - 1 bynk - 1
(and thus the vertex arrayns bynj bynk). The total number of cells is

ncells = (ni-1)* (nj- 1) * (nk - 1)

108

More slice3 details

and the cells are numbered fr@o ncells - 1 according to the following scheme. Suppose that

(i ,j,k) are the maximum subscripts of the eight vertices of a cell numbiredur scheme. Then

the number of the cell with maximum vertex subscriptsj , k + 1) will be N+ 1; the number of

the cell with maximum vertex subscrifits] + 1,k) will be N + nk; and the number of the cell with
maximum vertex subscrigdis + 1, , k) will be N+ nj * nk. Thus each triple of subscridis, j ,

k) , where none of the three is zero, uniquely determines a cell number, and cell numbers run consec-
utively as we increment the subscripts through their ranges (startingwitlow majororder. Sim-

ilarly, we can number the vertices from O through * nj * nk - 1 by numbering them
consecutively as we increment the subscripts through their ranges (startin@) witllow major

order.

This leads for the following scheme for computing the vertex numbers for all eight of the vertices
of a cell, given the cell number. First, construct the scalar

N1=N+N/(nk-1)+nk*(N/((nk-21)*(nj-1)))
Then, add this scalar to each element otixe2 x 2 array

array ([[[O, 1], [nk, nk + 1]],
[[njnk, njnk + 1], [nk + njnk, nk + njnk + 1]]])

The resultis @ x 2 x 2 array of the vertex numbers of the vertices of the cell. Given that the arrays of
vertex coordinates are stored in row major order, then rfewe them (i. e., flatten them out), flat-

ten the above array of vertex numbers, extract precisely those eight coordinates from each coordinate
array, and then reshape them2tx 2 x 2, then we have the coordinates of the vertices of the cell
under consideration.

The functionto_corners3 does this calculation for an arbitrary list of cell numbers (see 8.15
“Find Corner Indices of List of Cells: to_corners3”8.15 “Find Corner Indices of List of Cells:
to_corners3”). The functioslice3 callsto_corners3 with a list of cells which are cut by a plane
or isosurface in a rectangular mesh in order to determine the coordinates of their vertices, the final goal
being to find the points at which the edges are cut by the plane or isosurface. These edge points are
then connected in a systematic way using (among other things) the numbering schemes described pre
viously, in order to yield the polygonal sections through cells made by the plane or isosurface.

9.4.3 Howslice3 works

Recall the calling sequence of slice3 (see see Section 7.4.2 "slice3: Plane and Isosurface Slices of a 3
D mesh" on page 65):

[nverts, xyzverts, color] =\
slice3 (m3, fslice, nv, xyzv [, fcolor [, flg 1]
[, value = <val>] [, node =flg 5])

The important arguments are3 a mesh specification which was returned by an earlier call of
mesh3 (see 7.3.2 “Creating a mesh3 argumerigl)ce (which specifies either the name of a slic-

ing function, a slicing plane iplane3 format (see Section 7.3.1 "Creating a Plane" on page 61), or
the number of the function defined on the mesh with respect to which an isosurface is to be com-
puted);fcolor , which (if None) specifies that the section is to be shaded, or (if a function) gives a

109

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

set of values on the the cells specified to it whlee3 calls it;value , which in the case of an
isosurface specifies the value of the function doing the slicingnade , which if nonzero and color
is calculated, says to return node-centered rather than cell-centered values.

One of the first things thalice3 does is to caliterator3 with m3as argument, which in
turn calls the appropriate iterator for the particular type of mesh. (Recath&aintains names of
appropriate functions to call for this mesh.) The purpostiator3 is to “chunk” up the mesh
into manageable pieces; the main looplice3 callsiterator3 repeatedly until it finally returns
None, signalling that the entire mesh has been processed. The details of both types of iterator are
straightforward and can be had by inspecting the source code. One thing to bear in mind is that in the
case of an unstructured mesgérator3 IS guaranteed to return a chunk which consists of only one
type of cell.

Why “chunk” up the mesh? The creators of the Yorick version of slice3, Langer and Munro, did
so in order to avoid the possibility of creating very large temporaries and thus, perhaps, having memory
problems. It seemed to us judicious to do the same thing.

