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Chapter 1

Introduction

The books by Stevens,3 Padmanabhan,4 and Tribble5 are particularly nice, concise summaries
of advanced physics at the graduate student level.

For a brief review of complex analysis, try Tribble’s book orAppendix C “Pedestrian’s
guide to Complex Variables,” in Nicholson’sIntroduction to Plasma Theory. (If that starts too
deep for you, check out the references he sites. I like Sokolnikoff and Redheffer,Mathematics
of Physics and Modern Engineering.)

Summaries of E&M and classical mechanics are in K. Miyamoto,Plasma Physics for Nu-
clear Fusion (MIT, 1980).

Unless otherwise indicated, most of the formulas here are incgs, not SI (MKS).

Acknowledgements:Thanks to my many physics and mathematics teachers over the years,
including Prof. Tom Stix, Paul Bamberg, George Carrier, John Krommes, and many others.
Useful corrections and suggestions for this document have been made by Tim Stoltzfus-Dueck,
Nino Pereira, and ...
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Chapter 2

Mathematics

2.1. Basic Equations

Quadratic Equation:

ax2 + bx+ c = 0 ⇒ x =
−b±

√
b2 − 4ac

2a

Factorials:
n! = n(n− 1)(n− 2) · · · (3)(2)(1)

1! = 1 0! = 1

(2n+ 1)!! = (2n+ 1)(2n− 1)(2n− 3) · · · (5)(3)(1) = (2n+ 1)!

2nn!

(2n)!! = (2n)(2n− 2)(2n− 4) · · · (4)(2) = n!2n

The number of permutations (where order matters) ofk objects selected from a set ofn
objects, is

n!

(n− k)!
= n(n− 1)(n− 2) . . . (n− k + 1).

The number of combinations (where order doesn’t matter) ofk objects selected from a set ofn
objects is (this is sometimes called “n choose k”):

(

n
k

)

=
n!

k!(n− k)!

The binomial theorem:

(x+ y)n =
n
∑

k=0

(

n
k

)

xkyn−k

4



2.1. BASIC EQUATIONS 5

Geometry

Ellipse Area= πab.
Circle Area= πr2, Circumference= 2πr.
Sphere Volume= 4

3
πr3, Area= 4πr2. b

a

Solid Angle: δΩ =
δS

R2

∫

∂V

dΩ = 4π R
Sδ

x

y

r r sin

r cos
θ

θ

θ

Trig identities:
sin2 x+ cos2 x = 1

tanx =
sin x

cosx
=

1

cot x
sec x =

1

cosx
csc x =

1

sin x

cos2 x =
1 + cos 2x

2
cos(x+ y) = cosx cos y − sin x sin y

sin2 x =
1− cos 2x

2
sin(x+ y) = sin x cos y + cosx sin y

Exponential identities:
eiθ = cos θ + i sin θ

sin θ =
eiθ − e−iθ

2i
cos θ =

eiθ + e−iθ

2i

sinh θ =
eθ − e−θ

2
cosh θ =

eθ + e−θ

2

cosh2 x− sinh2 x = 1

For an arbitrary triangle:

a2 + b2 − 2ab cos θ = c2

sin θ

c
=

sinφ

b
=

sin ξ

a

a

b

c
θ ξ

φ
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Differentiation
dg(u) = g′(u)du

d(fg) = fdg + gdf

d

(

f

g

)

=
gdf − fdg

g2

d sin x = cosxdx d tanx = sec2 xdx

d cosx = − sin xdx d cotx = − csc2 xdx

d sec x = tan x sec xdx d csc x = − cotx csc xdx

d arcsin x =
dx√
1− x2

d arccosx =
−dx√
1− x2

d arctanx =
dx

1 + x2
d arcsec x =

dx

x
√
x2 − 1

d log x =
dx

x

Taylor Series (with remainder):

f(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+ · · ·+ f (n)(a)

n!
(x−a)n+

f (n+1)(X)

(n+ 1)!
(x−a)n+1

Infinite Series:
1

1− x
= 1 + x+ x2 + · · ·+ xn + · · ·

1− xn+1

1− x
= 1 + x+ x2 + · · ·+ xn

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · ·

sin x = x− x3

3!
+
x5

5!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · ·

cosx = 1− x2

2!
+
x4

4!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · ·

for −1 < x < 1: log(1 + x) = x− x2

2
+
x3

3
+ · · ·+ (−1)n+1x

n

n
+ · · ·

√
1 + x = 1 +

x

2
− x2

8
+
x3

16
− · · ·

1√
1 + x

= 1− x

2
+

3x2

8
− 5x3

16
− · · ·

for |x| > |y|: (x+ y)α = xα +
α

1!
xα−1y +

α(α− 1)

2!
xα−2y2 + · · ·
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Vector & Tensor Operators (in simple Cartesian geometry)

∇ =

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

d ~A = d~r · ∇ ~A

d ~A = (dx, dy, dx)





















∂

∂x

∂

∂y

∂

∂z





















(Ax, Ay, Az)

Here I am using the notation that a row vector times a column vector is a dot product, while
a column vector times a row vector is a tensor product. I.e.,∇ ~A is a tensor product, while
~B · ∇ ~A is a vector (the gradient of~A in the direction of~B).

