
October 13, 1998

UCRL-MA-128569, Manual 4

The Python Graphics Interface, Section III

Plotter Objects Manual

Written by

Zane Motteler
Lee Busby

Fred N. Fritsch

Plotter Objects Manual

Copyright (c) 1996.

The Regents of the University of California.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, pro-
vided that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

This work was produced at the University of California, Lawrence Livermore National Laboratory under contract
no. W-7405-ENG-48 between the U.S. Department of Energy and The Regents of the University of California for the op-
eration of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty, ex-
press or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference
herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or the University of California, and shall not be used for advertising or product endorsement
purposes.

October 13, 1998

UCRL-MA-128569, Manual 4

Table of Contents

CHAPTER 1: The Python Graphics Interface 1
Overview of the Python Graphics Interface 1
Using the Python Graphics Interface 2
About This Manual 3

CHAPTER 2: Introduction to Plotter Objects 5
PyGraph Plotter Objects 5
Functions Common to all Plotter Objects 6

CHAPTER 3: Plotter Instantiation 11
Instantiation of a Gist Plotter Object 11
Instantiation of a Narcisse Plotter Object 12

CHAPTER 4: Examples 13
First Section Title 13
First subsection 13
Second subsection 13
Second Section Title 14
Third Section Title 14

UCRL-MA-128569, Manual 4

ies for
ctions of
 labels,
ation,
graphics
details
s, but
rticular
f what

tting li-
rfaces,
tter ob-

graph-
ser can
to open
LOT; it
 Basis
til they

tter ob-
e which
e lower-

nal
 Post-
n di-
rks
n such
CHAPTER 1:The Python Graphics
Interface

1.1 Overview of the Python Graphics Interface

The Python Graphics Interface (abbreviated PyGraph) provides Python users with capabilit
plotting curves, meshes, surfaces, cell arrays, vector fields, and isosurface and plane cross se
three dimensional meshes, with many options regarding line widths and styles, markings and
shading, contours, filled contours, coloring, etc. Animation, moving light sources, real-time rot
etc., are also available. PyGraph is intended to supply a choice of easy-to-use interfaces to
which are relatively independent of the underlying graphics engine, concealing the technical
from all but the most intrepid users. Obviously different graphics engines offer different feature
the intention is that when a user requests a particular type of plot which is not available on a pa
engine, the low level interface will make an intelligent guess and give some approximation o
was asked for.

There are two such graphics packages which are relatively independent of the underlying plo
brary. The Object-Oriented Graphics (OOG) Package defines geometric objects (Curves, Su
Meshes, etc.), Graph objects which can be given one or more geometric objects to plot, and Plo
jects, which receive geometric objects to plot from Graph objects, and which interface with the
ics engine(s) to do the actual plotting. A Graph can create its own Plotter, or the more capable u
create one or more, handy when one wishes (for instance) to plot on a remote machine, or
graphics windows of different types at the same time. The second such package is called EZP
is built on top of OOG, and provides an interface similar to the command-line interface of the
EZN package. Some of our long-time users may be more comfortable with this package, un
have mastered the concepts of object-oriented design.

As mentioned above, a Graph object needs at least one Plotter object to plot itself; only the Plo
jects need know about graphics engines. At present we have two types of Plotter objects, on
knows about Gist and one which knows about Narcisse. Some power users may prefer to use th
level library-specific function calls, but most users will use EZPLOT or OOG.

Gist is a scientific graphics library written in C by David H. Munro of Lawrence Livermore Natio
Laboratory. It features support for three common graphics output devices: Xwindows, (color)
Script, and ANSI/ISO Standard Computer Graphics Metafiles (CGM). The library is small (writte
rectly to Xlib), portable, efficient, and full-featured. It produces x-vs.-y plots with ‘‘good’’ tick ma
and tick levels, 2-D quadrilateral mesh plots with contours, vector fields, or pseudocolor maps o
October 13, 1998

red sur-
nimation
n

ecially
luding
tions of
ctions of

, Nar-
ough it
ever,

o write

t have

n, you
e excel-
 way

llows.

n-

ec-

which
then

. Nar-
hich the

se.

ectory
meshes. 3-D plot capabilities include wire mesh plots (transparent or opaque), shaded and colo
face plots, isosurface and plane cross sections of meshes containing data, and real-time a
(moving light sources and rotations). The Python Gist module gist.py and the associated Pytho
extension gistCmodule provide a Python interface to this library (referred to as PyGist).