The first thing done inside trsice3 main loop is to call the appropriate slicing function. Two
functions are supplied slice3.py . Their calling sequences and descriptions are as follows:

_isosurface_slicer (m3, chunk, iso_index, _value)

an isosurface slicer brings back afistls , None] wherevals is simply an

array of the values of theo_index " mesh function on the vertices of the
specified chunk, or (in the unstructured case) a triple, consisting of the array of
values, an array of relative cell numbers in the chunk, and an offset to add to the
preceding to get absolute cell numbers.

_plane_slicer (m3, chunk, normal, projection)

In the case of a plane slice, this returns aVials , xyz3] (or[[vals ,

clist , cell_offset] ,_Xyz3] inthe irregular case) wherayz3 is the
array of vertices of the chunkxyz3 isncells by 3 by something (in the ir-
regular casencells by 3 by2 by2 by2 in the regular case,aidby ni by

nj by nk otherwisevals will be the values of the projections of the corre-
sponding vertex on the normal to the plane, positive if in front, and negative if
in back.

In addition, the user may supply a slicing function; if so, its calling sequence must be of the form
fslice (m3, chunk)

and it must return something resembling the returned values abovemi8thesh is totally unstruc-

tured, the chunk should be arranged sofdimte returns amcells -by-2-by-2-by-2 [hex case]

(or ncells -by-3-by-2 [prism] orncells -by-5 [pyramid] orncells -by-4 [tet]) array of vertex

values of the slicing function. Note that a chunk of an irregular mesh always consists of just one kind
of cell. On the other hand, if the mesh vertices are arranged in a rectangular grid (or a few patches of
rectangular grids), the chunk should be the far less redundant rectangular patch.

110

More slice3 details

Determination of the Critical Cells

The critical cells are those cells (if any) which are cut by the slicing plane or isosurface. There are
precisely those cells on the vertices of whichvlils returned by the slicing function changes sign.

For cells of one of the four types present in an unstructured mesh, one adds up the number of vertices
on which vals is negative. If this is a positive number and also less than the number of vertices for that
cell type, then the cell is critical. In the structured caals, isni bynj bynk. To the array which

is 1 wherevals is negative an@® elsewhere, we apply tteeen_ (see page 101) function along

each of its three dimensions. The resultis an aray 1 bynj - 1 bynk - 1 of values defined on

each cell which can be one of the nine values 0., .125, .25, .375, .5, .625, .75, .875, 1.0. Those cells
where the value is strictly between the two end values are critical. Thus welifgirm , which is an

array of absolute cell numbers of the critical cells.

If clist is not empty, then we extract the coordinates of the critical cells, the data values at these
points, and (if appropriate) the colors of the cells. In the case of a structured mesh, we use the
to_corners3 function discussed earlier (see page 109) to convert cell numbers to node numbers, in
order to get the node coordinates and data. We append a list of this to our list of results (appending
[None , None, None, None] if clist is empty) and then continue iterating.

Determination of the Cut Edges and the Intersection Points

Once this loop completes, there is anotber loop which loops through each type of cell (structured
meshes are lumped under hex cells) present in the mesh, putting together the “chunks” of results if
necessary. It then calfsnd_mask (page 105), which returns a mask arreells * ne long

(ncells is the total number of cells of this types the number of edges on a cell) which contains

1's corresponding to edges which are cut by the plane or isosurface (in the standard ordering dis-
cussed earlier in this chapter; see page 107). It is now easy to get the coordinates of the endpoints of
the cut edges using the standard numbering embodied in the tables; we then linearly interpolate along
the cut edges, based on the values on their endpoints, to obtain a list of coordinates of the intersection:s
of the plane or isosurface with the cells. This list of points now needs to be ordered so that the poly-
gons of intersection can be drawn properly.

Ordering of the Intersection Points

We associate with each critical cell a pattern number between 0 and 255 (non-inclusive) which
denotes in one number the pattern of its vertices where the function value is negative. The pattern

number is arrived at by assigning the nuneio thek vertex in the cell, then adding together for
each cell the numbers assigned to its vertices that have negative values. We now creg@t@-a new
tern array which isicells * ne long and in which the entry corresponding to each cut edge con-
tains the same pattern number as its adjacent cell; i. e., jif ba cut edge and pattern number,
thenpattern [i * ne +j] will containn.

