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1 Answers to a question about the Chapman-
Enskog procedure

One of the students in Irreversible Processes asked the following question, and I
thought the whole class might benefit from thinking about this. Below is my answer
(with some improvements since the email answer I sent out earlier).

A student wrote:

I have a question about using the Krook operator in equations derived
using the Chapman-Enskog ordering. Originally, in my notes, I have that
the Krook operator is C[f ] = −ν(f − fM

∫

dvf) but it seems that when
we use it in the correction equation we only use −νf1. Why do we assume
that the integral of f1 over v is 0 and should we assume that this is true
for all higher order f ’s?

This is a very important and subtle question. I tried to explain it some on p.
2 of http://w3.pppl.gov/∼hammett/courses/irrev01/notes.pdf but perhaps it should
be explained further. The basic idea is as follows.

Start with the 1-D kinetic equation:

∂f

∂t
+ v

∂f

∂x
= −ν(f − fM

∫

dvf)

where fM (v) is an unshifted Maxwellian with unit density, so this Krook model has
been designed to conserve particles, but does not conserve momentum.

Taking ν ∼ 1/ε, and expanding f = f0 +f1 +f2 + . . . in powers of ε, then to lowest
order in the large ν limit, we have the equation

0 = −ν(f0 − fM

∫

dvf0)

so that the general solution is of the form f0 = n0fM = n0(x, t)fM(v). Note that the
density for f0 in this equation is mathematically undetermined. (You can replace f0
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with cf0 for arbitrary constant c and still have a solution.) We will use this freedom
to choose the density of f0 so that it is equal to the full density of f :

∫

dvf0 = n0 =
∫

dvf = n(x, t)

Since f = f0 + f1, this means that f1 won’t contain any density,
∫

dvf1 = 0. Neither
will any other higher-order fj ’s, since

∫

dvfj = 0 must be satisfied independently at
every order.

Perhaps the best simple argument for this is just that we certainly have the free-
dom to choose the density of f0 to be the same as the density of the total f , and that
experience has found that this choice simplifies the next order correction equations.
We will show in the next section that it is in fact possible to allow n0 to differ from
the total density n, but this complicates the higher order equations some.

The discussion of these issues in Krommes Ch. 31 (“Transport and the one-
component plasma”) around Eq. 15 is useful to review. Krommes refers to this
property (that

∫

dvfj = 0 for all higher order perturbations j ≥ 1 ) as meaning
that all of the perturbations are “orthogonal to the hydrodynamic subspace”, i.e.
the space of functions for which the collision operator C vanishes and therefore the
space of functions for which C can’t be inverted. Regarding this choice (of

∫

dvf0

being chosen to be the same as the density in the full f), Krommes says: “It is not
completely obvious that this procedure is systematic and justifiable, and this is one of
the annoying aspects of the Chapman-Enskog procedure. It can however, be justified.
See the later discussion of the projection-operator method in Chap. 33.”

There are several other contexts when similar issues arise to what we are consider-
ing here, such as gyro-averaging or bounce-averaging. For example, when we did the
Chapman-Enskog-Braginskii calculation for a strong magnetic field, we had equations
of the form

−
q

mc
~v × ~B ·

∂f

∂~v
+ Ĉf = −Ωc

∂f

∂φ
+ Ĉf = S,

(where φ is the gyroangle and S is some unspecified source term). In class we showed
one way to expand this equation in the limit of large Ωc (large cyclotron frequency)
and work out the transport coefficients perpendicular to the magnetic field. For large
Ωc, the first term on the LHS dominates. However, this can only be used to determine
components of f which vary with φ, since ∂/∂φ vanishes on any function which is
constant in φ. (One thus has to go to higher order to determine the φ independent
part of f .) In other words, the operator ∂/∂φ has a “null space” and thus can’t be
the dominant operator in all of phase space. People often use projection operator
techniques such as Krommes discusses to break up the problem into the subspace for
which the main operator vanishes and the subspace in which it dominates (or some
other convenient splitting).

1.1 Additional rationales

In addition to the main reason given above, there are several other ways to think
of why it is useful to impose this constraint. One is to consider starting with an
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arbitrary non-Maxwellian f . Then on a very short time scale, one can neglect the
v∂f/∂x term relative to the collision term, and the kinetic equation is just:

∂f

∂t
= −ν(f − fM

∫

dvf)

because ν is so large, f will quickly relax to a Maxwellian f0, but this f0 must have
the same density as the initial f .

Another way to think of it is that since we are expanding f = f0+f1, and assuming
that f1 is “small”, we want to choose f0 so that it is as “close” as possible to f . Since
the only free parameter in f0 is the density, we get a best fit (in some sense) by
choosing the density of f0 to be the same as the density in the total f .

