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Abstract
Fast Ion Studies of Ion Cyclotron Heating

in the PLT Tokamak

Gregory Wayne Hammett

The most promising method for heating a tokamak reactor plasma to
thermonuclear temperatures is the use of waves in the ion cyclotron range of
frequencies. Measurements of the fast non-Maxwellian ions which are pro-
duced by this heating method provide a wealth of information about the
physics of wave heating. Previous experiments have demonstrated that ion
cyclotron heating tends to produce energetic ions whose banana tips are
near the resonance layer. Cyclotron heating causes this “resonance localiza-
tion” by imparting perpendicular energy to particles, and by imparting more
energy to particles which spend more time in the resonance layer. A bounce-
averaged quasilinear operator which properly includes these effects has been
implemented in a Fokker-Planck code in order to make detailed comparisons
with measurements. Good agreement is found with data from a horizontally-
scanning, mass-resolving, neutral particle analyzer, although the assumed RF
power deposition profile needed to match the data is broader than expected
in some cases. Alternatively, radial diffusion of fast ions (which is ignored
in the code) may make the RF power profile appear to be broader than it
is. In addition to the usual charge exchange measurements of hydrogen and
deuterium, double charge exchange measurements of 3He have been made.
Direct second harmonic heating of deuterium or tritium is a preferred tech-
nique for a reactor. The transition from hydrogen fundamental heating to
deuterium second harmonic heating at low hydrogen concentrations has been
clearly demonstrated. An isotropic model fit to the deuterium tail provides a
direct measure of the central deuterium power density. These measurements
are consistent with sawtooth broadening of the RF power profile and indi-
cate that as much as 20% of the central RF power is directly absorbed by
the deuterium in these experiments.
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Then the LORD answered Job out of the whirlwind and said,

“Who is this that darkens counsel
By words without knowledge?

“Now gird up your loins like a man,
And I will ask you, and you instruct Me!

“Where were you when I laid the foundation of the earth?
Tell Me, if you have understanding,

“Who set its measurements, since you know?
Or who stretched the line on it?

“On what were its bases sunk?
Or who laid its cornerstone,

When the morning stars sang together,
And all the sons of God shouted for joy?”

Job 38:1–7



Chapter 1

Introduction to ICRF

Production of Fast Ions

1.1 Motivation

1.1.1 A Glimpse of the Future

A silver DeLorean roars out of nowhere and screeches to a halt. Out climbs
Doc Brown, dressed in futuristic metallic garb, muttering, “I gotta have fuel.”
Taking a banana peel and a can of beer from a garbage can, he opens the
trunk of his time-travelling sports car and deposits the garbage into a small
device, about the size of a coffee machine, labelled “Mr. Fusion.” Fusion
energy now powers Doc’s car—plutonium is no longer needed.

This fanciful scene from the movie “Back to the Future,” written by
Robert Zemeckis and Bob Gale, captures the dream of fusion scientists—
that cheap and safe fusion will be the energy source of the future. Fusion
energy would be much safer than the fission reactors of today, and would
not produce any air pollution as fossil fuels do. The real fuel of fusion,
deuterium, is practically as plentiful as garbage. The energy crisis of the 70’s
has faded from our memories, but, like a bad dream, it is sure to haunt us
again in the future. If the fusion dream can be made a reality, then perhaps
a future superpower war over scarce energy resources may be avoided. But
we must keep fusion in perspective. It does not work yet. Even if it does
work someday, it can not solve all of the problems of mankind.

2
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1.1.2 A Look at the Past

The quest for controlled fusion energy began in the early 50’s, long before the
energy crises of the 70’s. Although the progress of this quest has been slower
than expected, much progress has been made. Many different approaches
to fusion have been proposed and are being tested, but the tokamak has
been the most successful to date. The tokamak concept was first proposed in
1950 by Igor E. Tamm and Andrei D. Sakharov1 (the same Sakharov who is
now a Soviet dissident). The minimum temperature of 75 million degrees C
needed to make fusion work was first obtained in Princeton’s PLT tokamak
in 1978, while the requisite minimum confinement quality nτ > 1013cm−3sec
was first reached in MIT’s Alcator tokamak in 1975. The next step is to
achieve both high temperature and high confinement quality simultaneously
in the the same tokamak. The Princeton TFTR, the European JET, and
the Japanese JT-60 tokamaks are designed to try to reach this goal, with
the hope of demonstrating marginal fusion energy breakeven by the end of
the 1980’s. The tasks of igniting a self-burning plasma, and harnessing the
resulting energy in an economically attractive way still remain further down
the road.

Although it may be possible to heat a high field tokamak to ignition with
Ohmic heating alone, a tokamak with more modest magnetic fields needs
some form of auxiliary heating to reach ignition temperatures. Neutral beam
injection (NBI) is one way to do this, and it has been studied extensively.
Recent studies have focussed on using plasma waves, not only to heat the
plasma but also to drive steady state currents. This thesis will concentrate
on heating by waves in the ion cyclotron range of frequencies (ICRF), where
the wave frequency ω resonates with the ion cyclotron frequency Ω (or with
2 × Ω) of one of the ion species in the plasma. The wave energy is directly
absorbed by the resonant ions, and then collisionally transferred from the
energetic resonant ions to the rest of the plasma. While neutral beams have
difficulty penetrating into a dense reactor plasma, ICRF heating should actu-
ally improve at higher densities. Access problems in a reactor should also be
less severe for ICRF than for NBI. The potential usefulness of ICRF heating
has long been recognized, with initial studies carried out in the early days
of plasma physics research.2,3 More recently, high power ICRF heating has
been demonstrated on a number of tokamaks, including PLT at Princeton,
Alcator C at MIT, TFR at Fontenay-aux-Roses in France, and JFT-2 at
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Tokai in Japan. There are a number of good reviews of the present status of
experimental and theoretical work on ICRF heating.4,5

The best heating results to date with ICRF have been obtained in the PLT
tokamak (Fig. 1.1). A central ion temperature of 5 keV (60 million degrees
C) was achieved with 4.3 MW of ICRF power. The heating efficiency was
similiar to that of NBI.6 In this case, the majority of the plasma ions were
deuterium, while a small amount ( n3He/ne ∼ 5 – 10 %) of 3He was puffed in
before the ICRF was turned on. The magnetic field was set to 33 kG so that
the 30 MHz ICRF waves would resonate with and heat the 3He. These results
are sure to be exceeded in the near future by the European JET tokamak,
which will have ∼ 15 MW of ICRF power at its command by the summer of
1986.

1.1.3 The Focus of This Thesis

ICRF heating typically produces an energetic non-Maxwellian tail in the res-
onant ion velocity distribution function f(~v). The general goal of this thesis
has been to measure this energetic tail to understand better the physics of
ICRF heating. Figure 1.2 shows measurements at three different viewing
angles of the energy distribution of fast hydrogen neutrals during hydrogen
minority heating in the PLT tokamak. The viewing angles are shown
in Fig. 1.3, and the spectra seen at each viewing angle are quite differ-
ent. Maxwellian distributions (f ∝ exp(−W/T )) would be straight lines
on the semilog plot of Fig. 1.2 and independent of viewing angle. Since
cyclotron damping imparts primarily perpendicular energy to particles, one
might naively expect to see the biggest tail in f while viewing perpendicular.
Instead, the largest neutral flux is observed while viewing at an intermedi-
ate angle between perpendicular and parallel. Another interesting feature
of the intermediate viewing angle data is the “negative temperature” region
between 25 and 100 keV where ∂f/∂W > 0. These peculiar spectra provide
interesting subject material for this thesis.

Kaita et al.7 showed that the large flux at the intermediate viewing angle
is due to energetic trapped ions whose banana tips lie near the resonance layer
and which charge-exchange in the high neutral density region at the edge of
the plasma (Fig. 1.5). In Sec. 1.2 we will show why ICRF produces these en-
ergetic trapped particles with banana tips near the resonance layer, and will
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Figure 1.1: Ion and electron temperature as a function of time in the
PLT tokamak with 4.3 MW of ICRF heating. Triangles are charge ex-
change measurements (including a calculated 15% correction for profile ef-
fects) and squares are neutron measurements (assuming 30% depletion).
n̄e = 3.7 × 1013cm−3. Neutron production ≈ 1013 /sec.
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Figure 1.2: Hydrogen energy spectra measured by the charge exchange neu-
tral analyzer at three different viewing angles (shown in Fig. 1.3). Also shown
are simulated curves to be discussed in Chapter 4.
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Figure 1.3: Top view of the PLT tokamak and the horizontally scanning
charge exchange neutral analyzer (CENA). The three CENA viewing angles
corresponding to the data of Fig. 1.2 are marked PERP (Rtan = 13 cm),
PEAK (Rtan = 70 cm), and PAR (Rtan = 102 cm).
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Figure 1.4: Cross-sectional side view of PLT. All CENA sightlines lie in the
horizontal midplane.

Figure 1.5: Sample banana orbits whose tips lie in the resonance layer and
which charge exchange near the edge of the plasma, giving rise to the large
charge exchange flux at the PEAK angle. Also shown are the positions viewed
by other sightline angles, given by Eq. (1.2), assuming perfect resonance
localization.
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explore what may be learned from spectral measurements like Fig. 1.2. The
physical ideas presented in Sec. 1.2 will be developed more quantitatively in
the bounce averaged quasilinear theory of Chapter 2. This theory has been
implemented in a Fokker-Planck computer program to allow detailed com-
parisons with experiments. These comparisons (shown in Chapters 3 and
4) are used to infer the RF power deposition profile from the fast neutral
measurements. (We will find that this procedure is complicated if the tail
is so energetic that unconfined orbit losses are important.) In many cases,
the inferred RF power profile is significantly broader than theoretically ex-
pected. This may be because fast ions produced by the RF near the center of
the plasma are quickly spread out over a larger region by some faster-than-
neoclassical mechanism such as sawteeth, making the power profile appear
to be broader than it really is.

Although second harmonic heating of deuterium or tritium may be pre-
ferred for a reactor, past attempts at deuterium second harmonic heating
were thwarted by strong hydrogen fundamental absorption. This thesis
presents clear evidence of direct second harmonic heating of deuterium. We
have also developed an analytic model for the shape of the deuterium tail.
This model, along with the full bounce averaged quasilinear program, pro-
vides a useful tool for analyzing the deuterium measurements.

We have also demonstrated the feasibility of double charge exchange mea-
surements of 3He minority heating (in a 4He majority plasma). This tech-
nique could be used as an alpha particle diagnostic once the alpha particles
have slowed down to ∼ 400 keV. Our measurements are consistent with the
higher efficiency of 3He minority heating over hydrogen minority heating.

1.1.4 A note about the length of this thesis

One of my goals in writing this thesis was to avoid sacrificing clarity for
brevity. I wanted to provide enough discussion of the assumptions and mod-
elling behind my work that a future graduate student could find my mistakes.
I also wanted to describe many of the interesting details I have come across.

As a result, this thesis is rather long, longer than even I expected. For the
reader interested in a concise account of the highlights of this thesis, I suggest
first reading the preceding section, Sec. 1.1.3, and then the final chapter,
Chapter 5. The reader is also encouraged to use the detailed table of contents
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to find the parts of the thesis which most interest him. Several aspects of
this thesis research have already been reported,6,8–11 but this dissertation is
meant to be complete and self-contained.

1.1.5 The role of fast ions in ICRF heating

In minority ICRF heating, the resonant fast ions are the channel through
which the RF power is transferred to the bulk plasma. In second harmonic
ICRF, the bulk ions can directly absorb most of the RF power, but a sub-
stantial energetic tail may still be produced. These ICRF-produced fast ions
play an important role in the propagation and damping of ICRF waves, in
the heating of the bulk plasma, and in the transport and stability properties
of the bulk plasma. Measurements of the ICRF-produced fast ions provide a
useful tool for probing the physics of ICRF heating.

The physics of ICRF heating is interesting on a fundamental level as
well. Standard quasilinear theory is only valid for a spectrum of incoherent
waves, while ICRF heating is usually done with only a single monochromatic
wave (or at most, a few discrete waves). Knowledge of the proper quasilinear
theory for the ICRF case is necessary to predict f(~v) for the resonant ions and
to calculate such basic quantities as the fusion reactivity enhancement12,13

and the amount of electron heating vs. ion heating.

The direct effect of ICRF on transport is usually negligible. But there
are a number of indirect ways in which ICRF may affect confinement. The
average energy of the energetic resonant ions is usually determined by the
balance between the input RF power and the collisional losses to the colder,
bulk plasma. If the plasma current in the tokamak is not large enough,
the energetic resonant ions will have such large banana widths that they will
strike the outside limiter. These unconfined orbits not only represent a direct
energy loss mechanism, but also enhance the sputtering of impurities from
the limiter or wall14 and may even enhance the inward neoclassical transport
rate of impurities.15 It is important to be able to identify when the tail
is too energetic and to know how to control the tail. The TFR group put
this loss mechanism to good use by pumping selected impurities out of the
plasma.16 Modelling of this ICRF-driven impurity pump-out has also been
undertaken.17

The energetic trapped particles produced by ICRF will alter the RF power
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deposition profile through finite gyroradius and Doppler-broadening effects,
and to a lesser degree, through changes in the wave-particle correlation time.
Although this thesis focusses on wave damping effects, the energetic trapped
particles may also effect wave propagation itself.18–20 Because the energetic
ions produced by ICRF tend to be trapped to the low magnetic field side
of the cyclotron layer, a poloidal electric field must be set up to maintain
quasineutrality. There has been a suggestion that the poloidal electric field
induced by ICRF may improve confinement while the field induced by elec-
tron cyclotron heating may degrade confinement.21

A fascinating possible application for ICRF is to try to stabilize the “fish-
bone” instability and to push a tokamak into the second stability regime of
high β.22–24 By positioning the cyclotron layer near the high field side of the
q = 1 surface, it should be possibile to produce a large number of barely
trapped, energetic particles within the q = 1 surface (Fig. 1.6). These barely
trapped particles spend most of their time in the good curvature region of
the tokamak and tend to stabilize the fishbone. (Recent calculations25 indi-
cate that it may be necessary to produce barely passing particles to improve
stability. This can be accomplished by moving the cyclotron layer further to
the high field side and relying on the the Doppler shift to heat ions inside the
q = 1 surface.) If the cyclotron layer intersects the low field side of the q = 1
surface instead, the resulting energetic particles will spend most of their time
in the bad curvature region of the tokamak and will tend to destabilize the
fishbone. An experimental confirmation that the fishbone instability can be
turned off and on by moving the cyclotron layer in and out would be most
interesting.

1.2 Resonance Localization

Previous neutral particle measurements in the PLT tokamak indicated that
ion cyclotron heating tends to produce energetic particles whose banana tips
are near the resonance layer.7 This effect has been termed “resonance local-
ization”,21 referring to the localization of the banana tips near the resonance
layer. In this section we will describe why resonance localization occurs, how
it can be used to understand charge exchange spectra like Fig. 1.2, and the
measurements on tokamaks which verify the resonance localization property
of ICRF.
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Figure 1.6: Sample fast ion orbits produced when the resonance layer inter-
sects the (a) bad curvature side or the (b) good curvature side of the q = 1
surface.
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It should be pointed out from the beginning that the resonance localiza-
tion phenomenon itself is a simple process that has been known about in
some form for a long time. Rothman26 attributed the drop in coupling at
high ICRF power levels in the model C stellarator to resonance localization.
He pointed out that the ions gain perpendicular energy from the RF and are
no longer able to make it up the magnetic beach, thus reducing the plasma
density under the Stix coil and decreasing the loading. ICRF has been used
in tandem mirrors, not only to heat the central cell, but also to trap escaping
ions in the end plugs.27,28 Electron cyclotron heating also exhibits the res-
onance localization effect.29,30,69 Experimental evidence for ICRF resonance
localization in tokamaks will be considered in Sec. 1.2.4 and 1.2.5, and the
detailed theory behind it will be discussed in Chapter 2. First, however, we
give a physical picture for why resonance localization should occur.

1.2.1 The Causes of Resonance Localization

The magnetic field in a tokamak varies approximately as B ∝ 1/R, where
R is the major radius. The cyclotron frequency is thus not constant in a
tokamak, and a particle can resonate with the RF only at the major radius
where its cyclotron frequency Ω = eB

mc
equals the rf frequency ω. As a particle

moves along a flux surface it will periodically pass through the resonance
layer, Rres, where Ω = ω, and will gain or lose a small amount of energy
depending on whether it is in or out of phase with the wave. A calculation
of the energy kick δW⊥ received by the particle is presented in Chapter 2,
but all that is important now is that the interaction is confined to a narrow
region around the resonance layer at Rres. (Chapter 2 will consider the case
of general k‖ 6= 0 with the surprising result that the “resonance localization”
phenomenon is independent of k‖.)

Two mechanisms are important in producing energetic trapped particles
whose banana tips are near the resonance layer. First, cyclotron heating
is anisotropic. By this we mean that the wave imparts only perpendicular
energy to the ions, while their parallel energy is unaffected (for k‖ = 0). Each
time a particle passes through the resonance layer, its perpendicular velocity
may increase. As the RF heats a particle up to high energies, it is also pushing
it into the trapped region of velocity space. This process is illustrated by the
sequence of orbits and corresponding points in (v‖res, v⊥res) phase space in
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Figure 1.7: Sequence of orbits showing how the ICRF gives particles per-
pendicular energy, thus turning passing particles into trapped particles and
pushing their banana tips closer to the resonance layer.

Fig. 1.7. (Note that v‖ and v⊥ are evaluated in the resonance layer rather
than at the minimum of the magnetic well, which would be more traditional.
This was chosen because v‖res is unchanged by the RF and because all of
the orbits intersect the resonance layer at the same place.) Consider the
initial 1 keV passing orbit in Fig. 1.7. After passing through the resonance
layer many times, it may absorb enough perpendicular energy to become a
barely trapped orbit. After many more passes through the resonance layer,
a particle may be accelerated to even higher energies, pushed deeper into
the trapped region of phase space, and its banana tips pushed closer to the
resonance layer. Eventually a particle could become so energetic, and its
banana width so wide, that it is scraped off by the outer limiter (the 120
keV orbit in Fig. 1.7). Although collisional pitch angle scattering becomes
negligible at high energies, collisional drag with the electrons is still important
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and usually serves to keep most of the ions from becoming so energetic that
they are unconfined. In PLT, it is not difficult to produce a hydrogen tail
so energetic that unconfined orbits are the dominant loss mechanism. In
a higher current reactor designed to confine 3.5 MeV alpha particles, this
should not be a problem.

Notice that the sequence of orbits in fig. 1.7 all intersect the resonance
layer in the same place and all have their banana tips on the same flux surface.
This is because the ICRF is unable to change v‖res (at least for k‖ = 0).
From conservation of toroidal angular momentum this means that the ICRF
is unable to cause any direct neoclassical-like radial transport. This subtle
(and perhaps semantic) distinction between unconfined orbit losses and real
radial transport has been the source of some confusion.

The anistropic nature of ICRF is one mechanism which produces energetic
ions with banana tips near the resonance layer. The second mechanism is
that cyclotron heating is preferential. Not all ions are heated uniformly, but
ions which spend more time in the resonance layer will absorb more energy.
A trapped particle spends a large fraction of its time near its banana tip,
since v‖ → 0 there. Thus a particle whose banana tip is already near the
resonance layer will absorb more energy than a particle whose banana tip is
far away (Fig. 1.8).

1.2.2 Unfolding Neutral Particle Measurements

By assuming perfect resonance localization, i.e., that all energetic ions have
their banana tips exactly in the resonance layer, we are able to unfold the
sightline integrated neutral particle measurements to obtain localized infor-
mation. The pitch angle η = v‖/v accepted at different points along a sight-
line varies as η = Rtan/R, where Rtan is the tangency radius of the sightline,
and R is the major radius where a fast neutral is born. This geometry is
illustrated in the top view of a sightline through a tokamak in Fig. 1.9. The
variation of a particle’s pitch angle along a banana orbit can be worked out
from conservation of energy W and magnetic moment µ:

1

2
v2
‖ = W − µB

η =
v‖
v

= ±
√

1 − µB

W
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Figure 1.8: Particles whose banana tips are already near the resonance layer
absorb more energy than a particle with the same initial energy but which
quickly passes through the resonance layer.
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Figure 1.9: Top view of tokamak and a detector sightline, showing the vari-
ation of the pitch angle v‖/v viewed along the sightline.
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Taking the usual tokamak approximation B ∝ 1/R, and knowing that v‖ → 0
in the resonance layer where the banana tip is, we can write this as

η = ±
√

1 − Rres

R
. (1.1)

But the neutral particle analyzer only sees particles from major radius R if
it has the pitch angle η = ±Rtan/R. Equating these two expressions for η
yields an equation for R(Rtan, Rres) which determines where along a sightline
the neutrals originated:

√

1 − Rres

R
=
Rtan

R
.

The physically meaningful root is

R(Rtan, Rres) =
Rres

2
+

√

(
Rres

2
)2 +R2

tan. (1.2)

With the resonance layer at 139 cm, we find that the Rtan = 70 cm sightline
only accepts orbits which pass through the midplane at a major radius of
R = 168 cm (2 of these orbits are shown in Fig. 1.5). This is near the edge
of the plasma where the neutral density is high, thus producing the large
neutral flux observed at Rtan = 70 cm in Fig. 1.2. On the other hand, the
spectra measured at Rtan = 13 cm is from ions at R = 140 cm, near the
center of the plasma. This radial information about the energetic ions can
then be used to try to infer the radial power profile.

A striking feature of the Rtan = 70 cm spectra is that the 100 keV flux is
2 times bigger than the 30 keV flux. This “negative temperature” has two
possible explanations. The first is simply that the ICRF power at point A
in Fig. 1.5 is much higher than at point B, so that there are more 100 keV
ions at point A than 30 keV ions at point B. But an alternative explanation
is that the ICRF power at point C in Fig. 1.10 is large enough to produce
a significant number of 500 keV, barely confined ions. As these ions pass
through the cold edge plasma, they experience strong electron drag, but
very little pitch angle scattering, and their banana tips move out as they
slow down. Above 100 keV, the charge exchange cross section is negligible
(Fig. 1.11). But as the ions slow down from 100 to 30 keV, charge exchange
losses in the high neutral density edge plasma are large enough to cause the
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Figure 1.10: Fast ions at point A may either be an indication of a large
amount of RF power at point A, or of of a large amount of RF power at
point C, if the fast ions at point C slow down in the cold edge plasma and
move out in minor radius. The energies of these ions are: 500 keV at C, 100
keV at A, 30 keV at B.

Figure 1.11: Rate coefficient σv for protons charge exchanging with hydrogen
atoms, as a function of energy. Taken from Freeman and Jones.31
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observed 50% drop in flux. This edge drag process is probably the main cause
of the “negative temperature” in the charge exchange spectra. However, we
will find in Chapter 4 that the bounce averaged quasilinear program (which
ignores radial transport processes and therefore this edge drag process) is
also able to reproduce the “negative temperature” by putting much more
ICRF power at point A than at point B.

1.2.3 Limitations on Resonance Localization

Of course not all ions have their banana tips exactly in the resonance layer,
especially at low energies ( < 30keV) where pitch angle scattering is very
rapid. In fact, the Rtan = 102 cm sightline views particles which must have
pitch angle scattered out of the resonance layer, since Eq. (1.2) yields R = 193
cm for Rtan = 102 cm, which is well outside the vacuum vessel. Our primary
goal here is to emphasize the fact that although the neutral particle spectra
are sightline measurements, they do contain radial information because most
of the high energy particles have their banana tips near the resonance layer.
To be more quantitative about trying to unfold this radial information, one
must be careful to include the effect of pitch angle scattering which tends to
erase radial information. Pitch angle scattering and other important effects
are included in the theory and computer program developed in Chapter 2
and used in Chapters 3 and 4. However, the pitch angle of an ion may be
changed by sawteeth instabilities, a process ignored in our present computer
modelling, as well as by collisions.

1.2.4 Neutral Particle Evidence for Resonance Local-

ization

Experiments on TFR provided some of the earliest indications that resonance
localization may play an important role in tokamaks. They observed a sharp
rise in ripple losses of ions when the ICRF was turned on,32 and in some
cases, were able to pump selected impurities out of the plasma.16 In this
second paper, they specifically point out that ICRF should produce energetic
trapped particles whose banana tips lie near the resonance.

Kaita’s experiment7 was more direct in showing that energetic ion banana
tips actually lie in the resonance layer. While making routine fast neutral
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Figure 1.12: Illustration of how the orbits which cause the peak neutral flux
will change as the resonance layer is moved.

measurements as a function of viewing angle, Kaita found that the largest
signal was observed at an intermediate viewing angle instead of at the perpen-
dicular viewing angle as one might expect. Figs. 1.13–17 show measurements
made in the early stages of my thesis research which reproduce their original
results. They postulated that this large signal was due to fast ions whose
banana tips were in the resonance layer and which charge exchange near the
edge of the plasma where the neutral density is large. This model predicts
that the largest neutral flux should be observed at an R̂tan given by setting
R in Eq. (1.2) to the outside edge of the tokamak:

R̂tan =
√

Rout(Rout − Rres) (1.3)

They tested this model by changing the position of the resonance layer (by
changing the toroidal field) to see if the peak in the neutral flux moved as
Eq. (1.3) would predict. The expected change in the orbits which cause the
peak neutral flux is illustrated by Fig. 1.12. Figs. 1.13–14 show that the
peak does move as this simple model predicts. (In these experiments Rout
was taken to be 174 cm where the outer limiter was. In Kaita’s original
experiment there were only top and bottom limiters so Rres was taken to
be 183, the position of the vacuum vessel wall.) Note that although the
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Figure 1.13: Flux of 90 keV hydrogen neutrals as a function of analyzer
sightline angle when Rres = 132 cm.

magnitude of the energetic neutral flux has a strong density dependence, the
position of the peak is independent of density. In addition to the density
independence, Kaita’s measurements showed that the position of the peak is
independent of plasma current or the position of the ICRF antennas relative
to the neutral particle analyzer. Figs. 1.15–17 show that although the peak
at lower energies is less pronounced (because pitch angle scattering is larger)
it still moves as the resonance layer is moved.

1.2.5 Other Evidence for Resonance Localization

Further evidence for resonance localization has been provided by a number
of other diagnostics besides the neutral particle analyzer. Perhaps the clear-
est evidence is in edge probe measurements made by Manos.33 They used
a calorimeter probe with a rotable entrance aperture which only allows en-
ergetic ions with a selected pitch angle to enter the probe (Fig. 1.18). The
probe was inserted into the edge of the plasma at the outside midplane,
where unconfined banana orbits are lost (Fig. 1.7). The lower energy parti-



1.2. RESONANCE LOCALIZATION 23

Figure 1.14: Flux of 90 keV hydrogen neutrals as a function of analyzer
sightline angle when Rres = 152 cm.

cles which are always present in the edge plasma have gyroradii smaller than
the aperture, and they can enter the calorimeter whenever it is pointed along
a field line. The peaks in Fig. 1.19 at 0 and 180 degrees are caused by the
low energy edge plasma. The additional peak at 310 degrees in Fig. 1.19(a)
occurs during H minority heating. This pitch angle corresponds to particles
whose banana tips lie near the resonance layer, in agreement with Eq. (1.1).
Reversing the direction of the plasma current reversed the peak angle in
Fig. 1.19(b), as it should. No additional peak was observed during 3He mi-
nority heating (Fig. 1.19(c)), consistent with expectations that unconfined
orbit losses should be much weaker for 3He minority heating than for H
minority heating. Unconfined orbit losses were also observed during high
power second harmonic hydrogen heating (Fig. 1.19(d)). In addition to the
calorimeter probe at the outside midplane, a second probe was placed at the
top of the plasma. It saw no fast ion peak during H or 3He minority heating.
This is also to be expected, since fast ions would be lost to the outside lim-
iter long before their banana widths became large enough that the top probe
would see them. The caps which cover the edge probes places at the outside
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Figure 1.15: Flux of 30 keV hydrogen neutrals as a function of analyzer
sightline angle when Rres = 132 cm.

midplance suffer significant erosion after several hundred plasma discharges.
The erosion is asymmetric, and is largest on the side which is bombarded by
the ICRF produced energetic ions. This has also been interpreted as evidence
for resonance localization.14

A number of innovative fusion product measurements also lend their
weight to the argument for resonance localization. Spectral measurements
by Heidbrink34 of 15 MeV protons produced by D-3He reactions show that
the 3He is highly anisotropic with v⊥ � v‖ in the center of the plasma, indi-
cating that they must be trapped particles. Measurements by Murphy and
Strachan35 of the major radius distribution of D-3He reactions show that it
is highly peaked near the resonance layer at Rres, and not necessarily near
the magnetic axis.
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Figure 1.16: Flux of 30 keV hydrogen neutrals as a function of analyzer
sightline angle when Rres = 152 cm.