The _poly_ permutations array. To each pattern, there corresponds a permutation of the
edges so that they occur in the order in which the edges are to be connected. Let each such permutatio
be stored as a list of integers fr@o ne - 1 such that sorting the integers into increasing order re-
arranges the edges at the corresponding indices into the correct order. (The position of unsliced edges

111

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

in the list is arbitrary as long as the sliced edges are in the proper order relative to each other.) Let these
permutations be stored imea-by-254 array_poly_permutations

_poly_permutations is computed (one time only) as follows. Wisice3.py is import-
ed, _construct3 is called four times, once for each type of cetlonstruct3 first creates a

mask arraypelow dimensioned2 "V - 2) bynv. The rowbelow [k] has an entry for each vertex,
marked O or 1 corresponding to the pattern nurkberl. construct3 now callsfind_mask
(see 9.3.9 “Finding Edges Cut by Isosurfaces: find_mask”) with paramiet¢éosr and the
_node_edges array for that particular type of cefind_mask returns an array (calledask)

(2" - 1) byne in size; each set ofe consecutive entries is filled with an edge mask, i. e., the entry
corresponding to an edge in the standard order is 1 or O according as the corresponding edge is cut o
not._construct3 now callsconstruct3 |, a function imarrayfnsmodule (see 9.3.10 “Order

Cut Edges of a cell: construct3”), withask and the cell type as parameters.

The purpose ofonstruct3 is to determine an order for the cut edges so that the polygons rep-
resenting the plane or isosurface cut of the cell will be drawn properigtruct3 does this by
calling an auxiliary functionvalk3 inside a loop, each call efalk3 being with the nexte entries
of mask.walk3 not only decides the correct order of the points of intersection in order to draw the
polygons, but also decides whether there are disjoint polygonal intersections with this cedlkmhe
algorithm begins with the lowest numbered cut edge (and marks that edge as having been used) anc
examines the lowest numbered face incident upon this edge. There must be at least one other cut edg
on this face. If the face is triangular, it looks first at the next edge counterclockwise (in the outwards
normal direction), then (if necessary) the next one clockwise. On a square face it looks first at the op-
posite edge, then at the next one clockwise, then counterclockwise. When it has selected an edge, it
goes to the other face incident upon that edge and repeats the process. If at some point no unused edc
can be found, then that means a closed polygon has been found. The next unused edge with the lowes
number is chosen (if there is one) and the process repeats. In the latter case, there is more than on
disjoint polygonal intersection with the cell, and the nunmger (no. of disjoint polygons so far) is
added to the edge permutations.

Thus, for each cut cell in the meslpply _permutations tells the order that the cutting points
must be connected, and how many polygonal intersections there are with the cell. In the function slice3,
the following instructions compute subscripts into the array of points in the correct order for drawing:

pattern = take (ravel (transpose (_poly_permutations [i])),
_no_edges [i] * (pattern - 1) + edges) \
+4* no_edges [i] * cells

order = argsort (pattern)

Theorder array is now used as a set of subscripts so that we can extract the coordinates of the cut-
ting points in the proper order. Once this has been done, the array whose entries give the number of
vertices in each polygon is calculated.

There remains only the question of splitting the points in a single cell into multiple disjoint poly-
gons. To do this, recall that when computinply _permutations , we had addede (the num-
ber of edges on this type of cell) to any second disjoint polygon’s eddge fiste to any third one,
etc. The following will now give an array whose entries corresponding to the edge orderings for each
cell will be 0 for the first disjoint polygon, 1 for the second, 2 for the third, and 3 for the fourth (if there

112

More slice3 details

are that many).
pattern = pattern / _no_edges [i]

Now pattern jumps by 4 between cells, smaller jumps within cells get the list of places where a new
value begins, and form a new pattern with values that increment by 1 between each plateau. Then the
following relatively straightforward computation computesrkierts array. In order to fully appre-

ciate how the algorithm works, we have indicated the results supposing that we began with the pattern
[0,0,0,1,1,1,1,2,2,72,4,4,4,4,455,5,8,8,8].

pattern = dif_ (pattern, 0)
#[0,0,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0]
Nz = nonzero (pattern)

