
Version 1.2

GKV User’s Manual –1– 4/28/02

GKV User’s Manual

Version 1.2

W.M. Nevins
LLNL

7/28/02

Version 1.2

GKV User’s Manual –2– 4/28/02

Table of Contents
Table of Contents ... 2

1. Introduction... 5

2. Initializing GKV .. 6

2.1 IDL Version Requirements. ... 6

2,2 For pg3eq Users Only... 7

2.3 Compiling GKV .. 7

2.4 Initializing GKV.. 8

2.5 Choosing Working and Source Directories.. 8

3. Importing Data from Simulation Code Output Files .. 10

3.1 Importing Data from NETCDF Files in Standard Format ... 10

3.2 Standard NetCDF File Format.. 11

3.3 Importing Data from NetCDF Files in pg3eq Format .. 13

3.4 Importing Data from GTC .. 14
GTC_History.. 14
GTC_ShearEB,... 15
GTC_DATA... 16

3.5 Importing Data From TUBE ... 18

3.6 Importing Data from GYRO ... 20
ALL_k .. 20

4. Transforming the Representation of Data ... 22

4.1 FFT... 22

4.3 FUNCTION KtoX... 23

4.4 FUNCTION ROTATE ... 23

5. Arithmetic on Objects.. 25

5.1 FUNCTION Plus... 25

5.2 FUNCTION Minus ... 25

5.3 FUNCTION Times.. 25

5.4 FUNCTION Over ... 26

5.5 Arithmetic Keywords ... 26

5.6 Derivatives of Objects — DbyD and D2byD .. 27

5.7 Integrals of Objects — Int and CInt .. 28

5.8 Access to IDL Functions — GKVsd::Execute.. 29

6. Basic Analysis I: Compressing Dimensionality.. 30

Version 1.2

GKV User’s Manual –3– 4/28/02

6.1 FUNCTION Slice .. 30

6.2 Function Avg ... 31

6.3 FUNCTION Moments, ... 32

6.4 FUNCTION Delta.. 34

7. Basic Analysis II: Time Series Analysis.. 35

7.1 PROCEEDURE RMSNorm .. 35

7.2 FUNCTION DeTrend... 35

7.3 FUNCTION XCORR ... 35

7.4 FUNCTION XCORR0 ... 36

7.5 FUNCTION XSPECT .. 37

7.6 Function Filter .. 39

7.7 Function BiSpect... 40

8. Analysis Protocols ... 43

8.1 Function TauCorrs ... 43

8.2 AnalysisProtocol ... 46

8.3 LinearModes ... 48

9. Outputting Results... 49

9.1 View.. 49

9.2 GKVs1D::Draw... 49

9. 3 PRO GKVs1D::oPlot... 50

9.4 Pro GKVs2D::Draw ... 51

9.5 Pro Shade_Surf ... 52

9.6 Outputting Objects to a TIFF file ... 53

10. Producing Animations .. 55

10.1 Movie.. 55

10.2 MPeg, ... 56

10.3 Jpegs... 57

10.4 TIFFs.. 59

11. Memory Management ... 61

11.1 FUNCTION MakeCopy ... 61

11.2 PRO Trash... 61

11.3 PRO GKVdelete, arg .. 61

11.4 Pro GKVsd::Save.. 62

11.5 FUNCTION GKV_RESTORE.. 62

Version 1.2

GKV User’s Manual –4– 4/28/02

11.6 Procedure GKV_SaveArray ... 62

11.7 Function GKV_RestoreArray ... 63

11.8 Procedure GKV_SaveStructure .. 64

11.9 FUNCTION GKV_RestoreStructure ... 65

11. Basic GKVsd Object Management ... 66

11.1 Procedure Info .. 66

11.2 Function Cat.. 66

11.3 FUNCTION SubSample... 66

11.4 GKVs1D::Squash.. 68

11.5 PRO SignalWindow,... 68

11.6 PRO GET .. 69

11.7 PRO SET ... 70

11.8 FUNCTION GetValues .. 70

11.9 FUNCTION GKVsND_Gen .. 70

Version 1.2

GKV User’s Manual –5– 4/28/02

1. Introduction

GKV is an interactive data analysis and visualization tool designed for use in
analyzing output from plasma turbulence simulations. Developed as part of the Plasma
Microturbulence Project, it is an object-oriented application built upon IDL (the
Interactive Data Language, a product of Research Systems, Inc.). GKV imports
turbulence simulation data from data files written by various plasma simulation codes.
Data which has been imported into GKV is represented as a GKVsd object. Data analysis
and visualization are then accomplished within GKV through Methods which act on the
GKVsd objects to produce new GKVsd objects containing analyzed data (e.g., the method
XCORR acts on a GKVsd object and produces correlation functions, which are returned as
a new GKVsd object). These methods enhance the power of the native IDL language,
making it possible to perform significant amounts of data analysis and to produce
presentation quality graphics with a relatively few lines of IDL script which can either be
entered interactively at the IDL command line (for interactive use), or through the use of
IDL scripts (for batch use).

We assume that the reader is familiar with the use of IDL. Object-oriented IDL
differs slightly from what some IDL users may be familiar with in that

1) An objects data is only available through that objects methods — so you can only
access the data within GKVsd objects through the methods provided by GKV.

2) All methods which act on objects within IDL are either Procedures or Functions.
You invoke Procedure method as follows:

Obj -> Procedure, args

where “Obj” is an IDL object, Procedure is a Procedure method previously defined
on this class of objects, and args are the various arguments expected by this
procedure. The compound symbol “->” (a hyphen, “-“, immediately followed by a
greater than sign, “>”) is used by IDL to invoke procedures.

3) Function methods are invoked as follows:

result = Obj -> Function(args)

Where result is the information returned by this Function Method, Obj is an IDL
object, Function is a Function method previously defined on this class of objects, and
args (now enclosed in parenthesis) are the arguments expected by this function..

Version 1.2

GKV User’s Manual –6– 4/28/02

2. Initializing GKV

You must first obtain a copy of the (hopefully current) GKV distribution folder.
Within this folder you will find

1) GKV.prj, which is an IDL “project file”. Project files are rather like make files, and
are used to control the compilation order of the associated IDL source files. These
project files are not backward compatible. If your version of IDL does not recognize
GKV.prj as a valid project file, look for a file named GKV_X.X.prj, where “X.X”
corresponds to the version of IDL which you are currently running.

2) source, which contains the IDL source files for GKV.

3) NETCDF_pg3eq, which contains the IDL source files for various routines which you
will only require if you need to import data from the *.h.nc, *.x.nc, and *.c.nc
NetCDF files which are written only by the plasma micro turbulence code pg3eq.

4) data, which contains some sample data (from simulations of the CYCLONE base
case) which you can use to practice with GKV.

2.1 IDL Version Requirements.

GKV is an IDL application, so the first step is to initialize IDL. This requires a
license for IDL, which may be obtained from Research Systems, Inc.1 I chose to write
GKV as an IDL application because most fusion laboratories already have licenses for
IDL. Research Systems periodically updates IDL, and I expect GKV users to see that the
version of IDL available at their site is up-to-date. I currently support a version of GKV
which operates under IDL Version 5.4; and expect to develop new procedures which
require IDL Version 5.5 (particularly procedures for importing data from HDF5 files) for
full functionality.

On MACs, IDL can be initialized by simply “double-clicking” on the project file,
GKV.prj, On UNIX systems I generally use the IDL Development Environment (a part
of the normal IDL distribution), which is invoked by entering IDLDE on the command
line. IDL is also available for WINDOWS systems. I’ve very little experience with using
IDL under WINDOWS, but those users who have used GKV under WINDOWS have
report that it works pretty much as advertised.

1 Research Systems, Inc.
 2995 Wilderness Place
 Boulder, CO 80301
phone: (303)786-9900
fax: (303) 786-9909
e-mail: info@rsinc.com
http://www.rsinc.com

Version 1.2

GKV User’s Manual –7– 4/28/02

2,2 For pg3eq Users Only

If you are not planning to import data from NetCDF files produced by pg3eq in
the current GKV session, skip this section. For those of you planing to import such data it
is necessary to compile the source files in NETCDF_pg3eq directory before compiling
GKV. This is accomplished by going to the “file” menu of IDL; choosing “open”;
using the “widget” which pops up to open the NETCDF_pg3eq directory, and choosing
the file make_NETCDF_pg3eq.pro within this directory. Now type

@make_NETCDF_pg3eq

on IDL’s command line (NOTE: case is important within IDL only when referring to files
by name — this is, in exactly the context described here! Get those CAPS in the right
place). IDL should respond by printing out a few pages of “module names” as they are
compiled. It is good practice to close make_NETCDF_pg3eq.pro once IDL finishes
compiling these modules.

If you need to compile the files in the NETCDF_pg3eq directory after compiling
GKV, it will be necessary to recompile GKV after compiling NETCDF_pg3eq to avoid
naming conflicts. This can be done from the “Project” menu as described in §2.3 below.

Finally, to avoid conflicts relating to color tables, etc. it is best to import data
from pg3eq immediately after compiling GKV, and before running GKV_INIT (as
described in §2.4 below).

2.3 Compiling GKV

After starting IDL (and compiling NETCDF_pg3eq if this is necessary for you)
open the project file, GKV.prj. If you are on a MAC, and you initialized IDL by clicking
on this project file, then it is already open. If you are on a MAC, but have initialized IDL
without “double-clicking” on the GKV.prj project file, then you can open it by going to
the “file” menu of IDL; choosing “Open”; and using the “widget” which pops up to
select GKV.prj within the GKV distribution folder. Once GKV.prj is open, GKV can be
compiled by either selecting the “Compile Modified Files” button at the top of the project
window, or by going to the “Project” menu and selecting “Compile All Files” (or,
“Compile Modified Files” — it really doesn’t make any difference here).

On UNIX systems the GKV.prj project file can be opened by going to the “file”
menu of IDL; choosing “Open Project …”; and using the “widget” which pops up to
select GKV.prj from within the GKV distribution folder. Once the project file GKV.prj
has been opened, go to the “Project” menu; choose “Compile” and then “All Files”.

Version 1.2

GKV User’s Manual –8– 4/28/02

IDL should respond to your “Compile” command by printing out several pages of

% Compiled module: COLOR_TRUE.
% Compiled module: COLOR_LIST.
% Compiled module: COLOR_INDEX.
% Compiled module: COLOR_INDEX_TEST.
% Compiled module: COLOR_IMAGE_BOTTOM.
% Compiled module: COLOR_IMAGE_NCOLORS.
% Compiled module: COLOR_IMAGE_RANGE.
% Compiled module: COLOR_IMAGE_SET.
% Compiled module: COLOR_SETUP.

etc.

If you get any compile errors, this is most likely due to a problem with the order
in which routines have been compiled. If this is the case, it can be remedied by simply
issuing the compile command again.

2.4 Initializing GKV

After having compiled GKV it must be initialized. This is accomplished by typing

GKV_INIT

on the IDL command line. Successful initialization will result in a window popping up
containing a line plot (necessary as IDL’s graphics state is altered on many platforms
when the first plot is drawn); a disclaimer being printed in the output window (necessary
to keep the University of California’s lawyers happy); and the IDL prompt changing
from “IDL” to “GKV”.

If you’re planning to import data from pg3eq it’s best to do this before running
GKV_INIT. Executing pg3eq_Data after running GKV_INIT leads to conflicts with color
tables, etc.

2.5 Choosing Working and Source Directories

While it is not strictly necessary, it is very useful to begin your GKV session by
defining two string variables: work, which should contain the full path to the directory
containing the data files which you plan to analyze (and, where we will store our
analyzed data); and source, which should contain the full path to the directory containing
any IDL source files which you are using in you data analysis that may require debugging
(I generally have source contain the full path to the GKV source directory within the GKV
distribution folder). This is easily accomplished with the widget GKV_ChangeDir.
Simply enter

Version 1.2

GKV User’s Manual –9– 4/28/02

source = GKV_ChangeDir()

or

work = GKV_ChangeDir()

on the IDL command line and use the widget which will pop up to choose the appropriate
directory. You can verify that you have chosen defined the proper paths by examining
the contents of the string variables, source and work within IDL’s Variable Watch
window.

Version 1.2

GKV User’s Manual –10– 4/28/02

3. Importing Data from Simulation Code Output Files

GKV provides routines for importing data from output files created by various plasma
turbulence simulation codes. These routines both read in the data and create GKV
objects.

3.1 Importing Data from NETCDF Files in Standard Format

NETCDF_DATA

Usage:

result = NETCDF_DATA(keyword = value, ...)

Where, on return, result is an object array containing one GKV object for each dependent
variable which was read from the NETCDF file.