Narcisse is a graphics library developed at out sister laboratory at Limeil in France. It is esp
strong in high-quality 3-D surface rendering. Surfaces can be colored in a variety of ways, inc
colored wire mesh, colored contours, filled contours, and colored surface cells. Some combina
these are also possible. We have also added the capability of doing isosurfaces and plane se
meshes, which is not available in the original Narcisse. The Python Narcisse module narcissemod-
ule (referred to as PyNarcisse) provides a low-level Python interface to this library. Unlike Gist
cisse does not currently write automatically to standard files such as PostScript or CGM, alth
writes profusely to its own type of files unless inhibited from doing so, as described below. How
there is a "Print" button in the Narcisse graphics window, which opens a dialog that allows you t
the current plot to a postscript file or to send it to a postscript printer.

1.2 Using the Python Graphics Interface

In order to use PyGraph, you first need to have Python installed on your system. If you do no
Python, you can obtain it free from the Python pages at http://www.python.org . You may
need the help of your system administrator to install it on your machine. Once you have Pytho
have to know at least a smattering of the language. The best way to do this is to download th
lent tutorial from the Python pages, sit down at your computer or terminal, and work your
through it.

Before using the Python Graphics Interface, you should set some environment variables as fo

• Your PATH variable should contain the path to the python executable.

• You should set a PYTHONPATH variable to point to all directories that contain Python exte
sions or modules that you will be loading, which may include the OOG modules, ezplot , and
narcissemodule or gistCmodule . Check with your System Manager for the exact sp
ifications on your local systems.

• Unless you create your own plotter objects, PyGraph will create a default Gist Plotter
will plot to a Gist window only. If you want your default Plotter to be a Narcisse Plotter,
set the variable PYGRAPH to Nar or Narcisse .

A Gist Plotter object automatically creates its own Gist window and then plots to that window
cisse, however, works differently. Narcisse is established as a separately running process, to w

Plotter communicates via sockets. Thus, to run a Narcisse Plotter, you must first open a Narcis1 To

1. I am going to assume that you already have Narcisse installed on your system, and its dir
path in your PATH variable.

ing
our
e-

off a

raph).

age in
he re-
ntists

er their
ine.

ns, and
olaris
ch col-
do so, you need to go through the following steps:

1. Set your environment variable PORT_SERVEUR1 to 0.

2. Start up Narcisse by typing in the command Narcisse & . It will take a few moments for the
Narcisse GUI to open, then immediately afterwards it will be covered by an annoying window
which you can eliminate by clicking its OK button.

3. You will note that there is a server port number given on the GUI. Set your PORT_SERVEUR vari-
able to this value.

4. Narcisse has an annoying habit of saving everything it does to a multitude of files, and notify
you on the fly of all its computations. If you do a lot of graphics, these files can quickly fill up y
quota. In addition, the running commentary on file writing and computation on the GUI is tim
consuming and slows Narcisse down to a truly glacial pace. To avoid this, you need to turn
number of options via the GUI before you begin. They are all under the STATE submenu of the
FILE menu, and should be set as follows: set ‘‘Socket compute ’’ to ‘‘ no ,’’ set ‘‘ File
save ’’ to ‘‘ nothing ,’’ set ‘‘ Config save ’’ to ‘‘ no ,’’ and set ‘‘Ihm compute ’’ to ‘‘ no .’’
(‘‘IHM’’ are the French initials for ‘‘GUI.’’)