#[2,6,9,14,17]

list = zeros (len (nz) + 1, Int)
#[0,0,0,0,0,0]

list[1:]]=nz+1

#[0,3,7,10,15,18]

newpat = zeros (len (pattern) + 1, Int)
#[0,0]
newpat [0] =1

newpat [1:] = cumsum (not_equal (pattern, 0)) + 1
#[1,1,1,2,2,2,2,3,3,3,4,4,4,4,4,5,5,5,6,6,6]
pattern = newpat

nverts = histogram (pattern) [1:]
#(3,4,3,5,3,3]

113

CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know

114

Index

Symbols
_draw3 60
_draw3_list 55

_isosurface_slicer 110
_plane_slicer 110
_poly_permutations 111
_slice2_precision 92

A

aim3 57

ambient 56, 68
angle 83

animate 21
animation mode 21
array_set 103
arrayfnsmodule 102
arrowl 27

arrows 46

arronww 27

aspect 34

avg_ 102

axes.gs 19

axis 83

B

Basis 1

boundary 31
boxed.gs 19
boxed2.gs 19
bracket_time 81, 83
bytscl 93

C
call_idler 60
called_as_idler 59
camera_dist

3-D plot 56
caxis_max 78
caxis_min 78
cell array 40
cell numbering schemes 107
cells

specifying,in unstructured mesh 62
CGM 1,18
chr 59
clear 77
clear_idler 60
clear3 58

example 76
closed 47
closed curves 47
cmax 68, 74, 78
cmin 74

keywords

cmin 78

color 45,78
slice3mesh argument 64
config save 3
construct3 105
contour levels 32
contours 77
cull 68
current_window 17
curves
closed vs open 47

D

default idler
code 60

default mesh 29

default values
initial 51
setting 50

demob5_light
code for 81

dif_ 101

diffuse 56

digitize 104

disjoint lines 42

DISPLAY 18

display 17

display list 55, 56
building 58
plotting 59

dpi 18

draw_frame
example 81
movie argument 80

draw3 59
example 72, 73,76

dtmin 83

dump 18, 58

dx 50

dy 50

E
ecolor 36, 68
edges 36, 68
keywords
edges 77
environment variables 2
DISPLAY 18
PATH 2
PORT_SERVEUR 2, 3
PS2EPSI_FORMAT 20
PYGRAPH 2
PYTHONPATH 2
eps 20
ewidth 36, 68
example
slice3mesh 73
examples
clear3 76
curves 5, 8, 10
draw3 72, 73,76
fma 76
gnomon 76
light3 76, 82

limits 72, 73, 76
markers 5, 8, 10
mesh3 72
orient3 72,76
palette 72, 73
pl3surf 72,73
pl3tree 76
pldefault 72
plzcont 78
restore3 85
save3 85
set_draw3_ 72, 76
slice3 72
sombrero function 71, 78
split_palette 76

EZN 1

EZPLOT 1

ezplot 3

F
fcolor

slice3 argument 66
FILE menu 3
File save 3
fill 68
filled polygons 39
find_mask 105, 111
flled mesh 35
fma 17

example 76
font 43
frame advance 17
fslice

slice3 argument 65
funcs 62

G
get_draw3 60
get_slice2_precision 92
get3_centroid 88
get3_light 87
get3_normal 87
get3_xy 88
getc3 92
getc3_irreg 92
getc3_rect 92
getv3 91
getv3_irreg 91
getv3_rect 91
Gist 1, 3,5
gist.py 2,5
gistCmodule 5
gnomon 58, 59
example 76
graphics device
current 17

H

hardcopy 18
hcp 20, 58
hcp_file 20
hcp_finish 20
hcp_out 20

hcpoff 20
hcpon 20
height 43
hexahedra
numbering scheme 108
hexahedral cells 62
hide 45
histogram 102
hollow 34

|
Ihm compute 3
index_sort 103
inhibit 31
interp 103
irregular mesh

cell numbering schemes 107
isosurface

slice of surface 66
iterator3 90
iterator3_irreg 90
iterator3_rect 90

J
justify 43

K

keywords
ambient 68
angle 83
axis 83
bracket_time 81, 83
called_as_idler 59
caxis_max 78
caxis_min 78
chr 59
clear 77
cmax 68, 74,78
cmin 74
color 78
contours 77
cull 68
display 17
dpi 18
dtmin 83
dump 18, 58
ecolor 68
edges 68
ewidth 68
fill 68
funcs 62
general 45
hcp 58
legends 18
lims 81, 83
min_interframe 81
nframes 83
orient 43
plane 74
private 18
scale 68, 77
shade 68
split 74, 78