NETCDF_DATA is the basic routine for reading data from NETCDF files in standard
format (see below for a description of the standard NETCDF file format). Note that this
routine should be able to read pretty much any NETCDF file. However, use of the
‘standard’ format is recommended because it allows you to transfer information about
independent variables, titles, units, etc. automatically from your code to the GKV objects.

 KEYWORDS:

FileName Name of netCDF file. Must include either full path, or else the
path from the current working directory. If FileName is not
provided, DIALOG_PICKFILE will be called to allow the user to
select an appropriate netCDF file. (Optional)

Path Sets path to initial directory selected by DIALOG_PICKFILE
(which will allow user to change to other directories...). If no path
is provided, DIALOG_PICKFILE will default to current working
directory. (Optional)

ArrayStyle Set to the string 'c' if netCDF file was written by code (like C or
PASCAL) which stores array data in 'column major' format.
Default is 'fortran', appropriate when the netCDF file was written
by code (like FORTRAN or IDL) which stores array data in 'row
major' format. This issue is discussed in Chapter 5 of 'Building
IDL Applications'. Defaults to 'fortran'.

Threshold Size (in units of 10^6 elements) of threshold between 'large' and
'small' data sets. User will be prompted before reading a data array

Version 1.2

GKV User’s Manual –11– 4/28/02

of more than 'Threshold*10^6' elements from the netCDF file,
while all small data sets will be read. Default is 1 (x10^6).

Species A string containing the name (within the netCDF file) of the
DIMENSION which indexes particle species. NetCDF_Data will
break separate data corresponding to different species into separate
GKV objects. The species index (incremented by 1, so that the
first species will be '1', rather than '0') will be appended to the
objects mnemonic and added (as a subscript) to the objects title.
Defaults to 'species'.

RI A string containing the name (within the netCDF file) of the
DIMENSION which is used to index the real and imaginary part of
a complex variable. Within IDL's 'row major' format this MUST
be the first (that is, most rapidly varying) dimension of the array.
NOTE that NCDUMP (which is implemented as a C code)
should show 'RI' as the LAST INDEX of the array within the
netCDF file (consistent with C's use of 'column major' format).
Defaults to ‘ri’.

Debug Set (i.e., put '/Debug' within the argument string) to turn off error
trapping. Turning off error trapping is useful if you are debugging
NetCDF_Data.
Default is Debug=0 (error trapping on)

3.2 Standard NetCDF File Format

The data to be analyzed and/or archived should be stored in one or more NetCDF files,
each of which has the same basic format. For our purposes, we assume that the data is
stored in rectangular arrays (which isn't always the case, see GTC_DATA for an example
of reading data which is not stored in rectangular arrays). Each NetCDF file contains:

1) Information on the simulation code and the particular physics run stored as
character-type GLOBAL ATTRIBUTE. The global attribute names which
NETCDF_DATA searches for are:

CodeID Identifies simulation code which originated this data
CodePI Provides further information about this simulation code.
RunID Identifies particular simulation run which generated this data.
RunInfo Provides further information about this simulation run.

2) Dimensions and Independent Variables. When creating a NetCDF file, dimensions
must be declared and given a symbolic name. Typically, dimensions correspond to
independent variables (however, see below for some exceptions). When this is the case,

Version 1.2

GKV User’s Manual –12– 4/28/02

then a 1-D VARIABLE should be included in the NetCDF file with the same name as
the corresponding dimension (having the same name for both a dimension and a variable
is both legal and encourages in the NetCDF documentation).2 This 1-D variable contains
the values of the independent variable at the grid points. Information about these
independent variables should be stored as VARIABLE ATTRIBUTES associated with
this 1-D variable array. Possible variable attributes are:

mnemonic a terse identifier in all ASCII characters

idl_name in which you can use Hershey Vector Fonts to introduce Greek
characters (see IDL manual).

pretty_name Which is a synonym for ‘idl_name’
title Another synonym for ‘idl_name
long_name Yet another synonym for idl_name’

units n which you give the units (DON'T make the units part of the
name! Hershey fonts are OK here as well)

boundary Information about the boundary conditions in this independent
variable. Supported values of ‘boundary’ are ‘periodic (open)’,
‘periodic (closed)’, and ‘open’. ‘periodic (open)’ is used to
describe periodic systems in which only one boundary point is
stored; while ‘periodic (closed)’ is used to describe systems in
which the boundary values are repeated at both the beginning and
end of the data arrays.

3) Auxiliary Dimensions. You may require some AUXILIARY DIMENSIONS (not
corresponding to independent variables) to deal with multiple species (e.g., a 'species'
dimension) and with the regrettable fact that NetCDF files don't support complex data (so
use 'ri' to dimension the real and imaginary parts of your complex data). These
dimension names are, in effect, keywords which NETCDF_DATA recognizes and treats
specially. Currently supported ‘auxiliary dimensions’ are:

species Dimension name for species index. NETCDF_DATA will make a
separate GKV object for each species.

ri Dimension name for complex data. Put real part of data at ri=0,
and imaginary part of data at ri=1.

Note that the symbol corresponding to both of these auxiliary dimensions can be over
ridden on the NETCDF_DATA command line.

2 See http://www.unidata.ucar.edu/packages/netcdf/ for information about netCDF files and common
netCDF file conventions.

Version 1.2

GKV User’s Manual –13– 4/28/02

4) Dependent Variables, like the electrostatic potential or the vector potential. This data
is stored in arrays of appropriate dimensionality. NetCDF files allow a single 'unlimited'
dimension which should be used to index 'time'. If an unlimited dimension is used, it
must be the least rapidly varying index of the array. Information about each dependent
variable is stored as VARIABLE ATTRIBUTES associates with the dependent variables.
Note that it is legal for different variables to have attributes with the same name.
NETCDF_DATA looks for the following VARIABLE ATTRIBUTES associated with
each dependent variable:

mnemonic a terse identifier in all ASCII characters

idl_name in which you can use Hershey Vector Fonts to introduce Greek
characters

pretty_name Which is a synonym for ‘idl_name’
title Another synonym for ‘idl_name’
long_name Yet another synonym for idl_name’

units in which you give the units--DON'T make the units part of the
name! Hershey fonts are OK here as well

3.3 Importing Data from NetCDF Files in pg3eq Format

PG3EQ_DATA

Usage:

result =PG3EQ_DATA(keyword = value, …)

Where, on return, result is an anonymous structure with one tag for each data field
selected using the widget which will pop p upon invoking PG3EQ_DATA. The value
associated with each of these tags is a GKVsd object.

PG3EQ_DATA imports data from the netcdf files (*.x.nc, *.h.nc and *.c.nc)
produced by the microturbulence simulation code pg3eq. These files should be in the
same directory — presumably that whose path is contained in the string variable work
(see §2.5 above). Generally, the data is chosen by “pointing and clicking” within the
widgets which pop up when PG3EQ_DATA is invoked. PG3EQ_DATA must be
invoked separately to access data from each of the three NetCDF files with suffixes
*.h.nc (which contains scalar data vs. time and also time histories of the amplitudes of
selected Fourier modes), *.x.nc (which contains flux-surface-averaged data as a function
of the flux surface label, x, and time), and *.c.nc (which contains scalar fields as a
function of. two spatial co-ordinates — generally x and y and time).

Version 1.2

GKV User’s Manual –14– 4/28/02

KEYWORDS:

path Set this keyword equal to a legal path to the directory at which you
wish to begin your search for the appropriate NetCDF file (e.g., set
path=work, where work was set as described in §2.5 above).
Defaults to the current working directory. (Optional)

file Set this keyword equal to the name of the appropriate NetCDF file.
Default is to use DIALOG_PICKFILE to choose the appropriate
NetCDF file. (Optional)

var Set this equal to the name of the variable within the NetCDF file
which you wish to import into GKV. Default is to us a pop up
widget to select data from that which is contained in the selected
NetCDF file. (Optional)

3.4 Importing Data from GTC

GTC writes data to (at least) three different types of files: hist.out files,
ShearEB.out files, and families of Piiii.ncd files. Three different routines have been
written to import data into GKV from each of these file types.

GTC_History

Which imports data from GTC’s History.out files.

Usage:

result = GTC_HISTORY(keywords = value, …)

Where, on return, result is an anonymous structure with one tag for each piece of data
contained within the history.out file. The value associated with each of these tags is a
GKVsd object.

Keywords:

FileName An optional 'string' argument containing the FULL name of the
'history.out' file. If this keyword is not set (or the requested file
cannot be found) then a dialogue box will pop up to allow the user
to select the 'history.out' file. When in doubt, ***DON'T*** set
this keyword! (Optional)

Version 1.2

GKV User’s Manual –15– 4/28/02

Path An optional 'string' argument containing the path to the directory
(folder on MACs) where the pop-up dialogue box will initialize the
user's search for the 'history.out' file. When in doubt, ***DO***
set this keyword using, for example, the string work initialized as
described in §2.5 above.

Debug Set this keyword (i.e, put "/Debug" on the command line) to turn
off error trapping. Disabling error trapping is most useful while
debugging.

GTC_ShearEB,

Which imports data from GTC’s ShearEB.out files.

Usage:

result = GTC_ShearEB(keyword = value, …)

Where, on return, result contains an anonymous structure with one tag for each data set
stored in the ShearEB.out file. The values associated with each tag are GKVsd objects.

Keywords:

FileName An optional 'string' argument containing the FULL name of the
'ShearEB.out' file. If this keyword is not set (or the requested file
cannot be found) then a dialogue box will pop up to allow the user
to select the 'ShearEB.out' file. When in doubt, ***DON'T*** set
this keyword.

Path An optional 'string' argument containing the path to the directory
(folder on MACs) where the pop-up dialogue box will initialize the
user's search for the 'ShearEB.out' file. When in doubt, ***DO***
set this keyword using, for example, the string work initialized as
described in §2.5 above.

NT An optional argument containing (on input) the number of time
slices to be read from 'sheareb.out'. If set, NT ***MUST*** be
less than or equal to the total number of time slices in
'ShearEB.out'. If NT is not set, then GTC_SearEB reads all time
slices in 'ShearEB.out' using READ_ASCII. It's best to set NT if
you know how many time slices are present, as this speeds the
reading process.

Version 1.2

GKV User’s Manual –16– 4/28/02

DT An optional argument containing (on input) the interval between
time slices (in units of 1/Omega_ci). Defaults to 20.

Debug Set this keyword (i.e, "/Debug") to turn off error trapping.
Disabling error trapping is most useful during debugging.

Verbose Set this keyword (i.e., "/Verbose") so that READ_ASCI prints out
a message upon reading ***EACH*** record in 'ShearEB.out';
This ***REALLY*** slows the read to a crawl, so
DON'T set 'Verbose' unless you know that 'ShearEB.out'
has less than about 1000 records (or so...), or you are really
motivated to know how many records are in 'ShearEB.out'.

GTC_DATA

Which imports data from the RUNdimenID file, and from GTC’s sequence of Piiii.ncd
files. The RUNdimenID file contains information about both the q-profile (and the iota-
profile) and the structure of the data arrays within the Piiii.ncd files. The Piiii.ncd files
contain scalar data as a function of three spatial variables and time (they also contain
information about the grid metric which is not used by GTC_DATA).

Usage:

result = GTC_DATA(keywords = value, …)

Where, on return, result is an anonymous structure containing one tag for each data set
imported. The values associated with these tags are GKVsd objects.

The present version will only allow ONE type of data (i.e., output resulting from a single
keyword) from a given call to GTC_Data.

Keywords:

Info If this keyword is set (e.g., /Info), GTC_Data prints
information about the grid structure and the RETURNS.
Selected information is PRINTed to the IDL output log,
and more information will be found within the structure
returned. On this call to GTC_Data. NO GKVsd data
objects are returned. This is mainly useful for determining
if you have a useful RUNdimenID file.

IsurfaceNormal Set to an integer array containing indices to the flux
surfaces on which data is desired vs. usual poloidal (theta)
and toroidal (zeta) angle.

Version 1.2

GKV User’s Manual –17– 4/28/02

IsurfaceFieldLine Set to an integer array containing indices to the flux
surfaces on which data is desired vs. poloidal angle (theta)
and the field-line label zeta_0 (the toroidal angle at which
field line in question passes through the outer midplane).

IradialNormal Set to a floating point array containing the values of the
poloidal angle at which slices of the data vs. radial
coordinate (r) and toroidal angle (zeta) are desired.

PoloidalAvg Set this keyword (e.g., /PoloidalAvg) to get data averaged
over fieldlines (over poloidal angles -π to π) vs. radial
coordinate (r) and field-line label zeta_o

ZetaCut Set this keyword to a floating point array of zeta values at
which cuts of the data vs. radius and poloidal angle are
desired.

