
AS551 General Plasma Physics 1
January 18, 2001
1:30 - 4:30 p.m.
Final Exam

(closed book, except for NRL formulary given to you)

180 points total: 1 point ≈ 1 minute. Do not spend too much time on the
short (5-15 point) problems that need only brief answers. Note that you have
a choice on the final question, do ONLY problem 10A or 10B.

1. [20 points] Write down a complete set of ideal MHD equations. Briefly describe
each equation (a sentence or phrase or two for each Eq. is sufficient).

Briefly describe 2 of the important assumptions made in the derivation of these equations,
and their impact on the properties of the MHD equations.

2. [10 points] Write down a phase-space conservation law for the distribution function

of particles responding to an arbitrary force ~A(~x,~v, t). What condition must the force
satisfy in order for the usual phase-space volume conservation property of the Vlasov
equation to hold?

3. [5 points] Express the ratio of the ion thermal velocity to the Alfvén velocity in terms
of another common plasma parameter (assume equal ion and electron temperatures).

4. [10 points] Provide an order-of-magnitude estimate of the ratio of the distance of
closest approach for a 90 degree scattering event to the average distance between particles.
Express this ratio in terms of a common plasma parameter.

5. [10 points] Provide an order-of-magnitude estimate of the ratio of the ion mean-free-
path to the electron mean-free-path (assuming equal electron and ion temperatures and
ion charge Z = 1 for simplicity).

6. [10 points] In MHD equilibrium, ∇p = ~j × ~B/c implies the current is proportional
to a pressure gradient. But the single particle guiding center drifts depend only on the
magnetic fields and not on the pressure gradient of other particles. Briefly explain this
apparent paradox and illustrate it with a sketch.

7. [10 points] Consider an initially uniform magnetic field pointing in the x direction
in an ideally conducting plasma. Due to some external force, the plasma develops a
sheared flow with ~u = ŷu0 × (1− |x|/L) for |x| < L, and ~u = 0 otherwise. (Assume this
velocity remains fixed and neglect the back reaction force of the magnetic field.) Sketch
the magnetic field at a later time. Has the magnetic pressure in the |x| < L region gone
up or down or stayed the same?

8. [10 points] Consider the magnetic field produced by a small ring of current enclosing
the z axis. The magnetic field far from the ring has a dipole structure, so on the midplane
|B| ∝ 1/R3, where R is the distance from the ring. Sketch the particle orbits in the (R, z)
and (x, y) planes in the guiding center approximation, ρ � R, for a particle with v‖ � v⊥.

The current in the ring is now increased very slowly (so all adiabatic invariants are
conserved). Does this particle move in or out?



9. [45 points] Shear Alfvén Waves. Start with the equations of ideal MHD, but add
a viscous drag term to the momentum equation, of the form:

ρ
d~u

dt
= . . . + χρ∇2~u (1)

where . . . are the usual terms in the MHD momentum equation. (All of the other MHD
equations remain unchanged.) Show how to derive the ω vs. k dispersion relation for
incompressible shear-Alfven waves. In the limit of small but non-zero viscosity coefficient
χ, calculate what the damping rate is for the wave. With a sketch and a sentence or two,
briefly describe the role of the magnetic field in the dynamics of this wave.

10. [50 points] Instabilities. Do EITHER 10A or 10B, not both.

10A. Two-Stream Instability

Consider a uniform plasma of cold electrons and a beam of ions, where the equilib-
rium distribution functions for electrons and ions vs. velocity in the z direction are
fe(vz) = neδ(vz) and fi(vz) = neδ(vz − u0). Starting with the Vlasov equation, linearize
it for electrostatic perturbations ∝ exp(ikz− iωt) and show how to derive the dispersion
relation
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In the limit of small but finite |ωpi/ωpe| and |ku0/ωpe|, calculate the growth rate of the
instability.

10B. Rayleigh-Taylor Instability

Consider a plasma suspended against gravity by a magnetic field. Denote g as the
acceleration due to gravity (in the −ŷ direction). There is a stationary equilibrium
where quantities vary only in the ŷ direction and the equilibrium magnetic field is in
the ẑ direction. Consider small amplitude perturbations with the perturbed flow in the
(x, y) plane so the magnetic field remains in the ẑ direction. Write down the linearized
momentum equation. Taking the curl of this equation to eliminate the plasma and
magnetic pressure, and looking at its ẑ component, show how to derive the equation,
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Assuming incompressibility and Fourier transforming in time and x, show how to derive
a second order differential equation for uy which determines the eigenfrequency. For an
exponential density profile, ∂ρ0/∂y = ρ0/s, calculate an instability growth rate in the
limit of very large wave number kx.