style 18
timing 81, 83
tlimit 83
wait 19
zaxis_max 78
zaxis_min 78

L
|_nobox.gs 19
legend 45
legends 18
levs 32
light3 57
example 76, 82
lighting parameters 56
lightwf 89
limits 23, 59
example 72, 73,76
lims 81, 83
line type 45

M
marker 46
marks 46
maxelt_ 102
mcolor 46
mesh
filled 35
plot 30
rectangular 61
regular 61
set default 29
structured 61
unstructured
cell numbering schemes 107
mesh3 61
example 72
mesh3 object
description 63
min_interframe 81
minelt_ 102
mov3 57
movie 80
draw_frame argument 80
mphase 46
msize 46
mspace 46

N

Narcisse 2, 3
FILE menu 3
File save 3
Ihm compute 3
process 2
socket compute 3
STATE submenu 3

nframes 83
nobox.gs 19
nz 105

(@)

Object-Oriented Graphics 1, 3
000G 1
opaque 43

open curves 47
orient 43
orient3 56
example 72, 76
origin
3-D plot 56
output primitives 27

P
palette 21
example 72,73
split 74, 85
palettes
standard 21
PATH 2
path 43
phi 56, 57
pl3surf 58, 71
example 72,73
pl3tree 58, 74
example 76
pldcont 77
plane 74
creating 61
slices of surface 66
plane3 61
pldefault
example 72
pldj 42
plf 35
plfp 39
plg 27
pli 40
plm 30
plmesh 29
plot
multiple surfaces 74
surface 71
wire frame 67
plot limits 23
Plotter object 1
Plotter Objects 3
plotting list 55
plsys 22
plt 43
plv 33
plwf 58, 67
plzcont 77
example 78
polygons 39
PORT_SERVEUR 2, 3
PostScript 1, 18
prism cells 62
prisms
numbering scheme 108
private 18
ps2epsi 20
PS2EPSI_FORMAT 20
PyGist 2, 3
PYGRAPH 2
PyGraph 1, 2,3
Documentation 3
platforms 3

PyNarcisse 2
pyramidal cells 62
Pyramids

numbering scheme 107
Python 2

home page 2
Python Narcisse 3
PYTHONPATH 2

R
range (in Yorick) 24
rays 46
rectangular mesh 61
redraw 22
region 47
regular mesh 61
rem_0_ 102
restore3 85
reverse 104
rot3 56, 57
rotation

3-D plot 56
rphase 27
rspace 27

S
save3 85
scale 34,68, 77
scalem 50
sdir 56
set_default_gnomon 58
set_default_idler 60
set_draw3 60
set_draw3_
example 72, 76
set_idler 60
set_slice2_precision 92
set3_object 88
setz3 57
shade 68
sign_ 102
slice
isosurface 66
plane 66
slice2 66
slice2x 66
slice3 65, 109
example 72
fcolor argument 66
fslice argument 65
slice3mesh 64
example 73
slicing function
specification 110
slicing functions 64
smooth 47
socket compute 3
sombrero function 71, 78
sort3d 89
span 104
specular 56
spin3 83
split 74, 78

palette 85
split palette 74
split_bytscl 93
split_palette 85
example 76
spower 56
STATE submenu 3
structured mesh 61
style 18
stylesheets
descriptions 19
support 4
surface
isosurface slice 66
plane slice 66
plot 71
multiple 74

T
Tetrahedra
numbering scheme 107
tetrahedral cells 62
text plotting 43
text properties 43
theta 56, 57
timer 94
timer_ 102
timer_print 94, 102
timing 81, 83
tlimit 83
to_corners 106
to_corners3 94, 111
description of algorithm 109
tosys 43
triangle 29, 32
triangulation array 29, 32
two-dimensional plotting 27
type 45