Thetacut Set this keyword to a floating point array of theta values at
which cuts of the data vs. radius and toroidal angle are
desired.

ToroidalAvg Set this keyword (e.g., /ToroidalAvg) to get data averaged
along field line (over one cycle of poloidal angle from -π to
π) vs. radius and poloidal angle theta_0 (a field-line label).

IfluxLimits Set to a two-element integer array containing the indices of
the first and last flux surfaces to be included in forming
IradialNormal or IradailFieldLIne data.

TimeSteps Set this keyword to the number of timesteps which you
desire in the output file. If not set, defaults to timeslice
from selected Pxxxx file. If it is set, then you can only get
ONE GKVsd object from this call to GTC_Data. If
timeSteps is set to an integer array (and the second value of
this array is less than the first element) then the first
element determines the number of files to be read (in total)
while the second element determines the interval between
files (defaults to 1, or every file)

Dt Set this keyword to the time interval between GTC data file
files.

R_range Set this keyword to a two-element floating-point array
containing the range of 'r/q' values corresponding to the full
range of 'iflux'. Default is [0.1, 0.9].

Version 1.2

GKV User’s Manual –18– 4/28/02

Qprofile Set this keyword (e.g., /Qprofile) to obtain the q-profile as
a GKVsd object.

IotaProfile Set this keyword (e.g., /IotaProfile) to obtain the iota-
profile as a GKVsd object.

Q_0 Set this keyword to the value of q on axis. (defaults to the
range 0.5 < Q_0 ≤ 1.0)

Iota_0 Alternatively, you can set this keyword to the value of iota
on axis (defaults to the range1 ≤ iota < 2).

Variable Set this keyword to a STRING containing the name of the
variable within the Pxxxx file desired. This defaults to
'potential'. If 'variable' is set to a non-zero integer, then will
attempt to extract data corresponding to the (Variable+1)th
variable within the Pxxxx file (set Variable = 0 to get first,
and probably only variable in the Pxxxx file).

ncd Set this keyword to the suffix of the sequence of netcdf
files. Defaults to "ncd" (optional).

Path Path to begin search for the GTC netcdf files. Defaults to
current directory. (Optional)

3.5 Importing Data From TUBE

The microturbulence simulation code TUBE stores data in ASCII output files with
names hist.out, Phixy.out, Phixz.out, Phir.out, etc. TUBE_DATA simultaneously imports
data from all of these files.

Tube_Data,

Usage:

result = TUBE_DATA(keyword = value, …)

Where, on return, result is an anonymous structure containing a combination of GKVsd
objects and other anonymous structures (which, in turn, contain a combination of GKVsd
objects and other anonymous structures …).

 Keywords:

Version 1.2

GKV User’s Manual –19– 4/28/02

Path The path at which DIALOGUE_PICKFILE begins its
search for the directory containing the TUBE output files.
Defaults to the current working directory. (Optional)

TubePath The full and correct path to the directory containing the
TUBE output files. If this keyword is set, then
DIALOGUE_PICKFILE will not be used. (Optional)

nt Number of time steps the history file. This is only used if
there is NOT a 'hist.out' file in the selected directory.

Yang Set this keyword (i.e., put "/Yang" on the command line) to
interpret the third integer in the first record of the
phi**.out, etc. files as the number of time slices in the file
(instead of the interval between time slices in these files
relative to the history files). Has the side effect of
Changing default value for “CodePi” to Y. Chen.
(Optional)

Codename Set this keyword to the name of the code which generated
the output files. Defaults to "TUBE". (Optional)

CodePi Set this keyword to the name of the PI responsible for this
simulation data. Defaults to "S.E. Parker" (unless the
keyword 'Yang' is set, in which case 'CodePi' defaults to
"Y. Chen"). (Optional)

RunId Set this keyword to a terse phrase describing this run.
(Hershey vector font conventions can be employed). No
default, so that the RunID field on output will be blank if
this keyword is not set. (Optional)

FileId Set this keyword to a terse phrase further describing this
run. (Hershey vector font conventions can be employed).
No default, so that the FileID field on output will be blank
if this keyword is not set. (Optional)

Debug Set this keyword to obtain relatively verbose behavior
which may be useful in debugging this routine. (Optional)

Side Effects:

On return from Tube_Data the current working directory will be set to the directory
containing the TUBE output files.

Version 1.2

GKV User’s Manual –20– 4/28/02

3.6 Importing Data from GYRO

The GYRO code writes NetCDF files in the standard format described in §3.2
above. Data from these files is imported using the routine NETCDF_DATA as described
in §3.1. For example, the call

GyroData = NetCDF_Data()

will generate the structure GyroData containing data imported from a NetCDF file
produced by Gyro. However, field quantities, like the electrostatic potential, are stored as
a function of radius, r, and toroidal mode number, n. GYRO only provides fourier
amplitudes for positive values of n. It is a consequence of the reality condition that the
fourier amplitudes at negative values of n are simply the complex conjugate of those at
the corresponding positive value of n.

You may wish to transform this data into a configuration-space (r,) representation,
where is the toroidal angle.. This is accomplished by first applying the function
method:

ALL_k

Usage:

result =GyroData.potential -> All_k(arg, keyword = value, …)

or

GyroData.potential -> All_k, arg, keyword = value, …

All_k can be called either as a function method or as a procedure method. When called as
a function the result is stored in result, while when called as a procedure the “result” will
overwrite the object which it acts on. The function method All_k expects that the object
it acts on (GyroData.potential in this case) contains the non-negative Fourier coefficients
(vs. the independent variable 'arg') from a real data series. On return, result will contain
a full set of both positive and negative Fourier coefficients, where the coefficients for
negative values of 'arg' are formed by taking the complex conjugate of those at positive
values of 'arg'.

Arguments:

arg A valid axis ID. That is, the axis number or any valid axis
mnemonic. Defaults to axis 1. (Optional)

Version 1.2

GKV User’s Manual –21– 4/28/02

Keywords:

'mnemonic' Alternatively, the independent variable labeling the Fourier
coefficients can be specified in the form 'mnemonic'=value,
where 'mnemonic’ is a valid axis mnemonic, and value is
the maximum absolute value of this independent variable to
be retained on return. If 'value' is greater than the
maximum value of this independent variable in
GyroData.potential, then the additional Fourier coefficients
will be set to zero. (Optional).

kmax Set this keyword equal to the maximum absolute value of
the Fourier transformed variable desired in 'self' on return.

NoAvg Set this keyword (i.e., put '/NoAvg' on the command line)
to remove the k=0 component of the Fourier transformed
signal.

NoNegative Set this keyword (i.e., put '/NoNegative' on the command
line) to put zeros in the negative 'n' components. Default is
to put the complex conjugate of the positive components in
the negative 'n' components. (Optional).

Having completed the Fourier representation of the data contained within
GyroData.potential, it can now be transformed into an configuration space (r,)
representation using the function FFT (see §4.11 below). Be sure to set the keyword
Inverse as it requires an inverse transform to go from (r,n)-space to (r,)-space.

A final note — the GKV convention for spatial fourier transforms [that the configuration
space representation of a quantity is A()=Anexp(+in)] differs from that employed in the
GYRO code [A()=Anexp(–in)]]. As a result, the positive sense of the toroidal angle in
the GKV representation of the imported data is opposite to the positive sense of the
toroidal angle within GYRO. Keep this in mind when working out which is the ion
(electron) diamagentic direction!

Version 1.2

GKV User’s Manual –22– 4/28/02

4. Transforming the Representation of Data

Data is generally stored within microturbulence simulations in the most
parsimonious possible manner because such a representation minimizes both the memory
requirements and the computational effort. However, such parsimonious representations
are often not the optimal representation for data analysis where memory is less of an
issue. The methods described in this chapter allow conversion between several widely
used data representations.

4.1 FFT

Usage:

result = object -> FFT(arg, keyword = values, …)

Transforms data between a configuration space and a Fourier representation in the
specified independent variable. Normalization of the forward transform is chosen such
that the signal A*cos(2*pi*n*x/L) will have an amplitude of A in the nth Fourier harmonic
(and zero elsewhere). result will contain both positive and negative k’s — a redundant
representation for real data. For a more parsimonious Fourier representation, see ktox in
§4.2 below.

Argument: Any legal axis identifier. Defaults to the final axis. The
independent variable may also be identified using an axis
mnemonic. (Optional)

Input Keywords:

 'mnemonic' Where 'mnemonic' is the mnemonic for the independent
variable over which the fourier transform is to be applied.
'Mnemonic' should be set equal to the range in this variable
over which you wish to transform the data. Defaults to the
final axis and current irange. (Optional)

Inverse 'Set' this keyword (i.e., put '/Inverse') to perform an inverse
Fourier transform in. the indicated variable. Defaults to
forward (i.e., configuration space to k-space) transform.
(Optional)

Offset Set this keyword to the (floating point) offset value which
the specified independent variable will assume on
completion of the inverse transform. Defaults to zero.
(Optional)

Version 1.2

GKV User’s Manual –23– 4/28/02

4.2 FUNCTION XtoK

Usage:

result = Object -> XtoK()

This function method transforms the data in Object from a configuration space
representation (like that output by GTC, pg3eq, and TUBE) into a Fourier space
representation like that output by GS2, thus enabling convenient comparison with data
from plasma micro turbulence simulation code which output data in a Fourier space
representation (like GS2). If Object has three dimensions, then XtoK assumes that the
first two dimensions correspond to configuration space values, while the third dimension
is time. At each time-slice the configuration space representation of data in Object is
converted to a k-space representation in result. This function method is the inverse of the
function KtoX (see §4.3 below)

4.3 FUNCTION KtoX

Usage:

result = Object -> KtoX()

This function method transforms the data in Object from a Fourier space representation
(like that output by GS2) into a configuration space representation, thus enabling
convenient comparison with data from plasma micro turbulence simulation code which
output data in a configuration space representation (like GTC, pg3eq, and TUBE). If
Object has three dimensions, then KtoX assumes that the first two dimensions correspond
to k-values, while the third dimension is time. At each time-slice the k-space
representation of data in Object is converted to a configuration space representation in
result. This function method is the inverse of the function method XtoK (see §4.2 above)

4.4 FUNCTION ROTATE

Usage:

result = Object -> Rotate(arg, keyword = value, …)

This function method rotates the data in 'self' through an angle specified by the argument
'arg'. If Object is a 3-D object, then the third independent variable is assumed to be time-
like, and for each time-slice the data is rotated in the plane defined by the first two
independent variables.

Version 1.2

GKV User’s Manual –24– 4/28/02

Argument: The argument to this function method is the desired
(clockwise) angle of rotation in degrees.

Input Keywords:

x0 Value of first independent variable rotate about ('center of
rotation'). Defaults to 0. (Optional)

'mnemonic1'_0 A synonym for x0 (see above), where 'mnemonic1' is the
mnemonic for the first independent variable. (Optional)

y0 Value of second independent variable rotate about ('center
of rotation'). Defaults to 0. (Optional)

'mnemonic2'_0 A synonym for y0 (see above), where 'mnemonic2' is the
mnemonic for the first independent variable. (Optional)

title1 Set to an ascii string containing the title associated with the
first independent variable. Defaults to 'x!D1!N' (that is, x1

in Hershey vector font). (Optional)

mnemonic1 Set to an ascii string containing the mnemonic associated
with the first independent variable. Defaults to 'x1'.
(Optional)

units1 Set to an ascii string containing the units associated
with the first independent variable. Defaults to input value
of these units. (Optional)

title2 Set to an ascii string containing the title associated with the
second independent variable. Defaults to 'x!D2!N' (that is,
x2 in Hershey vector font). (Optional)

mnemonic2 Set to an ascii string containing the mnemonic associated
with the second independent variable. Defaults to 'x2'.
(Optional)

units2 Set to an ascii string containing the units associated with
the second independent variable. Defaults to input value of
these units. (Optional)

Output KeyWords: None

Version 1.2

GKV User’s Manual –25– 4/28/02

5. Arithmetic on Objects

Once data has been inserted into IDL objects it is no longer possible to perform basic
arithmetic operations on it using only IDL’s command-line parser (“only an objects
methods can access an object’s data”—an edict which is strictly enforced by IDL in its
object-oriented programming!). This functionality is recovered in GKV by providing
METHODs to perform basic arithmetic operations. All four of these methods have
common keywords as described below.