1.3 Review of Previous Experimental Work

We have already discussed a large body of experimental work. Here we
concentrate specifically on previous measurements of the energetic, non-
Maxwellian ions produced by ICRF.

1.3.1 Deuterium or hydrogen absorption?

In the cold plasma limit, heating of a pure plasma at the ion cyclotron fre-
quency is inefficient because the wave is circularly polarized and is rotating in
the opposite directions as the ions. A wave at twice the cyclotron frequency
does have a component which rotates in the same direction as the ions, and
is able to heat the ions due to a finite k⊥ρ effect. In the early ST experiment,
energetic ions were observed during what was thought to be second harmonic
deuterium heating.36 However, the charge exchange analyzer used for that
measurement was incapable of distinguishing deuterium from hydrogen. The
TFR group37 pointed out that the dominant absorption mechanism may be
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Figure 1.17: Flux of 60 keV hydrogen neutrals as a function of analyzer
sightline angle when Rres = 152 cm.

Figure 1.18: Schematic diagram of midplane probe rotated to high angle to
accept co-going fast ions. (From Manos et al.33).
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Figure 1.19: (a) Heat flux to probe as a function of rotation angle relative
to plasma current. For D+ plasma with H+ minority heated by 1 MW of
RF power at 42 MHz. (b) same as in (a) with all fields, including plasma
current, reversed. (c) Same as for (a) with 3He++ minority heated by 1.5
MW of RF power at 30 MHz. (d) same as in (a) for pure H+ plasma heated
by 2 MW of RF power at 2nd harmonic frequency. (From Manos et al.33).
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the fundamental resonance with residual hydrogen, rather than the second
harmonic resonance with deuterium. But it was Vdovin et al.38 and Ivanov
et al.39,40 who used mass-resolving charge exchange analyzers to show that
the energetic ions were in fact protons, not deuterons. The small amount
of residual hydrogen always present in the plasma (nH/nD ∼ 10−2) was not
enough to adversly affect the wave polarization, but was enough to absorb
most of the RF power. This is because the hydrogen cyclotron frequency is
twice the deuterium cyclotron frequency, and second harmonic damping is
weaker than fundamental damping by a factor of (k⊥ρ)

2. Further observa-
tions of an energetic tail (but still without mass resolution) were made in
ATC.41

1.3.2 Comparisons with Stix’s theory

The Russian experiments showed that the shape of the hydrogen energy
distribution was in good agreement with the isotropic quasilinear theory of
Stix12 (which we will discuss in more detail in Chapter 2). The one free
parameter in Stix’s isotropic theory is the RF power density needed to sustain
the non-Maxwellian tail against collisions. A number of experiments have
tried to measure the RF power density by fitting Stix’s theory to charge
exchange spectra.

Mass-resolved charge exchange measurements on PLT42–44 showed that
a very energetic hydrogen tail (up to at least 80 keV) could be produced.
The deuterium heated up (by collisions with the hydrogen), but remained
Maxwellian, giving no indication of any direct second harmonic heating of
the deuterium. In the early low power (90 kW) PLT experiments,44 the
radial power profile was inferred by fitting Stix’s theory to charge exchange
spectra from a vertically-scanning instrument, yielding P (r/a = 0)/P (r/a =
15/40) ≈ 1.4. The TFR measurements45,46 of the hydrogen tail indicate an
RF power profile that is essentially flat out to r/a ≈ 12/18. Odajima et al.47

found that the central power density inferred from the energetic hydrogen tail
seemed to drop by a factor of 3 as the hydrogen concentration was lowered
from 10% to under 3%. More recent experiments on JFT-248,49 show evidence
of a deuterium tail and direct second harmonic deuterium absorption which
is stronger than expected. We discuss these recent JFT-2 results in more
detail in Sec. 3.6. Ichimura et al.50 measured the hydrogen tail on the small
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JIPP T-II tokamak. They observed a saturation in the tail temperature,
in agreement with a modified form of Stix’s isotropic theory which includes
unconfined orbit losses.

PLT demonstrated efficient second harmonic heating of hydrogen51–53

(which, unlike deuterium, is not complicated by the simultaneous occurence
of a fundamental resonance for another plasma species). They measured
both the perpendicular and the anti-parallel (particles moving in the oppo-
site direction as the plasma current) charge exchange spectra, finding that
the perpendicular tail is much more energetic. (This is not in contradiction
to Fig. 1.2, which shows the most energetic tail at an angle between perpen-
dicular and parallel, viewing particles moving in the same direction as the
plasma current.) They show that the energy dependence of the perpendicu-
lar tail can be fit with an isotropic Fokker-Planck calculation, but point out
that a two-dimensional calculation must be carried out to describe the ob-
served anisotropy. Vdovin54,55 has numerically carried out two-dimensional
calculations based on Stix’s flux surface averaged quasilinear operator, but
a comparison was made only with the perpendicular charge exchange mea-
surements.

Chrien and Strachan56 performed a comprehensive study of the scaling of
the ICRF produced tail. They measured the magnitude of the D-3He fusion
reaction rate as a function of RF power, plasma density, plasma current, and
electron temperature. These scalings were roughly consistent with a model
based upon Stix’s isotropic theory. Unconfined orbit losses were treated in
their model by truncating the Stix distribution function at the loss energy,
and the total reaction rate was found by integrating the 〈σv〉 found from the
Stix function over the plasma radius. They assumed a Gaussian shape for
the power profile. The observed reaction rates did not increase as quickly
as the model would predict. One interpretation of this is that the Gaussian
width σ of the power profile broadened as the power increased, from σ of 9.5
cm at 0.4 MW to a σ of 12.5 cm at 1.0 MW for 3He minority heating, and
from a σ of 11.1 cm at 220 kW to a σ of 16.0 cm at 665 kW for D minority
heating. They also observed correlations between the D-3He reaction rate
and sawteeth and m = 2 oscillations.
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1.3.3 New observations

This thesis adds to previous experimental work in several ways. Our measure-
ments provide clear evidence of direct second harmonic deuterium heating,
and we have studied the scaling of the deuterium and hydrogen tails with
hydrogen concentration and RF power. Until the work of Kaita et al.,7 the
angle dependence of the charge exchange spectra had not recieved much at-
tention. We investigate this angle dependence further, study its scaling with
RF power, and make detailed comparisons with the predictions of a bounce
averaged Fokker-Planck program. Most previous measurements were com-
pared with Stix’s isotropic theory, which is valid at low energies where pitch
angle scattering is dominant. Some two dimensional calculations have been
done with Stix’s flux surface averaged quasilinear operator, but this does
not properly include the resonance localization effects necessary to explain
spectra such as Fig. 1.2. All previous modelling of the charge exchange spec-
tra during ICRF ignored radial profile effects. We compare our data with a
model that not only includes resonance localization, but also includes finite
k⊥ρ, Doppler-broadening of the resonance layer, unconfined orbit losses, and
radial profile effects, all of which can be important in real experiments.

1.4 Experimental Methods

1.4.1 PLT and the ICRF heating system

The experiments in this thesis were performed on the Princeton Large Torus
(PLT), which has a major radius R = 132 cm, and a minor radius a = 41 cm.
The ICRF generators operated at a frequency of 30 MHz, so for hydrogen
minority heating the toroidal field was B ∼ 20 kG, while for helium-3 mi-
nority heating the toroidal field was B ∼ 30 kG. ICRF waves were launched
from the low field side with a pair of out-of-phase antennas on adjacent ports
which produce a spectrum of waves peaked around k‖ = ±9/132cm−1 =
±.068cm−1. (Higher harmonic waves at ±(2n+ 1)9/132cm−1 are evanescant
in the low density edge plasma and carry little power into the main plasma.)
Under the best conditions, up to 4.3 MW of ICRF power can be launched
into the plasma, but most of our experiments were done with 1 to 2.5 MW.
Typical plasma parameters for these experiments were: plasma current Ip
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= 450–600 kA, line-averaged density n̄e = 1–3×1013cm−3, central electron
temperature Te = 1–4 keV, and central bulk ion temperature Ti = 0.6–5
keV. The effective temperature (defined as two-thirds of the average energy)
of the ion species which resonates with the ICRF can be as high as several
hundred keV. Almost all of the discharges studied have sawtooth oscillations,
with a typical inversion radius of 10–15 cm. Further information about PLT
and the ICRF system can be found in a number of references.53,57

1.4.2 General Neutral Particle Analysis Techniques

There are a number of excellent reviews of diagnostic techniques based upon
neutral particle analysis.58 All of the measurements made for this thesis relied
upon charge exchange of fast ions with background neutrals in the plasma.
This is called passive charge exchange, as opposed to active charge exchange
which uses a neutral beam injector to provide the source of neutrals. We use
the conventions of Davis, Mueller, and Keane, where the quantity labelled as
f(W ) in a charge exchange spectral plot is related to the true distribution
function f(W, η, ~x) (which depends on energy W , pitch angle η = v‖/v, and
position ~x) by

fcx(W ) =
∫

dsf(W, η(s), ~x(s))n0(~x(s))
〈σv〉cx
σcxv

e−λ. (1.4)

In general, passive charge exchange measurements are weighted averages over
a sightline. The pitch angle varies along a sightline as described in Sec. 1.2.2.
The thermal neutral density n0 can drop 3 orders of magnitude from the edge
to the center of the plasma and may also have strong poloidal and toroidal
variation. e−λ represents the attenuation of the energetic neutrals as they
travel through the plasma along the sightline. The factor 〈σv〉cx/σcxv de-
notes the difference, which is usually small, between the true local charge
exchange rate and the beam-target approximation made in the detector cal-
ibration. By looking at high energies (usually 3–10 ×Ti(0)) one can consider
the fcx(W ) integral to be weighted towards the hottest part of the plasma. A
measure of the central ion temperature can then be obtained from the slope
of log fcx(W ) ≈ K−W/Ti(0). The charge exchange flux fcx can also be inter-
preted as providing a localized measurement if the ions are highly anisotropic
in pitch angle, as described in Sec. 1.2.2 for the case of ion cyclotron heating.
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1.4.3 The E‖B Neutral Particle Analyzer

The PLT neutral particle analyzer is of the same design as the TFTR E‖B
analyzers, and has been described in detail elsewhere.59–62 This same instru-
ment can be used to measure the bulk ion temperature and the energetic ion
tail. The data in Figs. 1.1 and 1.2 were obtained with this instrument. As
illustrated by Figs. 1.20-22, neutrals which escape the plasma are reionized in
the stripping cell, separated by mass and energy by a region of parallel elec-
tric and magnetic fields, and detected by a set of double-layer microchannel
plates. At the output of the microchannel plates is an array of 3 (mass) ×
75 (energy) anodes which collect the resulting pulses of electrons and sends
them on for electronic processing. This instrument is able to simultaneously
measure the energy spectrum (covering a dynamic range of 30 in energy) of
hydrogen, deuterium, and tritium neutrals with 1 msec time resolution, al-
though the time resolution is usually count rate limited to 10–100 msecs.
Ions with mass × energy of up to 600 keV × AMU can be analyzed. The
instrument is connected to PLT with a flexible bellows and can be moved
horizontally between discharges to look at tangency radii Rtan between 13
and 102 cm (Figs. 1.3–4).

The neutral particle analyzer originally had a problem with cross-talk be-
tween anodes which were adjacent in energy, but not between anodes adjacent
in mass. During calibration of the instrument, it was found that with a mo-
noenergetic beam focussed on a single anode, several adjacent anodes would
trigger as well, but at a somewhat lower rate. When the instrument was first
installed on PLT, the measured neutral particle spectra were not smooth
but exhibited variations of a factor of 2–3 because the cross-talk problem
was not uniform on the microchannel plate and was count-rate dependent.
The original design used a stainless steel electrode (item C in Fig. 1.23) be-
tween the front and rear microchannel plates, which also served to separate
anodes of different masses but not different energies. Roquemore63 found
that the cross-talk problem could be eliminated by replacing the intermedi-
ate electrode with one which blocked alternate anodes in a mass column. All
of the measurements reported in this thesis are with the new intermediate
electrode. An ∼ 10–25% variation in detection efficiency between anodes
persists, a problem which can perhaps be solved by using improvements in
microchannels plates recently developed by Armentrout.64

In the initial months of operating this neutral particle analyzer on PLT,
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Figure 1.20: Cross sectional views in plan and elevation of the E‖B charge
exchange neutral analyzer.
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Figure 1.21: Sketch illustrating how the E‖B fields separate particles by
energy and mass.

Figure 1.22: Sketch illustrating the operating principle of the multi-anode
microchannel plate detector.
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Figure 1.23: Isometric assembly drawing illustrating the components of the
multianode chevron microchannel plate detector. A. Assembly hardware
and front electrode; B. Front microchannel plate of the chevron assembly;
C. Intermediate electrode and mask defining active plate area; D. Rear mi-
crochannel plate; E. Rear electrode; F. Pattern of gold deposition defining
the 75 anode pads and surrounding guard electrode; G. Ceramic substrate
on which the gold anode pad pattern is deposited. Electrical contact with
the anode pads is by means of pins extending through the backside of the
ceramic substrate; H. Mounting hardware.
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several steps were taken to improve the signal-to-noise ratio. Two 1/4′′ lead
sheets were mounted around the microchannel plate vacuum feedthrus to
shield against x-rays. A light dump was added to the straight-through de-
tector port (Fig. 1.20), and the inside of the analyzer was painted black to
cut down on stray light from the plasma. An RF pickup problem was solved
by improving the shielding of cables between the microchannel plate vac-
uum feedthroughs and preamplifiers. The analyzer’s magnet power supply
also suffered from RF pickup. This was solved by operating it as a constant
voltage source rather than a constant current source. Accurate background
subtraction was accomplished by monitoring the background (x-rays, neu-
trons, and/or reflected light) with one of the unused anodes in the tritium
mass column. The signal count rate was improved by raising the gauge pres-
sure of the helium stripping cell from the original 0.5 mTorr to 2 mTorr, and
by enlarging the stripping cell apertures (which are 25 cm apart) from the
original 1.6 mm diameter to 4.64 mm × 1.5 mm. While the count rate of
moderate energy (up to 2–5 ×Ti) deuterium was sometimes sufficient for 1
msec time resolution, good counting statistics at high energies very far out
in the tail usually required 25-100 msec time averages. Data points are only
plotted if the estimated standard deviation in ln f due to counting statistics
and background subtraction is less than 0.25.

The analyzer’s magnetic field was monitored by a Gaussmeter using a Hall
effect probe. There is a ± ∼ 0.05 kG drift in the null of this Gaussmeter,
which would lead to a ± ∼ 10% error in the energy of particles when the
analyzer is set to a 1 kG reading, or an ∼3% error for a 3 kG field. The
maximum energy × mass which can be detected by the analyzer scales as 20
keV × AMU / kG, and we typically set the analyzer field to 2–3 kG.



And they who dwell in the ends of the earth stand in awe of Thy
signs;

Thou dost make the dawn and the sunset shout for joy.
Psalm 65:8



Chapter 2

Bounce-Averaged Quasilinear

Theory

2.1 Review of Previous Theoretical Work

A general quasilinear operator which describes the evolution of the particle
distribution function f(v⊥, v‖, t) under the influence of an uncorrelated spec-
trum of electromagnetic waves in a uniform magnetic field was first derived by
Yakimenko65 and independently by Kennel and Engelmann.66 The Kennel-
Engelmann form of the quasilinear operator Q is given below in Eq. (2.15).
It is necessary to assume a continuous spectrum of incoherent waves in these
uniform field calculations to assure that particles undergo net stochastic dif-
fusion rather than just oscillating in a phase space island created by a single
wave.

2.1.1 Stix’s flux surface averaged quasilinear theory

In a classic work, Stix12 studied the quasilinear theory of ion cyclotron heat-
ing in a tokamak. In tokamak ICRF heating experiments, only one wave (or
at most only a few discrete waves) at a single coherent frequency are launched
into a plasma with an inhomogeneous magnetic field. At first glance, it may
seem that quasilinear theory is inapplicable to this case, but Stix’s insight
into the problem showed how the earlier uniform field, continuous spectrum
theories could be easily extended to the tokamak ICRF case. His argument

38
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was essentially from the single particle point of view (which will be consid-
ered in more detail in Sec. 2.2). Because of the magnetic field inhomogeneity
in a tokamak, as a particle moves along a field line, the local gyrofrequency
Ω which it sees will vary. For a wave with a given frequency ω and parallel
wavelength k‖, the resonance condition nΩ = ω − k‖v‖ can only be satisified
at selected points along a particle’s orbit. As a particle passes through one of
these resonances, it will absorb or lose a small amount of energy, depending
on whether the particle and the wave are in or out of phase. The time be-
tween successive resonances is fairly long, and Stix showed that the relative
phase between the particle and the wave is easily randomized during this
time by even a small collision rate. A sequence of random, small changes in
energy leads naturally to a quasilinear equation, although he did not write
down the quasilinear equation which would result from the single particle
viewpoint. Instead, he averaged the Kennel-Engelmann quasilinear opera-
tor Q over a flux surface to eliminate the δ function in Q (arguing that the
energy absorbed in the resonance layer is quickly spread out over the flux
surface by the parallel motion of the particles). He then showed that the
absorbed RF power averaged over a flux surface was the same if calculated
from the single particle viewpoint or from the flux surface average of Q. The
flux surface averaged quasilinear operator Q̄ was combined with the usual
collision operator C in a Fokker-Planck equation

∂f

∂t
= Q̄(f) + C(f)

and used to calculate the non-Maxwellian shape of f caused by the RF. Stix
showed that because of the energetic tail produced by the RF, it was possible
to enhance the fusion reaction rates and therefore the fusion gain (which,
unfortunately, is usually denoted by Q as well). Stix’s steady state solution
for f has been compared to measurements in a number of experiments and
and his flux surface averaged Q̄ has been used in a number of calculations.67

2.1.2 Bounce averaged quasilinear theory

Stix’s paper lays the groundwork for applying quasilinear theory in toka-
maks. But while the flux surface averaged Q̄ is correct in certain limits and
captures much of the essential physics, Q̄ does not properly include the two
effects (ICRF heating is anisotropic and preferential) needed to produce the
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“resonance localizaton” observed in the experiments. The underlying reason
for this is that Stix assumed that f(v⊥, v‖) was constant along a field line
in his flux surface averaging procedure. This is only true in the large aspect
ratio limit, or in the large pitch angle scattering limit where f = f(W ) is a
function of energy only. More generally, one should assume that f(W,µ) is a
constant along a field line, where the energy W and the magnetic moment µ
are constants of the motion. Furthermore, it is more accurate to weight the
average of Q by the amount of time a particle spends at various points along
a flux surface. This naturally leads to a bounce average,

〈Q〉 ∝
∫

Qdτ ∝
∫

Q
d`

v‖
,

rather than a simple flux surface average Q̄ ∝ ∫

Qd`. Particles which
move slower through the resonance layer absorb more energy in the bounce-
averaged theory, while all particles are treated equivalently in the flux-
surface-averaged theory. Secs. 2.3–4 provide a formal derivation of the
bounce-averaged quasilinear operator 〈Q〉 (for the completely general Kennel-
Engelmann Q) and a discussion of the limits in which Stix’s earlier results
can be recovered.

Several researchers68–70 have recently derived the proper quasilinear op-
erator for a discrete number of waves in an inhomogenous plasma from first
principles rather than by bounce averaging the Kennel-Engelmann Q. Per-
haps not so surprisingly, the two approaches give equivalent results except
for a small class of particles which spend a very long time near resonance.
The underlying physical reason that our approach of bounce averaging the
Kennel-Engelmann Q works is that in the particle’s frame of reference, it sees
waves at the Doppler-shifted frequency ω′ = ω − k‖v‖ − Ω(~x(t)). Even for a
single wave with fixed ω and k‖, the particle sees a whole spectrum of waves
at various ω′ as the particle moves to regions of various Ω. Unfortunately,
our approach has a weak singularity for particles which spend a long time
near a resonance (i.e., for particles whose banana tips are exactly at the res-
onance layer). One of the advantages of the first principles derivation is that
it naturally leads to a finite result for all particles. However, the singularity
in our 〈Q〉 is integrable, and the two approaches give the same answer for
almost all particles. Because of this, I will suggest in Secs. 2.2 and 2.4 that
it is sufficient to use our 〈Q〉 if the singularity is treated properly.
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One of the advantages of our derivation is that it establishes the Kennel-
Engelmann Q as the proper local operator, even for a single wave in a non-
uniform field. This is useful for calculating power deposition from ray trac-
ing or wave propagation codes. It will also show how Stix’s widely used
flux-surface-averaged Q̄ can be properly extended to a bounce-averaged 〈Q〉
which includes resonance localization effects, and will show in what limits
Stix’s earlier results can be recovered. Another motivation for deriving 〈Q〉
by bounce averaging the Kennel-Engelmann Q is that the derivations from
first principles tend to be fairly complicated. On the other hand, the first
principles derivations can be used even when the relative phase between
the particle and the wave is not sufficiently randomized between resonances.
Bernstein and Baxter’s68 derivation is fully relativistic. Mauel’s69 derivation
is non-relativistic, but his final answer is written in a much simpler form.
Mauel’s work is also interesting because it compares the predictions of the
theory with measurements from electron cyclotron heating of a mirror. Ker-
bel and McCoy’s70 derivation is a non-relativistic version of Bernstein and
Baxter’s.

Kerbel and McCoy also developed a computer program which numerically
solves the resulting equations on a single flux surface. This program was ap-
plied to a number of problems, one of which was the simulation of the charge
exchange spectra discussed in this thesis. Although their single radius code
reproduced some of the qualitative features of the charge exchange spectra,
it could not reproduce the “negative temperature” region where ∂f/∂E > 0
(Fig. 1.2). As discussed in chapter 1, this feature appears to be caused by
particles interacting with the RF at various minor radii (or by radial trans-
port of fast ions), while their code was initally for a single minor radius.
(Their code has since been expanded to multiple radial zones.71) In order to
provide more accurate comparisons with charge exchange measurements, it
was decided to implement 〈Q〉 in a Fokker-Planck code with multiple radial
zones originally written by Goldston72,73 to model charge exchange spectra
during neutral beam heating. This code will be described in Sec. 2.6, and
comparisons with measured spectra will be shown in Chapters 3 and 4.
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2.1.3 Other bounce averaged quasilinear theories.

The importance of many of the effects we have been discussing was recognized
at an early date by Jaeger, Lichtenberg, and Lieberman29,30 who were primar-
ily concerned with determining when stochastic diffusion would, or would not
occur, during electron cyclotron heating in mirror geometry. They were the
first to derive the Airy function correction (which will be given in Sec. 2.2)
for particles whose banana tips are very close to the resonance layer. They
also derived a quasilinear operator for a few special limits. The Monte Carlo
simulations of Whang and Morales74 also show the resonance localization
phenomenon.

Several previous authors have taken a similiar approach to the present one
of bounce averaging the Kennel-Engelmann quasilinear operator. Kesner75

performed the bounce average of the Kennel-Engelmann Q for simple mirror
geometry but relied on Stix’s flux surface averaged Q̄ for tokamak geometry.
Kesner points out one of the singularites of 〈Q〉 but does not say how it
should be properly handled. (There is an error in Kesner’s result. In the
equations after his Eq. (A-3), he used

∫

dz δ(nωci−ω+k‖v‖) = 1/(∂nωci/∂z)
when the value of the integral should be 1/(∂(nωci + k‖v‖)/∂z), which will
modify the effect of the singularity.) V.S. Chan et al.76 and J.Y. Hsu et
al.21 have calculated the bounce average of the Kennel-Engelmann Q for
the special case where Q acts on a Maxwellian. A framework for bounce
averaging Q(f) for general f (although not explicitly written down) and a
discussion of the radial transport which may be caused by ICRF heating
has been given by S.C. Chiu.77 C.S. Chang78 started with a bounce average
approach, but ended by assuming that 〈Q〉 was independent of the speed
with which a particle passed through resonance. S.C. Chiu and C.S. Chang
reached rather different conclusions about the importance of ICRF driven
transport. Recently, Anderson et al.79 presented a derivation of 〈Q〉 which is
very similiar to mine. However, they ignore the ∂/∂v‖ terms in the quasilinear
operator, and they reach the incorrect conclusion that the bounce averaging
will suppress the the acceleration of ions for energies 1

2
mv2

⊥ > ε−1Te.

2.1.4 Outline of the rest of Chapter 2

Although our derivation of the bounce averaged quasilinear operator 〈Q〉 in
Sec. 2.3 is not revolutionary, we provide it in the interest of explicitly writing
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down the correct bounce average of the complete Kennel-Engelmann quasi-
linear operator. In Sec. 2.4 we explore a number of interesting properties of
〈Q〉. In particular, an isotropic model for f during second harmonic heating
is derived which will later be shown to be quite accurate in fitting the mea-
surements. Almost all of the analytical and computational work to date on
the RF driven non-Maxwellian tail has been based on balancing quasilinear
diffusion with collisions, ignoring any effects of radial transport. Sec. 2.5 will
explore a number of possible fast ion transport mechanisms which may be
playing an important role in our experiments. Sec. 2.6 describes our imple-
mentation of the bounce averaged quasilinear operator in a Fokker-Planck
code and explains the results of a sample simulation. But first, we will try
to gain some physical insight into the problem at hand by looking at a single
particle model.

2.2 Simple Single Particle Model

We will calculate the energy absorbed by a single particle as it passes through
a resonance by integrating the equations of motion. Our approach is the same
as Stix’s,12 but extended to consider trapped particles whose banana tips lie
very close to the resonance layer. This leads to the Airy function correction
of Jaeger et al.,29 and helps resolve a mild singularity which arises in the
bounce-averaged quasilinear operator.

Starting with the Lorentz force law:

d~v

dt
=
ze

m
~E +

ze

mc
~v × ~B

consider particle motion in a static magnetic field ~B0 plus an oscillating wave
field ~E1 and ~B1. Using Faraday’s law

∇× ~E = −1

c

∂ ~B

∂t

~k × ~E1 =
ω

c
~B1

the equation of motion becomes

d~v

dt
=
ze

m
~E1 +

ze

mc
~v × ~B0 +

ze

m
~v × (

~k

ω
× ~E1)
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We will be considering fast waves in the ion cyclotron range of frequencies
which have a typical phase velocity of the order of the Alfvén speed, ω/k ∼
vA. For thermal velocities, the last term on the right hand side will typically
be smaller than the first term on the right hand side by a factor of v/vA ∼√
β � 1. For thermal particles, kv/ω = 0 is a good approximation, but in

PLT the ICRF can sometimes produce a very energetic tail for which this
approximation breaks down. Although we will initially consider the kv/ω = 0
limit in the single particle model and ignore the last term in this equation,
the bounce-averaged quasilinear operator derived later is valid for general
kv/ω 6= 0.

Consider a local frame of reference near the resonance layer with ẑ‖~B.