U
untuructured mesh

cell numbering schemes 107
unzoom 25

\%

vector field 33

vg.gs 19

vgbox.gs 19

viewing parameters 56

W
wait 19
width 45
window 17
window3 58
winkill 17
wire frame
plotting 67
work.gs 19
work2.gs 19

X
X window 18
X,y graph

graph plotting 27
Xwindows 1
xyz_wf 90
xyz3 93

Y

y-axis limits 24
ylimits 24
yorick.py 101

A

zaxis_max 78
zaxis_min 78
zcen_ 101
zone edges 35
zoom_factor 25
zooming 25

	The Python Graphics Interface, Part IV
	Python Gist Graphics Manual
	Table of Contents
	CHAPTER 1: The Python Graphics Interface�1
	Overview of the Python Graphics Interface 1
	Using the Python Graphics Interface 2
	About This Manual 3

	CHAPTER 2: Introduction to Python Gist Graphics�5
	PyGist 2-D Graphics 5
	PyGist 3-D Graphics 7
	General overview of module pl3d 7
	Overview of module plwf 8
	Overview of module slice3 9

	movie.py: PyGist 3-D Animation 9
	Function Summary 12

	CHAPTER 3: Control Functions�17
	Device Control 17
	Window Control 17
	Hard Copy and File Control 19

	Other Controls 21
	animate: Control Animation Mode 21
	palette: Set or Retrieve Palette 21
	plsys: Set Coordinate System 22
	redraw: Redraw X window 22

	CHAPTER 4: Plot Limits and Scaling�23
	Setting Plot Limits 23
	limits: Save or Restore Plot Limits 23
	ylimits: Set y-axis Limits 24

	Scaling and Grid Lines 24
	logxy: Set Linear/Log Axis Scaling 24
	gridxy: Specify Grid Lines 25

	Zooming Operations 25

	CHAPTER 5: Two-Dimensional Plotting Functions�27
	Output Primitives 27
	plg: Plot a Graph 27
	plmesh: Set Default Mesh 29
	plm: Plot a Mesh 30
	plc: Plot Contours 32
	plv: Plot a Vector Field 33
	plf: Plot a Filled Mesh 35
	plfc: Plot filled contours 37
	plfp: Plot a List of Filled Polygons 39
	pli: Plot a Cell Array 40
	pldj: Plot Disjoint Lines 42
	plt: Plot Text 43
	pltitle: Plot a Title 44

	Plot Function Keywords 45

	CHAPTER 6: Inquiry and Miscellaneous Functions�49
	Inquiry and Editing Functions 49
	plq: Query Plot Element Status 49
	pledit: Change Plotting Properties 49
	pldefault: Set Default Values 50

	Miscellaneous Functions 52
	bytscl: Convert to Color Array 52
	histeq_scale: Histogram Equalized Scaling 52
	mesh_loc: Get Mesh Location 52
	mouse: Handle Mouse Click 53
	moush: Mouse in a Mesh 54
	pause: Pause 54

	CHAPTER 7: Three-Dimensional Plotting Functions�55
	Setting Up For 3-D Graphics 55
	The Plotting List 55
	Functions For Setting Viewing Parameters 56
	Lighting Parameters 57
	Display List 58

	3-D Graphics Control Functions 58
	Getting a Window 58
	Displaying the Gnomon 58
	Plotting the Display List 59
	The variable _draw3 and the idler 60

	Data Setup Functions for Plotting 61
	Creating a Plane 61
	Creating a mesh3 argument 61

	The Slicing Functions 64
	slice3mesh: Pseudo-slice for a surface 64
	slice3: Plane and Isosurface Slices of a 3-D mesh 65
	slice2 and slice2x: Slicing Surfaces with planes 66

	At Last - the 3-D Plotting Functions 67
	plwf: plot a wire frame 67
	pl3surf: plot a 3-D surface 71
	pl3tree: add a surface to a plotting tree 74

	Contour Plotting on Surfaces: plzcont and pl4cont 77
	Animation: movie and spin3 80
	The movie module and function 80
	The spin3 function 83

	Syntactic Sugar: Some Helpful Functions 85
	Specifying the palette to be split: split_palette 85
	Saving and restoring the view and lighting: save3, restore3 85