Answers:

Overall this exam might be a bit on the easy side, but I think it did test a broad range
of plasma conceptual ideas and problem-solving skills. Here are answers to some of the
conceptual issues that some people had.

1. Standard.

2. Starting from a general conservation law for a distribution function f(~x6, t) in a 6
dimensional phase space:

∂f

∂t
+∇6 · (~̇x6f) = 0 (4)

∂f

∂t
+ ~x + ·∇f + ~A · ∇vf + f∇v · A = 0 (5)

and we get the usual form that conserves phase-space volume (Df/Dt = 0) only if
∇v · A = 0. This will be true for a Hamiltonian system.

3. vti/vA ≈ (β/2)1/2, where β (ratio of plasma to magnetic pressure) is a common plasma
parameter.

4. Closest approach distance b determined by T ∼ e2/b. Average interparticle spacing
n−1/3. Their ratio scales as 1/Λ2/3, where Λ ∼ nλ3

d is the plasma parameter and is usually
a very big number.

5. νe/νi ∼ νei/νii ∼
√

mi/me, so the ion and electron mean free path’s turn out to be
comparable.

6. Spitzer explained this apparent paradox, emphasizing that “fluid flows 6= guiding
center drifts”. Picture is on p. 99 of Goldston and Rutherford.

7. Standard frozen-in field line result. Bx is constant (to conserve flux through an
x =constant plane) while By goes up, so the magnetic pressure does go up.

8. Wanted you to sketch grad B and curvature drift around the ring (and some bouncing
motion along field line of the trapped particles).

The question of the direction of the particle motion is a fascinating subtle problem that
requires careful thinking. Many people have the wrong intuition about it, but about 25%
of you got the direction of the particle motion right. [Because its somewhat non-intuitive,
I didn’t take off much for those of you who got the sign wrong but invoked some of the
right physics.]

It turns out that the particle moves outward. In fact, it moves outwards to regions of
lower | ~B| faster than the magnetic field at a fixed position is increasing, and the net
result is that the energy of the particle actually drops. A harder variant of this problem
is described at http://w3.pppl.gov/∼hammett/gpp1/counter-intuititive.

9. This is a straightforward calculational problem. One should be careful to note that
the shear Alfven-wave is not restricted to have k⊥ = 0. The dispersion relation ω2 = k2

‖v
2
A

is valid for arbitrary ~k, it just turns out to depend only on the parallel component of ~k.

10 A. This is a variant of the two-stream instability as done in class and described in



Goldston and Rutherford. The derivation of the dispersion relation is straightforward.
Writing it in terms of normalized quantities, Ω = ω/ωpe, ε = ω2

pi/ω
2
pe = me/mi, and

α = ku0/ωpe, it can be written as

(Ω2 − 1)(Ω− α)2 = ε2Ω2 (6)

Taking the ε = 0 limit, to lowest order the roots are Ω = ±1 and Ω = α (a double root).
Substituting Ω = Ω0 + ∆Ω, where Ω0 = α (one can show that the Ω0 = ±1 roots are
stable), one finds that the disperion relation to next order is

(α2 + 2αδΩ− 1)(δΩ)2 = ε2α2 (7)

As described in the lecture notes and Goldston and Rutherford, this will give a growth
rate as a function of k (or α) with the most unstable mode k such that α = 1, in which
case this becomes a cubic equation for δΩ to lowest order. I was trying to simplify this
problem for you some by saying you should look at the small α limit, in which case this
simplifies to δΩ = ±i|εα|, or in the original notation, the growth rate is |ωpiku0/ωpe|.
Knowing how to find approximate solutions to complicated equations (like a quartic or
complicated integrals) is a very powerful skill that you can learn a lot more about from
Prof. White’s asymptotic math class (descended from a course that Kruskal taught).

10 B. This problem is done in Goldston and Rutherford and in the lecture notes.