1.3 About This Manual

This manual is part of a series of manuals documenting the Python Graphics Interface (PyG
They are:

• I. EZPLOT User Manual

• II. Object-Oriented Graphics Manual

• III. Plotter Objects Manual

• IV. Python Gist Graphics Manual

• V. Python Narcisse Graphics Manual

EZPLOT is a command-line oriented interface that is very similar to the EZN graphics pack
Basis. The Object-Oriented Graphics Manual provides a higher-level interface to PyGraph. T
maining manuals give low-level plotting details that should be of interest only to computer scie
developing new user-level plot commands, or to power users desiring more precise control ov
graphics or wanting to do exotic things such as opening a graphics window on a remote mach

PyGraph is available on Sun (both SunOS and Solaris), Hewlett-Packard, DEC, SGI workstatio
some other platforms. Currently at LLNL, Narcisse is installed only on the X Division HP and S
boxes, however, and Narcisse is not available for distribution outside this laboratory. Our Fren

1. We did tell you that Narcisse was French, didn’t we?

yet been
ay be

the

r
ot bla-

d
oble,

ocu-

ariat
taud,

col-
 stolen
smis-

 number
leagues are going through the necessary procedures for public release, but these have not
crowned with success. Gist, however, is publicly available as part of the Yorick release, and m
obtained by anonymous ftp from ftp-icf.llnl.gov ; look in the subdirectory /ftp/pub/
Yorick .

A great many people have helped create PyGraph and its documentation. These include

• Lee Busby of LLNL, who wrote gistCmodule , and wrought the necessary changes in
Python kernel to allow it to work correctly;

• Zane Motteler of LLNL, who wrote narcissemodule , ezplot , the OOG, and some othe
auxiliary routines, and who wrote much of the documentation, at least the part that was n
tantly stolen from David Munro and Steve Langer (see below);

• Paul Dubois of LLNL, who wrote the PDB and Ranf modules, and who worked with Konra
Hinsen (Laboratoire de Dynamique Moleculaire, Institut de Biologie Structurale, Gren
France) and James Hugunin (Massachusetts Institute of Technology) on NumPy, the numeric
extension to Python, without which this work could not have been done;

• Fred Fritsch of LLNL, who produced the templates and did some of the writing of this d
mentation;

• Our French collaborators at the Centre D’Etudes de Limeil-Valenton (CEL-V), Commiss
A L’Energie Atomique, Villeneuve-St-Georges, France, among whom are Didier Cour
Jean-Philippe Nomine, Pierre Brochard, Jean-Bernard Weill, and others;

• David Munro of LLNL, the man behind Yorick and Gist, and Steve Langer of LLNL, who
laborated with him on the 3-D interpreted graphics in Yorick. We have also shamelessly
from their Gist documentation; however, any inaccuracies which crept in during the tran
sion remain the authors’ responsibility.

 The authors of this manual stand as representative of their efforts and those of a much larger
of minor contributors.

Send any comments about these documents to ‘‘support@icf.llnl.gov ’’ on the Internet or to
‘‘ support ’’ on Lasnet.

UCRL-MA-128569, Manual 4

tines
d with

he

s)

hics is;
raphics
ewhat;

e

owledge

a
it
CHAPTER 2: Introduction to Plotter
Objects

2.1 PyGraph Plotter Objects

A Plotter object is the lowest level in the PyGraph object-oriented graphics (OOG). Its rou
interact with the C extension to Python which drives the particular graphics engine associate
that particular Plotter . Plotter objects are the only components of the OOG which ‘‘know’’ t
details of the innards of a graphics engine. It is our intention that Graph objects and geometric
objects should be independent of the graphics used, and Plotter s should ignore (or second gues
requests that cannot be honored by their brand of graphics. The interface that a Plotter supplies to
the outside world is intended to be essentially the same no matter what the underlying grap
unfortunately this is not completely true, because the ways that one connects to different g
engines is generally incompatible. Thus the calling sequences for instantiations will differ som
however, the internal functions of Plotter s will have the same names and calling sequences.