	CHAPTER 8: Useful Functions for Developers�87
	Find 3D Lighting: get3_light 87
	Get Normals to Polygon Set: get3_normal 87
	Get Centroids of Polygon Set: get3_centroid 88
	Get Viewer’s Coordinates: get3_xy 88
	Add object to drawing list: set3_object 88
	Sort z Coordinates: sort3d 89
	Set the cmax parameter: lightwf 89
	Return a Wire Frame Specification: xyz_wf 90
	Calculate Chunks of Mesh: iterator3 90
	Get Vertex Values of Function: getv3 91
	Get Cell Values of Function: getc3 92
	Controlling Points Close to the Slicing Plane: _slice2_precision 92
	Scale variables to a palette: bytscl, split_bytscl 93
	Return Vertex Coordinates for a Chunk: xyz3 93
	Find Corner Indices of List of Cells: to_corners3 94
	Timing: timer, timer_print 94

	CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know�95
	The Workhorse: gistCmodule 95
	Memory Maintenance: PyObjects 95
	Memory Management: ArrayObjects 97
	Memory Management: naked memory 98
	Computing contour curves: contour 98
	Computing slices: slice2, slice2x, _slice2_part 99

	Some Yorick-like Functions: yorick.py 101
	Additional Array Operations: arrayfnsmodule 102
	Counting Occurrences of a Value: histogram 102
	Assigning to an Arbitrary Subset of an Array: array_set 103
	Sorting an array: index_sort 103
	Interpolating Values: interp 103
	Digitizing an array: digitize 104
	Reversing a Two-Dimensional array: reverse 104
	Obtaining an Equally-Spaced Array of Floats: span 104
	Effective Length of an Array: nz 105
	Finding Edges Cut by Isosurfaces: find_mask 105
	Order Cut Edges of a cell: construct3 105
	Expand cell-centered values to node-centered values: to_corners 106

	More slice3 details 107
	Standard ordering for the four types of mesh cells 107
	Standard numbering of cells in a regular rectangular mesh 108
	How slice3 works 109

	CHAPTER 1: The Python Graphics Interface
	1.1 Overview of the Python Graphics Interface
	1.2 Using the Python Graphics Interface
	1.3 About This Manual

	CHAPTER 2: Introduction to Python Gist Graphics
	2.1 PyGist 2-D Graphics
	2.2 PyGist 3-D Graphics
	2.2.1 General overview of module pl3d
	2.2.2 Overview of module plwf
	2.2.3 Overview of module slice3

	2.3 movie.py: PyGist 3-D Animation
	2.4 Function Summary

	CHAPTER 3: Control Functions
	3.1 Device Control
	3.1.1 Window Control
	3.1.2 Hard Copy and File Control

	3.2 Other Controls
	3.2.1 animate: Control Animation Mode
	3.2.2 palette: Set or Retrieve Palette
	3.2.3 plsys: Set Coordinate System
	3.2.4 redraw: Redraw X window

	CHAPTER 4: Plot Limits and Scaling
	4.1 Setting Plot Limits
	4.1.1 limits: Save or Restore Plot Limits
	4.1.2 ylimits: Set y-axis Limits

	4.2 Scaling and Grid Lines
	4.2.1 logxy: Set Linear/Log Axis Scaling
	4.2.2 gridxy: Specify Grid Lines

	4.3 Zooming Operations

	CHAPTER 5: Two-Dimensional Plotting Functions
	5.1 Output Primitives
	5.1.1 plg: Plot a Graph
	5.1.2 plmesh: Set Default Mesh
	5.1.3 plm: Plot a Mesh
	5.1.4 plc: Plot Contours
	5.1.5 plv: Plot a Vector Field
	5.1.6 plf: Plot a Filled Mesh
	5.1.7 plfc: Plot filled contours
	5.1.8 plfp: Plot a List of Filled Polygons
	5.1.9 pli: Plot a Cell Array
	5.1.10 pldj: Plot Disjoint Lines
	5.1.11 plt: Plot Text
	5.1.12 pltitle: Plot a Title

	5.2 Plot Function Keywords

	CHAPTER 6: Inquiry and Miscellaneous Functions
	6.1 Inquiry and Editing Functions
	6.1.1 plq: Query Plot Element Status
	6.1.2 pledit: Change Plotting Properties
	6.1.3 pldefault: Set Default Values