The equations for motion perpendicular to the magnetic field ~B are:

dvx
dt

− Ω(t)vy =
ze

m
Excos(ωt)

dvy
dt

+ Ω(t)vx = −ze
m
Eysin(ωt) (2.1)

where Ω(t) is the local cyclotron frequency seen by the particle as it moves
along a field line. Defining E± = 1

2
(Ex±Ey), u = vx+ivy, these two equations

can be combined into:

du

dt
+ iΩ(t)u =

ze

m
(E+e

−iωt + E−e
+iωt) (2.2)

This is just the equation for a driven harmonic oscillator. Ignoring the non-
resonant E− term, the solution is

u(t1) = e
−i
∫ t1

t0
Ωdt

[u(t0) +
ze

m
E+

∫ t1

t0
e
−i
∫ t

t0
(ω−Ω)dt′

dt] (2.3)

Particles will gain or lose energy depending on the relative phasing of u(t0)
and E+. If u(t0) and E+ are randomly phased, then the average change in
perpendicular energy is:

〈δW⊥〉 =
m

2
〈u(t1)u∗(t1) − u(t0)u

∗(t0)〉

=
z2e2

2m
|E+

∫ t1

t0
e
−i
∫ t

t0
(ω−Ω)dt′

dt|2
(2.4)
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The dominant contribution to this integral is in the vicinity of a resonance
where ω = Ω. Stix evaluates this integral by expanding Ω near the resonance
as Ω ≈ ω+Ω′t, where Ω′ = v‖

∂Ω
∂`

, and ∂
∂`

is the derivative along the field line.
In this limit, the average energy absorbed is:

〈δW⊥〉 =
πz2e2

m

|E+|2
|Ω′|

=

(

πrB

|v‖|Bθ

)

res

PStix

nmin

Rx

Rres

(2.5)

where

PStix =

(

nmin
zec

B
|E+|2

R

r|sinθ|

)

res

Rres

Rx
(2.6)

is the absorbed RF power density averaged over a flux surface. The minority
species which is resonant with the RF has a density of nmin and a charge of ze.
Stix calculated PStix by summing Eq. (2.5) over all particles. (Eqs. (2.5–2.6)
include a small Rres/Rx correction to Stix’s original results.) As we will see
later, the bounce-averaged quasilinear operator also gives PStix in the small
kv/Ω limit, even for a non-Maxwellian, anisotropic plasma, as long as all
parameters in Eq. (2.6) are evaluated in the resonance layer—including nmin.
In deriving Eq. (2.5) it was assumed that the flux surfaces were concentric
circles and that Ω ∝ B ∝ 1/R ∝ 1/(Rx + rcosθ). The geometry is shown in
Fig. 2.1. Assuming axisymmetry, the parallel derivative can be expressed as

∂

∂`
=
Bθ

rB

∂

∂θ

so that
∂Ω

∂`
=

ΩBθ sin θ

RB
(2.7)

Equation (2.5) reveals some interesting physics. In the large aspect ratio
limit, ignoring toroidal effects, then πrB/(Bθ|v‖|) ≈ πRq/|v‖| is the time it
takes a particle to travel from one resonance to the next. PStix/nmin is the
average power per particle. Multiplying these two gives the average energy
absorbed during a single pass through the resonance layer. The RF power is
not uniformly deposited among all particles but is weighted toward particles
which spend the most time in the resonance layer, i.e. particles which move
slowest through the resonance layer and have small v‖ at resonance. Since
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Figure 2.1: Cross sectional view of tokamak with definitions of minor radius
r, poloidal angle θ, major radius Rres of the resonance layer, and major radius
Rx of the magnetic axis.
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v‖ = 0 at the turning point of a trapped particle, this implies that particles
whose banana tips lie closer the resonance layer are preferentially heated.

Although Eq. (2.5) is valid for almost all particles, it breaks down for very
small |v‖|, basically because a particle does not spend an infinite amount of
time at its banana tip even though v‖ = 0 there. We will consider the
Airy function corrections to 〈δW⊥〉 near v‖ = 0 below, but the corrections
are only important for such a small region of phase space that other effects
are usually more important in removing the singularity. The singularity
in Eq. (2.5) is integrable, yielding a finite total power density PStix when
〈δW⊥〉 is integrated over all particles. In practice, the singularity is quickly
averaged over a finite region of phase space by collisions. Although the 90 deg
scattering rate may be fairly slow, the 1 deg scattering rate is 902 times
faster. A more quantitative analysis of the role of collisions is presented in
Sec. 2.4.13, but the basic idea is that pitch angle scattering prevents any
particles from remaining exactly at v‖ = 0 for long. After a time δt, a group
of particles initially at v‖ = 0 will have spread out over a region of width
〈δv2

‖〉1/2 ≈ v(ν⊥δt)
1/2. The energy absorbed by the ensemble of particles is

now seen to be finite:

∆W =
∫ t′

0
dt
dW⊥

dt
∼
∫ t′

0
dt/v‖ ∼

∫ t′

0
dt/t1/2

Just as the simple expression for 〈δW⊥〉 contains a weak, integrable sin-
gularity, PStix contains an integrable singularity for r|sinθ| → 0. This r|sinθ|
factor is a geometric effect related to the fraction of a flux surface which in-
tersects the resonance layer (Fig. 2.1). In the k‖ = 0 limit, all the power is
absorbed in a resonance layer of zero width, and a singularity occurs when
a flux surface is tangent to the resonance layer (i.e., where r|sinθ| → 0).
Despite this singularity, integrating PStix over the whole plasma volume
yields a finite total power. The r| sin θ| singularity is eliminated in the real
world by Doppler-broadening which gives the resonance layer a finite width.
The bounce averaged quasilinear operator derived in the Sec. 2.3 includes
Doppler-broadening along with other k‖ 6= 0 effects. In some cases, Doppler-
broadening plays a major role in determining the central power density, and
a calculation of this is presented in Sec. 2.4.8. Nevertheless, the simplicity
of the k = 0 limit is an aid in understanding some of the important physics
involved, and helps establish the relationship between the bounce-averaged
quasilinear approach and the single particle approach.
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The fact that these singularities are integrable is exploited when numeri-
cally solving the bounce-averged quasilinear equation. 〈δW⊥〉 is always aver-
aged over the finite velocity grid size, while PStix is always averaged over the
finite radial grid size. This prevents the rise of any numerical singularities,
and insures that the total integrated power is correct.

To resolve the singularity in 〈δW⊥〉 for v‖ → 0, we must go to higher
order in the expansion of Ω in Eq. (2.4) and use Ω = ω + Ω′t + 1

2
Ω′′t2. The

second order term accounts for the fact that a trapped particle spends only
a finite amount of time at its banana tip, even though Ω′ vanishes there.
This second order expansion of Ω also means that we will be calculating the
energy absorbed during two passes through the resonance layer. A particle
passes through resonance, is reflected by the inhomogeneous magnetic field,
and passes through resonance a second time, absorbing a total energy of :

〈δW⊥〉2 =
z2e2

2m
|E+|2|

∫ ∞

−∞
dt ei(Ω

′ 1
2
t2+Ω′′ 1

6
t3)|2

=
z2e2

2m
|E+|2 2| 6

Ω′′
|1/3

∫ ∞

0
dτ cos(τ 3 − Ω′2

12
| 6

Ω′′
|4/3τ)

(2.8)

which can be written in terms of the Airy function as

〈δW⊥〉2 =
z2e2

2m
|E+|2[2π|

2

Ω′′
|1/3Ai(x)]2 (2.9)

where

x = −Ω′2

4
| 2

Ω′′
|4/3 (2.10)

A similiar Airy function behaviour was first obtained in the study of RF
heating in mirror geometry.29 The behaviour of the Airy function is shown
in Fig. 2.2. To compare with Stix’s result in Eq. (2.5), consider the Ω′′ → 0
limit of Eq. (2.9). Using the asymptotic expansion of Ai(−x) for x < −1
yields80

〈δW⊥〉2 =
πz2e2|E+|2
m|Ω′| 4sin2(

2

3
|x|3/2 +

π

4
) (2.11)

The highly oscillatory sin2 term represents coherence effects between the
two passes through the resonance layer made by a trapped particle. Stix
showed that collisions are usually sufficient to decorrelate successive passes.
So we can recover Eq. (2.5) by taking an average value for sin2 of 1

2
and by
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Figure 2.2: Ai2(x), where Ai is the Airy function. Also shown is an approx-
imation discussed in the text.

multiplying by another factor of 1
2

since Eq. (2.11) is for two passes through
resonance.

A particle which comes very close to the resonance layer but is reflected
before actually reaching it can still absorb some power. Expanding Ω in
Eq. (2.4) near the turning point as Ω = Ωt+

1
2
Ω′′
t t

2 yields an equation identical
to Eq. (2.9) but with the argument of the Airy function given by

x = (ω − Ωt)|
2

Ω′′
t

| 13 (2.12)

x is seen to be a measure of the distance between the resonance layer and
the particle’s turning point. Note that Ω and its derivatives are evaluated
at the particle turning point in Eq. (2.12), while they are evaluated at the
resonance layer in Eq. (2.10). The definition of x in Eqs. (2.10) and (2.12)
are equivalent for particles which pass through resonance, while Eq. (2.12)
extends the definition of x to particles which are reflected before reaching
the resonance layer. For these particles which don’t reach resonance (x > 0),
the absorbed energy 〈δW⊥〉 vanishes exponentially fast, as exp(−4

3
x3/2) for

x > 1. If we define an effective resonance layer width δA due to the Airy
function correction by how close a particle’s banana tip must come to the
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resonance layer in order for |x| = 1, then we find

δA = (ρ2
⊥r
rsin2θ

4Rq2
)1/3 (2.13)

where ρ⊥ = v⊥/Ω is the gyroradius, q = rB/(RBθ) is the inverse rotational
transform, Bθ and B are the poloidal and total magnetic fields, R is the major
radius of the resonance layer, and θ is the poloidal angle where the resonance
layer and the flux surface intersect (Fig. 2.1). In deriving Eq. (2.13), Ω′′

t

was evaluated for a tokamak with circular flux surfaces and a magnetic field
B ∝ 1/R, so that

Ω′′
t =

dv‖
dt

∂Ω

∂`

= −1

2
v2
⊥(
Bθsinθ

BR
)2Ω

The effective resonance layer width due to the Airy function correction
is quite small. For typical PLT parameters, r ∼ 40 cm, R ∼ 132 cm, q ∼ 2,
and B ∼ 20 kG, a 100 keV H ion with a gyroradius ρ ∼ 1.6cm sees an
effective resonance layer width δA ∼ 1.2 cm. Only a small amount of pitch
angle scattering is necessary to change the location of the turning point of
a particle by an amount δA. As discussed earlier, the Doppler-broadening
of the resonance is usually much larger than δA. (One must take care in
considering the Doppler effect, since it seems to disappear at the banana tip
where k‖v‖ → 0. As we will see in the Sec. 2.3.3, for k‖ 6= 0 the singularity in
〈δW⊥〉 no longer appears at v‖ = 0 but at a slightly Doppler-shifted velocity).
The highly oscillatory coherence nature of the Airy function is easily averaged
over, not only by collisions and Doppler-broadening, but also by effects which
we have ignored so far, such as collionless RF-induced stochasticity29,74 finite
banana widths, finite gyroradii, toroidal precession, toroidal asymmetries
in the magnetic field, or even nonlinear interactions. In practice, we may
approximate the quantity Ai2(x) which appears in Eq. (2.9) by

Ai2(x) → 1

2π
√

|x|
for x < −.3079

→ .28683 for − .3079 < x < 0

→ 0 for x > 0
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A comparison of Ai2(x) and its approximation is show in Fig. 2.2. This
approximation is equivalent to Stix’s result in Eq. (2.5) for most particles,
removes the singularity by setting an upper limit for 〈δW⊥〉, and ignores
the small amount of power transferred to particles which don’t reach the
resonance layer. We see that Stix’s formula only breaks down for trapped
particles which turn within a distance of the order of a gyroradius from the
resonance layer. This represents such a small region of phase space, usually
smaller than the velocity grid spacing used in numerical solutions, that it
is frequently acceptable to use Stix’s formula everywhere. In this case, one
must rely on the rapidity of pitch angle scattering over small regions of v‖ and
the integrabilty of the 1/v‖ singularity in 〈δW⊥〉 to prevent numerical sin-
gularities and to produce realistic results. The justifiability of this approach
has been checked by running the code with extremely small grid spacing in
order to resolve the Airy function upper limit for 〈δW⊥〉. The results were
virtually identical to runs with coarser grids.
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2.3 Derivation of a Bounce-Averaged Quasi-

linear Operator

2.3.1 The Kennel-Engelmann quasilinear operator

Quasilinear theory describes the velocity space diffusion of particles caused
by interaction with plasma waves. The quasilinear operator for an infinite,
spatially uniform, nonrelativistic plasma was worked out by Kennel and En-
gelmann.66 Representing the wave electric field by its Fourier transform,

~E(~x, t) = Re[
∫

d3kei
~k·~x−iωt ~E~k], (2.14)

they found

∂f(v⊥, v‖, t)

∂t
= lim

V→∞

∫

d3k

V

∑

n

πe2

2m2
L[v2

⊥δ(ω − k‖v‖ − nΩ)|Θn,~k|2Lf ] (2.15)

≡ Q(f).

The limit involving the plasma volume V provides the proper normalization
for the the wave energy density. Θn,~k has units of electric field per wavelength
k and is defined by

Θn~k = E~k+e
−iψJn−1 + E~k−e

+iψJn+1 +
v‖
v⊥
E~k‖Jn

E~k± =
1

2
(Ex ± iEy)~k

kx = k⊥ cosψ

ky = k⊥ sinψ

kz = k‖

and the argument of the Bessel functions is (k⊥v⊥/Ω). The phase factors
e±iΨ insure that |Θn~k|2 is independent of the choice of x and y coordinates.
The operator L is defined by

L = (1 − k‖v‖
ω

)
1

v⊥

∂

∂v⊥
+
k‖
ω

∂

∂v‖
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Note that L takes the derivative along circles of constant energy in the wave’s
frame of reference, i.e. LC = 0, where

C = v2
⊥ + (v‖ − ω/k‖)

2 = constant (2.16)

L appears twice in Eq. (2.15) making it a diffusion type equation. As we can
see from the form of the derivatives in L, Q conserves particles as it should:

∂n

∂t
=

∂

∂t
2π
∫ ∞

0
dv⊥v⊥

∫ ∞

−∞
dv‖f = 2π

∫ ∞

0
dv⊥v⊥

∫ ∞

−∞
dv‖Q = 0

2.3.2 The bounce averaging procedure

The presence of the delta function in the quasilinear operator means that
only particles which resonate with the wave (so that ω − k‖v‖ = nΩ) will
be affected by the wave. Of course, delta functions only make sense when
used in integrals. Usual quasilinear theory is derived for a continuous spec-
trum of incoherent waves. The

∫

d3k in Eq. (2.15) integrates over this wave
spectrum and the delta function to yield a finite diffusion coefficient. Stix’s
contribution was to note that because of the inhomogenous magnetic field,
the resonance condition ω − k‖v‖ = nΩ(~x) is only satisfied at certain posi-
tions in the plasma and one can integrate over the delta function in Q by
averaging over a flux surface. By bounce averaging, we are merely weighting
Stix’s flux surface average by the amount of time a particle spends at each
point on the flux surface. Although the physical idea behind this is simple,
the formal derivation of bounce averaging is a little more involved.

The bounce-averaging procedure I will outline here is a specific exam-
ple of the annihilation technique discussed by Kruskal in his discourse on
the art of asymptotics.81 This annihilation technique finds frequent applica-
tion in plasma physics. Our starting point is the gyro-averaged drift kinetic
equation82 to which we have added a quasilinear operator:

∂f

∂t
+ v‖

∂f

∂`
= C(f) +Q(f) (2.17)

where the gyroaveraged distribution function f(W,µ, σ, ~x, t) is a function of
the constants of motion, the energy W = 1

2
m(v2

⊥ + v2
‖) and the magnetic

moment µ = mv2
⊥/(2B), and of σ = sign(v‖), position ~x, and time t. The
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parallel velocity is given by v‖ = σ
√

2(E − µB)/m, while ∂
∂`

=
~B·∇

| ~B|
denotes

the spatial derivative along a field line. The key difference between our work
and Stix’s is that he ignored the v‖∂f/∂` term.

We have made the small banana width approximation and have ignored
cross-field drifts. C is the usual collision operator. We will assume that
both the confining magnetic field and f are axisymmetric, ∂

∂φ
= 0. For the

usual circular flux surface model of the tokamak (Fig. 2.1), this means that
∂
∂`

= Bθ

rB
∂
∂θ

, where θ is the poloidal angle, Bθ is the poloidal field, and r is the
minor radius. f is periodic in ` since it must be periodic in θ.

In present and future tokamak experiments, the effect of collisions and
quasilinear heating during one bounce of a particle is small. We will assume
that v‖

∂f
∂`

is the largest term in Eq. (2.17), and that all other terms are order

ε smaller. Expanding f = f0 + εf1 + . . ., we find to lowest order that ∂f0
∂`

= 0,
i.e. that f0 = f0(W,µ, σ, r, t) is constant on a flux surface. We must go to
next order in ε to find how f0 evolves in time:

∂f0

∂t
+ v‖

∂f1

∂`
= C(f0) +Q(f0) (2.18)

The f1 term can be annihilated by integrating Eq. (2.18) over an orbit with
∫ d`
v‖

, since f1 is periodic in `. This results in a bounce-averaged kinetic

equation involving f0 only:

∂f0

∂t
= 〈C(f0)〉 + 〈Q(f0)〉 (2.19)

where the bounce average of some quantity X is defined by

〈X〉 =
1

τB

∫ d`

|v‖|
X

τB =
∫

d`

|v‖|
The bounce time τB is the time it takes a trapped particle to travel from one
banana tip to the other, while for passing particles it is the time a particle
takes in making one poloidal circuit of a flux surface. Cordey83 has calculated
the the bounce-averaged collision operator 〈C〉 (which is given in Eq. (2.45)
for completeness) and has given the appropriate boundary conditions which
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f0 must satisfy. For notational convenience we will assume a discrete wave
spectrum:

~E(~x, t) = Re[
∑

~k

ei
~k·~x−iωt ~E~k]

so that the limit as the plasma volume goes to infinity is no longer necessary
in Eq. (2.15). Then 〈Q〉 is simply:

〈Q〉 =
∑

~k,n

πe2

2m2

1

τB

∫

d`

|v‖|
L[v2

⊥δ(ω − k‖v‖ − nΩ)|Θn,~k|2Lf ] (2.20)

2.3.3 Evaluating the bounce average

It seems reasonable that Eq. (2.20) reduces to Eq. (2.25) by application of the
basic delta function property, Eq. (2.22). But because the L operator acts on
the delta function, we must take care to first change the order of operations
in this integral. We use the chain rule to transform the L operator from
(v⊥, v‖) space to (W,µ) space. Using

∂

∂v⊥
=
∂W

∂v⊥

∂

∂W
+

∂µ

∂v⊥

∂

∂µ

= mv⊥
∂

∂W
+
mv⊥
B

∂

∂µ

and
∂

∂v‖
=
∂W

∂v‖

∂

∂W
+
∂µ

∂v‖

∂

∂µ

= mv‖
∂

∂W

we find

L = m
∂

∂W
+ (1 − k‖v‖

ω
)
m

B

∂

∂µ

Note that the operator L depends on position throughB and v‖. Denoting
the expression in brackets in Eq. (2.20) by G, we can use the identity

1

|v‖|
LG = m

∂

∂W
(
G

|v‖|
) +m

∂

∂µ
((1 − k‖v‖

ω
)
G

B|v‖|
)
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and can pull the ∂
∂W

and ∂
∂µ

operations out of the ` integral to get

〈Q〉 =
m

τB

∂

W

∑

n,~k

πe2

2m2

∫ d`

|v‖|
[v2

⊥δ(ω − k‖v‖ − nΩ)|Θn~k|2Lf ]

+
m

τB

∂

µ

∑

n,~k

πe2

2m2

∫

d`

|v‖|
(1 − k‖v‖

ω
)
1

B
[v2

⊥δ(ω − k‖v‖ − nΩ)|Θn~k|2Lf ] (2.21)

The δ function now makes the bounce average integrals easy. The integrals
are of the form:

∫

d`

|v‖|
δ(ω − k‖v‖ − nΩ)G(`) =

∑

`res

G(`res)

|v‖ ∂∂`(k‖v‖ + nΩ)|res

=
∑

`res

G(`res)

|(nv‖ − k‖µ
c
e
)∂Ω
∂`
| (2.22)

where the sum is over all positions where a resonance occurs. The factor

(1 − k‖v‖
ω

)/B which appears in Eq. (2.21) must be evaluated at resonance,
yielding nΩres/(ωBres) = ne/(ωmc) which is a constant indepedent of k‖. L
must also be evaluated at resonance, giving:

Lres = m
∂

∂W
+

ne

ωmc
m
∂

∂µ
(2.23)

which is independent of k‖ and the position of the resonance. One of the
consequences of this surprising result is that the banana tips of all particles
approach the k‖ = 0 resonance layer as the particles are accelerated to high
energy. To see this, note that the Lres operator causes diffusion to occur only
along characteristics defined by

K = W − ωmc

ne
µ = constant (2.24)

i.e., LresK = 0. The magnetic field at a particle’s turning point is given by

Btp =
W

µ
=

W

W −K

ωmc

ne

As a particle is accelerated to high energies so that W >> K, the particle’s
banana tip approaches the k‖ = 0 resonance layer where ω = nΩ.



2.3. DERIVATION OF A BOUNCE-AVERAGED QUASILINEAR OPERATOR57

The general, bounce averaged, Kennel-Engelmann operator can thus be
written as:

〈Q〉 =
1

τB

∑

n~k

πe2

2m2
Lres

∑

res

[
v2
⊥|Θn~k|2

|(nv‖ − k‖µ
c
e
)∂Ω
∂`
| ]Lresf (2.25)

The positions of the resonances are found by solving the simultaneous equa-
tions:

ω − k‖v‖ = nΩ = nΩ0
B

B0

v‖ = ±
√

2

m
(W − µB).

B0 is the minimum magnetic field on the the flux surface. From these equa-
tions, the parallel velocity at resonance is found to be

v‖res = ±
√

2

m
(W − µ

B0

nΩ0
ω) + (

µB0k‖
mnΩ0

)2 +
µB0k‖
mnΩ0

(2.26)

There is no resonance if the argument of the square root is negative. In order
for this solution to be meaningful, the resonance must occur somewhere on
the flux surface which the particle is constrained to move on. A particle
must actually attain this value of v‖res somewhere on the flux surface, i.e.,
W − µB0 > 1

2
mv2

‖res > W − µBmax. Using the expression for v‖res, the
denominator in Eq. (2.25) can be written as:

|(nv‖ − k‖µ
c

e
)
∂Ω

∂`
|res = n|∂Ω

∂`
|res
√

2

m
(W − µ

B0

nΩ0
ω) + (

µB0k‖
mnΩ0

)2 (2.27)

In the k‖ = 0 limit, particles in the simple circular cross-section tokamak
have either 2 resonances or no resonances. (Trapped particles may pass
through 4 resonances during a complete bounce, but our bounce average is
over only half a bounce, from one banana tip to the other. Since f must be
symmetric in v‖ for trapped particles, one must take care to symmetrize 〈Q〉
by averaging over the two directions σ = ±1 for trapped particles.)
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2.4 Properties of the Bounce-Averaged

Quasilinear Operator

2.4.1 Recovering Stix’s results

The general expression for 〈Q〉 is sufficiently complicated to suggest the use
of computers to evaluate it. In the k‖ = 0 limit, however, the position of
the resonance is identical for all particles, and further analytic progress can
be made. If we further consider a simple limit used by Stix, keeping just
n = 1, setting k‖ = k⊥ = E− = E‖ = 0, and using the definition of 〈δW⊥〉 in
Eq. (2.5), we can write 〈Q〉 in the form

〈Q〉 =
1

τB
Lres[v

2
⊥res

〈δW⊥〉
m

Lresf ] (2.28)

This relates the quasilinear operator to the average energy absorbed by a
single particle found in the previous section. (It is postulated that 〈Q〉 can
always be written in a form similiar to Eq. (2.28) for general k‖ 6= k⊥ 6=
E− 6= E‖ 6= 0 if the single particle energy gain 〈δW⊥〉 was calculated for the
more general case.) In this k‖ = 0 limit, we can identify Lres as ( 1

v⊥

∂
∂v⊥

)res.

Writing 〈δW⊥〉 in terms of PStix, 〈Q〉 becomes:

〈Q〉 =
[

{ 1

τB
(
2πrB

Bθ|v‖|
)H} 1

v⊥

∂

∂v⊥
(v2

⊥

PStix
2mnmin

Rx

Rres

1

v⊥

∂f

∂v⊥
)
]

res
(2.29)

The Heaviside step function H = H(W −µBres) is zero for trapped particles
which never reach the resonance layer. The res subscript emphasizes that
everything is evaluated at resonance. In particular, v⊥ and v‖ depend on
position and are to be evaluated at resonance. If we take the limit of large
aspect ratio or v‖ >> v⊥, then τB → 2πRq/|v‖| and the factor in braces in
Eq. (2.29) approaches unity so that 〈Q〉 reduces to the flux surface averaged
Q̄ found by Stix (with a small R0/Rres correction). The factor in braces
weights Stix’s Q̄ by the fraction of time a particle spends in the resonance
layer.
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2.4.2 Compared with Mauel and with Kerbel and Mc-

Coy

Eq. (2.29) is singular for particles which have v‖res exactly equal to zero, and
one is sorely tempted just to use the Airy function correction to 〈δW⊥〉 found
in the previous single particle model section. In fact, our general quasilinear
operator in Eq. (2.25) is essentially the same as the one derived by Mauel
and by Kerbel and McCoy, except that they leave their 〈Q〉 in terms of a
correlation time which automatically includes the Airy function correction.
In a simple limit, their correlation time τc is defined by

τ 2
c =

∣

∣

∣

∣

∫ τB

0
dτe−i

∫ τ

0
dτ ′(ω−k‖v‖−nΩ)

∣

∣

∣

∣

2

(2.30)

This is similiar to the integral in Eq. (2.4), with the addition of the Doppler
shift. In almost all of phase space it is valid to expand the argument of the
exponential near resonance keeping terms only to second order in τ , yielding

τ 2
c ' 4π

|v‖ ∂∂`(k‖v‖ + nΩ)|res
=

4π

|(nv‖ − k‖µ
c
e
)∂Ω
∂`
|res

(2.31)

so that Mauel’s and Kerbel and McCoy’s operator reduces to the 〈Q〉 given
here by Eq. (2.25). In a small region of phase space, the approximations
leading to Eq. (2.31) break down and Eq. (2.25) has a singularity. We will
show in Sec. 2.4.6 that this is an integrable singularity. We will further
suggest in Secs. 2.4.13–2.4.15 that, because of collisions and Doppler-shifts, it
is usually sufficient to ignore the corrections of Mauel and Kerbel and McCoy
and just use the 〈Q〉 found by bounce averaging the Kennel-Engelmann Q.

It must be stressed that this general bounce-averaged quasilinear oper-
ator given by Eq. (2.25) is applicable to a wide class of problems. In this
thesis it is used for studying ICRF heating. It can also be used to study
heating or current drive by lower hybrid waves or waves in the electron cy-
clotron range of frequencies. Preferential interaction of particles which stay
in resonance longer, and creating of trapped particles, may play important
effects in other applications of RF besides ICRF heating. It is conceivable
that it may be used to determine the velocity space stability properties of a
particular f (i.e., if there exists a wave which absorbs energy from f rather
than giving energy to f , then an instability exists). It is often desirable to
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include relativistic effects when considering electron behaviour. If this same
bounce-averaging procedure were applied to the relativistic, uniform plasma
quasilinear operator of Karney and Fisch,84 the calculation of 〈Q〉 from first
principles by Bernstein and Baxter should be recovered.

