
AS551 General Plasma Physics 1
Dec. 6., 2004 (err. corr. 12/17)

Problem Set # 10 (due Tuesday Jan 4, 2005)

1. Properties of solutions to a diffusion equation. Consider the 1-D convection
diffusion equation with fixed coefficients u and D:
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Assume that the density profile is sufficiently localized that it satisfies n(x, t) → 0 as
x → ±∞, and is normalized so that

∫

dx n = 1. Define the average position of the
particles by x̄(t) =

∫

dx n(x, t)x, and the average variation around this position by σ2(t) =
∫

dx n(x, t)(x − x̄(t))2. Calculate ∂x̄/∂t and ∂σ2/∂t, to show how they are related to u
and D. (You should find that these result do not depend on the details of the distribution
of the particles, n(x, t).)

2. A particular solution to a diffusion equation. By direct solution show that

n(x, t) =
1

√

2πσ2(t)
exp(−x2/(2σ2(t)))

is a solution of the diffusion equation, Eq.1 in the u = 0 limit. Show how you would
modify this solution to make it correct for a nonzero velocity u. (You’ve just determined
the Green’s function for Eq.1, i.e., the solution for the initial condition n(x, 0) = δ(x).)

3. Collisional transport in air. Work out a rough estimate of the collisional diffusion
coefficient for air (this is often called “molecular diffusion”), using the collision frequency,
mean free path, and thermal speed of molecules under typical atmospheric conditions.
Compare this to an estimate of the diffusion coefficient due to turbulent air motions ob-
served outside on a typical afternoon (assuming the turbulence corresponds to a random
walk process with ∆x ∼ 10 m and ∆t ∼ ∆x/vturb with vturb ∼ 10 km/hour. You are
in charge of homeland security in a certain city. Using this estimate of the turbulent
diffusion coefficient, roughly how long would it take for an aerosol released in the air to
be spread over an area of 1 square kilometer (after being spread over such a large volume,
the toxicity is assumed to be reduced to acceptable levels...).

4. Fusion random walk estimates. Particle diffusion coefficients roughly of order
D = 1m2/s are typical of tokamaks. Fluctuations are observed in the plasma with a time
scale of order ∆t ≈ 10−5s. Assuming this is the step time of some random walk process,
what is the step size ∆x needed to explain the observed D? Assuming this is due to
randomly fluctuating E ×B drifts, so that vE×B ≈ ∆x/∆t, use this to estimate the ratio
vE×B/vti (where vti is the thermal ion speed) for a typical 10 keV fusion plasma.

5. Steady-state diffusion with a source. Particle transport in a cylinder of plasma
of radius a is modeled with the equation
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where the particle diffusion coefficient D and the particle fueling rate S are constants
independent of time or space. (a) Find the steady-state solution n(r) to this equation
in cylindrical geometry with the boundary condition that n(r = a) = 0 (where plasma
particles are assumed to be lost to the wall). (b) Define the integrated particle density
by N =

∫

dr2πrn, and define the average particle confinement time by τp = N/(Sπa2)
(or in other words, the total fueling rate must be Sπa2 = N/τp to maintain the plasma
against diffusive losses). Show how τp can be expressed in terms of D and a. (c) Although
we’ve assumed a boundary condition where the density vanishes at the wall, the flux of
particles to the wall, Γ = −D∂n/∂r, is non zero. Calculate the flux Γ.

5. Goldston & Rutherford problem 12.6. (Effect of ions with charge Z on
transport coefficients) (Approximate answers using scalings from random-walk argu-
ments are sufficient here.)

6. Temperature and power in a conduction-limited regime using Braginskii’s
heat conduction. Consider a plasma bounded by walls at z = ±L/2. The plasma is
confined by a magnetic field in the z direction, and has a cross-sectional area A. Different
effects dominate in various parameter regimes, here we will consider a conduction-limited
regime (there are also sheath-limited regimes, etc.), where the dominant terms in the
energy balance equation are
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Here, κe
‖ is Braginskii’s electron parallel thermal conductivity, and H = Pδ(z)/A is an

external heating source with total power P concentrated near z = 0. Approximating
λ = log(Λ) as constant in Braginskii’s formula for the collision time τe, (a) find the
functional form of T (z) in steady state, and sketch your solution. (b) Taking T (z) = 0 at
the walls, calculate how much heat flux (in Watts/cm2) would be required to maintain
a plasma with T (0) = 10 eV, n(0) = 1012/cm3, and L = 100 cm. (Note: this power
ultimately ends up on the walls, which may then require water cooling tubes to prevent
overheating... Power loads on the wall can also be reduced by placing the wall at a
shallow angle to the magnetic field.)