Einstein summation convention: there is an implied sum overrepeated indices. This sim-
plifies working with tensors represented as their indexed matrix elements. Letxi for i = 1, 2, 3
represent the x,y,z coordinates, andAi the component of~A in the i’th direction.

~A · ~B = AiBi

( ~B · ∇ ~A)i = Bj
∂Ai

∂xj
Tensor notation (for simple Cartesian geometry, ignoring contravariant vs. covariant repre-
sentations and upper vs. lower indices): Writing two vectors next to each other (without a dot
that would indicate a dot product or inner product) is calleda tensor product (or outer product)
and results in a second-rank tensor:~A~B = AiBj (sometimes this is called a dyad; the tensor
product is sometimes denoted by~A⊗ ~B or ~A~BT, where~A is a column vector and~BT is a row
vector). Tensors are≈ matrices:

~~T · ~A = TijAj
~~T · ~~P = TijPjk

~A · ~~T = AjTji
~~T :

~~P = TijPij ( ~A~B) : ( ~C ~D) = ~C · ~A~B · ~D,
~~T :

~~P involves contraction with respect to two indices and is called a colon product (or a “dou-
ble dot product”). It is a generalization of a scalar inner product from vectors to matrices. The

Frobenius matrix norm||~~T || =
(

~~T :
~~T
)1/2

.

∇ψ is a vector=
∂

∂xi
ψ

∇ ~A is a tensor=
∂

∂xi
Aj

∇ · ~~T is a vector=
∂

∂xi
Tij

∇ · ( ~A · ~~T ) = ∂

∂xj
(AiTij) = Ai

∂

∂xj
Tij +

∂Ai

∂xj
Tij = ~A ·

(

∇ · ~~T t
)

+
(

∇ ~A
)

:
~~T

where ~~T t is the transpose of~~T . The unit tensor~~1 = I = identity matrix= Kronecker delta

δij =

{

1 if i = j
0 if i 6= j
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Levi-Civita symbol:

( ~A× ~B)i = εijkAjBk where

ǫijk =







1 if i 6= j 6= k cyclic permutation of 1, 2, 3
−1 if i 6= j 6= k cyclic permutation of 1, 3, 2
0 if i = j or j = k or i = k

(∇×A)i = εijk
∂

∂xj
Ak

ǫijkǫilm = δjlδkm − δjmδkl is equivalent to

( ~A× ~B) · ( ~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C)
This can be used to prove

∂Aj

∂xi
vj −

∂Ai

∂xj
vj = (v ×B)i

whereB = ∇×A. That is,(∇A) · v − v · ∇A = v ×B.

Cylindrical, Spherical, and General Geometry

x

y

z

z

φ
r

Cylindrical geometry:d~r = r̂dr + φ̂rdφ+ ẑdz.

x

y

z

z

φ
r

θ

θ

φ̂

^

r̂

^

^

^

Spherical geometry:d~r = r̂dr + θ̂rdθ + φ̂r sin θdφ.
Add something here about vector operators in general curvilinear coordinates, Jacobians,

coordinate transformations, etc??
d~S is a vector that is “normal” to the surface,|d~S| measures the area.
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Integration

∫

f dg = fg −
∫

g df

∫

dx

x
= log |x|

1

2π

∫ 2π

0

sin2 θ dθ =
1

2

Gamma Function: Γ(x) = (x− 1)! =

∫ ∞

0

tx−1e−tdt

Stirling’s approx.: n! ∼
√
2πnnne−n (1 +

1

12n
+ . . .)

uniform approx. good forn = 0: n! ∼
√
2πn+ 1nne−n

error≤ 1% for integern ≥ 0, max error≤ 4% for n ∼ 0.1

Generalized Maxwellian Moments for complexα, β; Realα > 0:

Gn =

∫ +∞

−∞
xne−αx2

e−βx dx

G0 =

√

π

α
eβ

2/(4α) G2n = (−1)n
∂nG0

∂αn
G2n+1 = (−1)2n+1∂

2n+1G0

∂β2n+1

In particular, for a Maxwellian distribution function:

fM =

(

1√
2πvt

)3

exp
[

−(v2x + v2y + v2z)/(2v
2
t )
]

v2t =
T

m
〈v2nx 〉 =

∫

d3v v2nx fM = v2nt (2n− 1)!!