Under most circumstances, a user will not need to instantiate or interact with Plotter objects. If you
create some geometric objects, hand them to a Graph object, and ask the Graph to plot itself without
having first created a Plotter object, then the Graph object will examine the environment variabl
PYGRAPH, and depending on whether it has been set to Gist or Nar , will instantiate a PyGist or Py-
Narcisse Plotter object and then use it to plot itself. If there is no PYGRAPH environment variable,
then a default PyGist Plotter will be instantiated.

The following circumstances, however, mean that the user must have at least some basic kn
about Plotter objects and their instantiation:

• Sending a picture to more than one Plotter .

• Sending a picture to a Plotter open on a remote machine.

• Plotting both to PyNarcisse and PyGist.

• Plotting to a cgm or postscript file (PyGist only).

In the next two chapters we shall discuss how to instantiate PyGist and PyNarcisse Plotter objects.
Once instantiated, these objects can be passed to Graph objects for them to use in their plotting. If
Graph object has been informed of more than one Plotter , then when it is asked to plot itself,
will cycle through the ones that it knows about and plot its geometric object(s) on each one.
October 13, 1998

e of
d

ir
an-

s, then

e
t

e
urce

 ar-

t calls
2.2 Functions Common to all Plotter Objects

The methods in Plotter (in alphabetical order) are described below. Bear in mind that som
these methods are peculiar to one kind of Plotter and may not do anything at all for another kin
(they are present but the body consists only of a Python ‘‘ pass ’’ statement). In other cases the
actions may be different depending on the Plotter type. Most users, even those who need to inst
tiate multiple and/or remote Plotter s, will not need to use these methods, as the Graph objects
will do the interfacing.

Note that in accordance with Python naming conventions, if you do call any of these method
you must precede the method name by the plotter name followed by a period.

add_object (crv) : will add a curve crv to an existing plot. (See plot_object , below.)

add_text (str, x, y, size, color="fg", tosys = 1) : will add the specified
text str , in color , to the plot at point (x , y) in data coordinates if tosys is 1, otherwise
in absolute window coordinates.

clear_text () : gets rid of all text strings in the plot.

close () : closes the connection to the graphics engine.

do_generic (graf) : apply the graph-generic attributes of the Graph object graf to the plot
(generic attributes do not depend on the number of dimensions).

freeze_graph () : keeps a graph from being plotted until send_graph () is called.

move_light (i) : a drawing function which returns 0 if i exceeds the internal variabl
nframes , otherwise computes lighting angles and calls light3 (See page 57 in Python Gis
Graphics Manual) and draw3 (See page 59 in Python Gist Graphics Manual).

move_light_source (graf, angle, nframes) : Makes a movie (See “The movi
module and function” on page 80. of Python Gist Graphics Manual) of a moving light so
shining on the 3-D geometric object in the Graph object graf . The light source will rotate
through angle radians in each of nframes frames.

new_frame () : carries out a frame advance.

plot2d (graf) : A Graph2d object calls plot2d with itself (graf) as argument. plot2d
sorts out everything for the graph and then does the plot.

plot3d (graf) : A Graph3d object calls plot3d with itself (graf) as argument. plot3d
sorts out everything for the graph and then does the plot.

plot_object (crv) : a general purpose 2-D plotting routine. It should be called with one
gument (crv), a Curve , QuadMesh, PolyMap , CellArray , or Lines object. In the case
of multiple objects on one graph, the first call only should be to this routine, subsequen
to add_object . plot_object does some one-time things, such as plotting the titles.

plot_text () : sends the accumulated texts out to the graph (see set_text and

d it; 0

see

actu-

ne

r flat

m the

.

e)
clear_text)..

query () : returns -1 if it is not connected to a graphics engine or is but can't seem to fin
if it’s not sure; and 1 if it is connected.

quick_plot (graf) : plots without recomputing.

reset_xyequal () : turns off a flag that forces equal scales on the axes.

rotate_graph (axis, angle, nframes) : rotates the current plot about axis , for a
total of nframes frames, with rotation through angle in each frame. Uses spin3 (See “The
spin3 function” on page 83. in Python Gist Graphics Manual).