2.4.3 Bounce averaged particle conservation

The local particle density is:

nmin =
∫

d3vf =
∑

σ

∫ ∞

0
dW

∫ W/B

0
dµ

2π

m2

B

|v‖|
f (2.32)

Note that although f is independent of position (using only the lowest order

f = f0), nmin depends on position through B and |v‖| =
√

2
m

(W − µB).
The local density nmin is conserved by the local collision and quasilinear
operators. It is not relevant to ask if the bounce-averaged collision and
quasilinear operators conserve local density. For example, a trapped particle
unable to reach θ = π/2 in Fig. 2.1 may pitch angle scatter so that it can
reach that point, adding to the local density there. The bounce-averaged
quasilinear operator must conserve the total number (or equivalently, the
average density) of particles on a flux surface. Consider the average density
in a tube of flux δΦ = BδA (Fig. 2.3):

〈nmin〉 =

∫

d`δAnmin
∫

d`δA
=
δΦ

∫ d`
B
nmin

δΦ
∫ d`
B

Inserting the velocity space integral for nmin, we have:

〈nmin〉 =
1
∫ d`
B

∫ d`

B

∑

σ

∫ ∞

0
dW

∫ ∞

0
dµ

2π

m2

B

|v‖|
H(W − µB)f

=
∑

σ

∫ ∞

0
dW

∫ ∞

0
dµ

2π

m2
f

1
∫ d`
B

∫

d`

|v‖|
H(W − µB)

=
2π

m2

∑

σ

∫ ∞

0
dW

∫ ∞

0
dµf

τB
∫ d`
B

The bounce time τB is defined as before, with the explicit incorporation of
the Heaviside step function H in τB meaning that τB = 0 for nonphysical
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Figure 2.3: Sketch of a tube of constant flux δΦ along which particles are
free to move. ` is the distance along the field line.

particles which have µB > W everywhere. Since 〈Q〉 must conserve the total
number of particles on a flux surface,

∂〈n〉
∂t

=
2π

m2

∑

σ

∫ ∞

0
dW

∫ ∞

0
dµ

τB
∫ d`
B

〈Q〉

= 0

we must be able to write 〈Q〉 as the divergence of a flux in (W,µ) space:

〈Q〉 =
1

τB
(
∂ΓW
∂W

+
∂Γµ
∂µ

) (2.33)

−ΓW and −Γµ are the fluxes in the directions of increasing W and µ, respec-
tively. From Eqs. (2.25) and (2.23) we see that 〈Q〉 can indeed be written
in conservative form. Note that Γµ = ne

ωmc
ΓW so that the direction of the

quasilinear flow in phase space is independent of k‖.

2.4.4 Transforming 〈Q〉 to energy and pitch angle space

Rather than working in (W,µ) space, it is convenient to transform 〈Q〉 to

(W, ξ) space, where ξ = σ
√

1 − µB0/W . B0 is the minimum magnetic field
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along the field line. In the usual circular flux surface model of the tokamak,
the minimum magnetic field is at the outside midplane, (θ = 0 in Fig. 2.1).
ξ = (v‖/v)B0 is the cosine of the particle’s pitch angle at the outside midplane.
Denoting the old coordinates as (W ′, µ), we use the chain rule to transform
the derivatives:

∂

∂W ′
=

∂

∂W
+

∂ξ

∂W ′

∂

∂ξ

=
∂

∂W
+

1 − ξ2

2ξW

∂

∂ξ

and
∂

∂µ
=
∂ξ

∂µ

∂

∂ξ

= − B0

2ξW

∂

∂ξ

So that Lres transforms to

Lres = m
∂

∂W
− (ξ2 − ξ2

∗)
m

2ξW

∂

∂ξ

ξ∗ is defined by ξ2
∗ = 1 − neB0

ωmc
and is the pitch angle of particles whose

banana tips lie in the un-Doppler-shifted resonance layer where ω = nΩ.
The flux-surface averaged particle density is given in (W, ξ) coordinates by:

〈n〉 =
4π

m2B0

∫

d`/B

∫ ∞

0
dW

∫ 1

−1
dξ|ξ|WτBf (2.34)

Again using particle conservation, we must be able to write 〈Q〉 as the di-
vergence of a flux in (W, ξ) space:

〈Q〉 =
1

|ξ|WτB
(
∂ΓW
∂W

+
∂Γξ
∂ξ

) (2.35)

The fluxes in the new (W, ξ) coordinate system are related to the fluxes in
the old (W ′, µ) coordinate system by

ΓW = W |ξ|ΓW ′

Γξ = σ
1 − ξ2

2
ΓW ′ − σ

B0

2
Γµ
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More explicitly, the fluxes in Eq. (2.35) can be written as

ΓW = W |ξ|
∑

~k,n

πe2

2m

∑

res

[
v2
⊥|Θ~k,n|2

|v‖ ∂∂`(k‖v‖ + nΩ)| ]resLresf (2.36)

Γξ = −(ξ2 − ξ2
∗)

2Wξ
ΓW

2.4.5 k‖ 6= 0 resonance localization

We have already pointed out that 〈Q〉 only causes diffusion along certain
characteristics, Eq. (2.24), so that as a particle is accelerated to high energy,
its banana tip approaches the k‖ = 0 resonance layer. We also see this from
the form of Γξ in Eq. (2.36). The fascinating thing about this is that although
the position of the true resonance (ω − k‖v‖ = nΩ) is different for various
particles and waves with different k‖v‖, all particles have their banana tips
approach the same position as they are accelerated to high energy.

To understand the origins of this effect, consider the constraint in
Eq. (2.16). As a particle passes through a resonance, the RF induced change
in v‖ is related to the change in v2

⊥ by

δv2
⊥ + 2(v‖ − ω/k‖)δv‖ = 0.

Defining the cyclotron frequency at resonance as Ωr, and using the resonance
condition ω − k‖v‖ = nΩr, we have

δv‖ =
k‖

2nΩr

δv2
⊥ (2.37)

This change in v‖ and v⊥ will move the position of the banana tip. Since
B ∝ 1/R, the banana tip position can be parameterized by the magnetic
field at the banana tip, defined by Btip = E/µ = Br(1 + v2

‖/v
2
⊥). The change

in Btip is simply

δBtip = Br(
2v‖δv‖
v2
⊥

−
v2
‖δv

2
⊥

v4
⊥

) = Br
δv2

⊥

v2
⊥

(
k‖v‖
nΩr

−
v2
‖

v2
⊥

)
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But using the resonance condition and the definition of Btip, this can be
written in a form independent of k‖ and Br:

δBtip =
δv2

⊥

v2
⊥

(
ωmc

ne
−Btip)

where ωmc
ne

is the magnetic field in the un-Doppler-shifted resonance layer.
As particles are accelerated to higher energy ( δv2

⊥ > 0) their banana tips
approach the k‖ = 0 resonance layer, despite the wave having k‖ 6= 0. Even a
particle so deeply trapped that it does not reach the k‖ = 0 resonance layer
(i.e., its banana tips lie to the low field side of the k‖ = 0 resonance layer),
but which resonates with the wave because of the Doppler shift, will have its
banana tips pushed towards the k‖ = 0 resonance layer. In Eq. (2.37), it is
interesting to note that δv‖ has the same sign as k‖ so that the position of
the real resonance nΩ = ω − k‖v‖ shifts outward to larger R each time the
particle is accelerated to higher energy, for either sign of k‖.

2.4.6 Bounce averaged power deposition

We now turn to calculating the power absorbed by the plasma from the
wave. First we will calculate the general formula for the flux-surface aver-
aged power, and then consider a simple limit where Stix’s formula PStix can
be recovered. Next, the local power deposition is calculated from the original
Kennel-Engelmann Q, and evaluated in a simple limit to show the impor-
tance of Doppler-broadening in determining the central power deposition.
By analogy with Eq. (2.34), we see that the flux-surface-averaged power is
given by:

〈P 〉 =
2π

m2

∫ ∞

0
dW

∫ 1

−1
dξ

2|ξ|W 2

B0

τB
∫ d`
B

〈Q〉

Using the general bounce-averaged quasilinear operator 〈Q〉 found in
Eqs. (2.35) and (2.36), and integrating by parts twice, we can write 〈P 〉
as

〈P 〉 =
2π

m2B0

∫ d`
B

∫ ∞

0
dW

∫ 1

−1
dξ2|ξ|WfLres

∑

~k,n

∑

res

[
πe2

2m

v2
⊥|Θ~k,n|2

|v‖ ∂∂`(k‖v‖ + nΩ)| ]res
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We will evaluate this in Stix’s limit, k‖ = k⊥ = E‖ = E⊥ = 0 and n = 1,
but retain f as an arbitrary function of W and ξ. In the k‖ = 0 limit, v‖res
and v⊥res are given in terms of W and ξ by:

v‖res = ±
√

√

√

√

2

m
W (

ξ2 − ξ2
∗

1 − ξ2
∗

)

v2
⊥res =

2

m
W

1 − ξ2

1 − ξ2
∗

(2.38)

For a tokamak with concentric circular flux surfaces where B ∝ Bθ ∝ 1/R,
we can calculate the integral

∫ d`
B

= r
∫

dθ/Bθ = 2πr/Bθx, where Bθx is the
magnitude of the poloidal field at θ = π/2 (Fig. 2.1). Carrying out the Lres
operation and doing a little algebra leads to

〈P 〉 = (
PStix
nmin

)res[
2π

m

∫ ∞

0
dW

∫ 1

−1
dξ|ξ|

√

2

m
W

H(ξ2 − ξ2
∗)

√

1 − ξ2
∗

√

ξ2 − ξ2
∗

f ]

As mentioned before, the integrand has a singularity at ξ2 → ξ2
∗ (i.e., where

v‖res → 0 and 〈δW⊥〉 → ∞). Integrating over all pitch angles ξ, we see
that this is an integrable singularity as long as f is finite at ξ∗. In fact,
the expression in brackets is the definition of (nmin)res (as can be seen by
transforming the integral in Eq. (2.32) to (W, ξ) space). We are left with
〈P 〉 = PStix.

The simplicity of the expression for PStix in Eq. (2.6) is deceiving. PStix
depends on the arbitrary f(W, ξ) through (nmin)res. As the ICRF accelerates
particles to high energies, it makes them trapped particles whose banana
tips approach the resonance layer. This increases (nmin)res and increases the
RF damping. Pitch angle scattering prevents all the particle banana tips
from being exactly in the resonance layer, and so prevents (nmin)res from
rising indefinitely. For typical experimental parameters, (nmin)res usually
reaches an equilibrium value only 10 to 30 % greater than its initial value.
Preferential heating of some particles may make only a small difference in
the total absorbed power, but as we can see from Fig. 1.2 in chapter 1, it
makes a large difference in the shape of f .
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2.4.7 Local power deposition

Quasilinear theory determines how f evolves for a given wave field ~E. To
be self consistent, this f should then be used to calculate the dispersion
relation which determines how the waves propagate. If one includes the
magnetic field inhomogeniety and the rotational transform (so that ∂Ω

∂`
6= 0)

in the wave equations, one is typically left with a nonlocal dispersion relation.
The issue of whether or not the dispersion relation is strongly affected by
particles whose turning points are very near the resonance layer is under
investigation.18–20

It is well known that the damping calculated from the imaginary part of ~k
from the dispersion relation is identical to the damping found from quasilinear
theory — as long as the same f and ~E are used in each calculation. We just
calculated the flux surface averaged damping 〈P 〉 in terms of the bounce-
averaged quasilinear operator 〈Q〉Ṅow we will calculate the local power P to
allow more direct comparison with wave propagation studies. Knowledge of
the local power also helps elucidate the importance of finite k‖ in determining
the central power density. The local power P is difficult to extract from
the first principles theories68–70 because they average over bounce-motion
from the start. But in our approach, the local damping rate is immediately
attainable from the local Kennel-Engelmann Q as long as we use the proper

f(W,µ) = f(m
2
(v2

⊥ + v2
‖),

mv2⊥
2B(`)

). The power absorbed by the particles is

P =
∂

∂t

∫

d3vWf

=
∫ ∞

0
dv⊥2πv⊥

∫ ∞

−∞
dv‖

m

2
(v2

‖ + v2
⊥)Q

Integrating by parts leads to

P = −
∑

n~k

πe2

2m2

∫ ∞

0
dv⊥2πv⊥

∫ ∞

−∞
dv‖mv

2
⊥δ(ω − k‖v‖ − nΩ)|Θn~k|2Lf

= −
∑

n~k

πe2

2m2

∫ ∞

0
dv⊥2πv⊥mv

2
⊥|Θn~k|2

× 1

|k‖|

[

(1 − k‖v‖
ω

)
1

v⊥

∂f

∂v⊥
+
k‖
ω

∂f

∂v‖

]

v‖= ω−nΩ
k‖

This is the general expression for the local damping rate.
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2.4.8 Doppler-broadening of the power profile

To emphasize the effects of k‖ on the power deposition, we will use a simple
limit similiar to Stix’s, taking k⊥ = E‖ = E⊥ = 0 and n = 1 while allowing
k‖ 6= 0. To make analytic progress, we will assume that f is Maxwellian,

f = nmin
e
−

v2
⊥

+v2
‖

2v2
t

(2πv2
t )3/2

where v2
t = T/m. Using Lf = −f/v2

t and performing the v⊥ integral leads
to

P = nmin
πe2

m
|E+|2

e
−

(ω−Ω)2

2k2
‖

v2
t

√

2πk2
‖v

2
t

Assuming that Ω = ωRres/R gives

P = nmin
πe2

m
|E+|2[

e
−

ω2(R−Rres)2

2k2
‖

R2v2
t

√

2πk2
‖v

2
t

] (2.39)

The damping occurs in a narrow region around the ω = Ω resonance layer of
width ∆ ∼ 2k‖Rvt/ω. In the limit of k‖ → 0, the expression in brackets can
be written as a δ function, so that

lim
k‖→0

P = nmin
πe2

m
|E+|2δ(ω

R− Rres
Rres

) (2.40)

The power averaged over a flux surface is defined by

〈P 〉 =

∫ 2π
0 dθ r2π(Rx + r cos θ)P
∫ 2π
0 dθ r2π(Rx + r cos θ)

If the limits of integration extend to either side of the resonance by more than
the resonance layer width , then we may use the δ function approximation
for P in Eq. (2.40) to find

〈P 〉 = [nmin
ec

B
|E+|2

R

r| sin θ| ]res
Rres

Rx
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and Stix’s result in Eq. (2.6) is again recovered. From Eq. (2.39) the maxi-
mum value P attains is for R = Rres, and therefore the maximum possible
〈P 〉 is

〈P 〉 = nmin
πe2

m
|E+|2

1
√

2πk2
‖v

2
‖

(2.41)

= nmin
ec

B
|E+|2

R
√

2π

∆

This the actual maximum value of 〈P 〉 only when the resonance layer inter-
sects the magnetic axis so that | sin θ| = 1. If Rres 6= Rx, the actual maxi-
mum value of 〈P 〉 will be even less. For typical PLT parameters, k‖R = 9
and B ∼ 20 kG, the resonance layer width for thermal particles with T ∼ 1
keV is only ∆ ∼ 3 cm and can usually be ignored (except within ∼ 3 cm of
the place where r| sin θ| → 0). In some heating modes, however, the minority
species may become very energetic, sometimes reaching an effective temper-
ature (define as two-thirds of the average energy) of ∼ 100 keV in PLT. Most
of these particles have their banana tips near the resonance layer, and v‖ goes
to zero at the banana tip, but pitch angle scattering may lead to an average
parallel energy at resonance ∼ 10keV . The resulting resonance layer width
∆ ∼ 10–15 cm plays a dominant role in determining the central RF power
density.

2.4.9 The bounce averaged collision operator

It is only possible to obtain analytic solutions of the general bounce-averaged
Fokker-Planck equation

∂f

∂t
= 〈Q〉 + 〈C〉 + 〈S〉

in special cases. Numerical solutions for the general case will be discussed
in the section III.F. Here we will derive analytic solutions for fundamental
and 2cd harmonic heating in the k‖ = 0, small k⊥ρ limit. 〈S〉 represents
sources and sinks, such as neutral beam injection, charge exchange losses,
and unconfined orbit losses, which are included in the numerical solutions
but will be ignored here. The linearized collision operator appropriate for
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energetic ions moving faster than thermal ions but slower than the electrons
(i.e. Ti/mi �W/m� Te/me) is

C =
1√
W

∂

∂W
[
2

τs
(W 3/2 +W 3/2

c )f +
2

τs
(W 3/2Te +W 3/2

c Ti)
∂f

∂W
] (2.42)

+
νii
2

∂

∂η
[(1 − η2)

∂f

∂η
]

This standard collision operator has been extensively used to study the slow-
ing down of energetic ions from neutral beam injection.85,83 In terms of the

notation used in the NRL Plasma Formulary,87 1/τs = νi/es , νii = 0.5 × ν
i/i′

⊥ ,

and (W 3/2
c Ti)/(W

3/2Wτs) = ν
i/i′

‖ .

In Eq. (2.42), the first term proportional to f on the right hand side
represents drag due to collisions with electrons and ions. The second terms
represents energy diffusion due to collisions with electrons and ions. The last
term represents pitch angle scattering off of the ions. Here, η = v‖/v is the
local pitch angle. In this equation, the slowing down time due to electrons is
given by

τs =
6.32 × 108AT 3/2

e

neZ2 log Λie
sec (2.43)

The terms proportional to Wc and νii are due to collisions with the back-
ground ions. Ion drag exceeds electron drag for energies W < Wc. The
critical energy Wc and the ion-ion collision frequency νii are given by

Wc = A14.8Te

〈

Z2
i

Ai

〉2/3

νii =
9.009 × 10−8Z2Zeffne log Λe

A1/2E3/2
sec−1

Zeff = 〈Z2
i 〉 =

∑

i niZ
2
i log Λi

ne log Λe
〈

Z2
i

Ai

〉

=

∑

i ni(Z
2
i /Ai) log Λi

ne log Λe
(2.44)

In these formulas, all energies and temperatures are in eV, while masses Ai
are in AMU. Note that for Te = Ti, the steady state solution C(f) = 0 is
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∂f/∂η = 0 and ∂f/∂W = −f/Ti. C forces f to relax to a Maxwellian.
The use of a linearized collision operator means that collisions between the
energetic ions are ignored. This is valid for minority heating when nmin �
ni ∼ ne. It is also justified for majority second harmonic heating if the
distribution function can be separated into a Maxwellian plus an energetic
tail, f = fMax+ftail, and if ntail � nMax. The bounce average of C calculated
by Cordey is

〈C〉 =
1√
W

∂

∂W
[
2

τs
(W 3/2 +W 3/2

c )f +
2

τs
(W 3/2Te +W 3/2

c Ti)
∂f

∂W
]

+
νii

2|ξ|τb
∂

∂ξ

[

(1 − ξ2)
τb
|ξ|

{〈

B0

B

〉

− (1 − ξ2)
}

∂f

∂ξ

]

(2.45)

2.4.10 〈Q〉 in the isotropic limit

If pitch angle scattering is rapid enough to force f to be isotropic, ∂f
∂ξ

= 0, but
f is still allowed to be an arbitrary function of energy, then we can simplify
〈Q〉 by averaging it over pitch angle. When f is independent of pitch angle,
then the flux surface averaged density is the same as the local density

nmin = 4π
∫ ∞

0
dv v2f =

√
2

m3/2
4π
∫ ∞

0
dW W 1/2f

Comparing this with Eq. (2.34) indicates that the proper weighting for the
pitch angle average is :

〈. . .〉ξ =

∫ 1
−1 dξ|ξ|τb . . .
√

2m
W
B0

∫ d`
B

Note that 〈f〉ξ = f for isotropic f . We use the conservative form for 〈Q〉 in
Eqs. (2.35) and (2.36). The Γξ term integrates to zero, leaving

〈〈Q〉〉ξ =
1√

2mB0

∫ d`
B

1√
W

∂

∂W

×






W
∑

n~k

πe2

2

∑

res

∫ 1

−1
dξ|ξ|

[

v2
⊥|Θn~k|2

|(nv‖ − k‖µ
c
e
)∂Ω
∂`
|

]

res

∂f

∂W







(2.46)
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In order to do the ξ integral analytically, we restrict our attention to the
k‖ = 0 limit and consider fundamental (n = 1) heating with |Θ|2 = |E+|2.
Using Eq. (2.38) to express v‖res and v⊥res in terms ofW and ξ, using Eq. (2.5)
to express |E+|2 in terms of PStix, and doing a little algebra leads to

〈〈Q〉〉ξ =
1√
W

∂

W
[W 3/22PStix

3nmin

∂f

∂W
] (2.47)

This is identical to the isotropic, flux surface averaged quasilinear operator
found by Stix. The equivalence of the flux surface averaging and the bounce
averaging techniques in the isotropic limit can be traced back to Eq. (2.18)
where ∂f1/∂`→ 0 in this infinite pitch angle scattering limit.

Stix’s isotropic quasilinear operator can be extended to include what is
commonly called second harmonic (n = 2) heating by making a small k⊥ρ

expansion in Eq. (2.46) for |Θ|2 = |E+|2J2
1 ≈ |E+|2

4
(k⊥v⊥

Ω
)2 to find

〈〈Q〉〉ξ =
1√
W

∂

∂W
[W 3/2 k

2
⊥W

5Ω2m

2PStix
3nmin

∂f

∂W
] (2.48)

This equation is valid for general 2cd harmonic heating, even when there is
no minority fundamental heating. PStix/nmin is independent of nmin and is
just used as a mnemonic for the constants in Eq. (2.6). In chapter 3 we will
be considering deuterium second harmonic heating. There is always a small
amount of hydrogen in the plasma, and since ΩH = 2ΩD, second harmonic
deuterium heating must compete with fundamental hydrogen heating. From
Eq. (2.47) we find that the power absorbed by the hydrogen PH = PStix,
while from Eq. (2.48) we find that the power absorbed by the deuterium is

PD =
∫

d3vW 〈〈Q〉〉ξ = PH
nD
nH

k2
⊥ρ

2
D

2
(2.49)

where ρ2
D = TD/(mDΩ2

D). Using a simple Alfvén wave dispersion relation,
k⊥ ≈ ω/vA, leads to the convenient formula86

PD
PH

=
βD
ηH

(2.50)

The hydrogen concentration ηH = nH/nD must be less than the deuterium
beta βD = 8πnDTD/B

2 in order for deuterium second harmonic heating to
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exceed hydrogen fundamental heating. In most previous experiments, the
hydrogen absorption was so strong that no evidence of direct RF heating of
the deuterium could be obtained. It is useful to rewrite Eq. (2.48) in terms of
PD by using Eq. (2.49), so that the isotropic quasilinear operator for second
harmonic deuterium heating can be written as:

〈〈Q〉〉ξ =
1√
W

∂

∂W
[W 3/2 2W

5TD

2PD
3nD

∂fD
∂W

] (2.51)

2.4.11 Stix’s isotropic solution for minority heating

Stix combined Eqs. (2.47) and (2.42) to find the steady state distribution
function reached when fundamental minority heating is balanced by colli-
sions. He then calculated the fusion reaction rate enhancement due to the
energetic RF produced tail. We define f1 as the isotropic, steady state solu-
tion for fundamental heating, and f2 (to be considered in the next section) as
the isotropic, steady state solution for second harmonic heating. Stix found
that f1 must satisfy

(−d log f1

dW
)−1 = T1(W ) =

W 3/2Ttail +W 3/2
c Ti

W 3/2 +W
3/2
c

Ttail = Te +
PStix
3nmin

τs (2.52)

It is possible to analytically integrate d log f1/dW to find

log f1(W ) = −
∫ W dW

T1(W )

= const +
W

Ttail

{

1 +
(

Ttail
Ti

− 1
)

H

(

W

Wc

(

Ttail
Ti

)2/3
)}

(2.53)

where, as Stix found,

H(x) =
1

x

∫ x

0

du

1 + u3/2

=
1

x

{

1

3
log[

x−√
x + 1

x+ 2
√
x + 1

] +
2√
3

arctan(
2
√
x− 1√
3

) +
π

3
√

3

}
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In the high energy limit, W >> Wc and TTail >> Te, where the RF input
power is balanced by drag on the electrons, f1 has a particularly simple form:

f1(W ) ∝ e−W/TStix (2.54)

TStix =
PStix

3nmin
τs

(Stix’s paper defines a parameter ξ, which is equivalent to our TStix/Te.) The
physical interpretation of this is clear. The tail temperature is proportional
to the energy absorbed in a slowing down time. Energy goes into the minority
species at a rate PStix. Energy is lost from the minority species at the rate
3
2
nminTStix

2
τs

. Balancing the two just gives Eq. (2.54). It must be emphasized
that the analytic solutions given by Eqs. (2.53) and (2.54) are valid only
if unconfined orbit losses can be ignored. It is easy to make the hydrogen
minority in PLT so energetic that unconfined orbit losses carry away most
of the RF power. The effects of unconfined orbit losses will be considered in
more detail in Sec. 2.5.

2.4.12 Second harmonic isotropic solution

With Eq. (2.51) we can extend Stix’s steady state solution to second harmonic
heating, finding that

(−d log f2

dW
)−1 = T2(W ) =

W 3/2Ttail +W 3/2
c Ti

W 3/2 +W
3/2
c

Ttail = Te + (
2W

5TD
)
PD
3nD

τs (2.55)

where Ttail is now energy dependent. Chapter 3 will show that this simple
formula describes the shape of the observed fast neutral spectra quite well.
We will obtain a measure of the central deuterium power density by adjusting
PD in this formula to obtain a best fit to the data. It would be useful to have
an analytic solution for f2, but to date we have had to rely on numerically
integrating Eq. (2.55). The symbolic manipulation program MACSYMA is
able to find an analytic solution only if the Te contribution to Ttail is ignored,
an approximation which is probably valid for most cases of interest. The
symbolic manipulation program SMP (version 1.5.0) claims to be able to find
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the analytic solution including the Te term, but unfortunately SMP’s solution
is wrong. Simple solutions for f2 can be obtained in several interesting limits.
At high energies, W >> Wc, the solution is

f2 ∝
1

W α

α =
15TDnD
2PDτs

and f2 is normalizable in the sense of containing a finite amount of energy
only for α > 5/2. (Using Eqs. (Eq. (2.49)) and (Eq. (2.52)), and assuming
k⊥ = ω/vA, we find that α = 5

2
v2
AmH/TStix,H. This curious result says that a

normalizable deuterium distribution function exists if the average hydrogen
speed is less than the Alfvén speed.) Actually, Eq. (2.55) breaks down at very
high energies because the small k⊥ρ expansion of J1 which led to Eq. (2.48)
is no longer valid. Inclusion of the full J2

1 term would prevent “runaway” at
high energies, and would always lead to normalizable f . At lower energies,
Eq. (2.55) accurately describes the shape of f2. For W � Wc and Ttail � Te,
we have

T2(W ) ≈ Ti +
2

5

W 5/2

W
3/2
c TD

PD
3nD

τs (2.56)

which is independent of electron temperature. Notice that Wc for deuterium
is twice Wc for hydrogen. This means that for Te ∼ 1 keV and 〈Z2

i /Ai〉 ∼ .5,
Eq. (2.54) is valid for hydrogen above ∼ 10 keV, while Eq. (2.56) is valid for
deuterium below ∼ 20 keV. These two analytic solutions are very useful for
qualitative analysis of the data.

2.4.13 Singularities and pitch angle scattering

At high energies, the measured distribution functions are highly anisotropic
and we must resort to numerical solutions (discussed in the next section)
to provide any quantitative comparison with theory. Several workers have
attempted to find analytic solutions which model the anistropic nature of f at
high energies,77,78 but they seem to gloss over the handling of the singularity
in 〈Q〉 at v‖ → 0 (in the k‖ = 0 limit). Although 〈Q〉 ∝ 1

v‖res
∝ 1√

ξ2−ξ2∗
is

singular at ξ → ξ∗, it is apparent that when 〈Q〉 is averaged over any finite
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region in pitch angle space, a well behaved answer will result:

∫ ξ∗+∆

ξ∗
dξξ〈Q〉 ∼

√

(ξ∗ + ∆)2 − ξ2
∗

At low energies, pitch angle scattering is rapid enough to force f to be com-
pletely independent of ξ, justifying the averaging of 〈Q〉 over all pitch angles
in Eq. (2.46). At higher energies, pitch angle scattering is no longer sufficient
to keep f completely isotropic, but it is rapid enough to smooth f over small
regions of ξ, thus justifying some sort of averaging of 〈Q〉 over small regions
of ξ.