So that〈E〉 = 1
2
m〈v2x + v2y + v2z〉 = 3

2
T . I.e., the average energy per degree of freedom is1

2
T .

“Normal” distribution function:

f(x|x̄, σ) = 1√
2π σ

exp

[

−1

2

(

x− x̄

σ

)2
]

“Error” function:

Φ(y) =
2√
π

∫ y

0

e−t2dt =

∫ +y
√
2σ

−y
√
2σ

dxf(x, 0, σ)

Φ(0) = 0 Φ(±∞) = ±1 Φ(1σ/
√
2σ) = 0.68 Φ(2σ/

√
2σ) = 0.95
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2.2. Complex Analysis

f(z) is analytic in some region if its derivativedf/dz exists (i.e., is independent of the
direction ofdz in the complex plane). The termsholomorphic, monogenic, andregular are also
used. More formally,f is holomorphic iff satisfies the Cauchy-Riemann equations (whereu
andv are real-valued functions):

f(z) = u(z) + iv(z) z = x+ iy

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

Equivalently,f is holomorphic ifd(fdz) = 0 in modern differential geometry notation. Iff is
holomorphic, then it satisfies

∇2f =
∂2f

∂x2
+
∂2f

∂y2
= 0

Cauchy’s integral formula: Forz ∈ regionD, andf(z) holomorphic everywhere inD, then
then’th derivative off is related to the following integral around the boundary ofD (going
counter-clock wise around the contourD):

f (n)(z) =
n!

2πi

∫

∂D

f(ξ)

(ξ − z)n+1
dξ

The leads to the formula for contour integrals:
∮

C

f(ζ)dζ = 2πi× (sum of the residues inside the contour C)

If f(z) has a pole of ordern at z = a, then its residue is defined as

residue=
1

(n− 1)!
lim
z→a

dn−1

dzn−1
((z − a)nf(z))

Fourier Transforms:

f(t) =
1√
2π

∫ ∞

−∞
e−iωtF (ω)dω

F (ω) =
1√
2π

∫ ∞

−∞
eiωtf(t)dt

Convolution theorem:
∫ ∞

−∞
e−iωtF (ω)G(ω)dω =

∫ ∞

−∞
g(t− t′)f(t′)dt′

Fourier transform of a Gaussian is a Gaussian:f(t) = e−at2 → F (ω) =
1√
2a
e−ω2/(4a)

Common forms of Dirac delta function: δ(t) =
1

2π

∫ ∞

−∞
dωe−iωt

δ(t) = lim
L→∞

sinLt

πt
δ(t) = lim

ǫ→0+

ǫ

π(ǫ2 + t2)

lim
ǫ→0+

1

x− a∓ iǫ
= P.V.

1

x− a
± iπδ(x− a)
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2.3. Differential Equations

ODE’s, WKB methods, PDE’s. Green’s functions.
Dirichlet boundary conditions take the formf(x = x0) = C.
Neumann boundary conditions take the formdf/dx|x=x0

= C.
Three main classes of partial differential equations:

• Hyperbolic (wave-like with characteristics):ut = ux, orutt = uxx.

• Parabolic (diffusion-like):ut = uxx.

• Elliptic (Poisson-like):uxx + uyy = 0

Generalized Langevin equation, Green’s function solution.
Special Functions.

2.4. Linear Algebra and Matrices

2.5. Numerical Methods

ODE’s: First order explicit and implicit, Second order Runge-Kutta or Predictor-Corrector
Schemes, Adams-Bashforth, Leapfrog, Backward differentiation formulas (BDF) for stiff
equations. Numerical stability, phase errors of various schemes
PDE’s: Diffusion equations and implicit methods. Convection equations and upwind differ-
encing and limiter methods. Tri-diagonal matrix solver

Finite Fourier Transforms, Convolution equations. Dealiased pseudospectral methods by
the (2/3) rule.

Modern higher-order upwind algorithms for hyperbolic conservation laws: Total Variation
Diminishing flux-limited algorithms, WENO.

2.6. The Greek Alphabet

Alpha A α Nu N ν
Beta B β Xi Ξ ξ
Gamma Γ γ Omicron O o
Delta ∆ δ Pi Π π,̟
Epsilon E ǫ, ε Rho P ρ, ̺
Zeta Z ζ Sigma Σ σ, ς
Eta H η Tau T τ
Theta Θ θ, ϑ Upsilon Υ υ
Iota I ι Phi Φ φ, ϕ
Kappa K κ Chi X χ
Lambda Λ λ Psi Ψ ψ
Mu M µ Omega Ω ω



12 CHAPTER 2. MATHEMATICS

Math and LaTeX dictionary
ℵ \aleph aleph
ℜ \Re real part
ℑ \Im imaginary part
∞ \infty infinity
∀ \forall for all
∃ \exists there exists
R \mathbb R the set of all real numbers
C,Z,Q the set of all complex numbers, integers, or rationals
{. . .} lists the elements of a set
∈ \in element of
⊂ \subset subset
∩ \cap intersection
∪ \cup union
(a, b] interval with open and closed ends{x : a < x ≤ b}
⇐⇒ or iff if and only if

Examples of mathematical notation: Letf(~x, t) be a function that maps an m-dimensional
vector~x and a real valuedt to a real number. The notation for this is,f : Rm × R → R.