send_color_card () : If the Plotter has been told about a color card (or palette) (
set_color_card, below), then apprise the graphics engine of this.

send_generics (graf) :sets up all the things that are generic to any graph. It does not
ally do any plotting yet.

send_graph () : causes a plot that has been accumulated after freeze_graph was called,
to be plotted.

set_3d_grid_type (gt) : sets what the wire grid will look like in a 3d surface plot in o
of the wire modes. The choices for gt are 'x' (x lines only), 'y' (y lines only) and 'xy'
(both x and y lines).

set_axis_labels ('x_label', 'y_label', 'z_label', 'yr_label') : All
arguments are optional. Default values (from right): ' ' , 'Z axis' , 'Y axis' , 'X ax-
is' .

set_axis_lin (ax) : ax can be 'x' , 'y' , 'yr' , 'z' , 'c' , or 'all' . The specified axis
will have a linear scale.

set_axis_log (ax) : ax can be 'x' , 'y' , 'yr' , 'z' , 'c' , or 'all' . The specified axis
will have a logarithmic scale.

set_axis_max (ax, val) : ax can be 'x' , 'y' , 'yr' , 'z' , or 'c' .The maximum of the
specified axis will be set to val . val should be a PyFloat object.

set_axis_min (ax, val) : ax can be 'x' , 'y' , 'yr' , 'z' , or 'c' . The minimum of the
specified axis will be set to val . val should be a PyFloat object.

set_bytscl (cmin, cmax) : ensures that bytscl will be called for the next plf com-
mand, with these values of cmin and cmax.

set_c_contours (arg) : sets various properties when doing 4d contour (iso), smooth, o
plots. It accepts one argument, as follows: if an integer n, sets the number of contours to n. This
also clears the contour levels array. Countour levels will be computed automatically fro
data. if a string: 'lin' plots the contours linearly spaced. 'log' plots the contours logarith-
mically spaced. if an array of type Float : sets the contour levels to the values in the array

set_color_card (cardspec, now = 0) : indicates a predefined color card (palett
for a plot. cardspec can be the name of a palette or, in Narcisse, an integer n. See the Nar-

p). If

ably

um

 no
teger
he plot

ach

 are.

s of

ons

set (see

not,
asking
e.

-

-

cisse manual for the values of n and the color card selected (sec. 4.2.134, parametre_ma
now is set to 1, then the palette will be sent immediately.

set_connect (cn) : tells whether to connect two or more surface plots, which presum
improves masking. cn=1 to connect, cn=0 to disconnect.

set_default_axes_limits () : sets the graphics to compute the maximum and minim
of the axes depending on the data.

set_distance (arg) : sets the distance of the view point from a 3-D plot. If called with
argument, or 0, this distance is effectively infinite. Otherwise it should be called with an in
from 1 to 20. Smaller means closer, and hence somewhat more distortion. The size of t
is not changed.

set_freeze_each (val) : tells whether or not to re-freeze the graphics after e
send_graph call. 1 to re-freeze, 0 not to.

set_grid_type (string) : determines how intrusive the axes and coordinate grids
The legal arguments are: 'none' --no axes and grids are drawn. 'axes' --axes with tick
marks. 'wide' --widely spaced grid in x and y (2-D or 3-D). 'full' --narrowly spaced grid
in x and y (2-D or 3-D). If no argument is specified, the default is 'axes' .

set_label_type (arg) : determines whether curve labels will be attached to the end
curves, or enclosed in a box. The allowed arguments are thus 'end' and 'box' .

set_link (ln) : tells whether to link two or more surfaces plotted with different 3d opti
into one plot (otherwise all surfaces will have the same options). ln=1 to link, ln = 0 not to
link. This needs to be set to 1 for all surfaces except the last. Connection must not be
set_connect ()). The axes must not be plotted for surfaces after the first.

set_linlin () : sets both x and y axes to linear scale.