2.4.14 Model anisotropic solution

To understand better the importance of collisions in leading to a well behaved
solution, consider the model equation

∂f

∂t
=

2TPStix
3nmin

δ(ξ)
∂2f

∂W 2
+

2T

τs

∂f

∂W
+
νii
2

∂2f

∂ξ2
.

The first term on the right hand side models the integrable singularity in

〈Q〉, replacing the 1/
√

ξ2 − ξ2
∗ singularity with a δ function singularity. The

second term models collisional drag, while the third term models collisional
pitch angle scattering. Despite the singular RF diffusion coefficient, it is
easy to show that a steady state solution exists which does not run away to
infinite energy:

f = e−|ξ|/σξe−W/Ttail (2.57)

σξ =

√

νiiτs
4

Ttail =
PStix
3nmin

τs

Although this is only a model equation, it captures the general idea that
including collisions will lead to reasonably behaved solutions. Any attempt
to derive an analytic solution to the full bounce averaged Fokker-Planck
equation should probably follow a similiar approach. A typical steady state
numerical solution to the full equation 0 = 〈Q〉 + 〈C〉 is shown in Figs. 2.8–
2.10. Its qualitative similiarity to Eq. (2.57) is evident. f(ξ) exhibits peaks
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near the singular pitch angle ξ∗. The width of f in ξ is fairly broad at low
energies where pitch angle scattering is quite rapid and νiiτs is large. At
higher energies, νii gets smaller, and the width σξ also gets smaller. We
suggest that a good model of the general solution is

f(W, ξ) = fiso(W )K[e−|ξ−ξ∗|/σξ + e−|ξ+ξ∗|/σξ ]

where fiso(W ) is the solution of Eq. (2.52) for fundamental heating, or
Eq. (2.55) for 2cd harmonic heating. The pitch angle dependence is given
by the expression in brackets, with the width σξ = σξ(W ) generalized to
include ion drag:

σξ =

√

νii
4
τs(1 +W

3/2
c /W 3/2)−1 =

√

Zeff
4A〈Z2

i /Ai〉
(1 +W 3/2/W

3/2
c )−1 (2.58)

and the constant K chosen to give the proper normalization

fiso(W ) =
∫ 1

−1
dξf(W, ξ)

It must be emphasized that this is only a model solution and has not been
strictly derived from the equations. It is similiar to an analytic formula given
by C.S. Chang, although his uses a Gaussian exp(−(ξ−ξ2∗)2/2σ2

ξ ) for the pitch
angle dependence, and uses only the high energy fundamental heating limit
for fiso(W ) = exp(−W/Ttail).

2.4.15 Singularities and Doppler-shifts

Doppler shifts also help lead to well behaved solutions despite the singu-
larities in 〈Q〉. To understand how this occurs, consider the particle orbits
and resonance curves plotted in Fig. 2.5 (this useful figure is due to Kerbel
and McCoy70). As a particle moves along a field line to regions of different
Ω ∝ 1/R, its parallel velocity varies because of energy and magnetic moment
conservation according to:

v‖
v

=

√

1 − µB

W
=

√

1 − Rtip

R

The solid line in Fig. 2.5 show some of these orbits for various values of Rtip.
A resonance occurs wherever ω − k‖v‖ = nΩ. Putting the resonance layer
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Figure 2.4: Solid curves are particles orbits in (R,v‖/v) phase space, where
R is the major radius and v‖/v is the local pitch angle. Dotted curves show
the location of resonances for different values of k‖v/ω.
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through the center of the plasma so that nΩ = ωRx/R, we can write the
resonance condition as

v‖
v

=
ω

k‖v
(1 − Rx

R
)

The dashed lines in Fig. 2.5 show this resonance curve for various values of
ω/(k‖v). Points where the orbit curves and the resonance curves are tangent
(called “tangent resonances” by Kerbel and McCoy) are points where 〈Q〉 has
a singularity (unless the Airy function correction is included). For k‖ = 0, the
orbit labelled by B in Fig. 2.5 (corresponding to a particle whose banana tip
lies exactly in the resonance layer) experiences infinite RF acceleration and
would runaway to infinite energies if it were not for pitch angle scattering
which migh cause it to scatter into orbit C, for example. When k‖ 6= 0,
the singularity in 〈Q〉 no longer appears at v‖ = 0, but instead appears at
v‖ = k‖µc/(en) (orbit A in Fig. 2.5). For k‖ 6= 0, it is no longer necessary
to call upon collisional pitch angle scattering to save particles from the fate
of being accelerated to infinite energy. As orbit A is acclerated to higher
energy, its resonance curve shifts out to higher k‖v‖/ω, while its orbit shifts
in towards orbit B. The particle originally at orbit A no longer has a tangent
resonance.

We have discussed the importance of pitch angle scattering and k‖ 6= 0
in leading to well behaved solutions for f despite the singularity in 〈Q〉.
The third effect which leads to well behaved solutions is the Airy function
correction (Eqs. (2.30) and (2.9)) which prevents 〈Q〉 from actually becoming
inifinite. But as argued after Eq. (2.13), the correction is only important for
pitch angles extremely close to ξ∗, usually much closer than the width σξ
found in Eq. (2.58). It is therefore usually acceptable to ignore the Airy
function corrections.
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2.5 Obtaining Numerical Solutions

We have presented analytic solutions for the distribution function in sev-
eral simple limits. These solutions help to clarify the physics, and can be
directly compared with measurements in some cases. But we must use nu-
merical solutions to treat the general bounce averaged quasilinear operator
〈Q〉. This also allows us to simultaneously include such important effects as
less-than-perfect resonance localization, unconfined orbit losses, and radial
profile effects on the charge exchange spectra. We have upgraded an existing
bounce averaged Fokker-Planck computer program to include 〈Q〉. The orig-
inal program was written by Rob Goldston72,73 and has been used to study a
number of aspects of neutral Beam injection.102–104 We have also upgraded
the program to model adiabatic compression experiments.105,106

2.5.1 The Basic Equations

The distribution function f(W, ξ, r, t), a function of energy W , pitch angle ξ,
radial position r, and time t, is found by solving the equation

∂f

∂t
= 〈Q〉 + 〈C〉 + 〈S〉 + 〈V 〉.

The bounce averaged quasilinear operator 〈Q〉 is given by Eqs. (2.35–2.36).
E+(r) and |k‖| (±k‖ are used in the calculation) are specified as inputs to the
calculation. E− and k⊥ are calculated from the cold plasma wave equation
(Eqs. (3) and (5) from Stix12). E‖ is ignored. The full Bessel function effects
are included, so for fundamental heating 〈Q〉 ∝ |E+J0 + E−J2|2. Several
authors have improperly treated the E−J2 term. Because E− is usually much
bigger than E+, it can actually cause the tail absorption to increase in some
cases. E+ is held fixed in the calculation, while in the experiments it is the
RF power which is held fixed. In some cases the calculation must undergo
two or three iterations to produce the proper RF power.

To simulate the theoretically predicted power profile, we typically used
E2

+(r) ∝ (1−r2/a2) in the quasilinear operator. As can be seen from the form
of PStix ∝ nmin(r)E

2
+(r)/r in Eq. (2.6), this modestly peaked, parabolic E2

+

profile leads to a very peaked power profile (even after including the Doppler-
broadening effects of Sec. 2.4.8). Full wave107 and ray-tracing108 calculations
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have been carried out for our experimental parameters, but they usually lead
to power profiles which are comparable to, or more peaked than, the power
profile obtained from a parabolic E2

+ profile. We will find in the next two
chapters that it is frequently necessary to assume a hollow E2

+(r) profile in
order to produce a good fit to the charge exchange data.

The bounce averaged collision operator 〈C〉 is given by Eq. (2.45). The
measured electron temperature, electron density, and ion temperature pro-
files, are used to calculate the various collision frequencies. (Detailed profile
information was frequently unavailable, in which case we would usually as-
sume ne ∝ (1 − r2/a2) and Te ∝ Ti ∝ (1 − r2/a2)2.) A single impurity
model is used to relate the hydrogenic depletion to Zeff , and to calculate
the impurity contributions to the collision operator. 〈V 〉 is the bounce aver-
age of (e/m)E‖(1−Z/Zeff )∂f/∂v‖, and includes the combined effects of the
toroidal electric field and the drift of the electrons.109 This term is usually
very small. Sources and sinks of particles in this problem are included in the
〈S〉 operator. Charge exchange losses are modelled by −f/τcx and recapture
of escaping neutrals is ignored. A source of low energy ions is arbitrarily
included to replace charge exchange and unconfined orbit losses, maintain-
ing the resonant ion density at a specified level. The original neutral beam
injection source can also be turned on if desired.

A complete discussion of the boundary conditions can be found in the
papers by Cordey83 or Kerbel and McCoy.70 f is symmetric in ξ in the
trapped region of velocity space. Conservative boundary conditions are used
for the flow across the trapped-passing boundary, and at ξ = ±1. Conserva-
tive boundary conditions are usually used at W = 0, following McCoy’s110

treatment in accounting for the finite density and energy of the zone at
W = 0. (During neutral beam injection simulations, the boundary condition
at W = 0 is usually ∂f/∂W = 0 to remove paritcles from the simulation
once they have slowed down to thermal energies.) f is independent of ξ at
W = 0.

Unconfined orbit losses are incorporated by forcing f = 0 along a loss
boundary at high energies. The loss region is found from the excursion of a
particle orbit from its average flux surface, i.e., co-passing orbits are approx-
imately circular but shifted outward in major radius from their average flux
surface, and counter-passing orbits are shifted to smaller major radius, while
trapped orbits execute the usual banana orbits. Barely trapped orbits have
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the largest excursion from their average flux surface and become unconfined
at the lowest energy. The present loss model is an improvement over the
model in the original program which ignored losses for co-passing orbits (un-
less they were unconfined when first injected into the plasma by the neutral
beam or they pitch angle scattered onto an unconfined trapped orbit), and
underestimated the orbit shift of counter-passing orbits (unless ξ = −1).

2.5.2 Finite Banana Width Effects

Although finite banana width effects are included in calculating unconfined
orbit losses and the charge exchange spectra (see below), the actual Fokker-
Planck calculation is carried out in the zero-banana width limit on the av-
erage flux surface of a particle orbit. Particles may undergo pitch angle
scattering, but they remain on the same average flux surface. There is no
radial transport of particles. The calculation of f is done independently on
a number of radial zones, and the radial dependence of f comes from the ra-
dial dependence of the RF power profile and the collision frequencies. Charge
exchange losses are calculated using the neutral density on the average flux
surface. The zero banana width assumption can be traced back to the start-
ing point of our derivation of the bounce averaged equations, Eq. (2.17),
where we used only the parallel particle motion v‖∂f/∂` and ignored cross-

field drifts which would lead to (v‖b̂ + ~vD) · ∇f . Given the importance of
the radial transport mechanisms outlined in Sec. 2.5, an interesting—and
challenging—area for future research is the inclusion of radial transport in a
Fokker-Planck program.

The finite banana width effect on charge exchange detection is perhaps
best illustrated with a simple figure, Fig. 2.7, although we will give the
explicit formula below. The particle charge exchanges at point B, not A. Not
only is the neutral density different at the two points, but the pitch angle of
the particle at the two points is different as well. These finite banana width
effects are essential for reproducing the “negative temperature” feature of
Fig. 1.2. The charge exchange flux fcx(W,Rtan, t) is related to the f(W, ξ, r, t)
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Figure 2.5: Sketch of the zero banana width orbit (A) used in the bounce
averaged Fokker-Planck calculation, and the equivalent banana orbit (B)
used to calculate the charge exchange spectrum and to include unconfined
orbit losses.

calculated by the Fokker-Planck code by

fcx(W,Rtan, t) =
∫

ds f(W, ξ(R(s), Rtan,∆), r(R(s),∆), t)

× n0(r(R(s),∆))
〈σv〉cx
σcxv

e−λ.

This is the same as Eq. (1.4), except we have explicitly noted that the position
R(s) and pitch angle Rtan/R(s) of the particle when it charge exchanges is
different from the average radius r and the ξ (defined as the pitch angle
at Rmaj + r) of the particle. The shift of the particle orbit is ∆, so that
r(R(s), δ) = R(s) − ∆ − Rmaj. The particle’s pitch angle at Rmaj + r can
easily be found from the pitch angle where it is detected by conservation of
energy and magnetic moment.

The FRANTIC111 subroutine package is used to calculate the neutral
density profile n0(r). FRANTIC assumes toroidal and poloidal symmetry.
In addition to the Te, Ti, and ne profiles, one must specify an edge neutral
density and temperature. The edge neutral density was typically adjusted
to give a particle confinement time of ∼ 30 msecs, but this is not critical as
it only affects the magnitude and not the shape of n0(r). The edge neutral
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temperature does effect the shape of the neutral density near the plasma
edge. But the edge neutrals charge exchange with ions near the edge of the
plasma, and the overall shape of the neutral density profile is not affected
very much by changes in the edge neutral temperature.

2.5.3 Numerical Methods

Adding the bounce averaged quasilinear operator to an existing Fokker-
Planck program was not as simple as originally thought. It was quite a chal-
lenge to find a method of obtaining physically meaningful solutions within a
reasonable amount of computer time. Many of the techniques we used are
discussed in the literature or in textbooks, but some were found only by trial
and error.

We differenced the quasilinear and collision operators in conservative
form,110 which leads to a convenient discrete analog of particle and energy
conservation.112 In order to represent both the initial low energy Maxwellian
and the tail which extends to very high energies for a small region of pitch an-
gles, we used a variably spaced energy grid. With a grid spacing of δW = 0.1
keV at low energies, and δW/W = .1 at higher energies, it is possible to span
0 keV to 1 MeV with just 83 grid points. The convective (drag in the collision
operator) term can easily lead to unphysical results if not treated in a special
way. (See Patankar113 and Karney112 for a discussion of the relative merits of
various treatments of the convective term). We used upstream differencing of
the convective term (∂fi/∂t = ∂Af/∂W = (Ai+1fi+1 − Aifi)/(Wi+1 −Wi)).

The original program used the ADI (alternating direction implicit)
method110,114 for solving the discrete equations. Briefly explained, the ADI
methods treats all W derivatives implicitly and all ξ derivatives explicitly on
the first time step. This is reversed on the second time step, with implicit
treatment of ξ derivatives and explicit treatment of W derivaties. The ADI
method provides a fast (because the standard tridiagonal inversion method
can be used) and accurate solution to the original problem, which includes
only the collision operator. However, the cross-derivative (∂2f/∂W∂ξ) terms
in 〈Q〉 can not be treated implicitly, unless the whole 9-banded matrix is in-
verted. So, we first tried what was most straightforward: use the ADI method
for all of the terms in 〈Q〉 except for the cross-derivative terms, which were
treated explicitly on each step. We found that this approach was unstable



84 CHAPTER 2. BOUNCE-AVERAGED QUASILINEAR THEORY

unless a very small time step was used, thus leading to large cpu require-
ments. We next tried a number of modified explicit schemes, including the
method proposed by Saul’yev115 None of these methods were any better, and
some were even unconditionally unstable.

We can gain insight into this numerical instability problem by considering
a simple example. 〈Q〉 causes diffusion only along certain characteristics (see
Eq. (2.24)), meaning that there exists a coordinate system (x, y) such that

(

∂f

∂t

)

RF

= 〈Q〉 =
∂

∂x
D
∂f

∂x
,

which can be easily solved by the standard implicit method. Taking D to be
a constant, and transforming this equation to (w, z) space by w = x+ y and
z = x− y, yields a diffusion equation with cross-derivatives:

(

∂f

∂t

)

RF

= D
∂2f

∂w2
+ 2D

∂2f

∂w∂z
+D

∂2f

∂z2
.

Using the von Neumann method for stability analysis,116 it is easy to show
that the ADI method, with explicit treatment of the cross derivative term,
is unstable unless δt < D(δx)2. However, the implicit operator splitting
method115 is found to be unconditionally stable. In this method, the time
advancement is done in three steps. On the first step, the cross-derivative
term is advanced explicitly, while the other two terms are ignored. On the
second step, the ∂2f/∂w2 is carried out implicitly and the other two terms are
ignored. On the final step, the ∂2f/∂z2 terms are implicitly advanced with
the other two terms ignored. We found that the implicit operator splitting
method works not only for this model equation with constant D and straight
line characteristics, but also for the full bounce averaged quasilinear operator.

Another numerical instability arose when finite k‖ effects were added to
the program. We were able to solve this problem by replacing the original
differencing scheme for the cross derivatives (which was the same as Eq. (58)
of McCoy et al.,110 with a slightly more accurate scheme:

∂

∂W
D
∂f

∂ξ
≈
{

Di+1/2,j

[

(fi+1,j+1 + fi,j+1)/2 − (fi+1,j−1 + fi,j−1)/2

2δξj

]

−Di−1/2,j

[

(fi,j+1 + fi−1,j+1)/2 − (fi,j−1 + fi−1,j−1)/2

2δξj

]}

/δWi.
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This is the differencing method used in the more recent work of Kerbel and
McCoy (see their Eq. (B5)).

The last topic to be considered in this numerical methods section is our
treatment of the singularities in 〈Q〉 which occur whenever the expression in
Eq. (2.27) is zero. As noted before, all of these singularities are integrable,
leading to finite power absorption. We have also argued that the effects of
these singularities are reduced by pitch angle scattering and Doppler broaden-
ing. In the program, we deal with these singularities by analytically averaging
the singular expression Eq. (2.27) over the finite grid size. The singularity
for ∂Ω/∂` = 0 (see Eq. (2.7)) is eliminated by integrating over the radial
grid width. The singularity which occurs when the argument of the square
root in Eq. (2.27) is zero is eliminated by averaging over the pitch angle grid
width. This procedure avoids the numerical problems which occur when a
singularity happens to fall exactly on a grid point, provides reasonably accu-
rate answers even for large grid spacing, and converges to the exact answer
in the limit that the grid spacing is made very small.

2.5.4 Sample Simulation

f(W, ξ, r, t) is usually calculated on an 83 (energy) × 50 (pitch angle) grid
for 10 radial shells. A typical simulation of 60 msecs of physical time is
done with a 0.25 msec time step and takes ∼ 8 cpu minutes on a VAX 8600
computer. The time advancement algorithm requires ∼ 42 µs/meshpoint on
the VAX 8600, which is ∼ 22 times slower than McCoy’s110 1.9 µs/meshpoint
on a CRAY-1. McCoy117 has recently developed a fully implicit algorithm
which inverts the full 9-banded (plus a few extra terms) matrix. This can
speed up the search for equilibrium solutions by a factor of ∼ 30.

In Chapters 3 and 4 we will compare our bounce averaged quasilinear
simulations with a large number of measurements. Here we will briefly look
at one of those simulations, the one contained in Figs. 4.5, 4.9, 4.11, 4.16, and
4.17. For completeness, Appendix B provides the actual input files used for
this simulation. (Much of the information there will be meaningless to most
readers, or may not even be used in the simulation, but is given to provide
a flavor of how it is performed.) Fig. 4.5 gives the main plasma parameters.
Fig. 4.9 shows the E+(r) and k⊥(r) used in the simulations. The plots labelled
Prf and Ttail in Fig. 4.9 are based on the simple Stix formula, and are not
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Figure 2.6: Calculated f as a function of pitch angle ξ = v‖/v at θ = 0, for
various energies.

the actual RF power or minority temperature profiles. The actual RF power
profile calculated by the full bounce averaged quasilinear code is shown in
Fig. 4.17, along with a plot of where that power eventually goes (most of it
unconfined orbit losses). Fig. 4.16 shows the final “temperature” (defined as
two thirds of the average energy) of the hydrogen minority.

In Figs. 2.8-2.10 we show the equilibrium distribution function f(W, ξ)
calculated at the radius r/a = .55. The pitch angle dependence of f is
qualitatively consistent with our model solution of sec. 2.4.14. At low energies
it is isotropic in pitch angle, while at high energies it is very peaked around
ξ∗, the pitch angle of particles whose banana tips lie exactly in the resonance
layer. Integrating over a sightline through all radii produces the simulated
charge exchange spectra of Fig. 4.11, which agrees fairly well with the data.
The assumptions necessary to produce this good fit are described in Chapter
4.
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Figure 2.7: Calculated f as a function of energy W , for various pitch angles.

Figure 2.8: Contour plot of f as a function of v‖/v0 and v⊥/v0 at θ = 0,
where the normalizing velocity v0 is equivalent to 956 keV.
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Chapter 3

The Transition to Deuterium

Second Harmonic Heating

3.1 Introduction

As discussed in the exerimental review, Sec. 1.3.1, the original experiments
on what was thought to be second harmonic deuterium heating turned out to
be dominated by fundamental absorption by residual hydrogen. There was
no evidence that any RF power was directly absorbed by the deuterium. It
is theoretically expected (Eq. (2.50)) that the ratio of deuterium absorption
to hydrogen absorption is given by PD/PH = βDnD/nH. We have not been
able to reduce the hydrogen concentration to such a low level that deuterium
damping dominates hydrogen damping. But we have been able to reduce it
enough that ∼ 22% of the central RF power is absorbed by the deuterium.
We have seen a substantial deuterium tail, providing clear evidence of direct
second harmonic deuterium heating. We have also studied the scaling of this
tail with hydrogen concentration and total power.

The hydrogen concentration plays a critical role in hydrogen minority
heating. It determines how energetic the hydrogen ions become, and there-
fore determines the relative magnitudes of electron heating, ion heating, and
unconfined orbit losses. It also governs how much RF power flows directly
to the deuterium, and how much power is mode converted into the ion Bern-
stein wave. Sections 3.2–3.4 describe a set of discharges from the same day
in which the hydrogen concentration was varied from 1.6% to 55% while

90
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monitoring the deuterium and hydrogen charge exchange spectra. All of the
measurements from this day were made with the analyzer viewing perpen-
dicular (Rtan = 13 cm in Fig. 1.3). No simultaneous scans of concentration
and viewing angle were performed. At sufficiently high energies, the perpen-
dicular view should give us a measure of the central hydrogen and deuterium
energy distributions.

This concentration scan covers important unexplored territory because
most of the experiments for this thesis were performed at very low hydrogen
concentrations (nH/nD ∼ 1 − 3%) in order to avoid the complications of
mode conversion, and maximize the amount of second harmonic deuterium
heating. In addition, it was originally thought that the measurement of the
hydrogen tail would be improved by operating at the lowest possible hydrogen
concentration and making the tail as energetic as possible. The results of
this chapter, however, show that the tail was already more energetic than
necessary because of the large power available, and that by increasing the
hydrogen concentration up to 10% the hydrogen signal could be dramatically
improved.

This chapter begins with a discussion of our methodology for measuring
the hydrogen concentration and the difficulties involved with this measure-
ment. This is followed by a comparison of the bounce averaged Fokker-Planck
code with the measured spectra from three discharges with low (2.8%), mod-
erate (14%), and high (33%) hydrogen concentrations. The deuterium tail
is found to increase as the hydrogen concentration is lowered, but not as
quickly as the theory would predict. While it is necessary to invoke effects
outside the scope of the present modelling at the lowest and highest hydrogen
concentrations, the RF-produced tails observed at moderate hydrogen con-
centrations are consistent with the bounce averaged quasilinear simulations
which ignore fast ion transport and assume a peaked RF power profile.

In order to be more quantitative about the scaling of the deuterium tail
with hydrogen concentration, we have developed a new method of fitting
the measured deuterium tail with an analytic model. This provides a quick,
direct measure of the central deuterium power density, PD. This measured
PD scales as (nD/nH)∼.59 in disagreement with the theoretical scaling which is
proportional to nD/nH . This is subject to a number of possible explanations.
It may be an indication that the RF power profile is broadening as the
concentration is lowered. Or it may be that fast ion transport is increasing,
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making the RF power profile appear to be broad. The broadest RF power
profiles observed are consistent with sawtooth mixing of fast ions out to an ∼
15 cm radius. If sawtooth mixing always occurs, then the apparently peaked
profiles would actually be evidence of anomalous enhancement of second
harmonic deuterium damping. Another alternative is that is is insufficient to
model the time dependent sawtooth transport process as a time independent
broadening of the RF power profile.

The scaling of the deuterium tail with total RF power is studied in
Sec. 3.5. Three different power scans from three different days are presented,
two of which show roughly linear scaling, while the third shows very non-
linear scaling. Plasma conditions did vary from day to day, and vary with
power as well, but it is not known why the scaling was linear in some cases
and nonlinear in others.

3.2 Measuring the Hydrogen Concentration

PLT would frequently run for weeks on end without any hydrogen gas being
deliberately puffed into the machine. The residual hydrogen in the plasma
probably came from recycling with the walls, leaks in the vacuum vessel, or
water inside the vacuum vessel. Measuring the hydrogen concentration in
these cases is difficult because it is so small, with nH/(nD +nH) in the range
of 1 to 3%. The hydrogen concentration varies during a discharge, and may
vary in minor radius, further complicating attempts to measure it.

There are several traditional methods for measuring the hydrogen con-
centration. Spectroscopic determination of the ratio of Hα to Dα line ra-
diation provides a measure of the edge source of hydrogen and deuterium.
The residual gas immediately after a discharge can be mass analyzed. An-
other traditional method is to measure the ratio of hydrogen to deuterium
charge-exchange neutrals emitted by the plasma. We relied on this last tech-
nique, and used the measured density rise during hydrogen gas puffing as a
cross-check.

3.2.1 Density rise measurements

In these experiments, the discharge was initiated in a prefill of deuterium,
and the line average electron density was brought up to 1.2 × 1013cm−3 by
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Figure 3.1: Relative electron density rise versus the “open” duration of the
gas valve during hydrogen gas puffing.

deuterium gas puffing. Hydrogen would be puffed into the tokamak ∼ 350
msec into the discharge. The amount of hydrogen puffed in was controlled by
the amount of time the gas valve was open. The resulting density rise should
be proportional to the amount of hydrogen introduced into the plasma. Fig-
ure 3.1 shows the size of the density rise versus the “gas valve duration.”
This relation is roughly linear, with the 18 msec offset due to the finite time
the gas valve takes to open once its control voltage has been set. Unfortu-
nately, the density rise is not a direct measure of the amount of hydrogen
now in the plasma. Two effects are important. First, in the energy range
of interest, the charge exchange rate exceeds the electron impact ionization
rate by roughly a factor of 3. A deuterium ion can be replaced by a hydrogen
ion via charge exchange without increasing the electron density. This effects
tends to make ∆ne an underestimate of the hydrogen density. However, this
tends to be offset by the second effect, in which the hydrogen can end up in
the wall instead of in the plasma. The freshly puffed hydrogen ions in the
edge of the plasma will not survive there for long, but will charge exchange
in the high edge neutral density. Depending on an ion’s direction at the time
of its charge exchange, it can either penetrate further into the plasma, or
leave the plasma and bury itself in the wall. Since the wall was already sat-
urated with deuterium, this extra hydrogen in the wall forces the desorption
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of deuterium from the surface of the wall. The result of this second effect is
that puffing hydrogen into the tokamak could actually increase the amount
of deuterium in the plasma. The relative importance of these two competing
effects is unknown. Nevertheless, the density rise should be linearly propor-
tional to the amount of hydrogen which finally ends up in the plasma and can
be used as a check of the the charge exchange measurement of the hydrogen
concentration.