Chapter 3

Classical Mechanics

Classical (non-quantum, non-relativistic) Lorentz equation of motion for a particle in an elec-
tric and magnetic field:

d~x

dt
= ~v

m
d~v

dt
= ~F = m~a = e

(

~E(~x) +
~v × ~B(~x)

c

)

Lagrangian formulation for generalized coordinatesqi:

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= 0

L(qi, q̇i) =
1

2
mv2 +

e

c
~v · ~A− eφ

whereq̇i = dqi/dt. The Hamiltonian formulation uses the generalized momentum

pi =
∂L

∂q̇i

To obtain the Hamiltonian
H(pi, qi) = −L+

∑

i

piq̇i

=
1

2m

(

~p− e

c
~A
)2

+ eφ

And the Hamiltonian equations of motion are:

~̇q =
∂H

∂~p
, ~̇p = −∂H

∂~q

The meaning of all this?
K = KineticEnergy

U = PotentialEnergy

L = K − U, H = K + U

Note thatL = L(~q, ~̇q) while H = H(~q, ~p), so that∂/∂qi in the two different approaches
(Lagrangian and Hamiltonian) holds different independentvariables fixed because~p 6= ~̇q.

The time evolution of any function defined on phase space (andtime)f(~q, ~p, t) is

df

dt
=
∂f

∂t
+
∂f

∂qi
q̇i +

∂f

∂pi
ṗi =

∂f

∂t
+
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
≡ ∂f

∂t
+ {f,H}

which serves to define the Poisson bracket{f,H}.

13



Chapter 4

Electricity & Magnetism

“To convert any expression from SI to cgs units, make the replacements,B → B/c, ǫ0 →
1/(4π), µ0 → 4π/c2. The inverse transformation is more complicated, and is described in
Jackson (1975)”9 and in the NRL formulary.

14
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Chapter 5

Plasma Physics

Fundamental phenomena: electron plasma oscillations, Debye shielding, gyroradius, gyro-
frequency, collisions, plasma skin depth.

Debye shielding from Boltzmann response in thermodynamic equilibrium: f ∝
exp(−H/T ) ∝ exp(−(mv2/2 + qΦ)/T → n ∝ exp(−qΦ/T )
Plasma ParameterΛ = nλ3D = # of particles in a Debye sphere.Λ ≫ 1 defines the
usual plasma state. Nearest neighbor interactions weak: (potential energy of nearest neigh-
bors)/(kinetic energy)∼ 1/Λ2/3. Collective interactions strong (quasineutrality, Debye-
shielding length is short, 2-stream instability, frozen-in field lines, Alfvén and other plasma
waves).

Fundamental length scales(evaluated forΛ ∼ 106):

90◦ impact
parameter

:
average
interparticle
spacing

:
Debye
shielding
length

: mean free path

b : n−1/3 : λD : λmfp

Λ−1 : Λ−1/3 : 1 : Λ/ log Λ

10−6 : 10−2 : 1 : 105

b is the “distance of closest-approach” for a single90◦ collision (though it turns out that the net
scattering rate is enhanced by a factor oflog Λ due to many small-angle scatters.)λmfp ∼ v/ν
is the mean free path between collisions.

Time scales: Collision frequency is weak:ν/ωpe ∼ logΛ/Λ.

?? Guiding center drift equations (Lagrangian formulation).
Laser-plasma interactions. Figure-8 orbits.

5.1. Fundamental Kinetic Theory

Classical (non-quantum) non-relativistic Lorentz equation of Motion for thei’th particle:

d~xi
dt

= ~vi

mi
d~vi
dt

= ~Fi = mi~ai = ei

(

~E(~xi) +
~vi × ~B(~xi)

c

)

16
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A trick for replacing these2N ODE’s with a single PDE is to use the Klimontovich-Dupree
equation forf∗(~x,~v, t) =

∑

i δ(~x− ~xi(t))δ(~v − ~vi(t)),

∂f∗
∂t

+ ~v · ∂f∗
∂~x

+ ~a · ∂f∗
∂~v

= 0

TheVlasov equation for f is identical to this equation forf∗, except thatf is considered to
be a smooth density of particles in phase-space (and so has been course-grained, averaging
over a finite volume, orf is considered as a statistical probability function from anensemble
average). This smoothf (which produces a smooth electric field) thus ignores the effects of
collisions between discrete particles (where the electricfield blows up if any two particular
particles get too close). Collisions must be reintroduced via a collision operator on the right-
hand side (or will arise from next order corrections in the coarse-graining/averaging procedure
as in the BBGKY hierarchy), leading to theBoltzmann equation:

∂f

∂t
+ ~v · ∂f

∂~x
+ ~a · ∂f

∂~v
= C(f)

Another approach: Multidimensional Conservation Laws.
Let f(x1, x2, . . . , xN , t) be a distribution for anN-dimensional phase space, where the

equations of motion aredxi/dt = ẋi = ui. Then particle conservation can be expressed as:

∂f

∂t
= −

∑

i

∂

∂xi
(ẋif) = −

∑

i

∂

∂xi
(uif) = −~∇ · (~uf)

Breaking up the phase-space in to the canonical positions~q = (x1, x2, . . . , xN/2) and the
canonical momenta~p = (xN/2+1, . . . , xN ), then the phase-space conservation law forf(~p, ~q)
can be rewritten as

∂f

∂t
+

∂

∂~q
·
(

~̇qf
)

+
∂

∂~p
·
(

~̇pf
)

= 0.