Perhaps the most precise way to think about this is to write the next order “cor-
rection equation”:

df0/dt + vdf0/dx = S = Cf1

where C is the linearized collision operator, and S the “source term”, i.e. the left-hand
side of the equation. Formally, we have to invert C to find f1:

f1 = C−1S

However, since C vanishes if it operates on a Maxwellian of arbitrary density, its
inverse is not well defined and f1 could be a specific solution to C−1S plus an arbitrary
constant n1 times a Maxwellian fM . Determining that constant requires going to
higher order (we will show how this can be done in the next section). But by requiring
that n0 = n (which we are certainly free to do), where n is the full density, we
automatically constrain n1 =

∫

dvf1 = 0 and we are saved the trouble of having to go
to the even higher order equation to determine n1. We can then use the full density
conservation law to determine the time evolution of n0 = n.

This is all related to the issue of how many fluid moment equations are kept
before a closure is introduced. If the collision operator conserves only density,
then only a density fluid equation is kept and a closure approximation for the flux
nu = −D∂n/∂x will be calculated. In this case only the density of f0 is constrained,
and f1 can be constrained to have no density. If the collision operator conserves
density, momentum, and energy, then 3 fluid conservation laws for all 3 quantities
are kept and closures are calculated only for higher order moments (like the heat
flux or anisotropic parts of the pressure tensor). In this case f0 will be a shifted
Maxwellian specified by 3 parameters (the density, average momentum, and temper-
ature), and f1 can be constrained to have no density, no average momentum, and
no average energy, i.e. f1 is orthogonal to the null space of C. In the notes at
http://w3.pppl.gov/∼hammett/courses/irrev01/notes.pdf I also did a case where the
1-D collision operator conserved density and momentum, but not energy. In that
case we kept a density and a momentum fluid conservation law, and collisions led to
a viscosity term in the momentum equation.
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1.2 Allowing non-zero density in f1

In this section, we will show how the calculation proceeds if one does not impose the
constraint that

∫

dvf0 =
∫

dvf (and thereby show why things are simpler if one does
use this constraint).

Start again with the 1-D kinetic equation. We will slightly modify the assumed
ordering for the case at hand, where the collision operator conserves only density, to:

∂f

∂t
+ v

∂f

∂x
= −ν(f − fM

∫

dvf)

∼ ε1
∼ ε0

∼
1

ε

If the collision operator conserves momentum and energy as well, then there can be
hydrodynamic waves with ∂/∂t ∼ ω ∼ vt∂/∂x. But in this case where the collision
operator doesn’t conserve momentum, we will find ∂/∂t ∼ D∂2/∂x2 ∼ 1/ν ∼ ε, so
this is a consistent ordering. (One could work with a ∂/∂t ∼ ε0 ordering, but it
complicates things a bit in going to higher order.)

To lowest order we find f0 = n0fM = n0(x, t)fM (v). We won’t require n0 = n
exactly, but it should be close to n so that n1 can be small by comparison (as f1

should be small compared to f0 in the ε expansion). To next order we have

v
∂f0

∂x
= −ν(f1 − fm

∫

dvf1)

The general solution to this is

f1 = −
v

ν

∂n0

∂x
fM + n1fM

where n1(x, t) is an arbitrary coefficient (you should be able to convince yourself that
this is the completely general solution). We actually don’t need to know n1 if we only
want to calculate the first order flux (nu)1 =

∫

dvf1v = −D∂n0/∂x, where D = v2
t /ν,

and v2
t =

∫

dvfMv2. The fluid density equation ∂n/∂t + ∂(nu)/∂x = 0 (an exact
expression) in our ordering expands to

∂n0

∂t
= −

∂

∂x

∫

dvf1v = D
∂2n0

∂x2

and at higher orders is
∂nj

∂t
= −

∂

∂x

∫

dvfj+1v

To determine n1, we have to go to the next order equation

∂f0

∂t
+ v

∂f1

∂x
= −ν(f2 − fM

∫

dvf2)
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Substituting for f0 and f1 leads to

D
∂2n0

∂x2
fM + v

[

−
v

ν

∂2n0

∂x2
+

∂n1

∂x

]

fM = −ν(f2 − fM

∫

dvf2)

Denoting the left-hand side of this equation as S, the solution is f2 = −S/ν + n2fM ,
i.e., f2 is only determined by this equation up to an arbitrary multiple of fM . It can
be determined at next order, but if we are only interested in the flux, we can easily
calculate it to be (nu)2 =

∫

dvvf2 = −D∂n1/∂x, so that

∂n1

∂t
= D

∂2n1

∂x2

This can be combined with the similar equation for ∂n0/∂t, so that only a single
diffusion equation for the combined quantity n0 + n1 needs to be kept. In fact,
there will be similar terms at all higher orders, which can all be combined to-
gether to provide a single diffusion equation for n = n0 + n1 + n2 + . . .. [How-
ever, there will also be additional terms at higher orders, starting with the f3 term,
that lead to things like the Burnett correction terms, as discussed in Sec. 1.3 of
http://w3.pppl.gov/∼hammett/courses/irrev01/notes.pdf.]

So while it appears that it is possible to relax the constraint
∫

dvf0 =
∫

dvf , this
section at least shows why it is more convenient to use such a constraint.
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