3.2.2 Charge exchange measurements

In these experiments, two separate neutral particle analyzers were used. The
horizontally scanning analyzer (CENA) described in chapter 2 was usually
set to look at high energy ions (5 to 200 keV) produced by the RF, while
a vertically scanning instrument (MACE) was set to look at lower energy
ions (.75 to 5 keV) during the ohmic phase of the plasma to measure the
hydrogen concentration. MACE (described in more detail in Ref. [58]) has
10 channels to look at a range of energies in a single shot, but only looks at 1
ion species at a time. On consecutive shots the instrument was set to measure
the hydrogen distribution, the deuterium distribution, and the background
level. A typical measurement with the verically scanning instrument in a
case where nH is of the same order as nD is shown in Fig. 3.2. As described
in Chapter 2, the quantity labelled as f on a charge exchange plot is related
to the true distribution function f by

fcx =
∫

d`fn0
〈σv〉cx
σcxv

e−λ.

We ignore the small 〈σv〉/(σv) correction and the difference in attenuation
between deuterium and hydrogen (a ∼ 30 % effect), and assume that the
temperature profile of the hydrogen and deuterium are similiar. If the shape
of the hydrogen and deuterium density profiles are similiar, then by taking
the ratios of the hydrogen and deuterium charge exchange measurements,
fcx,H/fcx,D, the neutral density n0 cancels and we are left with fH/fD =
nH/nD.
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Figure 3.2: Typical hydrogen and deuterium spectra measured by MACE at
high hydrogen concentration during the ohmic phase of the plasma.
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Figure 3.3: Typical hydrogen and deuterium spectra measured by MACE at
low hydrogen concentration during the Ohmic phase of the plasma.

3.2.3 Mass rejection problems at low hydrogen con-

centration

Although this measurement is straightforward when nH ∼ nD, it requires
some additional interpretation when nH � nD. Figure 3.3 shows a mea-
surement of the hydrogen and deuterium spectra in this low hydrogen con-
centration limit. Taking the ratio of the charge exchange fluxes at 1.0 keV
would give nH/nD = e−5 = .7%, while the ratio at 3.5 keV would give
nH/nD = e−1.5 = 22%. The hydrogen appears to be much hotter than
the deuterium. The slope of a straight line fit to the points above 1 keV
gives a temperature 322 eV for the deuterium and 676 eV for the hydro-
gen. The intercept of this straight line fit is supposed58 to be proportional to
nin0/T

3/2
i . Factoring out the temperature dependence and taking the ratio

gives nH/nD ∼ .2%. It is difficult to conceive of how the hydrogen could
be twice as hot as the deuterium in the ohmic phase of the plasma and we
believe that the higher energy hydrogen signal is not real but is caused by
a small amount of deuterium which was not rejected by the mass analyzing



3.2. MEASURING THE HYDROGEN CONCENTRATION 97

magnetic and electric fields of the instrument. When the MACE instrument
was originally calibrated, it was able to discriminate between hydrogen and
deuterium with a rejection ratio of ∼1000:1. This means that when a beam
of pure deuterium was fired at the analyzer, only .1% would be improperly
detected as hydrogen. The small amount of deuterium of energy W which is
not properly mass rejected appears to the detector to be hydrogen of energy
2×W and is significant relative to the low signal from the hydrogen tail ions
at these energies. This is the main reason why the hydrogen temperature
appears to be roughly 2 times the deuterium temperature.

It was hypothesized that although the higher energy hydrogen signal may
be dominated by deuterium, the lower energy signal may still be giving an
accurate hydrogen measurement. Ignoring the difference in stripping cross
sections, the real hydrogen signal is proportional to nH exp(−W/T ), while the
small fraction of deuterium which contaminates the hydrogen produces a sig-
nal proportional to (nD/R)exp(−W/(2T )), where R is the rejection ratio and
the factor of 2 in the exponential dependence accounts for deuterium of en-
ergy E masquerading as hydrogen of energy 2×E. The ratio of the deuterium
contamination to the real hydrogen signal is (nD/(nHR))exp(+E/(2T )), and
we see that the contamination problem gets more severe at higher energies.
For nD/nH ∼ 100, R ∼ 1000, T ∼ 300 eV, we find that deuterium contami-
nation swamps the real hydrogen signal above 1.4 keV. At energies under 1.4
keV, one might hope to be seeing mostly “real” hydrogen, especially since it
is easier to strip low energy hydrogen than deuterium at even lower energy.
The stripping efficiency is a function of E/m and begins to drop dramatically
below a few keV/AMU. Even if the low energy hydrogen channels are par-
tially contaminated, they at least provide an upper bound on the hydrogen
concentration. This is useful because an upper bound on the hydrogen con-
centration provides a lower bound on the expected deuterium power density.

A further complication is that there were systematic differences in the
nH/nD ratio measured by the .75 keV detector and the 1.0 keV detector
of the MACE instrument. Because the .75 keV signal seemed to be less
reproducible, and in order to provide a consistent definition of the charge
exchange measurement of nH/nD, we always used the ratio as measured by
the second detector at 1 keV.
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Figure 3.4: Hydrogen concentration measured by MACE immediately after
a hydrogen gas puff versus the relative electron density rise of the gas puff.

3.2.4 Comparing charge exchange and density rise

measurements

One way to check our hypothesis that the 1 keV hydrogen signal was free
from deuterium contamination is to compare the hydrogen concentration
measured by this method with the density rise during a hydrogen gas puff.
The results are shown in Fig. 3.4 (for the same discharges shown in Fig. 3.1).
The linear relationship between the charge exchange hydrogen concentration
measurement and the size of the density rise provides evidence for the useful-
ness of this measurement. The lowest points on this graph, with no hydrogen
gas puff at all, had a charge exchange measured hydrogen concentration of
nH/(nH + nD) = .6–.7%. During periods of strong deuterium gas puffing,
hydrogen concentrations as small as .5–.6% have been measured. Thus it
appears possible to measure hydrogen concentrations at least as small as .5–
.6%, and that any determination of higher values is probably not affected
by deuterium contamination errors. Getting a sufficiently high number of
counts to measure such small hydrogen concentrations frequently requires
the signal to be averaged over a fairly long time period (∼50 msecs) or the
measurements to be made at low plasma density (which usually occurs near
the end of the discharge).
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Figure 3.5: Hydrogen concentration measured by MACE after the RF versus
that measured before the RF.

The hydrogen gas puff occurs at 350 msecs. The concentration measure-
ments in Fig. 3.4 were made after the gas puff and before the RF began at
400 msecs. The RF power reached its peak power level at 450 msecs and
stayed at that level until 650 msecs when the RF power began to decline.
The RF power was completely off by 700 msecs. The concentration measure-
ments were repeated after the RF, at about 750 msecs, and are compared
with the pre-RF measurement in Fig. 3.5. For large hydrogen gas puffs, it
is seen that 60% of the hydrogen has left the plasma by the time of the
post-RF measurement. Without any hydrogen gas puff, the post-RF concen-
tration is actually higher than the pre-RF concentration. This is probably
because the pre-RF plasma is fueled by deuterium gas puffing while the post-
RF plasma is fueled by recycling from the walls. Figure 3.5 shows that the
hydrogen concentration can vary significantly in time during the discharge.
We actually want to know the hydrogen concentration during the RF, but
it is not possible to use straightforward charge exchange measurements be-
cause the RF causes the hydrogen to become highly non-Maxwellian. The
measurements of the deuterium and hydrogen tails which will be presented
in the following sections are made near the end of the RF (averaged over 575
to 625 msecs), so the post-RF concentration values are used instead of the
pre-RF concentration. No attempt is made to interpolate between the pre
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Figure 3.6: Hydrogen and deuterium spectra as measured by CENA at the
same time as Fig. 3.2.

and post-RF values because this would tend to make the disagreement with
theory (to be discussed in the following sections) worse than it already is.

3.2.5 Comparing two different charge exchange ana-

lyzers

The hydrogen concentration measurement is complicated further by the dis-
turbing fact that the ratio of nH/nD measured by the CENA instrument
was consistently 2 to 3 times bigger than the ratio measured by the MACE
instrument. Most of the time, CENA was set to look at high energy neutrals
and was unable to measure the hydrogen concentration in the ohmic phase
of the plasma. Occasionally, CENA was set to look at lower energies and was
able to make the concentration measurement. Figure 3.6 shows one of these
measurements, made in the same discharge as Fig. 3.1. The CENA spectra
give nH/nD = exp(1.2), while the MACE spectra give nH/nD = exp(.5), a
factor of exp(.7) ∼ 2 lower. The horizontally scanning CENA instrument was
looking through the center of the plasma (r=0) at a perpendicular viewing
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Figure 3.7: Hydrogen to deuterium ratio measured by CENA versus that
measured by MACE.

angle (Rtan=13 cm in Fig. 1.3). The vertically scanning MACE instrument
was not looking through the center of the plasma, but was aimed at a tan-
gency radius of r=20 cm, half way out in minor radius. This is assumed to
be the reason the temperature in Fig. 3.6 is 500 eV, while Fig. 3.1 only gives
300 eV. MACE and CENA were mounted on adjacent ports, spaced 63 cm
apart toroidally. MACE was 63 cm toroidally from the top limiter, while
CENA was twice as far away. But unless the radial profile shape of nH(r) is
different from the shape of nD(r), there should not be any difference in the
ratios nH/nD measured by the two instruments.

Figure 3.7 shows that the difference between the two instruments was
not an irreproducible anomaly on one shot, but the factor of 2 to 3 dis-
crepancy persisted over a wide range of hydrogen concentrations. We had
known about the discrepancy at low hydrogen concentration for some time,
but had dismissed it as due to the poorer mass rejection of CENA. That the
discrepancy persisted even at high concentrations was not discovered until
well after the experiment was originally done, and MACE had been removed
from the tokamak to make room for electron cyclotron heating ports. If the
discrepancy had been known at the time of the experiments, one check would
be to compare the hydrogen concentration measured by the vertically view-
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ing MACE instrument at two different viewing angles, one with a tangency
radius of r=20 cm, and one looking through the plasma center at r=0 cm.
This would verify that the problem was indeed instrumental, and not due
to a real radial variation of nH/nD. Another potential cause of the discrep-
ancy is an error in one of the analysis programs for the two instruments.
This was eliminated from consideration by looking at the raw count rate of
1 keV hydrogen and deuterium by the two instruments. This showed the
same difference of a factor of 2. Other possible sources of the discrepancy
could be incorrect stripping cell pressure measurements, or errors in the mea-
sured particle energy due to drifts in the analyzer magnetic field monitoring
circuits.

Because CENA was calibrated more recently than MACE, and because
an upper bound on nH/nD provides a useful lower bound on the expected
deuterium power density, all MACE measurements of nH/nD quoted in the
rest of this chapter have been scaled up by a factor of 2 to give agreement
with CENA. The readings from the two instruments are linearly related to
each other (Fig. 3.7), and the charge exchange measurement is linearly pro-
portional to the density rise during hydrogen gas puffing (Fig. 3.4). For
these reasons, the measurements can used to monitor relative changes in the
hydrogen concentration if not the absolute magnitude as well.

3.3 Bounce Averaged Quasilinear Simula-

tions of Three Discharges

In this section we make detailed comparisons between bounce averaged quasi-
linear theory and actual hydrogen and deuterium spectra from three dis-
charges on February 26, 1985. These three discharges have hydrogen concen-
trations of nH/(nH + nD) = 2.8%, 14%, and 33%, and exhibit very different
characteristics. Although there is good aggreement between the theory and
the measurements for the intermediate concentration (14%), there are sig-
nificant differences for very low or very high concentrations and effects not
included in the present modelling must be invoked. In this section we will
also compare the full bounce averaged quasilinear predictions with a simple
isotropic model for the second harmonic deuterium tail. The agreement is
very good and establishes the isotropic model as an accurate and quick way
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to analyze measured deuterium spectra.

3.3.1 Assumed plasma parameters

A number of assumptions went into the bounce averaged quasilinear simula-
tions. The main plasma parameters for these three discharges are listed in
the table below.

Shot # nH

nD+nH
n̄e PRF Te0 Ti0 Tneut PD

Zeff,RF

Zeff,OH

1013

cm3 MW keV keV keV mW
cm3

27063 0.028 1.25 1.10 1.20 2.10 3.5 78. 5.5/1.5
27085 0.142 1.15 1.20 1.60 1.67 2.0 29. 4.0/1.25
27107 0.332 1.10 1.12 1.32 1.23 1.5 13. 3.5/1.2

The quoted hydrogen concentrations were measured immediately after
the RF using the MACE instrument (including the factor of 2 correction
discussed in the preceding section) for the lowest 2 concentrations and the
CENA instrument for the highest concentration measurement. Thomson
scattering measurements were unavailable on this day. The electron density
profile was assumed to be parabolic, ne(r) = ne0(1 − r2/a2), normalized to
the line averaged density measured by the microwave interferometer. PLT’s
electron cyclotron emission system118 provides Te(t) at 10 different radii, but
for simplicity we assumed that the electron temperature profile was parabolic
squared, Te(r) = Te0(1−r2/a2)2, and used only the peak electron temperature
from the electron cyclotron emission.

The ion temperature profile was also assumed to be parabolic squared,
with the peak ion temperature determined by the fitting the deuterium charge
exchange spectra with the isotropic model discussed below. It is hoped that
this model fit allows one to measure the ion temperature even in the presence
of a non-Maxwellian tail. It is because of this tail that the temperature in-
ferred from the neutron flux is significantly higher than the charge exchange
measurement at the lowest concentrations. The values quoted for ‘neutron
Ti’ assume not only a Maxwellian plasma but also assume a pure deuterium
plasma with nD = nE. In most of our experiments, no other measure of Ti
was available. In one experiment where FeXXV Doppler broadening mea-



104CHAPTER 3. THE TRANSITION TO DEUTERIUM SECOND HARMONIC HEATING

surements were available, the impurity ion temperature was measured to be
1900 eV, the charge exchange ion temperature was 1500 eV, and the neutron
ion temperature was 2700 eV. (This low charge exchange measurement is not
unique to deuterium second harmonic heating, but is observed during other
heating methods as well.) Due to lack of time, we have not systematically
studied the neutron flux enhancement during deuterium second harmonic
heating, which could be an interesting topic of future research.

Relative changes in Zeff were inferred from an uncalibrated measurement
of visible bremsstrahlung radiation.119 Zeff was observed to rise by a factor of
∼2.3–3.6 during RF heating, with the larger increases corresponding to lower
hydrogen concentrations and lower electron densities. Because the results
are not very sensitive to Zeff , and there is some debate over the reliability
of the visible Bremsstrahlung technique, a constant value of Zeff = 4 was
used for all of the simulations. Detailed spectroscopic measurements were
not available on this day, so the plasma composition was unknown. Previous
experiments120 have shown that a significant fraction of the rise in Zeff during
ICRF heating is due to metallic impurities. An average impurity model was
used in these simulations with Zim = 16, Aim = 32. The hydrogenic ion
density in the average impurity model is

nH + nD
ne

=
Zim − Zeff
Zim − 1

= .8

which was assumed to be the same for all of the simulations. If the hydro-
genic fraction actually does decrease as the hydrogen concentration is lowered
and Zeff rises, then the discrepancy between theory and experiment to be
discussed later would be worsened. A .25 eV edge neutral temperature was
used to predict the neutral profile, and the resulting profile was normalized
to give a particle confinement time of ∼ 30 msec.

Unless noted otherwise, the simulations in this section assumed a very
modest amount of focussing of the wave, E+ ∝ (1−r2/a2)1/2, roughly consis-
tent with ray-tracing108 and full wave calculations.107 The coupling efficiency
was assumed to be 85%, with 15% of the total input power lost to resistive
heating of the antenna, the Faraday shield, and the walls. Electron damping
was ignored, and E+ for the simulations was iterated (if needed) so that the
total RF power to the hydrogen and the deuterium added to 85% of the total
input power. The outer flux surface had a minor radius of 41 cm and a major
radius of 132 cm. The bounce averaged code uses a concentric circular flux
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surface model. In an attempt to model the Shafranov shift, R =135 cm and
a =38 cm was used in the simulations. The toroidal field at 135 cm was 20.12
kG, which placed the resonance layer at 138.4 cm. The plasma current for
these discharges ranged from 420 to 470 kA.

3.3.2 14% hydrogen concentration

We will first discuss the 14% hydrogen concentration case, where the agree-
ment between theory and experiment is best. Figures 3.8 and 3.9 show the
deuterium and hydrogen spectra (measured simultaneously in the same dis-
charge with a perpendicular view of the plasma), along with predictions of
the bounce averaged quasilinear code for 3 different assumed values of the
hydrogen concentration. The best fit to the data is obtained for a hydrogen
concentration of 14%, in agreement with value measured by charge exchange
techniques shortly after the RF was turned off. Lowering the assumed hydro-
gen concentration increases the second harmonic heating of the deuterium
(in accord with Eq. (2.50)), and increases the theoretically expected deu-
terium tail. All three theoretical curves approach each other at low energies,
where ion-ion collisions dominate and the slope of the theoretical curves is
determined by the ion temperature.

Figure 3.8 also shows a fit to the data with the isotropic second harmonic
model given in Eq. (2.55), which was numerically integrated to find log f(W ).
Assuming that Te and Wc are known (using < Z2

i /Ai >= .5 in the expression
for Wc), there are 3 free parameters in the model: the usual intercept log f(0)
and ion temperature Ti, plus a new RF parameter,

RFK =
2Wc

5TD

PD
3nD

τs

A nonlinear least squares fitting routine using a grid search minimization
algorithm121 was used to find the values of these three parameters which
provide a best fit to the data. From the expression for RFK, one obtains a
measure of the second harmonic deuterium power density PD without having
to make any assumptions about k⊥ or about nH (except to the extent that it
depletes deuterium). This is because one is directly measuring the amount
of RF power needed to sustain the tail against the collisional drag forces.
Only data points above 6 keV were used in the fit, in the hope that the
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Figure 3.8: Deuterium spectrum during ICRF with 14% hydrogen. Solid lines
are bounce averaged quasilinear simulations for different assumed hydrogen
concentrations. The peaked E+(r) of Fig. 3.15 was assumed. Dashed line is
isotropic model fit.
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Figure 3.9: Hydrogen spectrum during ICRF with 14% hydrogen. Solid lines
are bounce averaged quasilinear simulations for different assumed hydrogen
concentrations. The peaked E+(r) of Fig. 3.15 was assumed.
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neutral spectra above 6 keV is representative of the distribution function in
the central hot region of the plasma. This fitting procedure typically took
30 seconds of CPU time on a DECsystem-10 computer. The computing
time could probably be reduced by using a gradient search algorithm. The
fit could also be speeded up if an analytic solution to Eq. (2.55) could be
found. The parameters which best fit the data in Fig. 3.8 are log f(0) = 40.3,
Ti = 1.67 keV, andRFK = 10.7 keV, which corresponds to a central value for
the deuterium second harmonic heating power density of PD = 29mW/cm3.
The full bounce averaged quasilinear simulation for 14% hydrogen gave a
central PD = 34mW/cm3, in very good agreement with the isotropic model.
The isotropic model fit and the full bounce averaged quasilinear simulation
for 14% hydrogen are virtually indistinguishable at higher energies. At lower
energies the isotropic model begins to diverge from the experimental data
and from the bounce averaged simulation because it does not include the
contribution to the sightline integrated signal from the lower Ti and higher
n0 regions of the plasma near the edge.

Figure 3.9 compares the measured hydrogen spectra with the predictions
of bounce averaged quasilinear theory. The parameters assumed for the hy-
drogen simulations in Fig. 3.9 are the same as assumed for the deuterium
simulations of Fig. 3.8. For a fixed shape of the neutral density profile, the
theoretical curves are linearly proportional to the magnitude of the neutral
density. The neutral density not only has strong radial variation but also
toroidal and poloidal asymmetries. Because the magnitude of the neutral
density in front of the charge exchange analyzer is not known, one is usually
free to adjust the theoretical curves up or down to obtain the best fit to the
data, thus determining the magnitude of the neutral density. In this case,
the magnitude of the neutral density has already been determined by adjust-
ing the deuterium theoretical curves to match the deuterium spectra at low
energies, so the amplitude of the hydrogen theoretical curves is now fixed. As
in the case of the deuterium spectrum, the best fit is for a hydrogen concen-
tration of ∼14%. The fit is not as good as the deuterium fit, but is probably
within the error bars of the data. Errors in the neutral profile predicted by
FRANTIC, or those due to the small banana width approximations made in
the simulation may also be playing a role.

Note that the main effect of varying the hydrogen concentration is to
shift the hydrogen simulations uniformly up and down without changing
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their slope significantly. This is because the tail is so energetic that uncon-
fined orbit losses have become significant and the simple scaling one might
expect from TStix = PH

3nH
τs is no longer relevant. As discussed in Sec. 2.5.1,

the shape of the distribution function becomes independent of RF power
in the large orbit loss limit. The maximum energy hydrogen that could be
confined in PLT for these experiments was ∼ 710 keV. As the hydrogen con-
centration drops from 24% to 7.6%, TStix rises from ∼120 to 360 keV and
TStix/Wloss climbs from ∼ .17 to .51. According to the model in Fig. 2.6,
the fraction of power lost on unconfined orbits will rise from 10% to 60%,
in good agreement with the full bounce averaged simulations which indicate
that this fraction should rise from 28% to 72%. Because such a large fraction
of the RF power is lost on unconfined orbits, the bounce averaged simulations
shown in Fig. 3.9 indicate that the ‘temperature’ of the hydrogen (defined as
2/3 of the average energy of the hydrogen) only rises from 65 to 93 keV as
the hydrogen concentration drops from 24% to 7.6%.

3.3.3 2.8% hydrogen concentration

We have been discussing why, in this parameter regime, the slope of the
charge exchange spectra is not expected to change much as the hydrogen
concentration is varied. Experimental evidence of this is provided in Fig. 3.10,
which shows the hydrogen spectra for concentrations of 14%, 7.2%, and 3.5%.
The tail temperature does increase somewhat as the concentration is dropped
from 14% to 7.2%, but there is no change as the concentration is dropped
further to 3.5%. One must be wary of comparing the absolute magnitudes of
the raw data from different shots because the neutral density may vary from
shot to shot. It is more reliable to compare the deuterium and hydrogen
spectra from the same shot, which is done in Fig. 3.11 and 12 for an even
lower concentration case. The concentration measured by MACE soon after
the RF was turned off was 2.8%. But the hydrogen spectra during the RF
has dropped well below the simulation which assumed 1% hydrogen. Note
that the high energy (∼ 50 keV) hydrogen flux in Fig. 3.12 has dropped more
than the low energy (∼ 10 kev) hydrogen flux when compared with Figs. 3.9
and 3.10. This may be an indication that the central hydrogen density has
dropped more than the edge hydrogen density, so that the hydrogen density
profile no longer has the same shape as the electron density profile. It may
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Figure 3.10: Hydrogen spectra for 14%, 7.2%, and 3.5% hydrogen concen-
trations.
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Figure 3.11: Deuterium spectrum during ICRF with 2.8% hydrogen. Solid
lines are bounce averaged quasilinear simulations for different assumed hy-
drogen concentrations. The peaked E+(r) of Fig. 3.15 was assumed. Dashed
line is isotropic model fit.
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Figure 3.12: Hydrogen spectrum during ICRF with 2.8% hydrogen. Solid
lines are bounce averaged quasilinear simulations for different assumed hy-
drogen concentrations. The peaked E+(r) of Fig. 3.15 was assumed.
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be that unconfined orbit losses are so large that whatever particle sources
exist in the plasma are unable to maintain the central hydrogen density at
2.8%, so that it has actually dropped to less than 1%. In this extremely low
concentration limit, there are not enough counts to see any signal above 75
keV.

The deuterium spectra of Fig. 3.11 seem to tell a different story. Lowering
the hydrogen concentration from Fig. 3.8–3.11 did cause the deuterium tail to
rise, but not as much as the theory would predict. The deuterium tail seems
more consistent with an 8% hydrogen concentration (equivalent to a central
PD = 92mW/cm3) than with the post RF measurement of ∼ 3% (or PD =
330mW/cm3) or the even lower estimate of 1% (or PD = 1300mW/cm3) from
the hydrogen tail during RF.

Figures 3.13 and 3.14 show that it is possible to fit the hydrogen and
deuterium spectra of Figs. 3.10 and 3.11 simultaneously if one assumes the
RF E+(r) profile is hollow. The choice of the shape of a hollow E+(r)
profile is somewhat arbitrary. The one used here is the same as the one
which will be used in Sec. 4.1 to match the spectra measured at different
viewing angles. This hollow E+ profile is shown in Fig. 3.15 for comparison
with the moderately peaked E+ profile used before. The RF power profile to
the hydrogen in the peaked and hollow cases are shown in Fig. 3.16, while the
RF power profile to the deuterium is shown in Fig. 3.17. Different hydrogen
concentrations are used for the two profile shapes (8% for the peaked profile,
.9% for the hollow profile) in order to get similiar maximum values for PD.
Note that they predict similiar deuterium spectra as well. The isotropic
model fit for this discharge gave PD = 83mW/cm3, showing that the isotropic
model provides a good measure of the peak deuterium power, even if the
radial variation of PD is unknown.

3.3.4 33% hydrogen concentration

We finally turn our attention to the high concentration case in Figs. 3.18
and 3.19. Although the deuterium tail did fall as the concentration was
raised from 14% in Fig. 3.8 to 33% in Fig. 3.18, it did not fall quite as
much as expected. The central deuterium power is 7 mW/cm3 for the 33%
theoretical curve and 18 mW/cm3 for the 16% curve. The truth lies between
these two curves, and the isotropic fit gives a central PD of 13mW/cm3. Both
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Figure 3.13: Same deuterium spectrum as Fig. 3.11, compared with a bounce
averaged quasilinear simulation assuming 0.9% hydrogen and the hollow
E+(r) of Fig. 3.15.
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Figure 3.14: Same hydrogen spectrum as Fig. 3.12, compared with a bounce
averaged quasilinear simulation assuming 0.9% hydrogen and the hollow
E+(r) of Fig. 3.15.
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Figure 3.15: Comparison of the moderately peaked and hollow E+(r) profiles
used in the bounce averaged quasilinear simulations.

Figure 3.16: Hydrogen RF power profiles corresponding to the peaked and
hollow E+(r) profiles of Fig. 3.15. 8% hydrogen was assumed for the peaked
E+(r) power profile, and 0.9% hydrogen was assumed for the hollow E+(r)
power profile.
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Figure 3.17: Deuterium RF power profiles corresponding to the peaked and
hollow E+(r) profiles of Fig. 3.15. 8% hydrogen was assumed for the peaked
E+(r) power profile, and 0.9% hydrogen was assumed for the hollow E+(r)
power profile.
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Figure 3.18: Deuterium spectrum during ICRF with 33% hydrogen. Solid
lines are bounce averaged quasilinear simulations for different assumed hy-
drogen concentrations. The peaked E+(r) of Fig. 3.15 was assumed. Dashed
line is isotropic model fit.
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Figure 3.19: Hydrogen spectrum during ICRF with 33% hydrogen. Solid
lines are bounce averaged quasilinear simulations with different assumptions:
Peaked E+(r) and 33% hydrogen, peaked E+(r) and 16% hydrogen, hollow
E+(r) and 33% hydrogen, and, finally, 33% and peaked shape for E+(r) but
reduced in magnitude to give a total hydrogen power of 190 kW—down a
factor of 5 from the 950 kW used for the other simulations.
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theoretical curves in Fig. 3.18 assumed a moderately peaked E+ profile. The
equivalent curves for the hydrogen spectra are shown in Fig. 3.19, along with
additional curves which assume a 33% concentration but have the central
power density reduced by either using the hollow E+ profile or by dropping
the total RF power by a factor of 5. At such high concentrations it is unlikely
that unconfined orbit losses are significant. The large drop in the hydrogen
tail between Figs. 3.9 and 3.19 is probably evidence for a decline in the RF
power absorbed by the hydrogen, with most of the RF power being diverted
to some other channel such as mode conversion.