Using the Hamiltonian equations of motion one can then show Liouville’s theorem

Df

Dt
=
∂f

∂t
+ ~̇q · ∂f

∂~q
+ ~̇p · ∂f

∂~p
= 0,

i.e.,f is constant along trajectories in phase space (conservation of phase-space).
Equilibrium solutions (iff a function only of constants of the motion, Boltzmann thermo-

dynamic equilibrium...).
2-stream instability, Landau damping.

5.2. Fokker-Planck Collision Operator and Coulomb Scattering

General expression for probabilistic transitions. Letf(~v, t) be the density of particles (or
the probability distribution for a single particle) at velocity ~v at time t. If P∆t(~v, ~ξ) is the
probability of a particle initially at~v taking a step to~v + ~ξ, then

f(~v, t) =

∫

d3ξf(~v − ~ξ, t−∆t)P∆t(~v − ~ξ, ~ξ)

This is also known as a Markov process. Doing a Taylor-seriesexpansion for smallξ

f(~v − ~ξ, t−∆t)P∆t(~v − ~ξ, ~ξ) ≈ f(~v, t−∆t)P∆t(~v, ~ξ) + ξi
∂

∂vi
f(~v, t−∆t)P∆t(~v, ~ξ)

+
1

2
ξiξj

∂

∂vi

∂

∂vj
f(~v, t−∆t)P∆t(~v, ~ξ)
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integrating over all~ξ and taking the limit∆t→ 0 gives the genericFokker-Planck equation:
(

∂f

∂t

)

Coll

= C(f) = − ∂

∂vi

[

f(~v, t)
〈∆vi〉
∆t

]

+
∂

∂vi

∂

∂vj

[

f(~v, t)
〈∆vi∆vj〉

2∆t

]

= − ∂

∂vi

[

f(~v, t)~̇vi

]

+
∂

∂vi

∂

∂vj
[f(~v, t)Dij ] = −∂Ji

∂vi

Where〈∆vi〉 =
∫

d3ξP∆t(~v, ~ξ)ξi, and similarly for〈∆vi∆vj〉. For finite size time steps, the
diffusion tensor should be given by

Dij =
〈(∆vi − 〈∆vi〉)(∆vj − 〈∆vj〉)〉

(2∆t)

(assuming I did the multi-dimensional generalization of this right??).~J =
∑

β
~Jαβ is given in

the NRL formulary and is the flux in velocity space of speciesα due to collisions with species
β. Because of the analogy with electrostatics noted by Rosenbluth, the Rosenbluth potentials
in the NRL can also be written as

∇2
vH = −(1 +

mα

mβ

)4πfβ ∇2
vG =

2

1 + (mα/mβ)
H

If fβ is Maxwellian, then the collision operator simplifies to theform at the top of NRL p. 36
(this ignores the back-reaction offβ due to collisions with the non-Maxwellianfα). A useful
I.D.:

∂

∂~v
·
[

1

2v3
(v2~~1− ~v~v)

]

= − ~v

v3

Coulomb logarithm: The NRL formulary gives a recipe for a general Coulomb logarithm
ln Λαβ = ln(rmax/rmin) for a test particleα colliding with field particlesβ with relative veloc-
ity ū = |vα − vβ|. Note that the symmetrylnλαβ = lnλβα is important in proving various
conservation properties of the collision operator, and thelnλαβ factor should be kept inside the
v′ = vβ integral in the Landau form of the collision operator on p.35of the 2002 NRL formu-
lary, if the dependence oflnλαβ on the relative velocity is retained. (Since the collision opera-
tor is only accurate to∼ 1/ lnΛ, often this can be neglected, but the symmetrylnλαβ = lnλβα
should still be preserved.) The NRL’s recipe says that the maximum impact parameter is cut off
by Debye shielding,rmax = (4π

∑

γ nγe
2
γ/kTγ)

−1/2, “where the summation extends over all
speciesγ for which ū2 < v2Tγ

” (where ū is the relative velocity). An obvious question is what
happens for suprathermal particles that are even faster than thermal electrons, do they not ex-
perience Debye shielding at all? The answer is that they are still shielded, but only on a longer
spatial scale on which their transit frequency is of order the plasma frequency. Thus a possible
generalization of this recipe is to replacer−2

max =
∑

γ ω
2
pγ/v

2
tγ →

∑

γ(ω
2
pγ + Ωcγ)

2/(v2tγ + ū2),
keeping a sum over all species. The Coulomb logarithm is usually derived for the standard
weakly-coupled plasma regime where is it very large. A more general approximation is to
replaceln Λαβ = ln(rmax/rmin) → ln((1 + r2max/r

2
min)

1/2). This will give approximately the
correct collisional relaxation rates, but in this regime small angle collisions no longer dominate
so the diffusive approximation is no longer rigorous.