5.1 FUNCTION Plus

Usage:

result = object -> Plus(arg, keyword = values, …)

Defines basic arithmetic operation: addition. Arg can be a scalar; an array with the same
dimensionality as object; another GKVsd object of the same dimensionality as object and
having. the same independent variables; a 0-D GKVsd object; or a string containing the
mnemonic of any of object’s independent variables. On return, result is a GKVsd object
whose data values are formed by adding the data values of object to those of arg.

5.2 FUNCTION Minus

Usage:

result = object -> Minus(arg, keyword = values, …)

Defines basic arithmetic operation: subtraction. Arg can be a scalar; an array with the
same dimensionality as object; another GKVsd object of the same dimensionality as
object and having. the same independent variables; a 0-D GKVsd object; or a string
containing the mnemonic of any of object’s independent variables. On return, result is a
GKVsd object whose data values are formed by subtracting the data values of arg from
those of object.

5.3 FUNCTION Times

Usage:

result = object -> Times(arg, keyword = values, …)

Version 1.2

GKV User’s Manual –26– 4/28/02

Defines basic arithmetic operation: multiplication. Arg can be a scalar; an array with the
same dimensionality as object; another GKVsd object of the same dimensionality as
object and having. the same independent variables; a 0-D GKVsd object; or a string
containing the mnemonic of any of object’s independent variables. On return, result is a
GKVsd object whose data values are formed by multiplying the data values of object by
those of arg.

5.4 FUNCTION Over

Usage:

result = object -> Over(arg, keyword = values, …)

Defines basic arithmetic operation: division. Arg can be a scalar; an array with the same
dimensionality as object; another GKVsd object of the same dimensionality as object and
having. the same independent variables; a 0-D GKVsd object; or a string containing the
mnemonic of any of object’s independent variables. On return, result is a GKVsd object
whose data values are formed by dividing the data values of object by those of arg.

5.5 Arithmetic Keywords

All of these arithmetic operations share a common set of keywords which can be
used to set the title, mnemonic, and units of the result.

Keywords:

Title Set this keyword to a string containing the title of result.
Hershey vector fonts can be used to get Greek or special
characters. (Optional)

Mnemonic Set this keyword to a string containing the mnemonic of
result. Use only ascii characters (an nothing which IDL
might interpret as a command delimiter). Be TERSE, as
you may find yourself typing this string several times!
(Optional)

Units Set this keyword to a string containing the units of result.
Hershey vector fonts can be used to get Greek or special
characters. (Optional)

Version 1.2

GKV User’s Manual –27– 4/28/02

5.6 Derivatives of Objects — DbyD and D2byD

Usage:

result = Object -> DbyD(arg or keyword = value)

result = Object -> D2byD((arg or keyword = value)

The function methods DbyD (D2byD) returns a GKVsd object (of the same
dimensionality as object) containing the first (second) partial derivative of Object with
respect to the indicated independent variable. The algorithms employed provide a
reasonable approximation to the partial derivative for BOTH uniform and non-uniform
grids.

Argument: The (optional) argument is any legal axis identifier. That
is, either an integer between 1 and nDims, or a STRING
containing an axis mnemonic.

Keywords:

Axis If no argument is provided, then this keyword may be used
to identify independent variable with respect to which the
partial derivative is to be taken. Set axis equal to any legal
axis identifier (see discussion under Argument above).

 mnemonic Set the mnemonic of the selected axis equal to a two-
element array, [min, max], to both identify the independent
variable for which the (partial) derivative is to be taken,
and to reset the signal window on this axis (before taking
the derivative). This two-element array is interpreted as the
desired RANGE in the independent variable, NOT the
integer 'irange'

irange Set 'irange' to a two-element (integer) array to reset the
signal window before taking the derivative w.r.t. the
selected independent variable.

range Set 'range' to a two-element (floating point) array to set the
range in the independent variable over which the (partial)
derivative is to be taken.

Side Effects:

If a 'range' or 'irange' is specified on the command line (either directly, or via 'mnemonic'
= ...) then the SignalWindow method will be invoked on 'self' and, on return, the signal
window of the selected independent variable will have been modified.

Version 1.2

GKV User’s Manual –28– 4/28/02

5.7 Integrals of Objects — Int and CInt

Usage:

result = Object ->Int(arg or keyword = value)

result = Object ->CInt(arg or keyword = value)

The function method Int returns a GKVsd object with dimensionality one degree lower
than that of object’ containing the definite integral of 'self' over the selected independent
variable; while the function method CInt returns a GKVsd object of the same
dimensionality as Object containing the indefinite integral of Object. A “Simpson’s Rule’
algorithm is used which does not require that the data in Object be on a uniform grid in
the selected independent variable.

Argument: The (optional) argument is any legal axis identifier. That
is, either an integer between 1 and nDims, or a STRING
containing an axis mnemonic.

Keywords:

Axis If no argument is provided, then this keyword may be used
to identify independent variable to be integrated over. Set
axis equal to any legal axis identifier (see above).

mnemonic Set the mnemonic of the selected axis equal to a two-
element array, [min, max], to both identify the independent
variable to be integrated over, and to set the range of
integration. This two-element array is interpreted as the
desired RANGE in the independent variable, NOT the
integer 'irange'

 irange Set 'irange' to a two-element (integer) array to set the range
of integration through indices into the corresponding
grid.values array.

range Set 'range' to a two-element (floating point) array to set the
range of integration.

Side Effects:

If a 'range' or 'irange' is specified on the command line (either directly, or via 'mnemonic'
= ...) then the SignalWindow method will be invoked on 'self' and, on return, the signal
window of the selected independent variable will have been modified.

Version 1.2

GKV User’s Manual –29– 4/28/02

5.8 Access to IDL Functions — GKVsd::Execute

Usage:

result = Object -> Execute(arg, arg1, arg2)

This method allows the user to apply any legal IDL function to the data contained in
Object. It returns a GKVsd object of the same dimensionality as Object who data values
are obtained by applying the specified function to the corresponding data value of Object.

Arguments:

arg Accepts a string argument containing the name of
an IDL function.

arg1, arg2 Up to two additional arguments can be passed to
this IDL function by setting these (optional)
arguments to Execute.

Version 1.2

GKV User’s Manual –30– 4/28/02

6. Basic Analysis I: Compressing Dimensionality

What computer visualization is mainly about is painting colors onto a 2-D screen.
In plasma micro turbulence simulations we are blessed with (generally scalar) data as a
function of four independent variables. Since it is not really convenient to display fields
vs. more than two independent variables (I know that Advanced Computer Visualization
is soon going to change all this, but bear with me …) it is generally necessary to
compress the dimensionality before analyzing and/or displaying the data.

6.1 FUNCTION Slice

Usage:

result = object -> slice(keyword=value, …)

Object is sliced at the specified location, returning a GKVsd object of lower (by one)
dimensionality.

Input Keywords:

Axis Identifies the independent variable at the ‘slice’. Set to a legal axis
identifier—that is, an ascii string containing a valid axis mnemonic
or an positive integer (no larger than the number of independent
variables of this object). The axis can also be identified by a run-
time keyword (see below). If no axis identifier is provided defaults
to the final (usually ‘time’) axis. (Optional)

Value Value of the independent variable at the ‘slice’. This can also be
set using run-time keywords (see below). Defaults to the first
(presumably lowest) value of the selected independent variable.
(Optional)

Index Alternatively, the value of the independent variable at the ‘slice’
can be specified by providing an index into the array of grid
values. Defaults to 0. (Optional)

Max Set this keyword (that is, put /Max on the command line) to ‘slice’
along the maxima of the dependent variable over the selected axis
(implemented only for GKVs2D objects at present). Default is to
slice at a selected value of the independent variable. (Optional).

Version 1.2

GKV User’s Manual –31– 4/28/02

MaxLocation If the keyword Max (see above) has been set, then also setting
MaxLocation (i.e., put /MaxLocation on the command line) will
cause Slice to return an anonymous structure with tags slice
(corresponding to the slice from object) and maxLocation
(corresponding to a GKVs1D object containing the location of the
slice in the selected independent variable vs. the remaining
independent variable). (Optional)

Run-time Keywords:

mnemonic Put mnemonic=value on the command, where mnemonic is the
mnemonic corresponding to one of the axes (independent
variables) of object will cause object to be sliced on the
corresponding axis at the specified value. (Optional).;

6.2 Function Avg

Usage:

result = Object -> Avg(arg)

or

result = Object -> Avg(keyword = value)

This function returns a GKVsd object with dimensionality one less than that of Object
containing the average of Object over the selected independent variable.

Argument: The (optional) argument is any legal axis identifier.
That is, either an integer between 1 and nDims (the
dimensionality of Object), or a STRING containing
an axis mnemonic

Keywords:

Axis If no argument is provided, then this keyword may
be used to identify independent variable over which
the average is to be taken. Set axis equal to any
legal axis identifier (see above).

mnemonic Set the mnemonic of the selected axis equal to a
two-element array, [min, max], to both identify the
independent variable and the range in this variable
over which the average is to be taken. This two-

Version 1.2

GKV User’s Manual –32– 4/28/02

element array is interpreted as the desired RANGE
in the independent variable, NOT the integer
'irange'. (Optional)

irange Set 'irange' to a two-element (integer) array to reset
the signal window before taking the average w.r.t.
the selected independent variable. (Optional)

range Set 'range' to a two-element (floating point) array to
set the range in the independent variable over which
the average is to be taken. (Optional)

Side Effects: If a 'range' or 'irange' is specified on the command
line (either directly, or via 'mnemonic' = ...) then the
SignalWindow method will be invoked on 'Object’
and, on return, the signal window of the selected
independent variable will have been modified.

6.3 FUNCTION Moments,

Usage:

result = object -> Moments(keyword = value, …)

Where object is a valid GKVsd object (of dimensionality 1 or greater) and result is a
three-element object array. Default is to return the integral of the dependent variable
over the selected axis in the 0th element of the output array; the integral of the product of
the dependent and the selected independent variable over this independent variable in the
1st element of the output array; and the integral of the product of the dependent variable
times the square of the deviations of the dependent variable from its mean in the 2nd

element of the output array. If the keyword Avg is set then these are replaced by the
average value of the dependent variable; the mean value of the selected independent
variable; and the standard deviation of the selected independent variable about this mean.

Keywords:

Axis Identifies the independent variable over which the moments are to
be taken. Set to a legal axis identifier—that is, an ascii string
containing a valid axis mnemonic or a positive integer (no larger
than the number of independent variables of this object). The axis
can also be identified by a run-time keyword (see below). If no
axis identifier is provided (either with this keyword, or by using a

Version 1.2

GKV User’s Manual –33– 4/28/02

run-time keyword) then an error message is printed and 0 is
returned. (Optional)

Range Set to a two-element floating point array (IDL will convert integer
arrays to floating point) to set the range of the independent variable
(in that variable’s proper units) over which the moments are to be
taken. Defaults to the current signal window for the selected
independent variable. (Optional)

Irange Alternatively, set irange to a two-element integer array to set the
range of grid-indices for the independent variable over which the
moments are to be taken. Defaults to the current signal window
for the selected independent variable. (Optional)

Avg Set this keyword (i.e., put /Avg on the command line) to request
this method to return the average over the selected axis, mean
value of the selected dependent variable (using the dependent
variable as the weighting function), and standard deviation of the
independent variable about this mean instead of the first three
moments. Default is to return first 0th through 2nd moments.
(Optional)

Runtime Keywords:

mnemonic Put mnemonic=[xmin, xmax] where =[xmin, xmax] is a two-
element floating point array (IDL will automatically convert
integer arrays) on the command line to simultaneously specify the
axis over which the moments (or average) is to be taken and the
range of the selected independent variable. See Range keyword
above. (Optional)

Version 1.2

GKV User’s Manual –34– 4/28/02

6.4 FUNCTION Delta

Usage:

result = object -> delta(keywords)

Where object is a valid GKVsd object of dimensionality 1 or greater. The output (result)
is a structure with two tags: result .avg contains the average of the dependent variable
over the selected independent variable while result .delta contains the deviations from
this average.