set_linlog () : sets x axis to linear, y axis to logarithmic.

set_loglin () : sets x axis to logarithmic, y axis to linear.

set_loglog () : sets both x and y axes to logarithmic scale.

set_mask (arg) : determines whether hidden parts of a 3-D plot will be shown, and if
what algorithm will be used to determine what is hidden. The allowed arguments and m
algorithm are as follows: 'none' --no masking. in wire grid mode, all grid lines are visibl
'min' --the surface is traced beginning in the corner closest to the observer. 'max' --the sur-
face is traced beginning in the corner farthest from the observer. 'sort' --a cell sorting is car-
ried out to determine the masking.

set_no_concat () : turns off the 2-D and 3-D concatenation mode.

set_text (str, ix) : sets the ix th text to str .

set_text_color (col, ix) : sets the ix th text color to col , which is a color number as
sociated with a color table, or the name of a common color.

set_text_pos (x, y, ix) : positions the ix th text at (x , y) , which are real numbers be

idth

olor

 co-

at)

at)

at)

plot.

, or

 from

ay.

tion;

m-
tween 0 and 1 giving relative position in the graphics window.

set_text_size (sz, ix) : sets the ix th text size to sz . Narcisse and Gist differ on this
(sorry!). In Narcisse, sz represents essentially the number of characters that will fill the w
of the graphics screen, so the larger the number, the smaller the text. In Gist, sz is the point
size, so the larger the number, the larger the text.

set_title_colors (bottom_color, top_color, left_color,
right_color) : All arguments are optional, integers representing a color in some c
map, or the names of common colors. Missing arguments default to "fg" .

set_titles ('bottom', 'top', 'left', 'right') : All arguments are optional.
Missing ones default to ' ' .

set_tosys (val) : if val is nonzero, use user coordinates. If zero, use absolute window
ordinates. This applies to plotted text only.

set_x_axis_limits (min, max) : sets the limits on the x axis to the specified (pyFlo
sizes.

set_xyequal () : Make the x and y axes the same scale.

set_y_axis ('left' , n) or set_y_axis ('right' , n) : causes curve
number n to be associated with the left or right y axis.

set_y_axis_limits (min, max) : sets the limits on the y axis to the specified (pyFlo
sizes.

set_yr_axis_limits (min, max) : sets the limits on the yr axis to the specified (pyFlo
sizes.

set_z_c_switch (sw) : tells whether to switch the roles of the z and c variables in a 4-D
sw=1 to do the switch, sw=0 not to do it.

set_z_contours (arg) : sets various properties when doing 3-D contour (iso), smooth
flat plots. It accepts one argument, as follows: if an integer n, sets the number of contours to n.
This also clears the contour levels array. Countour levels will be computed automatically
the data. if a string: 'lin' plots the contours linearly spaced. 'log' plots the contours log-
arithmically spaced. if an array of type Float : sets the contour levels to the values in the arr

synchronize () : Synchronizes with Narcisse. Important because of socket communica
race conditions can occur. Does nothing in Gist.

type () : Returns NarType or GistType depending on the type of Plotter. (You need to i
port graftypes in order to test for these.)

UCRL-MA-128569, Manual 4

yword

ist
.

l-
p
word

file

ut,

py.
CHAPTER 3:Plotter Instantiation

3.1 Instantiation of a Gist Plotter Object

Calling Sequence

import GistPlotter
pl1 = GistPlotter.Plotter ([<display>] [, <keylist>])

Description

All arguments to the instantiator are optional. All arguments except the first must be given as ke
arguments. Even the first may be given as a keyword argument, using either filename or display
as the keyword. The <display> argument tells where (i. e., on what device) you wish the PyG
Xwindow to appear. It should be given in standard IP format, as a quoted character string, e. g"al-
laria.llnl.gov:0.0" or "128.112.45.118:0.0" . If you omit this argument, or supply a
" " (blank), then PyGist will attempt to read your DISPLAY environment variable, and if it has a va
ue, will open a window where it specifies. If your DISPLAY variable is not defined, PyGist gives u
in despair. If you wish to write only to a file and not have a display Xwindow, you may set this key
to "" , "none" , or None.