Qualitative collision rates:

νei : νee : νii : νie

Zeff : 1 :
√

me/mi : me/mi
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Electron-ion collisions cause pitch angle-scattering only, giving rise to resistivity (electrons
lose momentum to ions), and electron-electron collisions causefe to approach a Mawellian
(preserving the electron energy, in the ion rest frame). Ion-ion collisions causefi to approach
a Maxwellian (preserving the ion energy).Ti andTe equilibrate only at the very slowνie rate.
ν ∼ 1/v3 so energetic particles are less collisional.

5.3. Braginskii Fluid Equations

The summary of Braginskii in the NRL is supplemented here. Braginskii uses the Landau
collision operator for Coulomb collisions between ionizedparticles (thus ignoring atomic pro-
cesses, collisions with neutrals, external sources or sinks of particles or energy). (Note, the

NRL reverses the definition of~~Π and~~P relative to Braginskii’s original notation.)

nα =

∫

d3vfα nα~uα = nα〈~v〉α =

∫

d3vfα~v

Pressure tensor ~~Πα = pα
~~1+

~~P α = nαmα〈δ~vδ~v〉α = nαmα〈(~v−〈~v〉α)(~v−〈~v〉α)〉α

Heat flux ~qα = nα
1

2
mα〈|δ~v|2δ~v〉α

Friction / Collisional drag rate~Rα =

∫

d3v mαδ~v Cα & heating Q =

∫

d3v
1

2
mα|δ~v|2 Cα

Definingp = nT gives〈m|δ~v|2/2〉 = (3/2)T , i.e. T/2 of energy per degree of freedom (di-
mensions or modes among which energy can be shared).p is the isotropic part of the pressure

tensor, so~~P must be traceless. Braginskii used a Chapman-Enskog-like approach to calcu-
late the closures in the collisional limit. The NRL has summaries of Braginskii forΩcτ ≫ 1
or ≪ 1, though Braginskii has more general expressions. The NRL expressions are for a
hydrogen-electron plasma, while Braginskii gives expressions for a plasma with arbitrary ion
chargeZi and for multiple ion species,ne =

∑

i niZi. To generalize the NRL formulas for
arbitraryZi, the electron and ion collision times and various coefficients are modified in the
following way:

τe =
3
√
me T

3/2
e

4
√
2πniZ

2
i e

4Λ
τi =

3
√
mi T

3/2
i

4
√
πniZ4

i e
4Λ

Zi dependence of various transport coefficients (Braginskii,Table 1)

First term of
Zi σ‖

~RT and~q e
u κe

‖
κe

⊥

1 1.96 0.71 3.16 4.66
2 2.27 0.9 4.9 4.0
3 2.50 1.0 6.1 3.7
4 2.63 1.1 6.9 3.6
∞ 3.4010 1.5 13.610 3.2

I.e., the equation forσ‖ is σ‖ = 1.96σ⊥ for Zi = 1, andσ‖ = 2.63σ⊥ for Zi = 4. Spitzer’s
result for resistivity is identical to Braginskii’s. Spitzer’s result for the energy equilibration rate
reduces to Braginskii’s result formα/mβ ≪ 1.
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The NRL/Braginskii expressions for~~W can be applied to arbitrary, non-straight,~B fields,
as long as one properly identifiesẑ with b̂ = ~B/B. There is a potential ambiguity in the NRL
expressions: the proper relation is∂vz/∂xz = (b̂ · ∇v) · b̂, andnot ∂vz/∂xz = b̂ · ∇(v · b̂). For

example,Wzz = b̂ · ~~W · b̂ = 2b̂ · (∇~v) · b̂− (2/3)∇ · ~v. More generally,W = ∇v + (∇v)T −
(2/3)1∇ · v. Note that~~P and ~~W are traceless (Wxx +Wyy +Wzz = 0) and symmetric. In
the strongB limit (Ωcτ ≫ 1, whereτ is the collision time), Braginskii’s stress tensor becomes

diagonal to lowest order,~~P = −η0[Wzzb̂b̂− (Wzz/2)(
~~1− b̂b̂)]. Even without strong collisions,

in the strongB limit (ω/Ωc ≪ 1, ρ/L ≪ 1) the rapid gyration of particles means thatf(~v)

to lowest order must be isotropic perpendicular to~B, so the pressure tensor must be diagonal,

yielding the CGL (Chew-Goldberger-Low) pressure tensor~~Π = p‖b̂b̂ + p⊥(
~~1 − b̂b̂). The CGL