Keywords:

Axis Identifies the independent variable over which the independent
variable is to be decomposed into an average and deviations from
its average. Set to a legal axis identifier—that is, an ascii string
containing a valid axis mnemonic or a positive integer (no larger
than the number of independent variables of this object). The axis
can also be identified by a run-time keyword (see below). If no
axis identifier is provided (either with this keyword, or by using a
run-time keyword) then an error message is printed and 0 is
returned. (Optional)

Range Set to a two-element floating point array (IDL will convert integer
arrays to floating point) to set the range of the independent variable
(in that variable’s proper units) over which the average and
deviations are to be taken. Defaults to the current signal window
for the selected independent variable. (Optional)

Irange Alternatively, set irange to a two-element integer array to set the
range of grid-indices for the independent variable over which the
average and deviations are to be taken. Defaults to the current
signal window for the selected independent variable. (Optional)

RunTime Keywords:

mnemonic Put mnemonic=[xmin, xmax] where [xmin, xmax] is a two-
element floating point array (IDL will automatically convert
integer arrays) on the command line to simultaneously specify the
axis over which the average and deviations are to be taken and the
range of the selected independent variable. See Range keyword
above to understand the usage for [xmin, xmax] . (Optional)

Version 1.2

GKV User’s Manual –35– 4/28/02

7. Basic Analysis II: Time Series Analysis

7.1 PROCEEDURE RMSNorm

Usage:

Object -> RMSNorm, keyword = value

This is a proceedure — that is it multiplies the dependent variable within Object by a
constant such that RMS value of the dependent varialbe within the 'SignalWindow' of
Object is equal to rmsValue.

Arguments: None

Keywords:

RMSValue Set this keyword equal to the desired rms value of signal. Defaults
to 1.0. (Optional)

7.2 FUNCTION DeTrend

Usage:

Result = Object -> DeTrend(Order = iOrder)

This function acts on GKVs1D objects (only) and returns in a Result which contains the
data from Object with the average, trend, etc removed. This is accomplished by making a
least-squares-fit of the data in Object to a polynomial of order iOrder, and then
subtracting this polynomial from the dependent variable in Object to obtain the dependent
variable of Result.

7.3 FUNCTION XCORR

Usage:

result = object -> XCorr(keywords)

where object is a valid GKVsd object of dimensionality 1 through 3. Returns the auto
(or cross) variance of the data. The auto (or cross) variance is computed using the

Version 1.2

GKV User’s Manual –36– 4/28/02

Blackman–Tukey fast Fourier transform algorithm. See any standard text on time series
analysis for a discussion of data windows, etc.

Keywords:

Ref Set this keyword equal to a valid GKV object of the same or lower
dimensionality to compute the cross variance between the object
being acted on and the reference object. If this keyword is not set,
the autovariance will be computed.

No_Avg Set this keyword (i.e., put /No_Avg on the command line) to
remove the average before computing the auto (or cross) variance.

Dw Set this keyword to determine the length of the cosine roll-off in
time (the data window) to be applied to the data. If DW is set to a
real number, then it is interpreted the length of this roll off in the
proper time units. If DW is set to an integer, then it is interpreted
as the length in units of integer time-steps. Default data window is
a cosine roll-off with a length equal to 1/10th that of the input data.

Norm Set this keyword to normalize the result such that the value of the
auto-correlation function at zero lag is 1.0 — that is, to return the
correlation function instead of the auto-variance. Note that this
only works on auto-correlation functions (that is, when the
keyword Ref has not been set!). Default is to compute the (auto-)
variance. (Optional)

Hamming Set this keyword (i.e., put /Hamming on the command line) to
specify a Hamming window as the data window.

Hanning Set this keyword c to specify a Hanning window as the data
window.

Double Set this keyword (i.e., put /double on the command line) to request
double precision arithmetic.

7.4 FUNCTION XCORR0

Usage:

Result = Object -> XCORR0(Arg, keyword = value)

This function returns the auto or cross correlation between Object and the reference
Object (see Ref keyword below) as a function of the specified independent variable of

Version 1.2

GKV User’s Manual –37– 4/28/02

Object' at zero lag (or displacement) in the remaining independent variable(s). The
correlation function is obtained by averaging over the remaining variable(s), so the data
should be homogeneous in these independent variables. This function is significantly
faster than XCORR for large (generally GKVs3D) objects, and so is useful when only the
correlation function at zero lag in all but one independent variable is required.

Argument:

Arg Any legal axis identifier. This axis will become the
independent variable of Result. Defaults to the first
axis. The independent variable may also be
identified using an Axis mnemonic as described
below. (Optional)

 Input Keywords:

'mnemonic' Where 'mnemonic' is the mnemonic for the
independent variable desired for the correlation
function. 'Mnemonic' should be set equal to the
reference value of this independent variable.
Defaults to the initial value of this axis. (Optional)

Ref Set this keyword to a GKVsd object of whose
independent variable(s) are the same as the
remaining independent variables of Object (that is ,
the independent variables not identified by Arg or
by the ‘mnemonic’ keyword. Defaults to first
element of the data in Object. with respect to the
selected independent variable. (Optional)

Norm Set this keyword (i.e., put '/Norm' on the command
line) to normalize the cross-correlation such that the
maximum value is 1. Default is no normalization
— that is, to return the cross-variance between
Object and Ref. (Optional)

7.5 FUNCTION XSPECT

Usage:

result = object -> XSpect(keywords)

Version 1.2

GKV User’s Manual –38– 4/28/02

Where object is a valid GKVsd object of dimensionality 1 through 3. The output, result,
is a GKVsd object of the same dimensionality containing the auto (or cross) spectrum.
The auto (or cross) spectrum is computed using the Blackman–Tukey fast Fourier
transform algorithm. See any standard text on time series analysis for a discussion of lag
and data windows, etc.

Keywords:

Ref Set this keyword equal to a valid GKV object of the same or lower
dimensionality to compute the cross spectrum between the object
being acted on and the reference object. If this keyword is not set,
the autospectrum will be computed.

No_Avg Set this keyword (i.e., put /No_Avg on the command line) to
remove the average and trend before computing the auto (or cross)
spectrum.

Dw Set this keyword to determine the length of the cosine roll-off in
time (the data window) to be applied to the data. If DW is set to a
real number, then it is interpreted the length of this roll off in the
proper time units. If DW is set to an integer, then it is interpreted
as the length in units of integer time-steps. Default data window
is a cosine roll-off with a length equal to 1/10th that of the input
data.

LW Set this keyword to determine the length of the cosine roll-off in
time (the lag window) to be applied to the correlation function. If
LW is set to a real number, then it is interpreted the length of this
roll off in the proper time units. If LW is set to an integer, then it
is interpreted as the length in units of integer time-steps. Default
lag window is a cosine roll-off with a length equal to 1/2 of the
correlation function (which is itself equal to the next power of 2
greater than the length of the data).

Hamming Set this keyword (i.e., put /Hamming on the command line) to
specify a Hamming window for both lag and data windows.

Hanning Set this keyword c to specify a Hanning window for both lag and
data windows.

Double Set this keyword (i.e., put /double on the command line) to request
double precision arithmetic.

Version 1.2

GKV User’s Manual –39– 4/28/02

7.6 Function Filter

Usage:

result = Object -> Filter(arg, Keyword = value, …)

This function returns a GKVsd object of the same dimensionality as Object containing the
data values from Object acted on by a band-pass filter.

Arguments: Any legal axis identifier. Defaults to the final
(generally time-like) axis. The independent
variable may be identified using either an integer
axis number, or by an Axis mnemonic. (Optional)

;Input Keywords:

 'mnemonic' Where 'mnemonic' is the mnemonic for the
independent variable over which the filter is to be
applied. 'Mnemonic' should be set equal to the
range in this variable over which you wish to have
filtered data returned. Defaults to the final axis and
the current irange. (Optional)

Omega_0 Central frequency of the digital filter. Defaults to
zero. (Optional)

k_0 Central wavenumber of the digital filter. Defaults
to zero. This keyword is really a synonym for
'Omega_0', and is included to maintain an intuitive
interface when the axis in question corresponds to a
spatial (rather than time-like) variable. (Optional).

dOmega Width of the filter in frequency. Defaults to 10/T,
where 'T' is the length of the time interval over
which data is available from Object. (Optional)

dk A synonym for dOmega--the width of the filter in
wavenumber space which defaults to 10/L, where 'L
is the length of the interval over which data is
available from 'self'. (Optional)

dT An alternative means of specifying the filter width--
if set, dT gives the width of the support of the

Version 1.2

GKV User’s Manual –40– 4/28/02

digital filter in the time-domain, corresponding to a
frequency width of dOmega=2π/dT.

dL A synonym for dT--the width of the support of the
digital filter in the spatial-domain, corresponding to
a frequency width of dk=2π/dT.

Output Keywords:

Filter If this keyword is set equal to symbol on the
command line then, on return, that symbol will refer
to a GKVs1D object containing the frequency
representation the filter applied.

7.7 Function BiSpect

Usage:

Output_Structure = Object -> Bispect(arg1, arg2, keyword = Value, …)

This function performs a bispectral analysis of the data in Object' (a GKVs1D object)
with the data in arguments ‘arg1’ and arg2'. It returns a structure (Output_Structure)
)containing the biSpectrum; the biCoherence; the biCorrelation function; the spectral
densities of 'Object', 'arg1', and 'arg2'; The auto-correlation functions of 'self', 'arg1', and
'arg2'; and the length of the data and lag windows.

The algorithm used here is avoids being a memory hog by sequentially
performing bispectral analyses over subsets of the data whose length is defined by the
Lag Window (see description of the LW keyword below), and then averaging the result.

Arguments:

arg1 A GKVs1D time series. Defaults to ‘Object’.
(Optional)

arg2 A GKVs1D time series. Defaults to ‘Object’.
(Optional)

Keywords:

Version 1.2

GKV User’s Manual –41– 4/28/02

dw The length of the data window in proper time units.
Ideally, the data window should be chosen to
shorter compared to the lag window, but longer than
the characteristic period of oscillation of the data
(Optional).

idw The (integer) length of the data window in time
steps. If 'idw' is set, its value over rides value given
with 'dw'. Defaults to 1/100 of the length of the
data series. (Optional).

lw The length of the lagwindow in proper time units.
The lag window should be chosen to be greater than
the correlation time (which is easily determined
using the function proceedure XCORR), but short
compared to the length of the data set. It is
important not to choose too long a lag window, as
this controls the size of intermediate arrays and
output objects. (Optional).

ilw The (integer) length of the lag window. If 'ilw' is
set, its value over rides the value given with 'lw'.
Defaults to 1/10 of the length of the data series.

order Order at which to detrend the data in Object, arg1,
and arg2 within each data subset before computing
bicorrelations (0 to just remove average, 1 to
remove average and trend, etc.). Defaults to 1.
(Optional).

epsilon Fractional decrement allowed in norm used to
compute the bicoherence. Such a limit is required
because the alternative leads to spurious divides by
small numbers resulting from zeros in the fourier
transform of the lag window. If uncorrected, this
would result in unwanted, large-amplitude noise in
the estimate of the bicoherence. Defaults to 0.0085,
the ratio of the first subsidiary maximum in the FT
of a Hanning window (used here as the lag window)
to the maximum value. (Optional... and only
experts should mess with this!).

Version 1.2

GKV User’s Manual –42– 4/28/02

Output:

The output structure contains the following tags:

Name Ascii string used to form default directory name
when Output_Structure is saved using
GKV_SaveStructure. Defaults to ‘Bispect’.

tauLags A three-element, floating-point array containing the
lag window specified for each of the three input
objects, Object, arg1, and arg2. (note, it is possible,
but not necessary to specify a separate lagwindow
for each object).

tauData A floating point scalar containing the length of the
data window.

biSpectra A GKVs2D object containing the biSpectrum of the
input data.

biCoherence A GKVs2D object containing the biCoherence
among the input data.

biCorr A GKVs2D object containing the bicorrelation
function of the input data

spect0 The spectral density of Object.

spect1` The Spectral density of Arg1.

spect2 The spectral density of Arg2.

corr0 The auto-correlation function of Object.

corr1 The auto-correlation function of arg1.

corr2 The auto-correlation function of arg2.

Version 1.2

GKV User’s Manual –43– 4/28/02

8. Analysis Protocols

While I am a great believer in interactive data analysis, it is often the case that
you need to perform exactly the same analysis on data from many simulations runs — for
example when comparing results of simulations from a parameter scan. This is facilitated
by using Analysis Protocols — GKV scripts which perform a fixed suite of analysis
routines, and store the result in an output structure. Several Analysis Protocols which I
have found useful are described below.

8.1 Function TauCorrs

This Analysis Protocol is useful for analyzing 2-D plus time fluctuation data. Radial
modes (zonal flows, etc) should be removed (see delta in §6.4) before applying this
analysis protocol.

Usage:

result = Object -> TauCorrs(arg, keyword = values, …)

This function performs a correlation analysis of Object (which must be a GKVs3D
object), and returns the results of this analysis in as an anonymous structure (the contents
of the output structure are described below). This analysis assumes that there is one
inhomogeneous independent variable (even in flux-tube micro turbulence simulation
codes the radial coordinate should be considered as inhomogeneous due to the radial
variations in the zonal flows) which must be identified (either with the optional argument,
arg, or via a keyword). If the system is truly homogeneous, it is ***MUCH*** more
efficient to simply compute the correlation function with Xcorr (using no reference
object).