The Plotter instantiator accepts the following keywords:

n, dpi, wait, private, hcp, dump, legends, style

Keyword Arguments

The following keywords are allowed:

n (default 0) : the number of the graphics window (0 to 7 are allowed). each plotter
object corresponds to a separate window.
dpi (default 100 for 2-D, 75 for 3-D) :the size of the window wanted. 100
and 75 are allowed; 100 is the larger size.
wait (1) : used to make sure everything is plotted before changing frames.
private (0) : use a common colormap.
hcp: if not present, use default hardcopy file used by all windows. If present, names a
unique to this window. Use ".ps" suffix for a postscript file or ".cgm" suffix for a cgm file.
dump (0) : if 1, dumps the color palette at the beginning of each page of hardcopy outp
otherwise converts to grey scale.
legends (0) : controls whether (1) or not (0) curve legends are dumped to the hardco
October 13, 1998

s
The
to look
e 2.

 con-
ine. The

able
e, and
se next
r-
arcisse
style ("work.gs") : name of a Gist style sheet to use for this window.

3.2 Instantiation of a Narcisse Plotter Object

Calling Sequence

import NarPlotter
pl2 = NarPlotter.Plotter ([filename])

Description

Remember that Narcisse is different from Gist, in that a PyGist Plotter , when instantiated, create
its own Xwindow. A PyNarcisse Plotter expects to find a Narcisse process already running.
filename argument and/or certain environment variables are used to tell PyNarcisse where
for this process. To refresh your mind on how to fire up a Narcisse process, Section 1.2 on pag

Use the filename variable to specify the location of the Narcisse process to which you wish to
nect. This is absolutely essential if you wish to connect to a Narcisse process on a remote mach
form of a filename is:

"machine+port_serveur++user@ie.32"

where machine is the IP address, e. g., allaria.llnl.gov:0.0 ; port_serveur is the
server port number shown on the Narcisse GUI; and user is your userid.

If filename is blank or missing, then PyNarcisse looks first for the environment vari
DEST_SP3. If it exists, then it should specify the destination in the same format as given abov
this specifies the Narcisse to which connection will be made. If it does not exist, then PyNarcis
looks at the environment variable PORT_SERVEUR. If this variable is defined, then it looks on the cu
rent machine for a Narcisse with that port number. If PyNarcisse is unsuccessful in finding a N
process to which to connect, it goes into a tight loop, repeatedly printing an error message.

UCRL-MA-128569, Manual 4
CHAPTER 4:Examples

General comments that apply to this whole chapter.

4.1 First Section Title

Calling Sequence

general call example

Description

Insert description of all arguments, with xrefs to other related information, etc.

More information.

Optional Attributes

The following optional attributes can be specified with this command. (or some such)

list of attributes

Additional information as needed.

Examples

Description of example(s).

first line code
middle lines of code
last line of code

Whatever.

4.1.1 First subsection

Discuss material that is sufficiently voluminous and self-contained to warrant a subsection.

4.1.2 Second subsection

Next subsection.
October 13, 1998

Note: May want to force page break before next Section.

4.2 Second Section Title

Calling Sequence

general call example

Description

Insert description of all arguments, with xrefs to other related information, etc.

More information.

Optional Attributes

The following optional attributes can be specified with this command. (or some such)

list of attributes

Additional information as needed.

Examples

Description of example(s).

first line code
middle lines of code
last line of code

Whatever.

4.3 Third Section Title

Calling Sequence

general call example

Description

Insert description of all arguments, with xrefs to other related information, etc.

More information.

Optional Attributes

The following optional attributes can be specified with this command. (or some such)

list of attributes

Additional information as needed.

Examples

Description of example(s).

first line code
middle lines of code
last line of code

Whatever.