“double adiabatic” equations of state (neglecting heat flows and collisions):

d

dt

( p⊥

nB

)

= 0 (from µ conservation)

d

dt

(

T‖

(

B

n

)2
)

= 0
(if the magnetic field and plasma move together,T‖

changes only due to compression parallel to~B)

The fluid equations are often simplified further (such as in simple MHD) by assuming
isotropic pressure and neglecting heat flows and collisional energy exchange between species:

∂p

∂t
+ ~v · ∇p = −Γp∇ · ~v or

d

dt

( p

nΓ

)

= 0

i.e., an adiabatic equation of state where a fluid element compresses or decompresses as an
ideal gas withp = CnΓ (C is constant as the fluid element moves, but may differ between
fluid elements because of the spatial variation of the initial temperature, so the above form
d/dt(p/nΓ) = 0 is more general).Γ = 5/3 in 3-D, orΓ = (2 + d)/d with d = # of degrees of
freedom in general. While this equation of state corresponds to zero heat flux (which may be
appropriate for waves that propagate faster than particles, ω/k ≫ vt), choosingΓ = 1 allows
one to consider the opposite limit of a heat flux so rapid that the temperature is uniform (this
isothermal closure may be appropriate for phenomena withω/k ≪ vt). For some phenomena,
an even simpler closure ofp = 0 (the cold-plasma approximation) is made. Intermediate cases
whereω/k ∼ vt gives rise to Landau damping. Approximate fluid models of Landau damping
use closures for higher moments that correspond to characteristic damping rates of ordervt|k|,
the phase-mixing rate.8

Equations of state summary: adiabaticp ∝ n5/3, isothermal p ∝ n, cold-plasma
p = 0.

Braginskii’s equations are derived for a specific ordering and there are corrections that can
become important in some regimes. For example, see papers byCatto and Simakov11 circa
2002-2005. Mikhailovskii and Tsypin12 have terms like

∇ · ~Π ∼ c1∇~u+ c2∇~q
wherec1 is Braginskii-type terms andc2 are Mikhailovskii’s new heat flux terms?

Spitzer’s resolution of the Fluid-Particle paradox: The fluid flow velocity is the sum of the
particle guiding center drifts plus a diamagnetic velocity(a.k.a. magnetization current). I.e.,
the current from a particular species is

~j = ~jE×B +~j∇B +~jcurv +~jpol + . . .+~jM
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where the magnetization current is given by~jM = ∇ × ~M = −∇ × (cns〈µs〉b̂) = −∇ ×
((c/B)p⊥b̂), and〈µs〉 is the mean magnetic moment for speciess.
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5.4. MHD/One-Fluid Equations

The standard ordering assumptions to derive simple MHD are:slow time scales compared
to the gyrofrequency and large spatial scales compared to the gyroradius (similar to the drift
equations),ω/Ωci ∼ ρi/L ∼ ǫ ≪ 1. me/mi ≪ 1 is used and quasineutrality is assumed
(this orders out high-frequency electron plasma oscillations), andvA/c ≪ 1 is assumed (the
displacement current is ignored to order out light waves). MHD allows flowsu ∼ c ~E ×
~B/B2 ∼ vti andβ ∼ 1, though subsidiary orderings can be made later. Switch fromtwo-fluid
variables to one-fluid variables: mass densityρ =

∑

α nαmα, mass-weighted flow velocity

ρ~u =
∑

α nαmα~vα, current density~j =
∑

nαqαuα, and define pressure relative to~u, ~~Π =
∑

αmαnα〈(~v − ~u)(~v − ~u)〉α ≈ p
~~1

Conservation of Mass
∂ρ

∂t
+∇ · (ρ~v) = 0

Momentum conservation, force balance ρ
d~u

dt
= −∇p +

~j × ~B

c

Energy conservation, adiabatic pressure
dp

dt
= −Γp∇ · ~u

Generalized Ohm’s Law (FLR butme → 0) ~E +
~u× ~B

c
= η~j − ∇pe

ne
+
~j × ~B

nec

Magnetostatic Maxwell’s Eqs:
∂ ~B

∂t
= −c∇× ~E ∇× ~B =

4π

c
~j

Other Maxwell’s equations:∇ · ~B = 0 is only an initial condition, and∇ · ~E = 4πσ is used
only to verify quasineutrality assumption. The last term ofthe generalzied Ohm’s law is the
Hall term, and the last two terms of the Ohm’s law are usuallyρi/L smaller than the first two
terms and are neglected in standard MHD. Extensions of simple MHD are sometimes made to

keep a CGL pressure tensor or a full pressure tensor,∇p → ∇ · ~~Π, using equations of state or
Braginskii transport coefficients from the previous section.