Input Argument: TauCorrs will accept any legal axis identifier (that
is, an integer between 1 and 3, or a valid axis
mnemonic) as an argument. If no argument is
provided, then TauCorrs will expect the axis
corresponding to the inhomogeneous coordinate to
be identified by keywords (see below). (Optional)

Input Keywords:

Axis If no argument is provided, then this keyword may
be used to identify the inhomogeneous coordinate.
Set axis equal to any legal axis identifier (see
above). (optional)

Version 1.2

GKV User’s Manual –44– 4/28/02

‘mnemonic’ Set the mnemonic of the selected axis equal to a
two-element array, [min, max], to both identify the
selected independent variable, and reset the signal
window on this axis. This two-element array is
interpreted as the desired RANGE in the
independent variable (i.e., it is interpreted in the
units of the corresponding independent variable),
NOT the integer 'irange' (that is, NOT as an integer
index into the grid.values array). (optional)

irange Set 'irange' to a two-element (integer) array to reset
the signal window of the selected independent
variable. The value of irange is interpreted as an
index into the grid.values array. 'irange' defaults to
the current signal window of 'self. (optional)

range Set 'range' to a two-element (floating point) array to
set the range in the independent variable. (optional)

skip The sampling interval for the specified
inhomogeneous independent variable. Defaults to 1
(Optional).

localNorm Set this keyword (i.e., put '/LocalNorm' on the
command line) to normalize the data from 'self' (but
not 'self' itself, whose data remains unaltered) such
that the rms fluctuation at each value of the
specified inhomogeneous independent variable is
the same BEFORE computing the correlation time.
(Optional)

debug Set this keyword (i.e., put '/debug' on the command
line) to print out intermediate information, allowing
the user to keep track of the progress (or lack
thereof...) of this function. (optional)

fraction Normally TauCorrs returns the full width at half
maximum of the correlation function vs. the
specified axis. If this keyword is set, TauCorrs will
instead compute the full width at 'fraction' of
maximum vs. time. Defaults to 0.5 (Optional).

Output: TauCorrs returns a structure with the following
tags. Additional tags can be included by setting

Version 1.2

GKV User’s Manual –45– 4/28/02

(optional) output keywords (see "Output Keywords"
below).

TauCorr A GKVs1D object containing the correlation time
(full-width at half-maximum measured along the
maximum of the local correlation function) vs. the
specified inhomogeneous independent variable.

vPhase A GKVs1D object containing the phase velocity
(slope of the maximum in the local correlation
function) vs. the inhomogeneous independent
variable.

yCorr A GKVs1D object containing the correlation length
in the remaining independent variable (full-width at
half maximum of the Hilbert-transform 'envelope'
of the oscillatory local correlation function
evaluated at zero time lag) vs. the inhomogeneous
variable.

kAvg A GKVs1D object containing the power-weighted
average wave number in the remaining
(presumably homogeneous) independent variable
vs. the inhomogeneous variable. The error bars on
kAvg represent the power-weighted standard
deviation about this mean wave number.

kSpect A GKVs1D object containing the average (over the
inhomogeneous variable) of the local frequency-
integrated spectrum vs. the wave number associated
with the remaining independent variable. If the
/LocalNorm keyword is set, then this is a volume
average, while if it is not set, then this is a power-
weighted volume average.

CorrFcn A GKVs1D object containing the (volume or power-
weighted volume as with kSpect above) average
over the inhomogeneous coordinate of the
maximum of the local correlation function vs. the
time lag.

yCorrFcn A GKVs1D object containing the (volume or power-
weighted volume as with kSpect above) average
over the inhomogeneous coordinate of the local
correlation function vs. the remaining independent
variable evaluated at zero time lag.

Version 1.2

GKV User’s Manual –46– 4/28/02

Output Keywords:

CorrFcns Set this keyword (i.e., put "/CorrFcns" on the
command line) to add the tag "TauCorrArr" to the
output structure. The corresponding value is an
array of GKVs1D objects containing the local
correlation function vs. tau for each location at
which the correlation time is computed. (Optional)

yCorrFcns Set this keyword (i.e., put "/yCorrFcns" on the
command line) to add the tag "yCorrArr" to the
output structure. The corresponding value is an
array of GKVs1D objects containing the local
correlation function vs. the homogeneous spatial
coordinate at each radial location at which the
correlation function in computed. (Optional)

kSpects Set this keyword (i.e., put "/kSpects" on the
command line) to add the tag "kSpectArr" to the
output structure. The corresponding value is an
array of GKVs1D objects containing the local k-
spectrum (integrated over frequency) vs. the
homogeneous spatial coordinate at each radial
location at which the correlation function in
computed. (Optional)

Side Effects: Resets the signal window of Object to specified
'range' or 'irange' if one is provided with any of the
keywords 'mnemonic', irange, or range.

8.2 AnalysisProtocol

This analysis protocol was designed for the analysis of TEM parameter scans from GS2.
It assumes that there is a user present (and paying attention. It performs the analysis
described in TauCorrs above (see §8.1) and also analyzes the radial modes (zonal flows
and GAMs).

Usage:

Result = AnalysisProtocol(keyword = value, …)

Version 1.2

GKV User’s Manual –47– 4/28/02

In addition to all the keywords described in TauCorrs above, AnalysisProtocol accepts
the following

Keywords

Data Set this keyword to a structure containing the GS2
data (as returned by NetCDF_DATA). If this
keyword is not present (or, does not point to a
structure), then NetCDF_DATA will be initialized,
and the user must choose the appropriate NetCDF
file. (Optional)

Path Set this keyword to a string variable containing the
Path where NetCDF_DATA should begin its search
for the appropriate GS2 data file. If not present,
then the search will start at the current working
directory. (Optional)

File Set this keyword to a string variable containing the
full specification of the NetCDF file containing the
GS2 data. If not present, a widget will pop up so
that the user can select the appropriate file.
(Optional)

RunID Set this keyword to a string varaible containing an
appropriate RunID for the NeteCDF data file to be
read. (Optional)

TRange Set this keyword to a two-element floating-point
array containing the time interval over which the
data is to be analyzed. If not present, a widget will
pop up, allowing the user to select an appropriate
time interval. (Optional)

Save Set this keyword (i.e., put ‘/Save’ on the command
line) to save the output of this Analysis Protocol to
disk using GKV_SaveStructure (see §11.8 below).

Version 1.2

GKV User’s Manual –48– 4/28/02

8.3 LinearModes

This routine is useful for performing linear analysis from of data with one homogeneous
varialbe (which will be Fourier transformed over) and one inhomogeneous variable. It
expects data from the linear phase of the simulation in the input (GKVs3D) object. It
returns a structure containing real frequency and growth rate of the of fastest growing
mode for each Fourier harmonic, together with an object array containing the (best effort)
at extracting the corresponding linear mode structures.

Usage:

result = Object -> LinearModes(argument, keyword = value, …)

Argument: The argument is any legal axis identifier. It should
identify the axis which is to be fourier transformed
over to separate spatial structure of the linear
eigenmodes. Defaults to axis 2.

Keywords:

xRef Set this keyword to an appropriate reference value
of the inhomogeneous variable. This should be a
location where the linear eigenmodes are expected
to have a significant value. Defaults to 0.
(Optional)

‘mnemonic’ Alternatively, this reference location can be set by
using the syntax ‘mnemonic’=value, where
‘mnemonic’ is the mnemonic for the
inhomogeneous axis, and value is the desired
reference value.

Version 1.2

GKV User’s Manual –49– 4/28/02

9. Outputting Results

9.1 View

Usage:

object -> view, arg0, arg1, …, keyword = value, …

VIEW is GKV’S basic tool for viewing objects and outputting results. Upon invoking
VIEW a resizable graphics widget will pop up displaying a plot of “object”. The menu
allows the user to change the color table, or output the plot in a variety of graphics
formats.

Arguments; VIEW only accepts arguments (as opposed to keywords)
when obj is a GKVs2D object (that is, a 2-D GKVsd
object). In this case, the a line drawing of a curve is
displayed. Any arguments provided should be either
GKVs2D objects or arrays of GKVs2D objects which will
be displayed on the same frame as obj (but in different
colors).

Keywords: Any of the keywords described under “DRAW” below, or
any valid IDL graphics keyword can be employed with
VIEW. In addition, the user may employ the keyword:

Shade_Surf For GKVs2D or GKVs3D objects the default plot is an
image with colors chosen according the local data values
(in GKVs3D objects only one time slice is shown at a time).
If this keyword is set (i.e., /Shade_Surf is put on the
command line), then a surface plot is displayed instead of
an image (essentially, a color contour plot).

9.2 GKVs1D::Draw

Usage:

object -> Draw, keywords

Where object is a valid GKVs1D object. “Draws” object in the currently open window,
producing a line plot for 1-D objects.

Version 1.2

GKV User’s Manual –50– 4/28/02

 Keywords:

In addition to the usual IDL graphics keywords (see IDL Reference manual for a
discussion of IDL graphics keywords), there are the following:

Pretty Set this keyword (i.e., put /Pretty on the command line) to use
Hershey vector fonts to make ‘pretty’ titles and labels. Default is
to just use ascii characters.

Log Set this keyword (i.e., put /Log on the command line) to make a
plot which is logarithmic in the dependent variable.

Indx1 When Drawing a GKVsd object of dimensionality greater than
two set this keyword (and its companion, Indx2) to set values at
which the remaining independent variables should be ‘sliced’.

Runtime Keywords:

mnemonic Set this keyword to a two-element floating point array (IDL will
automatically convert integer arrays) to specify the plotting range
in the specified independent variable.

9. 3 PRO GKVs1D::oPlot

Usage:

Object -> oplot, keywords

Where Object is a valid GKVs1D objects. Plots Object over the image on the currently
open graphics window.

Keywords:

In addition to any IDL graphics keywords that are accepted by the IDL routine OPLOT,
the following keyword is available.

RealOnly Set this keyword (i.e., put /RealOnly on the command line) to plot
only the real part of a complex object. Default is to plot the real
part as a solid line and the imaginary part as a dashed line.
(Optional)

Version 1.2

GKV User’s Manual –51– 4/28/02

9.4 Pro GKVs2D::Draw

Usage:

Object -> Draw, keywords

Where Object is a valid GKVsd object of two or more dimensions. Produces an
“image” plot (essentially a color contour plot) in the currently open graphics window.

Keywords:

In addition to the usual IDL graphics keywords (see IDL Reference manual for a
discussion of IDL graphics keywords), there are the following:

Pretty Set this keyword (i.e., put /Pretty on the command line) to use
Hershey vector fonts to make ‘pretty’ titles and labels. Default is
to just use ascii characters. (Optional)

Polar Set this keyword (i.e., put /Polar on the command line) to make a
polar plot. The first independent variable will be interpreted as the
radius, while the second will be interpreted as the angle.

VRange Set this keyword to a two-element floating point array (IDL will
automatically convert integer arrays) to set the axis range for the
dependent variable. (Optional)

Log Set this keyword (i.e., put /Log on the command line) to make a
plot which is logarithmic in the dependent variable. (Optional)

Grid1 Set to any valid GKV axis identifier (an integer or an axis
mnemonic) to specify the first (‘x’) axis for this plot. Defaults to
the first independent variable. (Optional)

Grid2 Set to any valid GKV axis identifier (an integer or an axis
mnemonic) to specify the second (‘y’) axis for this plot. Note that
if Grid2 is specified, it MUST correspond to an axis whose
(integer) identifier is greater than that of Grid1 (user the INFO
method to determine integer axis identifiers). Defaults to the
second independent variable. (Optional)

Indx1 Set this keyword (and its companion, Indx2) to set values at which
the remaining independent variables to determine where the
dependent variable should be ‘sliced’. (Optional)

Runtime Keywords:

Version 1.2

GKV User’s Manual –52– 4/28/02

mnemonic Set this keyword to a two-element floating point array (IDL will
automatically convert integer arrays) to specify the plotting range
in the specified independent variable. (Optional)

OR

Set this keyword to a scalar to specify the value at which the third
(or fourth) independent variable should be ‘sliced’ for this plot.
(Optional)

9.5 Pro Shade_Surf

Usage:

Object ->Shade_Surf, keywords

Where Object is a valid GKVsd object of two or more dimensions. Produces a surface
plot of the dependent variable in the currently open graphics window.