This section provided a very detailed analysis of the spectra from 3 dis-
charges. Despite all of the questions that are raised by this detailed analysis,
three conclusions can be drawn. First, at moderate hydrogen concentrations
(∼ 15%) the deuterium and hydrogen spectra are in good agreement with
the predictions of the bounce averaged quasilinear code ignoring fast ion
transport and using a peaked power profile. Second, the observed scaling of
the deuterium tail with hydrogen concentration is not as strong as expected.
There is more deuterium tail than expected when the concentration was
raised to 33%, and less than expected when the concentration was lowered
to 2.8%. Third, the central deuterium power density obtained by fitting the
spectra with the isotropic model is very similiar to that obtained by fitting
the spectra with the full bounce averaged quasilinear code. We will make
use of this last conclusion to study the first two conclusions in more detail
in the next section.

3.4 Scaling of the Deuterium Power With

Concentration

The isotropic model provides a useful tool for quickly measuring the central
deuterium power density from the deuterium spectra. Figure 3.20 shows this
measured PD for 45 discharges which have hydrogen concentrations ranging
from 1.6% to 33% plotted versus 〈PD〉15, the theoretically expected deuterium
power density averaged over a 15 cm minor radius. More specifically, the
quantity identified as the theoretical 〈PD〉15 is defined as:

〈PD〉15 = .64 × .85 × PTotal
2πRπ152

(
.5k2

⊥ρ
2
DnD/nH

1 + .5k2
⊥ρ

2
DnD/nH

) (3.1)
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Figure 3.20: Measured versus theoretical deuterium RF power density, as the
hydrogen concentration is varied from 1.6% to 33%. In this and later plots,
the deuterium RF power density is measured by fitting the deuterium tail
with the isotropic second harmonic model, Eq. (2.55), while quantity called
“theoretical 〈PD〉” is given by Eq. (3.1) and is an average over a 15 cm minor
radius.
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Figure 3.21: Ratio of the measured to theoretical deuterium RF power den-
sity versus hydrogen concentration, for the same discharges as Fig. 3.20.

Figure 3.22: Ratio of measured to theoretical deuterium RF power density
versus TStix for the hydrogen.
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The factor in parenthesis is PD/(PH +PD) from Eq. (2.49). The cold plasma
dispersion relation is used to find k⊥, and central plasma parameters are
used to calculate vA and ρD. PTotal is the total RF power into the vacuum
vessel, with an estimated coupling efficiency of .85. A rough estimate of the
average RF power absorbed inside the 15 cm minor radius is obtained by
integrating the expression for PStix ∝ nH |E+|2/r from Eq. (2.6) over a 15 cm
minor radius volume. Assuming that nH(r) and |E+(r)|2 are proportional
to (1 − r2/a2) gives 64% of the RF power absorbed inside of r/a = 15/40.
Note that averaging PStix over such a large volume is an underestimate of
the peak deuterium power density that the wave physics predicts. According
to Eq. (2.41), the Doppler broadening of the resonance layer determines the
maximum power density. For 2 keV deuterium, the Doppler width is only ∼
3 cm and gives a power density which is equivalent to averaging PStix over a
∼ 1 cm minor radius volume. This would result in a power density 15 times
bigger than the one used here. Averaging PStix over a 15 cm minor radius
allows for a true RF power density which may be much higher on axis but
assumes that some rapid transport process mixes the fast ions over a 15 cm
radius. Although the choice of the mixing radius rmix is somewhat arbitrary,
it only leads to a multiplicative constant in the expression for 〈PD〉 ∼ 1/rmix
and does not effect the scaling of 〈PD〉 with hydrogen concentration.

3.4.1 Interpretations of the nonlinear scaling

The data in Fig. 3.20 supports the conclusion of the previous section that
the deuterium power density does not increase as fast as expected as the
hydrogen concentration is dropped. The same data in Fig. 3.20 is plotted
in Figs. 3.21 and 3.22 to show explicitly how the ratio of the measured to
expected deuterium power density scales with hydrogen concentration and
with TStix. A complete list of plasma parameters for the discharges shown in
Figs. 3.20–22 is given in the appendix. PD should be proportional to nD/nH ,
but is instead found to only scale as (nD/nH).59±.04. This is subject to a
number of possible interpretations. It may be that that PD scales as expected
with hydrogen concentration, but that fast ion transport is increasing as
the concentration is lowered. At the highest concentrations, this transport
only causes mixing over a 3 cm minor radius, but for some of the lowest
concentration discharges the mixing radius is 18 cm. A number of possible
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fast ion transport mechanisms are discussed in Sec. 2.5. In the center of the
plasma, the dominant transport mechanism is sawteeth. The edge q values
of the discharges analyzed in this section varied by less than 10%. The
inversion radius as measured by the ECE system was ∼ 14cm for the low
concentration discharges. At the highest concentrations, the inversion radius
may have moved inward a small amount, but the shift is less than the ∼ 5cm
spacing of the ECE channels. Although ion sawteeth transport would thus
be consistent with the broadest power profiles observed, it can not explain
the variation of the power profile with concentration.

If sawteeth transport of fast ions is always occuring, then the question
is no longer why the apparent power profile is so broad at the lowest con-
centrations, but why the deuterium power density is larger than expected
at the highest concentrations. It has been suggested53 than in the case of
pure hydrogen second harmonic heating, k⊥ is increased over its cold plasma
value by Bernstein wave effects. Calculations122,108 for deuterium second
harmonic/hydrogen fundamental heating show no such increase in second
harmonic damping.

Sawteeth transport is a time-dependent process, while we are treating it
as equivalent to a time-independent broadening of the RF power profile. The
sawtooth period for these discharges is typically ∼ 5 msec, while the charge
exchange signal was averaged over 50 msec to obtain an adequate count rate
in the tail. If the time scale for the RF to produce a small tail is short
compared to the sawtooth period, while the time scale to extend the tail out
to high energies is long compared to the sawtooth period, then the size of
the tail may have a nonlinear relationship to the RF power density. Perhaps
this explains why the deuterium tail is larger than expected at the highest
hydrogen concentrations. Further investigation of this possibility is reserved
for future work. A time dependent sawtooth model needs to be implemented
in the quasilinear simulations. And higher time resolution charge exchange
measurements need to be made.

Another interpretation would be that there is no significant transport of
the tail ions, but that the RF power profile really is broadening (and the
central power density dropping) as the hydrogen concentration falls. For
example, if the hydrogen that is pumped out of the center of the plasma
ends up in the edge of the plasma, then the damping rates will increase near
the edge and less power will be available at the center of the plasma to drive
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the deuterium tail. If the central ions become sufficiently collisionless, then
the particle-wave interaction may become superadiabatic and no stochastic
heating will occur. Particles which mirror in the resonant layer may interact
so strongly with the wave as to change its polarization or cause reflection of
the wave.

If the single pass absorption becomes sufficiently weak, a substantial frac-
tion of the RF power may never be absorbed in the plasma at all. Measure-
ments of the Q of the PLT vacuum vessel53 indicate that the indicate that the
“reflection” losses can be as large as a few percent per bounce. These losses
may be caused by resistive damping in the walls, absorption of the wave by
unused antennas, or escape of the wave through vacuum vessel ports. But
even for the lowest hydrogen concentrations of 1.6%, the estimated122 single
pass absorption is ∼ 20%, and reflection losses should not be severe. At the
lowest hydrogen concentrations where E+ is largest, there may be some non-
linear process at the edge of the plasma which is diverting RF power from
the plasma center.123

All 45 discharges plotted in Figs. 3.20–3.22 had sawteeth. There were
2 sawtoothless dicharges which are not shown. The values of PD measured
for these two discharges were only slightly above (by 0–30%) comparable
sawtooth discharges. This may seem to be a refutation of our claim that
sawteeth are the dominant transport process. However, tokamak plasma
usually fail to sawteeth only because something else is wrong with the plasma.
Frequently there are m=2 oscillations present if sawteeth are absent. These
two particular discharges had much colder electron temperatures (∼ 950 eV)
than the usual sawtooth discharges (1200–1500 eV).

Most of the discharges in Fig. 3.20–3.22 had fairly low line averaged
electron densities (< 1.3 × 1013). The few discharges at higher densities
(1.5−−2.2×1013), marked with an ‘X’, tended to outperform the lower den-
sity discharges with equivalent theoretical 〈PD〉15. This may be because of
improved focussing of the wave at higher densities. Although the most dra-
matic tails observed with the charge exchange analyzer (i.e., the deuterium
spectra that extended to the highest energies and had the largest values of
RFK) were at fairly low densities, where the collisionality was low and it was
easy to make a non-Maxwellian tail, the highest values of PD were actually
obtained at the highest densities where k⊥ was largest.

In the low density (< 1.3× 1013), low concentration (< 15%), high power



126CHAPTER 3. THE TRANSITION TO DEUTERIUM SECOND HARMONIC HEATING

regime where most of the data was taken, the electron density was very
difficult to control. The line averaged density would frequently show large (∼
10−−20%) erratic fluctuations and would sometimes begin to rise extremely
rapidly towards the end of the RF power flattop. The visible bremsstrahlung
Zeff would drop about as fast as the density rose. The biggest source of
scatter in the data of Figs. 3.20–3.22 may be that many of the discharges
were not really in steady state at the time of the measurement.

3.5 Scaling of the Measured Deuterium

Power With Total Power

The deuterium tail should increase not only as the hydrogen concentration
is lowered but also as the total RF power is increased. Figures 3.23–3.34
show the results of three different power scans. A complete list of plasma
parameters for these discharges is given in the appendix. The first power
scan, in Figs. 3.23–3.27, shows that the increase in the deuterium tail is
in good agreement with the expected scaling. The measured deuterium and
hydrogen spectra for a range of power levels are shown in Figs. 3.23 and 3.24.
Also shown are theoretical curves from the bounce averaged quasilinear code

for the lowest and highest power levels. A hydrogen concentration of nH/ne
= 1% and a hollow E+(r) similiar to Fig. 3.15 were used to provide a good fit
to the lowest power data. The same hydrogen concentration and E+ profile
shape were then used to predict the high power data, with only measured
parameters (total RF power, Te, ne, Ti, Zeff ) changed in the simulation. The
observed increase in the deuterium tail is in very good agreement with the
bounce averaged quasilinear code. The hydrogen tail is already so energetic
that the simulation predicts that the hydrogen charge exchange flux should
drop as the power is increased because of the simultaneous rise in ne and fall
in n0. The observed hydrogen tail actually drops slightly faster than the code
predicts. As in the previous section, we fit the deuterium spectra with the
isotropic model to obtain a direct measure of PD. Figs. 3.25–3.27 show that
this measured PD increases linearly with total RF power for this particular
set of discharges.

A second power scan (performed a week after the first power scan and a
few days before the data of Sec. 3.4) is shown in Figs. 3.28–3.31. PD is
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Figure 3.23: Deuterium spectra for a range of ICRF power levels. Solid
curves are bounce averaged quasilinear simulations of the lowest and highest
power data.
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Figure 3.24: Hydrogen spectra for a range of ICRF power levels. Solid curves
are bounce averaged quasilinear simulations of lowest and highest power data.
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Figure 3.25: Measured versus theoretical deuterium RF power density, as
total RF power is varied from 680 kW to 1150 kW.
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Figure 3.26: Ratio of measured to theoretical deuterium RF power density
versus total RF power, for the same discharges as Fig. 3.25.

Figure 3.27: Ratio of measured to theoretical deuterium RF power density
versus TStix for the hydrogen, for the same discharges as Fig. 3.25.
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Figure 3.28: Measured versus theoretical deuterium RF power density, as
total RF power is varied from 120 to 1250 kW.



132CHAPTER 3. THE TRANSITION TO DEUTERIUM SECOND HARMONIC HEATING

Figure 3.29: Ratio of measured to theoretical deuterium RF power density
versus total RF power, for the same discharges as Fig. 3.28.

Figure 3.30: Ratio of measured to theoretical deuterium RF power density
versus TStix for the hydrogen, for the same discharges as Fig. 3.28.
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Figure 3.31: Line averaged electron density as a function of total RF power,
for the same discharges as Fig. 3.28.

observed to increase linearly with Ptotal from 500 to 1300 kW, but the scaling
is nonlinear below 500 kW. The low power discharges marked with closed
circles had deuterium gas puffing during the RF which maintained n̄e at
1.3×1013cm−3, while the other low power discharges had n̄e ∼ 1.0×1013cm−3

during the RF. This additional deuterium gas puffing may have reduced the
source of hydrogen from the walls, or it may be some other effect associated
with higher density which caused PD to be higher for these two discharges.

A third power scan (performed six months later) shows a strong nonlin-
earity up to the highest power levels. The data in Figs. 3.32–3.34 were taken
at three power levels: 660 kW, 1210 kW, and 2300 kW. A least squares fit
the the data yields PD ∝ 〈PD〉.38±.0415 , an even weaker scaling than found from
the hydrogen concentration scan. The discharges in Figs. 3.32–3.34 tended to
be at higher n̄e and lower Zeff than those of Sec. 3.4. No erratic oscillations
in n̄e were observed, although the density did begin to climb rapidly at the
highest power level. This data also presents a test of the isotropic model. At
each power level, measurements were made at three different viewing angles
(Fig. 1.3). The variation of Ti, RFK, and PD measured at the three view-
ing angles is less than 30%, providing further evidence for the utility of the
isotropic model. Sec. 4.2 will compare the power scan data of Figs. 3.32–3.34
with the bounce averaged quasilinear code.

No hydrogen was puffed into the tokamak during any of the three
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Figure 3.32: Measured versus theoretical deuterium RF power density, as
total RF power is varied from 660 kW to 2300 kW.



3.5. SCALING OF THE MEASURED DEUTERIUM POWER WITH TOTAL POWER135

Figure 3.33: Ratio of measured to theoretical deuterium RF power density
versus total RF power, for the same discharges as Fig. 3.32.

Figure 3.34: Ratio of measured to theoretical deuterium RF power density
versus TStix for the hydrogen, for the same discharges as Fig. 3.32.
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power scans discussed in this section. The residual hydrogen concentration
nH/(nD + nH) used to calculate the theoretical 〈PD〉 was assumed to be a
constant 3% for all of the discharges, although no accurate measurement of
the concentration was attempted for these discharges. The hydrogenic con-
centration (nH + nD)/ne was assumed to be a constant 80% for the first two
power scans, while the variation of Zeff was included in estimating the deu-
terium depletion for the third power scan. Assuming that Zi = 8 was the
main impurity, the hydrogenic fraction only varied from .79 to .93 for this
last power scan.

Science is not a democracy. Although the first two power scans showed
that PD increases linearly above 500 kW of total RF power, the third power
scan showed that this is not always true. Part of the complication may be
that the density varies with RF power, even though we try to control for the
density variation through the definition of 〈PD〉. Fig. 3.31 shows the natural
variation (except for two of the low power discharges where the density feed-
back system was enabled) of n̄e with total power for the second power scan.
The density did not vary as much in the third power scan. At the highest
power it was 2.2 × 1013cm−3, dropping to 1.7 × 1013cm−3 at medium power,
and staying there via deuterium gas puffing at the lowest power. Of course,
Ti and Te vary with RF power as well, and separating out the importance of
various parameters is inherently difficult. Future experiments should try to
resolve the present ambiguity by performing independent scans of power and
density. Simultaneous measurements of the hydrogen concentration would
also be helpful.

3.6 Conclusions

We have presented clear evidence of direct second harmonic heating. A deu-
terium tail has been observed out to energies in excess of 50 keV (equivalent
to 25 × Ti or 2 ×Wc). The slope of the distribution function at the highest
energies was 1/(16 keV), well above the bulk ion temperature of 2.1 keV.
The highest measured value of PD for which hydrogen concentration mea-
surements exist was 220 mW/cm3 (or ∼ 22% of the total central RF power)
and is consistent with theoretical expectations (Eq. (3.1)) assuming a 15 cm
mixing radius. The highest PD achieved in PLT to date is 300 mW/cm3 at
n̄e = 2.9 × 1013/cm3. PD does not scale linearly with hydrogen concentration.
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The higher-than-expected values of PD found at higher concentrations may
be evidence of enhanced deuterium damping or reduced fast ion transport.

The first experimental observation of direct second harmonic deuterium
heating was made on the Japanese JFT-2 tokamak.48,49 They observed a
deuterium tail up to 6 keV (equivalent to 10 × Ti or .75 × WC). Ion-ion
collisions are very rapid at these lower energies and keep the distribution
function nearly Maxwellian. Because of this, the slope of the distribution
function at the highest energies they observed was only 1/(1.2 keV), only
2 times the bulk ion temperature of 550 eV. Based on charge exchange
and power balance analysis, they claimed that the deuterium absorption
was stronger than predicted by theory. For low hydrogen concentrations,
nH/nD ∼ 2–4%, they obtained PD/PH ∼ 3, while theory would predict
PD/PH = βDnD/nH ∼ .7. At higher concentrations, nH/nD = 10%, they
observed PD/PH = 1 while theory would predict .078. Although the abso-
lute values of PD/PH from their analysis is much higher than ours, note that
they observe that (PD/PH)Exp/(PD/PH)Theory gets larger at higher concen-
trations, which is similiar to our results. Perhaps the differences between our
results and theirs is that JFT-2 uses a high field side antenna, while the PLT
experiments were done with a low field side antenna.

There are a number of ways in which future experiments could expand
upon these results. Perhaps the most obvious is to improve the measurement
of the hydrogen concentration. In addition to the charge exchange method
described here, spectroscopic Hα/Dα and after-the-shot residual gas analysis
measurements would provide corroborating evidence for the true concentra-
tion. The time variation of the hydrogen concentration during the discharge
could be reduced by always fuelling the plasma with a premixed supply of hy-
drogen and deuterium gas, rather than initiating the discharge in deuterium
and puffing in a small amount of hydrogen later. Operation at a fixed concen-
tration for tens of discharges in a row may be necessary to allow the hydrogen
concentration to come to equilibrum with the walls. Because unconfined or-
bit losses were probably playing a large role in these experiments, it would
be useful to repeat them at lower power densities, higher electron densities,
and higher plasma currents to reduce these losses. Systematic documenta-
tion of the enhancement of the neutron production rate over that expected
from spectroscopic measurements of Ti is another interesting area for future
research. Our present experiments have concentrated on the low density
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regime where the non-Maxwellian deuterium tail was largest. To reach the
highest values of PD, future experiments should try to maximize the density,
perhaps with the aid of a pellet injector. The new technique of fitting charge
exchange spectra with an isotropic model can probably be fruitful in the the
study of pure second harmonic hydrogen heating where there is no compli-
cation of a competing fundamental heating mechanism which produces an
extremely energetic tail. Finally, on the theoretical front, there is a clear
need to incorporate radial transport into models of the RF-produced tail.
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Chapter 4

Pitch Angle Dependence of RF

Generated Fast Ions.

While the last chapter focussed only on perpendicular charge exchange mea-
surements, this chapter will explore the angle dependence of the charge ex-
change spectra. The introductory chapter showed that the resonance lo-
calization model provides a good, qualitative explanation of the dramatic
viewing angle dependence of the charge exchange spectra, and argued that
this may provide radially local information. This chapter will make detailed
comparisons of the measured spectra with predictions of the bounce-averaged
quasilinear code, and will investigate the uncertainties in uncovering radial
information.

In Sec. 4.1, we compare the measured spectra from a single high power
case with the predictions of the code based on a variety of assumptions. In
Sec. 4.2, we compare the predictions of the code with spectra taken at RF
power levels ranging from 200 kW to 2300 kW. There is good qualitative
agreement between the predicted and measured spectra, although the best
fits seem to require an RF power profile which is much broader than theoret-
ically expected. This is consistent with the more quantitative results of the
last chapter, and is subject to the same interpretation: the true RF power
profile is probably quite peaked, but radial transport (which is ignored by
the code) leads to a significantly broader distribution of fast ions. It should
be emphasized that whenever we speak in this chapter, as in the last, of the
RF power profile being broader than expected, we mean only that it appears

140
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to be broad, perhaps because of radial fast ion transport.

In Sec. 4.3, we present the first charge exchange measurements of 3He
minority heating. These measurements, made possible by operating with a
4He majority plasma, have similiar features to the hydrogen spectra, but do
not require as broad an RF power profile to obtain a good fit.

4.1 Angle Dependence at High RF Power

In this section we will compare the deuterium and hydrogen spectra shown
in Figs. 4.1 and 4.2 with bounce-averaged quasilinear code predictions for
a variety of assumptions. This hydrogen data is the same as discussed
in the introduction (Fig. 1.2) and the viewing angles are shown in Fig. 1.3.
The parallel deuterium spectra were not measured in this experiment. The
theoretical deuterium spectra predicted for a variety of assumed values of
the hydrogen concentration are shown in Fig. 4.1. The corresponding pre-
dictions of the hydrogen spectra are shown in Figs. 4.2–4. The main plasma
parameters for these spectra are shown in Fig. 4.5–6. A modestly peaked
E+(r) profile proportional to (1− r2/a2)1/2 was assumed for the simulations
in Figs. 4.1–4. The total RF power to the deuterium and hydrogen, after
15% coupling losses, was 1310 kW. Other parameters used for these simula-
tions include: Zeff = 3.0, main plasma impurity ZI = 8, minor radius a = 41
cm, major radius Rmaj = 132 cm, magnetic field Btor = 20.61 kG, resonance
layer Rres = 138.7 cm, plasma current Ip = 450 kA, loop voltage V` = 1.0
V, and k‖ = ±.07cm−1. The neutral density profile was calculated using an
edge neutral temperature of .25 eV, and the toroidally local magnitude of
the neutral density was adjusted, as in Chapter 3, to obtain the best fit to
the lower energy deuterium spectra.

Accurate measurements of the true hydrogen concentration were not
made for the discharges shown in Figs. 4.1 and 4.2, although the rough mea-
surements indicate that it was less than or of the order of 2–3% during the
ohmic phase of the plasma. For the assumed peaked E+ profile, the observed
deuterium tail is best fit by a higher concentration of ∼ 6%. On the other
hand, the best fit to the hydrogen spectra requires a lower concentration
of ∼ 0.7%. These observations are similiar to those made in the previous
chapter for low hydrogen concentrations. Note that the simulated hydrogen
spectra do not change their shape much as the assumed concentration is
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Figure 4.1: Deuterium energy spectra measured by the charge exchange neu-
tral analyzer at two different viewing angles (shown in Fig. 1.3). Also shown
are bounce averaged quasilinear simulations for different assumed hydrogen
concentrations and a moderately peaked E+(r) profile (Fig. 4.6).
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Figure 4.2: Hydrogen energy spectra measured by the charge exchange neu-
tral analyzer at three different view angles (shown in Fig. 1.3). Also shown
is a bounce averaged quasilinear simulation assuming 6% hydrogen and a
moderately peaked E+(r) (Fig. 4.6).
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Figure 4.3: Same as Fig. 4.2, but assuming 1.5% hydrogen for the simulation.
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Figure 4.4: Same as Fig. 4.2, but assuming 0.7% hydrogen for the simulation.
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Figure 4.5: Main plasma parameters for the data of Figs. 4.1–4.4.
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Figure 4.6: E+(r) and k⊥(r) profiles assumed for the simulations of Figs. 4.1
to 4.4. The plots of PRF(r) and Ttail(r) in this figure, and in Figs. 5.7, 5.9,
4.20, and 4.25 are based upon Stix’s simple formulas and are not the actual
power or temperature profiles calculated by the program.
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dropped from 1.5% to 0.7%, although the relative amplitudes of the spectra
at different viewing angles do change. This is consistent with the result of
Sec. 2.5.1 that the shape of f(W ) becomes independent of RF power when
orbit losses are dominant.

The bounce-averaged quasilinear code includes the effects of pitch angle
scattering and can be used to determine when the assumption of resonance
localization is valid. According to Eq. (1.2), which assumes perfect resonance
localization, the perpendicular sightline (Rtan = 13 cm) should see energetic
neutrals which originate near R = 140 cm. The code indicates that only
above 50 keV is this a valid approximation, and unfortunately there is not
much perpendicular signal above 50 keV. Below 50 keV, pitch angle scattering
is rapid enough, and there are enough fast ions at larger minor radii, so that
over 50% of the flux comes from outside R = 148 cm. The peak angle
(Rtan = 70 cm) should view ions which charge exchange near R = 168 cm
(∼ 5 cm from the edge), according to Eq. (1.2). The assumption of resonance
localization is valid down to much lower energies at this angle, because pitch
angle scattering is less and the neutral density is higher towards the edge.

One of the interesting features of the data is the “negative temperature”,
or ∂f/∂W > 0, observed between 30 keV and 100 keV at the peak angle. As
discussed in the introduction, one possible explanation is that there is much
more RF power at point A in Fig. 1.10 than at point B. Indeed, keeping
all other parameters the same as for the Fig. 4.4 simulations, but reducing
E+ significantly at r/a = .75 (Fig. 4.7), we are able to partially reproduce
this negative temperature (Fig. 4.8). The good fit in Fig. 4.8 does not
rule out the possibility of alternative explanations, such as the “edge drag”
mechanism discussed in Secs. 1.2.2 and 2.5.2. The energetic hydrogen signal
at other viewing angles is unaffected, as is the predicted deuterium spectra
(not shown here) which still disagrees (assuming 0.7% hydrogen) with the
observed spectra. It is necessary to keep the same E+ for r/a > .75 in order
to produce enough charge exchange flux below 30 keV. The E+(r) profile of
Fig. 4.7 may be actually be close to reality, if there is a gap inbetween the
large evanescent fields at the edge and propagating waves which are focussed
towards the center.

To fit the hydrogen and deuterium spectra simultaneously, it is necessary
to reduce the central deuterium power density by making E+(r) hollow (fig.
4.9). Except for raising the hydrogen concentration slightly to 0.9%, all other



4.1. ANGLE DEPENDENCE AT HIGH RF POWER 149

Figure 4.7: E+(r) and k⊥(r) profiles assumed for the simulation of Fig. 4.8.
Note the drop in E+ at r/a = .75.
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Figure 4.8: Same data as Fig. 4.2, but using the E+(r) profile of Fig. 4.7 and
assuming 0.7% hydrogen.
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parameters are kept fixed. Unlike the simulations of Fig. 4.1, the hollow E+

deuterium simulation of Fig. 4.10 produces more deuterium tail at the peak
angle than at the perpendicular angle, in agreement with the measurements.
The hollow E+ hydrogen simulation of Fig. 4.11 is not much different than the
previous one. In both cases, good agreement is found with the perpendicular
and peak measurements, but not with the parallel measurements.

In an earlier analysis10 of the hydrogen spectra of Fig. 4.11, I concluded
that the RF power profile is broader than theoretically expected. While I
reach the same conclusion in this thesis on the basis of the deuterium and
hydrogen spectra in Figs. 4.10 and 4.15, it now appears difficult to draw any
unique conclusions based only on the hydrogen spectra of Fig. 4.11. Part of
the problem is due to uncertainty about the hydrogen concentration. If the
concentration really is as high as 3%, then a peaked power profile cannot
produce enough energetic ions at point A in Fig. 1.10 to fit the data, as
concluded in my earlier analysis. If the concentration is lower, then less
power at point A is needed because TStix ∝ P/nH . But the central problem
is that the tail is so energetic in this case that unconfined orbit losses make
the shape of f independent of TStix. In the next section, we will analyze a
low power case where orbit losses are small and the hydrogen spectra alone
provide some indication of a broad RF power profile. (The earlier version of
the code assumed k‖ = 0 and E− = 0, but this difference does not have a
major effect on our conclusions.)

In addition to the drop in E+ at r/a = .75, another ingredient necessary
to produce the “negative temperature” in the simulations is a very hollow
neutral density profile to maximize the edge contribution to the peak an-
gle signal. If a flatter neutral profile is used (by raising the edge neutral
temperature significantly above the .25 eV assumed here), then it becomes
more difficult to obtain good fits, although broadening the RF power profile
further does introduce a slight improvement. Many different values of E+(r)
and nH/ne, as well as other plasma parameters, have been tried in the com-
puter simulations in an attempt to improve the fit. Slightly better fits than
shown here can be obtained, but no fit is substantially better.