	6.2 Miscellaneous Functions
	6.2.1 bytscl: Convert to Color Array
	6.2.2 histeq_scale: Histogram Equalized Scaling
	6.2.3 mesh_loc: Get Mesh Location
	6.2.4 mouse: Handle Mouse Click
	6.2.5 moush: Mouse in a Mesh
	6.2.6 pause: Pause

	CHAPTER 7: Three-Dimensional Plotting Functions
	7.1 Setting Up For 3-D Graphics
	7.1.1 The Plotting List
	7.1.2 Functions For Setting Viewing Parameters
	7.1.3 Lighting Parameters
	7.1.4 Display List

	7.2 3-D Graphics Control Functions
	7.2.1 Getting a Window
	7.2.2 Displaying the Gnomon
	7.2.3 Plotting the Display List
	7.2.4 The variable _draw3 and the idler

	7.3 Data Setup Functions for Plotting
	7.3.1 Creating a Plane
	7.3.2 Creating a mesh3 argument

	7.4 The Slicing Functions
	7.4.1 slice3mesh: Pseudo-slice for a surface
	7.4.2 slice3: Plane and Isosurface Slices of a 3-D mesh
	7.4.3 slice2 and slice2x: Slicing Surfaces with planes

	7.5 At Last - the 3-D Plotting Functions
	7.5.1 plwf: plot a wire frame
	7.5.2 pl3surf: plot a 3-D surface
	7.5.3 pl3tree: add a surface to a plotting tree

	7.6 Contour Plotting on Surfaces: plzcont and pl4cont
	7.7 Animation: movie and spin3
	7.7.1 The movie module and function
	7.7.2 The spin3 function

	7.8 Syntactic Sugar: Some Helpful Functions
	7.8.1 Specifying the palette to be split: split_palette
	7.8.2 Saving and restoring the view and lighting: save3, restore3

	CHAPTER 8: Useful Functions for Developers
	8.1 Find 3D Lighting: get3_light
	8.2 Get Normals to Polygon Set: get3_normal
	8.3 Get Centroids of Polygon Set: get3_centroid
	8.4 Get Viewer’s Coordinates: get3_xy
	8.5 Add object to drawing list: set3_object
	8.6 Sort z Coordinates: sort3d
	8.7 Set the cmax parameter: lightwf
	8.8 Return a Wire Frame Specification: xyz_wf
	8.9 Calculate Chunks of Mesh: iterator3
	8.10 Get Vertex Values of Function: getv3
	8.11 Get Cell Values of Function: getc3
	8.12 Controlling Points Close to the Slicing Plane: _slice2_precision
	8.13 Scale variables to a palette: bytscl, split_bytscl
	8.14 Return Vertex Coordinates for a Chunk: xyz3
	8.15 Find Corner Indices of List of Cells: to_corners3
	8.16 Timing: timer, timer_print

	CHAPTER 9: Maintenance: Things You Really Didn’t Want to Know
	9.1 The Workhorse: gistCmodule
	9.1.1 Memory Maintenance: PyObjects
	9.1.2 Memory Management: ArrayObjects
	9.1.3 Memory Management: naked memory
	9.1.4 Computing contour curves: contour
	9.1.5 Computing slices: slice2, slice2x, _slice2_part

	9.2 Some Yorick-like Functions: yorick.py
	9.3 Additional Array Operations: arrayfnsmodule
	9.3.1 Counting Occurrences of a Value: histogram
	9.3.2 Assigning to an Arbitrary Subset of an Array: array_set
	9.3.3 Sorting an array: index_sort
	9.3.4 Interpolating Values: interp
	9.3.5 Digitizing an array: digitize
	9.3.6 Reversing a Two-Dimensional array: reverse
	9.3.7 Obtaining an Equally-Spaced Array of Floats: span
	9.3.8 Effective Length of an Array: nz
	9.3.9 Finding Edges Cut by Isosurfaces: find_mask
	9.3.10 Order Cut Edges of a cell: construct3
	9.3.11 Expand cell-centered values to node-centered values: to_corners

	9.4 More slice3 details
	9.4.1 Standard ordering for the four types of mesh cells
	9.4.2 Standard numbering of cells in a regular rectangular mesh
	9.4.3 How slice3 works

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