UCRL-MA-128569, Manual 4
Index

A

add_object 6
add_text 6

B

Basis 1

C

CGM 1
clear_text 6
close 6
config save 3

D

DEST_SP3 12
display 11
do_generic 6
dpi 11
dump 11

E

environment variables 2
DEST_SP3 12
PATH 2
PORT_SERVEUR 3, 12
PYGRAPH 2
PYTHONPATH 2

EZN 1
EZPLOT 1
ezplot 3

F

FILE menu 3
File save 3
filename 12
freeze_graph 6

G

Gist 1, 3
Gist Plotter

instantiation 11
gist.py 2
GistType 9
graftypes 9

H

hcp 11

I

Ihm compute 3
October 13, 1998

K

keywords
dpi 11
dump 11
hcp 11
legends 11
n 11
private 11
style 12
wait 11

L

legends 11

M

move_light 6
move_light_source 6

N

n 11
Narcisse 2, 3

FILE menu 3
File save 3
Ihm compute 3
process 2
socket compute 3
STATE submenu 3

Narcisse Plotter
instantiation 12

NarType 9
new_frame 6

O

Object-Oriented Graphics 1, 3
OOG 1

P

PATH 2
plot_object 6
plot_text 6
plot2d 6
plot3d 6
Plotter object 1
Plotter Objects 3
PORT_SERVEUR 3, 12
PostScript 1
private 11
PyGist 2, 3
PYGRAPH 2
PyGraph 1, 2, 3

Documentation 3
platforms 3

PyNarcisse 2
Python 2

home page 2
Python Narcisse 3
PYTHONPATH 2

Q

query 7
quick_plot 7

R

reset_xyequal 7
rotate_graph 7

S

send_color_card 7
send_generics 7
send_graph 7
set_3d_grid_type 7
set_axis_labels 7
set_axis_lin 7
set_axis_log 7
set_axis_max 7
set_axis_min 7
set_bytscl 7
set_c_contours 7
set_color_card 7
set_connect 8
set_default_axes_limits 8
set_distance 8
set_freeze_each 8
set_grid_type 8
set_label_type 8
set_link 8
set_linlin 8
set_linlog 8
set_loglin 8
set_loglog 8
set_mask 8
set_no_concat 8
set_text 8
set_text_color 8
set_text_pos 8
set_text_size 9
set_title_colors 9
set_titles 9
set_tosys 9
set_x_axis_limits 9
set_xyequal 9
set_y_axis 9
set_y_axis_limits 9
set_yr_axis_limits 9
set_z_c_switch 9
set_z_contours 9
socket compute 3
STATE submenu 3
style 12
support 4
synchronize 9

T

type 9

W

wait 11

X

Xwindows 1

	The Python Graphics Interface, Section III
	Table of Contents
	CHAPTER 1: The Python Graphics Interface�1
	Overview of the Python Graphics Interface 1
	Using the Python Graphics Interface 2
	About This Manual 3

	CHAPTER 2: Introduction to Plotter Objects�5
	PyGraph Plotter Objects 5
	Functions Common to all Plotter Objects 6

	CHAPTER 3: Plotter Instantiation�11
	Instantiation of a Gist Plotter Object 11
	Instantiation of a Narcisse Plotter Object 12

	CHAPTER 4: Examples�13
	First Section Title 13
	First subsection 13
	Second subsection 13

	Second Section Title 14
	Third Section Title 14

	CHAPTER 1: The Python Graphics Interface
	1.1 Overview of the Python Graphics Interface
	1.2 Using the Python Graphics Interface
	1.3 About This Manual

	CHAPTER 2: Introduction to Plotter Objects
	2.1 PyGraph Plotter Objects
	2.2 Functions Common to all Plotter Objects

	CHAPTER 3: Plotter Instantiation
	3.1 Instantiation of a Gist Plotter Object
	3.2 Instantiation of a Narcisse Plotter Object

	CHAPTER 4: Examples
	4.1 First Section Title
	4.1.1 First subsection
	4.1.2 Second subsection

	4.2 Second Section Title
	4.3 Third Section Title

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	W
	X