The hydrogen “temperature” (defined as two thirds of the average energy)
calculated by the code for the case of 0.7% hydrogen and E+ ∝ (1−r2/a2)1/2

is shown in Fig. 4.12. The corresponding power balance in Fig. 4.13 in-
dicates that over half of the hydrogen power is lost to unconfined orbits.
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Figure 4.9: E+(r) and k⊥(r) profiles assumed for the simulations of Figs. 4.10
and 4.11.
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Figure 4.10: Same data as Fig. 4.1, with a bounce averaged quasilinear sim-
ulation using the hollow E+(r) of Fig. 4.9 and assuming 0.9% hydrogen.
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Figure 4.11: Same data as Fig. 4.2, with a bounce averaged quasilinear sim-
ulation using the hollow E+(r) of fig. 4.9 and assuming 0.9% hydrogen.
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Figure 4.12: Initial and final hydrogen temperature calculated by the bounce
averaged quasilinear program for the parameters of Figs. 4.5 and 4.6.

Fig. 4.13 shows that the steady state hydrogen power profile is signif-
icantly broader than the initial power profile, even though E+(r) is held
fixed. As the hydrogen heats up, Doppler broadening reduces the peak power
density (Eq. (2.41)), while the E−J1 term increases the damping elsewhere
(Eq. (2.15)). For completeness, Figs. 4.14–15 show the deuterium “temper-
ature” and the deuterium RF power profile for the same peaked E+, 0.7%
case, even though this is a poor fit to the deuterium spectra. The “temper-
ature” and power profiles for the hollow E+, 0.9% case which fits the data
fairly well, is shown in Figs. 4.16–19.

4.2 Scaling with Total RF Power

The hydrogen and deuterium spectra at the perpendicular, peak, and par-
allel angles were measured for RF power levels of 660, 1210, and 2300 kW.
The analysis of these deuterium spectra using the isotropic second harmonic
model has already been discussed in Sec. 3.5 (Figs. 3.32–34). In this section,
we provide comparisons of the hydrogen and deuterium spectra with the full
bounce-averaged quasilinear code. A number of interesting discrepancies be-
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Figure 4.13: Initial (0) and final (R) hydrogen RF power profile calculated by
the bounce averaged quasilinear program for the parameters of Figs. 4.5 and
4.6. Also shown is the power flowing out of the hydrogen due to ion heating
(i), electron heating (e), unconfined orbit losses (L), and charge exchange
losses (C).
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Figure 4.14: Initial and final deuterium temperature calculated by the bounce
averaged quasilinear program for the parameters of Figs. 4.5 and 4.6.

Figure 4.15: Initial (0) and final (R) deuterium RF power profile calculated
by the bounce averaged quasilinear program for the parameters of Figs. 4.5
and 4.6.
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Figure 4.16: Initial and final hydrogen temperature calculated by the bounce
averaged quasilinear program for the parameters of Figs. 4.5 and 4.9.

tween the data and the modelling will be pointed out. Hydrogen spectra
were also measured on this same day at even lower RF power levels (205 and
320 kW) where unconfined orbit losses are negligible. This low power data
provides further evidence that the RF power profile is broader than expected.

Rather than trying to obtain the best fit at each power level by tediously
adjusting the E+ profile and the hydrogen concentration, we adjusted these
parameters only once, to provide a decent match to the medium power data,
and then kept them fixed to simulate the high and low power data. Only
measured quantities (total RF power, Te, ne, Zeff , and Ti) were varied for
the simulations of different power levels. A hollow E+ profile (shown in
Fig. 4.20 along with other plasma parameters used for the medium power
simulation), somewhat different than the previous one (Fig. 4.9), was used
for these simulations. The hydrogen concentration nH/ne was assumed to be
3%. The fit to the medium power spectra, and a comparison with the higher
and lower power spectra, are shown in Figs. 4.21 and 4.22.

Many interesting features of this data will be discussed below, but let us
begin with the observation that the deuterium tail does not increase with RF
power as quickly as it should. This result is stated more quantitatively in
Figs. 3.32–34, where it is shown that the measured deuterium power density
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Figure 4.17: Initial (0) and final (R) hydrogen RF power profile calculated by
the bounce averaged quasilinear program for the parameters of Figs. 4.5 and
4.9. Also shown is the power flowing out of the hydrogen due to ion heating
(i), electron heating (e), unconfined orbit losses (L), and charge exchange
losses (C).
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Figure 4.18: Initial and final deuterium temperature calculated by the bounce
averaged quasilinear program for the parameters of Figs. 4.5 and 4.9.

Figure 4.19: Initial (0) and final (R) deuterium RF power profile calculated
by the bounce averaged quasilinear program for the parameters of Figs. 4.5
and 4.9.
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Figure 4.20: Plasma and RF parameters for the medium power bounce av-
eraged quasilinear simulations in Figs. 4.21 and 4.22.
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Figure 4.21: Measured and calculated deuterium spectra at different viewing
angles for total RF powers of 660 kW, 1210 kW, and 2300 kW. The hollow
E+(r) of Fig. 4.20 was assumed.
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Figure 4.22: Measured and calculated hydrogen spectra at different viewing
angles for total RF powers of 660 kW, 1210 kW, and 2300 kW. The hollow
E+(r) of Fig. 4.20 was assumed.
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increases much slower than linearly with total RF power. One explanation is
that the RF power profile is broadening as the total power increases. How-
ever, the results of the two other power scans in Sec. 3.5 (Figs. 3.25–27 and
Figs. 3.28–30) show a scaling which is much closer to linear. The reason for
the different behavior found here is unknown.

There are qualitative similiarities between the data and the simulations,
but the agreement is not particularly good at any power level nor at any
viewing angle. Many different E+ profiles and hydrogen concentrations were
tested to try to improve the fits, but no satisfactory fit to all of the details
was ever achieved. A fundamental reason for this may be the lack of radial
transport in our simulations. Modelling it as a simple broadening of the RF
power profile may be inadequate. Even if this was an acceptable model, there
is no reason that the effective E+ needed to model transport for deuterium
is the same as that needed for hydrogen.

Another reason for the poor agreement between theory and data is
toroidal asymmetry in the neutral density profile. The simulations assume a
toroidally symmetric neutral density and predict that the parallel deuterium
flux should always be smaller than the flux at other angles. In reality, the
opposite occurs. The parallel deuterium flux is larger even at low energies
where f should be isotropic. (Note that the vertical distance between the
parallel data and the perpendicular data is fairly large at low energies.) The
theoretical curves already account for the longer path length through the
plasma, and the large attenuation of signal, for the parallel sightlines. Even
the parallel hydrogen flux is larger than the flux at other angles up to 40 keV,
and it is larger than the predicted flux up to even higher energies. Merely
increasing Zeff in the simulations fails to improve the fits. This data seems
to give clear evidence of important toroidal variations in the neutral density.
The data of Sec. 4.1, however, is much more isotropic at low energies and is
in better agreement with the simulations, indicating that the neutral density
is more symmetric in that case (at least near the analyzer). In principle, the
variation of the neutral density is irrelevant to our purposes. At sufficiently
high energies, information about the radial RF power profile is contained in
the slope of the charge exchange spectra, ∂f/∂W , as a function of angle,
and is independent of the relative amplitude of the charge exchange flux at
different angles. Thus, one should be able to adjust the magnitudes of the
simulated curves by different amounts at different angles to obtain the best
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fit to the data.

As in Secs. 3.3 and 4.1, the ion temperature used here for the full bounce-
averaged quasilinear simulations was found by first fitting the perpendicu-
lar deuterium spectra with the isotropic second harmonic model. This Ti
was slightly lower than spectroscopic measurements (as usual with passive
charge exchange methods), but more importantly, it produced a final bounce-
averaged simulation which fit the data well. This same procedure did not
work as well, however, for the present data (Fig. 4.21). Lowering the Ti used
in the simulations by ∼ 30% (or from 1270 eV to 960 eV for the medium
power case) does improve the fits somewhat, but it does not change the con-
clusion that the deuterium tail increases slower than it should with total RF
power.

Another interesting difference from earlier data is that the hydrogen sig-
nal level increases in Fig. 4.22 as the RF power increases, while the opposite
occured in the power scan of Fig. 3.24. The earlier result was roughly con-
sistent with a drop in the central neutral density as the electron density rose
with RF power. The present data were fit with a higher hydrogen concen-
tration (3%) than the earlier data (1%), and perhaps unconfined orbit losses
have not yet caused the tail temperature to saturate. Note that the nega-
tive temperature region (∂f/∂W > 0 at the peak angle) appears only at the
highest powers where orbit losses are largest and edge drag transport is most
important. Unlike the fits in Figs. 4.8 and 4.11, the simulation in Fig. 4.22
does not reproduce the negative temperature. The E+ profile must have very
strong gradients at precisely the right place in order to do this.

4.2.1 Low power hydrogen spectra

Measured and predicted hydrogen spectra for even lower power levels (320
and 205 kW) from this same series of discharges are shown in Fig. 4.23. The
perpendicular and peak fits are fairly good at high energies, but not at low
energies. One way to increase the simulated low energy signal may be to
raise the RF power near the edge, r/a > .8. The simulated low energy signal
is already large enough at the highest power levels (1210 and 2300 kW in
Fig. 4.22), but increasing the edge RF power would probably not change the
high power fit because of orbit losses.

At the lowest power level (205 kW), unconfined orbit losses are rather
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Figure 4.23: Measured and calculated hydrogen spectra at different angles
for total RF powers of 205 kW and 320 kW. The hollow E+(r) of Fig. 4.20
was assumed.
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small (∼ 3.5%), and one should be more successful at inferring the RF power
profile from the hydrogen spectra alone. The 205 kW data is simulated
in Fig. 4.24 with E+ ∝ (1 − r2/a2)1/2 and hydrogen concentrations nH/ne
of 3% and 6%. All other parameters are the same as the hollow E+, 3%
simulation of Fig. 4.23. The peaked power simulations of Fig. 4.24 do not do
as well in predicting the relative amplitude of the charge exchange signal at
different angles as the broad power simulation of Fig. 4.23. We attribute this
to unaccounted-for variations in the neutral density, and instead focus our
attention on the slopes of f at different angles. The 3% simulation in Fig. 4.24
produces the approximately correct slope at the peak and parallel angles,
but it underestimates the slope of the perpendicular spectra. Increasing the
hydrogen concentration to 6% makes the tail less energetic and improves
the perpendicular fit, but now the peak and parallel slopes are not as good.
It seems that a peaked power profile can not fit the data, regardless of the
hydrogen concentration, providing further evidence for a broad power profile.

To make accurate measurements of the power profile, unconfined orbit
losses must be negligible. For hydrogen minority heating in PLT, this means
one must operate in a low power regime. The low power data presented
here provides evidence that the power profile is broader than expected, but
additional low power experiments need to be carried out to confirm this. A
number of ways in which future experiments could improve upon the present
ones are discussed in Sec. 4.4.

4.3 3He Minority Heating in a 4He Majority

Plasma

4.3.1 The double charge exchange process

The most successful ICRF heating results in PLT have been obtained in
the 3He minority, D majority regime. It is difficult to observe the RF pro-
duced 3He tail using standard charge exchange techniques because most of
the neutrals in the plasma are D0 which have only one electron and cannot
neutralize the 3He++. Post, Grisham, and Medley124 proposed to neutral-
ize the energetic 3He++ by double charge exchange with 4He0 from standard
neutral beam injectors. A variant of this method using multi-MeV, Z ≥ 2
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Figure 4.24: Same as the 200 kW data of Fig. 4.23, but simulations are
with 3% and 6% hydrogen concentrations assuming a modestly peaked E+(r)
profile.
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neutral beams has been proposed for detection of 3.5 MeV alpha particles.125

The double charge exchange process

3He++ + 4He0 → 3He0 + 4He++

has a fairly high cross section (only a factor of ∼ 10 less than the usual
H+ + H0 → H0 + H+ cross section) because it is a resonant process. Our
charge exchange analyzer was not oriented to look across the sightline of
the existing neutral beam injectors on PLT, so we decided to use a passive
charge exchange version of the Post-Grisham-Medley scheme. By making a
4He majority plasma instead of a D majority plasma (both species have the
same e/m), we were able to get a large enough 4He0 neutral background to
produce a measurable flux of energetic 3He0 neutrals to our detector. The
cross sections for the FRANTIC neutral profile subroutine were modified to
allow it to calculate the 4He neutral density profile. The ionization cross
section included not only electron impact ionization but also single charge
exchange 4He++ + 4He0 → 4He+ + 4He+. The 4He neutral density profile
shown in Fig. 4.25 assumes a 5 eV edge neutral temperature and is similiar
to the profiles calculated earlier for a deuterium plasma.

4.3.2 Analyzing 3He neutrals

The energetic 3He0 must be reionized before it can be analyzed. As suggested
by Post, Grisham, and Medley, H2 was used in the stripping cell instead of the
usual He because it has a higher cross section for ionizing He. Operation at
high stripping cell pressures (gauge reading of 3.5 mTorr with a gauge factor
of 2.0 for hydrogen) also improved the stripping efficiency. Measurements
were also made with a 50 Åcarbon foil126 but the count rate was lower than
for a gas stripping cell, probably because of large scattering losses.

It was necessary to run the charge exchange analyzer at very high mag-
netic fields (∼ 4.7 kG) to measure 3He up to 150 keV because the gyroradius
of singly charged 3He+ (which is what comes out of the stripping cell) is
larger than the same energy proton. Although the magnet is water cooled,
it can not run steady state at such a high field setting, and it was necessary
to turn the magnet on and off just before and after each discharge. On a
few occasions when the magnet was not turned off manually, the temper-
ature safety interlock would shut down the magnet to prevent overheating
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damage. Setting the analyzer to look at the highest possible energies had
the added advantage of increasing the energy range ∆W , and therefore the
count rate, of each individual anode in the microchannel plate detectors.
Obtaining an adequate signal to noise ratio for the 3He measurements was
difficult not only because the charge exchange cross section is a factor of 10
less and the stripping efficiencies slightly worse than for hydrogen, but also
because the x-ray background noise was fairly high, perhaps because of the
larger breakdown voltages needed to start up a helium plasma. One of the
disadvantages of operating at such a high magnetic field is that the lower
energy particles fail to strike the proper mass anodes because the snubber
(an iron cylinder between the stripping cell and the analyzing magnetic field
which is supposed to shield out and compensate for fringe fields) saturates at
high magnetic fields. This effect was well documented during the calibration
of the instrument, where it was found that although all of the channels were
good at 3.5 kG, the lowest sixth of the channels are unreliable at 4.0 kG,
while the lowest third are unreliable at 4.5 kG. For the 3He spectra taken at
4.7 kG, slightly more than a third of the data points have been deleted as
inaccurate.

4.3.3 Measured spectra compared with theory

The 3He spectra measured at three different viewing angles are compared
in Fig. 4.26 to the bounce-averaged quasilinear calculations for a peaked
power profile (E+ ∝ (1 − r2/a2)1/2) and in Fig. 4.27 to calculations for a
hollow power profile (E+(r) given by Fig. 4.9). The corresponding power
balances are shown in Figs. 4.28–29. The main plasma parameters used for
the simulations are shown in Fig. 4.25. The total RF power to the 3He
was 2100 kW after 15% coupling losses. The 3He concentration n3He/ne as
measured by the density rise during the 3He gas puff is 6%. Unlike the case of
hydrogen minority heating, one might expect this to be a good measurement
because the walls are less likely to absorb helium than hydrogen, a conjecture
verified by the measurements of Chrien et al.127 Other parameters used for
these simulations include: Zeff = 3.4, ZI = 6.7 (which may seem low because
it includes contributions from the 3He), a = 37 cm, R = 136 cm, Btor = 31.04
kG, Rres = 143.4 cm, Ip = 450 kA, V` = 2.3 V, and k‖ = ±.07cm−1.

Comparing the 3He spectra of Fig. 4.26 to the H spectra of Fig. 4.2
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Figure 4.25: Plasma and RF parameters for the simulation of 3He minority
heating in a 4He majority plasma in Fig. 4.26.
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Figure 4.26: Measured 3He spectra compared with predictions assuming a
hollow E+(r).
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Figure 4.27: Measured 3He spectra compared with predictions assuming a
modestly peaked E+(r) profile.
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Figure 4.28: Calculated power balance for the simulation shown in Fig. 4.26.
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Figure 4.29: Calculated power balance for the simulation shown in Fig. 4.27.
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leads to a number of interesting observations. As in the hydrogen case, the
largest charge exchange flux is observed not at the perpendicular angle, but
at an intermediate angle between perpendicular and parallel. The anisotropy
between different viewing angles is not as strong as the hydrogen case, con-
sistent with the higher pitch angle scattering rate of 3He. The 3He tail is
not as energetic as the H tail, and no “negative temperature” is observed
at the the peak angle. (The scatter in the data near 60 keV is thought to
be instrumental. The 3He data was taken at an early stage in the present
researc, when a number of steps were being taken to improve the uniformity
of the detectors.) The fraction of power lost on unconfined orbits is much
less for 3He than for H. The plasma current for this 3He case was the same as
for the H case. If it were increased by a factor of 1.5, as allowed by the higher
toroidal magnetic field used for 3He, unconfined orbit losses would decline
further.

The peaked power simulation (Fig. 4.26) predicts a perpendicular spec-
tra with a slightly hotter tail than observed, although the calculated peak
angle slope is approximately correct. The broad power simulation (Fig. 4.27)
produces the proper perpendicular slope but the peak slope is much too ener-
getic. These results suggest that the 3He RF power profile is not as broad as
the hydrogen RF power profile. Not only are unconfined orbit losses smaller
for the 3He case, but the radius of the q = 1 surface is also smaller (measured
to be r = 9 cm from the ECE inversion radius, versus r = 15 cm for the
H case). This is because the toroidal field is higher while the plasma cur-
rent is the same. These observations do not provide solid evidence that the
broad hydrogen RF power profile is due to sawtooth and edge drag trans-
port, but they are consistent with this interpretation. On the other hand,
the low power hydrogen spectra of Fig. 4.3 seemed to indicate a broad RF
power profile in a case of negligible unconfined orbit losses. A more definite
conclusion which can be drawn from these data is that 3He minority heating
is more efficient than H minority heating because 3He is more collisional,
transfers more of its energy to ions instead of electrons, and suffers less from
unconfined orbit losses.
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4.4 Future Directions

In retrospect, it is clear that accurate measurement of the RF power profile
from the hydrogen spectra alone is best done in a regime where unconfined
orbit losses are negligible (TStix < .1 × Wloss). In a higher current device
this is easily satisfied, but in PLT this restricts the method to relatively
low power levels (for hydrogen minority heating) where TStix < 70 keV. It
may even be best to operate with TStix ∼ 5–20 keV on axis, because it
is difficult to distinguish a 50 keV tail from a flat, infinite energy tail if
measurements exist only up to 100 keV where the charge exchange reaction
rate begins to drop. The hydrogen concentration should be increased to the
5–15% range, both to provide a good charge exchange count rate during
the RF and to allow accurate measurements of the concentration. Another
advantage of the high concentration is that the power profile may actually
be as peaked as theoretically expected (Figs. 3.8 and 3.9). Increasing the
concentration further may introduce the complications of wave reflection and
mode conversion.

Measuring the RF power profile with good radial resolution requires that
charge exchange data from many different viewing angles be analyzed, not
the just the three angles studied in this work. Of course, measurements of
the neutral density profile are always helpful for passive charge exchange
analysis. Dα measurements of the poloidal and toroidal variation of the edge
neutral density could be used to set the proper boundary conditions for a
neutral profile calculation.

Future experiments to measure the RF power profile should investigate
other approaches as well. A slight variation of the technique presented here
is a perpendicular viewing, vertically scanning charge exchange analyzer. It
always sees particles at their banana tips, which are in the resonance layer
according to the resonance localization model. A vertical scan would thus
give a direct radial profile measurement. A diagnostic neutral beam could be
used to improve the spatial localization of the charge exchange measurements.
During 3He minority heating, other diagnostics which might also be useful
include radial fusion product measurements56,35 and charge exchange recom-
bination spectroscopy.128 Although multi-MeV, Z ≥ 2 neutral beams are
necessary to diagnose 3.5 MeV alpha particles, the double charge exchange
technique we have demonstrated here could use standard neutral beam in-
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jectors to measure the alpha particles once they have slowed down to the
50–400 keV range.



But beyond this, my son, be warned: the writing of many
books is endless, and excessive devotion to books is wearying to
the body. The conclusion, when all has been heard, is: fear
God and keep His commandments, because this applies to every
person. For God will bring every act to judgment, everything
which is hidden, whether it is good or evil.

Ecclesiastes 12:12–14



Chapter 5

Summary

We have measured the energy and angle dependence of fast ions produced by
ICRF, and compared these measurements with a bounce averaged Fokker-
Planck program. This chapter will briefly summarize our results, and will
suggest interesting areas for future research.

5.1 Summary of Results

Chapter 1 described the basic idea of resonance localization: ICRF heat-
ing produces energetic trapped particles whose banana tips are near the
resonance layer. Resonance localization occurs not only because cyclotron
heating gives particles perpendicular energy, but also because it gives more
energy to particles which mirror near the resonance layer and so spend more
time in resonance. Using this idea, we presented a qualitative framework for
understanding peculiar charge exchange spectra such as Fig. 1.2.

The physics of resonance localization is quantitatively described by
bounce averaged quasilinear theory, the topic of Chapter 2. We showed how
the results of Bernstein and Baxter,68 Mauel,69 and Kerbel and McCoy70

could be recovered with an extension of Stix’s flux surface averaging tech-
nique. Our bounce averaged Fokker-Planck program solves for f(W, ξ, r, t)
as a function of energy W , pitch angle ξ, minor radius r, and time t. It in-
tegrates over a sightline to simulate charge exchange spectra. This program
includes the complete effects of the Bessel functions and Doppler-shifts in
the bounce averaged quasilinear operator. Finite banana width effects are

180
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incorporated in unconfined orbit losses and in simulating charge exchange
spectra. The usual collisional processes of energy drag, energy diffusion, and
pitch angle scattering are also included. The program does not include radial
transport of fast ions, which is indistinguishable in our model from a broad-
ening of the RF power profile. There is a need for future work to properly
include fast ion transport.

Chapter 3 presents clear evidence of direct second harmonic deuterium
heating. Previous attempts at second harmonic deuterium heating have been
thwarted by strong absorption at the fundamental resonance of the residual
hydrogen in the plasma. Operating at low hydrogen concentration to reduce
hydrogen absorption, and at low density to slow the rate of collisional relax-
ation to a Maxwellian, we were able to observe a very energetic deuterium
tail (Fig. 3.11). The central RF power density, PD, needed to sustain this
tail could be found equally well by fitting the data with a simple isotropic
quasilinear model, or with the complete bounce averaged Fokker-Planck pro-
gram. We have studied the scaling of this measured PD with total RF power
(Figs. 3.25, 3.28, and 3.32) and hydrogen concentration (Fig.3.20). The first
two power scans showed PD increasing linearly with Ptotal between 500 kW
and 1250 kW, while the third power scan indicated PD increased less than
linearly for Ptotal between 600 kW and 2300 kW. The dependence of PD
on hydrogen concentration was also weaker than expected. As discussed in
Sec. 3.4.1, this nonlinear scaling is subject to a number of possible interpreta-
tions, one being that fast ion transport is increasing. The highest deuterium
power densities were consistent with averaging the theoretically expected
power profile (which is very peaked) over an ∼15 cm minor radius. Up to
22% of the total central RF power was directly absorbed by the deuterium.

In principle, the central RF power to the hydrogen can be inferred from
the shape of the perpendicular hydrogen spectrum. However, in most of our
experiments the hydrogen tail was so energetic that unconfined orbit losses
made the shape of f(W ) independent of RF power (Sec. 2.5.1). Furthermore,
the bounce averaged Fokker-Planck program suggested that, in many cases,
the hydrogen charge exchange signal was dominated by energetic ions from
the outer half of the plasma. A few low power experiments were done where
unconfined orbit losses should be negligible. These data are more consistent
with a hollow power profile (Fig. 4.23) than a peaked power profile (Fig. 4.25).

Chapter 4 focussed on the angular dependence of the charge exchange
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spectra (Fig. 4.11), showing that the bounce averaged Fokker-Planck pro-
gram could (with the proper assumptions) reproduce many interesting fea-
tures of the data. The program produces the largest hydrogen signal at the
proper “peak” angle. It is possible to reproduce the “negative temperature”
observed at the peak angle by assuming a large dip in the RF power profile
at r/a = 0.75, so that there are more 100 keV ions at point A in Fig. 1.5
than 30 keV ions at point B. In order to simultaneously fit the hydrogen and
deuterium spectra, it is necessary to assume RF power profiles (Figs. 4.17
and 4.19) which are much broader than theoretically expected. The point
made clear by the power scan of Chapter 4 is that there are many subtleties
in the data, and that it is difficult to simultaneously fit all of the data with
the same set of assumptions.

Finally, we have demonstrated the feasibility of a new double charge ex-
change diagnostic of 3He. The 3He spectra (Fig. 4.26) show resonance local-
ization features similiar to the H spectra, and are consistent with 3He heating
being more efficient because unconfined orbit losses are less and ion heating
is better.

5.2 Suggestions for Future Research

We need to understand why the RF power profile appears to be much broader
than theoretically expected in many cases. We also need to understand why
the central deuterium power density does not always scale as expected. There
is a clear need to incorporate fast ion transport (such as sawtooth oscillations,
and neoclassical, ripple, and RF-driven mechanisms) into quasilinear models.
The role (or lack thereof) of RF-driven transport needs to be clarified. We
have assumed that the minority density is proportional to the electron density
in all of our modelling. This may not be true when unconfined orbit losses are
substantial (and may not even be true in general), and improved modelling
and measurements would be useful.

Our measurements of the deuterium and hydrogen tails, and their de-
pendence on hydrogen concentration and RF power, contain a number of
puzzling results. It would be useful to repeat these experiments on other
machines, or even on PLT. Specific suggestions on how these experiments
could be improved are given at the ends of Chapters 3 and 4.
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The theoretically predicted RF power profile is very peaked. We ob-
served RF power profiles which are much broader than this, but which are
still comparable to typical neutral beam heating profiles. As a result, ICRF
heating still works fairly well (Fig. 1.1). Major ICRF heating experiments
are beginning around the world, and the next few years should be an exciting
time for learning more about the physics of ICRF. Unconfined orbit losses
should be less severe in higher current tokamaks. Sawtooth transport will
remain, unless a way to stabilize the sawtooth instability can be found. The
RF power may be better focussed in a larger, higher density tokamak. It
will be interesting to test second harmonic deuterium heating in a high beta
regime where it should be most efficient. We have observed a substantial
hydrogen tail even at hydrogen concentrations as high as 15%, and future
experiments in the high minority concentration regime would be of inter-
est. Experiments with neutral beams and ICRF may provide another useful
approach to learning more about the details of quasilinear theory.



Appendix A

Databases from the isotropic

second harmonic model fits of

Secs. 3.4 and 3.5.

Definitions of parameters:

DATE of discharge.

SHOT number identifying the discharge.

NEBAR line averaged density (1/cm3).

PTOT total RF power (Watts).

TE0 central electron temperature (eV).

TI0 central ion temperature from second harmonic model fit (eV).

RFK defined in Chapter 3 (eV).

HTOD log(nH/nD).

FRHD (nH + nD)/ne.

FRH nH/ne.

TAUS slowing down time on electrons (s).

WCRIT critical energy above which electron drag dominates (eV).

DEND central nD (1/cm3).

PDCX Measured central deuterium power density (W/cm3).

PAV estimated RF power density inside 15 cm (W/cm3).

KPER2 k2

⊥
from Stix’s cold plasma equations (cm−2).

PDTHR Theoretical deuterium power density averaged over 15 cm (W/cm3).

THSTX TStix (eV).
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Parameters for discharges in Figs. 3.20–3.22.

Parameters for discharges in Figs. 3.23-3.27.

Parameters for discharges in Figs. 3.28-3.31.

Parameters for discharges in Figs. 3.32–3.34.
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Appendix B

Input files for the sample

simulation of Sec. 2.6.4.
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