Keywords:

In addition to the usual IDL graphics keywords (see IDL Reference manual for a
discussion of IDL graphics keywords), there are the following:

Pretty Set this keyword (i.e., put /Pretty on the command line) to use
Hershey vector fonts to make ‘pretty’ titles and labels. Default is
to just use ascii characters. (Optional)

Polar Set this keyword (i.e., put /Polar on the command line) to make a
polar plot. The first independent variable will be interpreted as the
radius, while the second will be interpreted as the angle.

PhaseShading For surface plots of complex data, unset this keyword (i.e., put
PhaseShading=0 on the command line) to turn off “phase
shading” (the default for complex data). With phase shading off
the surface is colored according to a scheme relating to the
‘lighting’, while the height is proportional to the real part of the
dependent variable. When phase shading is turned on, the surface
color is chosen according to the cosine of the phase of the complex
dependent variable, while the height of the surface is proportional
to its absolute value.

Version 1.2

GKV User’s Manual –53– 4/28/02

VRange Set this keyword to a two-element floating point array (IDL will
automatically convert integer arrays) to set the axis range for the
dependent variable. (Optional)

Log Set this keyword (i.e., put /Log on the command line) to make a
plot which is logarithmic in the dependent variable. (Optional)

Grid1 Set to any valid GKV axis identifier (an integer or an axis
mnemonic) to specify the first (‘x’) axis for this plot. Defaults to
the first independent variable. (Optional)

Grid2 Set to any valid GKV axis identifier (an integer or an axis
mnemonic) to specify the second (‘y’) axis for this plot. Note that
if Grid2 is specified, it MUST correspond to an axis whose
(integer) identifier is greater than that of Grid1 (user the INFO
method to determine integer axis identifiers). Defaults to the
second independent variable. (Optional)

Indx1 Set this keyword (and its companion, Indx2) to set values at which
the remaining independent variables to determine where the
dependent variable should be ‘sliced’. (Optional)

Runtime Keywords:

mnemonic Set this keyword to a two-element floating point array (IDL will
automatically convert integer arrays) to specify the plotting range
in the specified independent variable. (Optional)

OR

Set this keyword to a scalar to specify the value at which the third
(or fourth) independent variable should be ‘sliced’ for this plot.
(Optional)

9.6 Outputting Objects to a TIFF file

Many objects can be written into a TIFF file using the proceedure GKV_TiffOut.

Usage:

 GKV_TiffOut, arg0, arg1, arg2, …, keyword = value, …

Version 1.2

GKV User’s Manual –54– 4/28/02

This routine accepts GKV objects, GKV object arrays, or structures containing GKV
objects as input. It produces a Tiff output file which displays each of these GKV objects.

Arguments: GKV_TiffOut accepts up to 10 arguments, each of which is
either a GKVsd object, an array of GKVsd objects, or a
structure (any GKVsd objects in these structure will be
displayed in the TIFF file produced by this command).

Keywords:

Pack Setting this keyword (i.e., putting '/pack/ on the command line)
will result in 4 plots per page in the output TIFF file. Default is
one frame per page. (Optional) NOT YET IMPLEMENTED

FileName Set this keyword to an ascii string containing the name of the
desired output file. (Optional). Defaults:

If the argument is a single GKV object, then the fileName
defaults to 'mnemonic'.tif, where 'mnemonic' is the
mnemonic of the GKV object.

If the argument is a structure which includes the tag
"Name", then the outfile name defaults to 'Name'.tif, where
'Name' is the (ascii) contents of the tag "Name".

If no "fileName keyword is supplied, and the structure
argument does not have a tag "Name", then the FileName
defaults to "GKV.tif".

Path Set this keyword to the path to the directory where the TIFF file is
to be stored. Defaults to the current working directory. (Optional)

Append Set this keyword (i.e., put "/Append" on the command line) when
calling GKV_TIffOut recursively to indicate that frames are to be
added to an existing TIFF file.

xSize x-dimension (in pixels) of resulting image. Defaults to 400.
(Optional)

ySize y-dimension (in pixels) of resulting image. Defaults to 400.
(Optional)

Version 1.2

GKV User’s Manual –55– 4/28/02

10. Producing Animations

A convenient and rapid way of producing an animation is to use:

10.1 Movie

Usage:

obj -> Movie, arg1, arg2, …, keywords = value, …

This procedure creates and displays an animation of the data contained in obj using the
XINTERANIMATE tool provided as part of IDL. This tool also optionally allows you to
produce and save MPEG files containing this animation (NOTE: you must request the
MPEG license from RSI when you upgrade to IDL Version 5.4. This license doesn’t
seem to cost extra, but only appears on request …).

Arguments: MOVIE only accepts arguments (as opposed to keywords)
when obj is a GKVs2D object (that is, a 2-D GKVsd
object). In this case, the animation is a line drawing of a
curve which will evolve in time. Any arguments provided
should be either GKVs2D objects or arrays of GKVs2D
objects which will be displayed (and evolve) on the same
frame as obj.

KeyWords:

imin Index within 'self' to the first frame of the animation.
Defaults to the first time-slice of 'self'. (Optional)

imax Index within 'self' to the final frame of the animation.
Defaults to the final time-slice of 'self'. (Optional)

'Mnemonic' Alternatively, you can specify the time-interval for the
animation in the format "Mnemonic = [start, end]", where
"Mnemonic" is the mnemonic for the time-like (third) axis,
while 'start' and 'end' are the values of the time-like
coordinate at the stare and end of the animation.

skip The animation uses only "iskip"th time-slice. Defaults to
the smallest integer such that the total number of frames in
the animation is ≤ 128. NOTE: on many (but not LINUX)
platforms IDL appears to limit the total number of
PIXMAP windows (one PIXMAP window is required for
each frame of the animation) to 128, so the user's choice of

Version 1.2

GKV User’s Manual –56– 4/28/02

iskip is overridden if it would result in more than 128 frame
in the animation. (Optional)

npixels The number of pixels to be used in each frame of the
animation. If npixels is set to a scalar, a square window of
(npixels x npixels) is produced. If npixels is set to a two-
element array, then the a (generally) rectangular window of
(nPixels[0] x nPixels[1]) is produced. Defaults to 400x400.
(Optional)

Shade_Surf The default plot is an image with colors chosen according
the local data values. If this keyword is set (i.e.,
/Shade_Surf is put on the command line), then a surface
plot is animated instead of an image (essentially, a color
contour plot).

Graphics Keywords: Any additional keywords specified on the command line
will forwarded to the plotting routines, allowing the user to
customize his animation.

The XINTERANIMATE tool is limited on many platforms as to the maximum
number of frames, and provides little control of the quality of the animation. Hence,
there is a need of alternative means of producing animations.

10.2 MPeg,

Usage:

Object -> MPEG, keyword = value, …
;
This method makes an MPeg animation from a sequence of images from slices of 'self' at
sequence of values the independent variable stored in self.Grid3 (this is generally the
unlimited, or time variable). It creates an image of every iSkipth time slice of 'self', and
stores the result into a file selected by the user. This can take awhile, so probably you’ll
want to get a nice cup of coffee while you’re waiting for IDL to finish making the
MGPEG animation. NOTE, this procedure will ONLY work with IDL Version 5.4 (or
higher).
;
 Input KeyWords:

iSkip Interval between timeslices to be animated. Defaults to 1
(Optional).

Version 1.2

GKV User’s Manual –57– 4/28/02

trange A two-element array specifying the first and last time-slices
of this animation. Defaults to self.Grid3.range (Optional).

'mnemonic' The mnemonic of self.Grid3 can be used in place of the
keyword 'trange' with the same effect. Defaults to
self.Grid3.range (Optional).

Shade_Surf Set this KeyWord (i.e., '/Shade_Surf') to make a surface
plot instead of an image. Defaults to making 'image' plots
(Optional)

Path Set to path to folder where the MPeg animation is to stored.
Defaults to the current working directory (Optional).

FileName Name of the file containing the MPeg animation. Defaults
to 'self.mnemonic'.mpg. (Optional)

Xsize, Ysize The size of the frame in 'device' pixels. Defaults to xsize =
500, ysize = 500. (Optional)

Quality Set this keyword to an integer value between 0 (low
quality) and 100 (high quality) inclusive to specify the
quality at which the MPEG stream is to be stored. Higher
quality values result in lower rates of time compression and
less motion prediction which provide higher quality
MPEGs but with substantially larger file size. Lower
quality factors may result in longer MPEG generation
times. The default is 50. (Optional)

ShowLoad Set this keyword to view images as they are loaded into the
MPeg file. Default is not to show images. (Optional)

10.3 Jpegs

Usage:

Object -> JPEGS, keyword = value, …

Utilities are available which can convert a sequency of images contained in separate files
(this works MUCH better than trying to put all the images in the same file — believe me,
as I tried that!) into animations. You are responsible for finding such a utility (e.g., the
shareware utility GraphicCoverter for MACs). I’ve contented my self with providing
convenient means within GKV of producing a directory full of image files.

Version 1.2

GKV User’s Manual –58– 4/28/02

Input KeyWords:

;iSkip Interval between timeslices to be animated. Defaults to 1
(Optional).

trange A two-element array specifying the first and last time-slices
of this animation. Defaults to self.Grid3.range (Optional).

'mnemonic' The mnemonic of self.Grid3 can be used in place of the
keyword 'trange' with the same effect. Defaults to
self.Grid3.range. (Optional).

Shade_Surf Set this KeyWord (i.e., '/Shade_Surf') to make a surface
plot instead of an image. Defaults to making 'image' plots
(Optional)

Path Set to path to folder where a new folder containing the
sequence of JPEG files is to be stored. Defaults to the
current working directory (Optional).

DirectoryName Name of the new folder to be created to contain the
sequence of JPEG files. Defaults to
"'Self.mnemonic'_Animation". (Optional)

FileRoot Sequence of JPEG files will have the names
FileRoot00000.jpg, FILERoot00001.jpg, ... Defaults to
self.mnemonic. (Optional)

Xsize, Ysize The size of the frame in 'device' pixels. Defaults to xsize =
600, ysize = 700. (Optional)

Quality Sets the quality index in the range of 0 ("terrible") to 100
("excellent") of the JPEG images to be produced. The
default is 80 to produce "pretty good" quality. Lower
values of "Quality" produce higher compression ratios and
smaller files. Default is Quality = 80. (Optional).

true This keyword specifies the index, starting at 1, of the
dimension over which the color is interleaved. For
example, for an image that is pixel interleaved and has
dimensions of (3, m, n), set TRUE to 1. Specify 2 for row-
interleaved images (m, 3, n); and 3 for band-interleaved
images (m, n, 3). If this keyword is not set, then
WRITE_JPEG is called with true=1. You probably won’t
have to worry about this, as I believe true defaults to an
appropriate value. (Optional)

Version 1.2

GKV User’s Manual –59– 4/28/02

ShowLoad Set this keyword to view images as they are loaded into the
jpeg file. Default is not to show images. (Optional)

10.4 TIFFs

Usage:

Object -> TIFFs, keyword = value, …

This routine is used to provide a sequence of TIFF images for an animation of 'self' over
the independent variable stored in self.Grid3. It creates a TIFF image of every iSkipth
timeslice of 'self', and stores the result into a sequence of files in a directory selected by
the user. These files can be used to produce animations as described in GKVs3D::JPEGS
above.

Input KeyWords:

iSkip Interval between timeslices to be animated. Defaults to 1
(Optional).

trange A two-element array specifying the first and last time-slices
of this animation. Defaults to self.Grid3.range (Optional).

'mnemonic' The mnemonic of self.Grid3 can be used in place of the
keyword 'trange' with the same effect. Defaults to
self.Grid3.range. (Optional).

Shade_Surf Set this KeyWord (i.e., '/Shade_Surf') to make a surface
plot instead of an image. Defaults to making 'image' plots
(Optional)

Path Set to path to folder where a new folder containing the
sequence of TIFF files is to be stored. Defaults to the
current working directory (Optional).

DirectoryName Name of the new folder to be created to contain the
sequence of TIFF files. Defaults to "TIFF_Animation".
(Optional)

FileRoot Sequence of TIFF files will have the names
FileRoot00000.tif, FILERoot00001.tif, ... Defaults to
self.mnemonic. (Optional)

Version 1.2

GKV User’s Manual –60– 4/28/02

Xsize, Ysize The size of the frame in 'device' pixels. Defaults to xsize =
500, ysize = 500. (Optional)

ShowLoad Set this keyword to view images as they are loaded into the
TIFF file. Default is not to show images. (Optional)

Version 1.2

GKV User’s Manual –61– 4/28/02

11. Memory Management

11.1 FUNCTION MakeCopy

Usage:

result = object -> MakeCopy

Makes a ‘deep copy’ of object and places it into result. This differs from a simple
assignment statement (result = object), which only gives a second name (result) to the
data stored in object. Any action taken on result also modifies object because they both
point to the same data. MakeCopy is an implementation of a ‘deep copy’ in which result
points to an additional copy of the object data which has been created in memory. This
allows you to act on result without acting on object.