There arethree main waves in MHD. Linearizing the MHD equations for a uniform
plasma with a straight magnetic field and an adiabatic equation of stateδp = c2sδρ, the general
dispersion relation is

(ω2 − k2
‖
v2A)(ω

4 − ω2k2(c2s + v2A) + k2k2
‖
c2sv

2
A) = 0

where the Alfvén speedvA is given byv2A = B2/(4πρ), and the sound speedcs is given by
c2s = Γp/ρ = Γ(Ti + Te)/mi. Approximate formulas that interpolate for arbitaryβ are: the
shear Alfvén waveω2 = k2

‖
v2A, the fast magnetosonic (compressional Alfv́en) waveω2 =

k2(v2A+c
2
s), and theslow magnetosonic wave, a.k.a. the slow mode (at high beta sometimes

called the pseudo-Alfv́en wave, and at low beta it becomes an ion acoustic wave)ω2 =
k2zv

2
Ac

2
s/(v

2
A + c2s). (There is also the lesser known entropy mode, but this is eliminated by

using an adiabatic equation of state instead of the time-dependent pressure equation. In ideal
MHD the entropy mode is zero frequency and hasδρ 6= 0 but δp = 0 (i.e., force balance is
maintained by opposite density and temperature gradients).)

??δW Energy principle, Grad-Shafranov Equation, MHD equilibria in general geometry.

5.5. Waves

cold-plasma dielectric tensor? quasilinear theory?
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5.6. Stochasticity, Turbulence, and Transport

5.7. Tokamak Equilibrium

5.8. Common Plasma Physics Parameters

“Safety factor” (better, “inverse rotational transform” or “winding ratio”):

q =
2π

ι
=

dΨtor

dΨpol
≈ r

R

Bφ

Bθ

Magnetic shear

ŝ =
r

q

dq

dr

Random walk diffusion coefficient

D =
1

2

(∆x)2

∆t

Dclassical = νeiρ
2
e

Turbulent mixing length estimate

Dml =
γ

k2
⊥

Bohm

DBohm =
1

16

cTe
eB

Gyro-reduced Bohm (∆x ∼ 1/k ∼ ρ, ∆t ∼ 1/γ ∼ 1/ω∗ evaluated atk⊥ρ ∼ 1):

DgB =
cTe
eB

ρs
Ln

= csρs
ρs
Ln

Reaction rates are of the formΓ = nαnβ〈σv〉/(1 + δij), where theδij corrects for the case
of self-collisions.

?? The form of 1.5D transport equations in general geometry.
?? 0-D scaling relations for reactor design studies: Troyonbeta limitβ ∝ I/(aB), global

energy scaling, Greenwald density limit, pedestal scalings, H-mode power thresholds. shaping
effects, bootstrap fraction. Trubnikoff’s ECE cyclotron power losses.



Chapter 6

Quantum Mechanics

6.1. The essential quantum mechanic

Schrödinger’s Equation:

i~
∂

∂t
Ψ = HΨ =

(

p2

2m
+ V

)

Ψ =

(

− ~2

2m
∇2 + V

)

Ψ

Plane waves (with momentump = ~k and energyE = ~ω):

Ψ ∝ ei(kx−ωt) = ei(px−Et)/~

Commutators:[x, p] = xp− px = i~

d

dt
〈A〉 =

〈

dA

dt

〉

+
i

~
〈[H,A]〉

Heisenberg Uncertainty Principle〈(∆A)2〉〈(∆B)2〉 ≥ 1
4
||〈ψ|[A,B]|ψ〉||2.

“Natural units” uses 3 fundamental units: action (or angular momentum) (~), velocity c,
and energyeV . The 3 fundamental units of cgs are length, mass, and time, and “action” has
units of [momentum]×[length]. . In natural units,~ = c = 1, and all physical units are
reported in “eV”.

?? Could add: Harmonic oscillator, Variational methods, Bound-state non-degenerate per-
turbation theory, degenerate perturbation theory, time-dependent perturbation, scattering the-
ory, Born approximation, angular momentum and spin, atomicenergy levels.

24



Chapter 7

Astrophysics

1 parsec (pc)= 3.086× 1016m = 3.262 lyr

1 light year (ly)= 9.461× 1015m

1 Julian year= 365.25 days= 3.156× 107s

Approx. a hundred, thousand, million (1011) stars per galaxy.
Approx. a hundred, thousand, million (1011) galaxies in the visible universe.
Approx. 1 supernova explosion per galaxy per century.
Age of the universe: 14 billion years.

?? Could add a length/mass scale object plot, starting with largest scale at the size of the
(visible) universe, clusters, groups, elllitical and spiral clusters, AGN/MBH, globular clusters,
red giants, stars, white dwarfs, neutron stars, jupiter, earth, etc. (like Padmanabhan Table 1.1
or elsewhere), and continuing down to molecules, atoms, nucleons...

Add a phase diagram plot like Fig. 1.1 of Padmanabhan?
Could add a time history plot: big bang, first 3 minutes, lightelement fusion, recombina-

tion, first stars, reionization, galactic formation, age ofthe solar system, earth, ...
Stellar structure, stellar life cycle...

25
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