11.2 PRO Trash

Usage:

object -> Trash

Deletes all data associated with object, thereby freeing up memory. Note that Trash does
not remove object from IDL’s symbol table (that is, from IDL’s Variable Watch
window). Once an object’s data has been deleted with Trash, it can be removed from the
symbol table with the IDL procedure DELVAR (Usage: DELVAR, object . See the IDL
Reference manual for more info on DELVAR). Simply using DELVAR to remove an
object from IDL’s symbol table (without using trash) does not free up any of IDL’s
memory.

11.3 PRO GKVdelete, arg

Usage:
GKVdelete, arg

where arg is a variable, array (including arrays of GKVsd objects), or a structure
(including structures which contain GKVsd objects). GKVdelete deletes all data
associated with arg freeing up the memory. Like Trash, this will not remove arg from
IDL’s symbol table (which must be done with DELVAR).

Version 1.2

GKV User’s Manual –62– 4/28/02

11.4 Pro GKVsd::Save

Keywords:

FileName The name of the file in which the GKVsd object is to be saved.
Defaults to mnemonic.gkv, where mnemonic is the mnemonic of
the GKVsd object being saved. (Optional)

Usage:

object -> Save, FileName=filename

Saves a GKVsd object to disk using IDL’s XDR format (see SAVE in the IDL Reference
manual for more information on XDR, but note that IDL’s save routine is NOT a method
on GKVsd objects and you cannot expect the keywords of IDL’s save routine to work in
this context).

11.5 FUNCTION GKV_RESTORE

Usage:

result = GKV_Restore(FileName=filename)

This procedure restores a GKVsd object which has previously been Saved (with
GKVsd::Save) into filename. The restored GKVsd object is stored in result.

Keywords:

FileName The name of the file in which a GKVsd was saved. If FileName is
not provide, DIALOGUE_PICKFILE will allow the user to select
an appropriate file. (Optional)

11.6 Procedure GKV_SaveArray

Usage:

GKV_SaveArray, ObjArr

This procedure saves the array of GKVsd objects specified by , ObjArr to disk. It does
this by first creating a new directory ("Directoryname_arr") and then writing separate
.gkv file (see GKVsd::Save) with names FamilyName.index.gkv, where 'index' is the

Version 1.2

GKV User’s Manual –63– 4/28/02

zero-based array index into ObjArr. Unfortunately, this procedure will only work with
IDL Version 5.4 (or greater).

Input Argument: The (required) input argument, ObjArr must be an
array of GKVsd objects, which will be saved to disk
by this procedure.

Input Keywords

Path Path to working directory in which the new
directory, "DirectoryName_arr", containing the
'.gkv' save files will be created. Defaults to current
working directory. (Optional)

DirectoryName Name of the new directory to be created within the
directory specified by "Path". Defaults to the
mnemonic of ObjArr[0] (or, "GKVsd_arr", if
ObjArr[0] has no mnemonic). (Optional)

FamilyName Family name of the sequence of .gkv files. Defaults
to the mnemonic of ObjArr[0] (or, "GKVsd", if
ObjArr[0] has no mnemonic). (Optional)

Debug Set this keyword (i.e., put "/Debug" on the
commandline) to print out intermediate information
which may be useful in debugging this procedure

11.7 Function GKV_RestoreArray

Usage:

ObjArr = GKV_RestoreArray(keyword = value, …)

This function returns an array of GKVsd objects which have previously been saved to
disk using GKV_SaveArray (see §11.6 above).

Input Keywords

Path Path to working directory in which the new
directory, "DirectoryName", containing the '.gkv'
save files were created. Defaults to current working

DirectoryName Name of the directory (within the working directory
specified by 'Path') containing the '.gkv' save files.

Version 1.2

GKV User’s Manual –64– 4/28/02

If not specified the user will pick DirectoryName
with "Dialog_Pickfile". (Optional)

FamilyName The Save files should have a name of the form
'FamilyName'.'index'.gkv. If not specified GKV
will extract 'FamilyName' from the first file
returned by "FINDFILE". (Optional)

Debug Set this keyword (i.e., put "/Debug" on the
commandline) to print out intermediate information
which may be useful in debugging this procedure

11.8 Procedure GKV_SaveStructure

Usage:

GKV_SaveStructure, structure

;This procedure save a structure (possibly containing GKVsd objects) onto to disk. It
does this by first creating a new directory ("Directoryname_str") and then writing
separate SAVE files using GKVsd::Save, GKV_SaveArray, and the native IDL SAVE
routine as appropriate

;Input Argument: The (required) input argument, structure must bean
anonymous structure which may contain GKVsd
objects and/or GKVsd object arrays

Input Keywords

Path Path to working directory in which the new
directory, "DirectoryName_str", containing the
'.gkv' save files will be created. Defaults to current
working directory. (Optional)

DirectoryName Name of the new directory to be created within the
directory specified by "Path". Defaults to the
contents of structure.name with “_str” appended if
such a tag exists within structure, If no such tag
exists, then default is GKVsd_str. (Optional)

Debug Set this keyword (i.e., put "/Debug" on the
commandline) to print out intermediate information
which may be useful in debugging this procedure

Version 1.2

GKV User’s Manual –65– 4/28/02

11.9 FUNCTION GKV_RestoreStructure

Usage:

structure = GKV_RestoreStructure(keyword = values, …)

This function returns a structure (possibly containing GKVsd objects or arrays of GKVsd
objects) which has previously been saved to disk using GKV_SaveStructure (see §11.8
above)

Input Keywords

Path Path to working directory in which the new
directory, "DirectoryName", containing the various
save files and subdirectories was created. Defaults
to current working directory. (Optional)

DirectoryName Name of the directory within the working directory
specified by 'Path' containing the various save files
and subdirectories. If not specified, the user will
pick DirectoryName with "Dialog_Pickfile".
(Optional)

Debug Set this keyword (i.e., put "/Debug" on the
commandline) to print out intermediate information
which may be useful in debugging this procedure

Version 1.2

GKV User’s Manual –66– 4/28/02

11. Basic GKVsd Object Management

11.1 Procedure Info

Usage:

object -> info

Prints out information about object to the IDL log window. This includes the object’s
mnemonic, title, indices, units, range of values, CodeName, CodePI, RunID, and FileID.
For each of the object’s independent variables the corresponding mnemonic, title, units,
boundary condition, uniformity (of the grid), range, and signal window (irange) are
printed out. All this can be helpful if you don’t recall current state of a particular GKVsd
object.

11.2 Function Cat

Usage:

result = Object -> CAT(arg1, arg2, arg3, …)

This function, which accepts up to 10 arguments, concatenates its argument(s) with
Object and returns the result. Object is left unaltered. It returns a GKVsd object of the
same dimensionality as Object in which the data and grid (independent variable) values
from 'arg1' & Co. have been concatenated behind those of 'self'. Concatenation is done
ONLY in the last (generally, time-like) argument.

Input Arguments: Cat is generally called with at least one argument,
which must be a GKVsd object of the same
dimensionality as Object. If CAT is called with no
argument, or with inappropriate arguments, then
CAT returns a (deep) copy of Object.

11.3 FUNCTION SubSample

Usage:

Result = Object -> SubSample(Arg, keyword = value, …)

Version 1.2

GKV User’s Manual –67– 4/28/02

This function returns a GKVsd object of the same dimensionality as Object in which the
data of Object has been 'subSampled' onto a uniform grid of 'nSteps' (see keyword
descriptions below) over the selected independent varaible.

Argument:

Arg The (optional) argument is any legal axis identifier.
That is, either an integer between 1 and nDims, or a
STRING containing an axis mnemonic.

Keywords:

Axis If no argument is provided, then this keyword may
be used to identify independent variable to be
subsampled. Set axis equal to any legal axis
identifier (see above).

mnemonic Set the mnemonic of the selected axis equal to a
two-element array, [min, max], to both identify the
independent variable to be subsampled, and to reset
the signal window on this axis (before
subsampling). This two-element array is interpreted
as the desired RANGE in the independent variable,
NOT the integer 'irange'

irange Set 'irange' to a two-element (integer) array to reset
the signal window before subsampling on the
selected independent variable.

range Set 'range' to a two-element (floating point) array to
set the range in the independent variable over
subsampling is performed

 nSteps The desired number of gridpoint for the selected
axis. Defaults to no change in number of grid
points over Object’s SignalWindow. (Optional).

DownBy Decrease number of grid points by a factor of
'Downby'. Defaults to no change in number of grid
points in Object’ SignalWindow. (Optional).

 Dt Desired size of the uniform sampling interval in the
output grid. Defaults to no change in number of
grid points in Object’s SignalWindow. (Optional).

Version 1.2

GKV User’s Manual –68– 4/28/02

11.4 GKVs1D::Squash

Usage:

result = Object -> Squash(arg)

This function method returns a GKVs1D object with the data of Object as the dependent
variable, and the data of arg as the independent variable. Plots of result can be used to
check for relationships between data objects.

Argument; arg must be a GKVsd object of the same
dimensionality as Object, with the same
independent variables.

Input Keywords

Title Should be set equal to a String, which becomes the
Title for output object. Defaults to title of Object.
(Optional)

Mnemonic Should be set equal to a String, which becomes the
Mnemonic for output object. Defaults to mnemonic
of Object. (Optional)

11.5 PRO SignalWindow,

Keywords:

Axis Set to any legal axis identifier—either an integer between 1 and the
dimensionality of the object to be acted on, or the mnemonic of
one of the independent variables.

range Set to a two-element floating point array (IDL will automatically
convert integer arrays) to set the range of the signal window for the
selected independent variable in its proper units.

irange Set to a two-element integer array to set the range of grid-indices
of the selected independent variable corresponding to its signal
window.

RunTime Keywords:

Version 1.2

GKV User’s Manual –69– 4/28/02

 mnemonic Set mnemonic to a two-element floating point array (IDL will
automatically convert integer arrays) to set the range of the signal
window for the independent variable identified by mnemonic in its
proper units.

Usage:

object -> SignalWindow, keywords

The signal window is used to select a portion of the data for analysis. GKV analysis
routines act only on data within the current signal window. For example, if you are
interested in examining the linear phase from a non-linear simulation run you would set
the signal window in time such that it covered just the initial transients before non-linear
effects become important. Conversely, if you are interested in fully developed
turbulence, set the signal window to exclude initial transients from further analysis.

11.6 PRO GET

Usage:

object -> GET, keyword=value, …

If you find that you are frustrated with the dictum “Only an object’s methods can access
an object’s data”, use this “GET” (and the corresponding “SET”) to work around it.

Keywords:

mnemonic Mnemonic associated with GKVsd object

Title Title of GKVsd object (used on ‘pretty’ plots)

Indices An array used to properly label GKVsd plots...

units Units of dependent variable

values a POINTER to the GKVsd object’s values

vrange Range of dependent variable values for plots

ErrorBars a POINTER to ErrorBars (of provided)

CodeName Code in which data was created

CodePI Additional info on this code

Version 1.2

GKV User’s Manual –70– 4/28/02

RunID Information on particular code run

FileID Additional information on code run

11.7 PRO SET

Keywords: See discussion under GKVsd

Usage:

Object -> Set, keyword=value

If you find that you are frustrated with the dictum “Only an object’s methods can access
an object’s data”, use this “SET” (and the corresponding “GET”) to work around it.

11.8 FUNCTION GetValues

Usage:

result = object -> GetValues

Returns a POINTER to an array containing those values of the dependent variable which
lie within the object’s SignalWindow. For 0-D GKVsd objects ONLY, it returns the
(scalar) value rather than a pointer to this value.

11.9 FUNCTION GKVsND_Gen

Usage:

result = GKVs1D(keywords)
result = GKVs2D(keywords)
…

Output is a valid GKVsd object of the specified dimensionality containing sample data
with requested Fourier spectrum (and no correlations between Fourier modes), where N
is an integer between 1 and 4 specifying the dimensionality of the object to be generated.
The corresponding independent variables are (x, y, z, t).

Version 1.2

GKV User’s Manual –71– 4/28/02

Keywords:

Nx, Ny, Nz, Nt Number of grid points in specified variable.
(Optional)

Amplitude The amplitude of the signal to be generated.
(Optional)

kx, ky, kz, omega The central wavenumber (frequency) in the specified
independent variable of the signal to be generated.
(Optional)

Del_k=bandwidth The bandwidth of the signal to be generated.
(Optional)

