Bounce averaged trapped electron fluid equations for plasma turbulence
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A novel set of nonlinear fluid equations for mirror-trapped electrons is developed which differs from
conventional fluid equations in two main respe¢is:the trapped-fluid moments average over only
two of three velocity space dimensions, retaining the full pitch angle dependence of the trapped
electron dynamics, an@) closure approximations include the effects of collisionless wave-particle
resonances with the toroidal precession drift. Collisional pitch angle scattering is also included. By
speeding up calculations by at leadh, /m,, these bounce averaged fluid equations make possible
realistic nonlinear simulations of turbulent particle transport and electron heat transport in tokamaks
and other magnetically confined plasmas. 1896 American Institute of Physics.
[S1070-664%96)01511-X

I. INTRODUCTION sion drift. This approach also allows use of a full pitch angle
scattering operator for electron collisions, not a Krook-type

Mirror-trapped particles often play an important role in algebraic approximation,so these equations are continu-
long mean-free-path plasma dynamics, especially in mageusly valid in the collisionless regime, where the electron
netic confinement fusion devices and planetary magnetaresponse is driven by the toroidal precession resonance, in
spheres. This paper presents a reduced nonlinear fluid-likée dissipative regime, and also in the very collisional regime
description for mirror-trapped particles. These equationsvhere the electrons become adiabatic. Since bounce averag-
should be useful for describing nonlinear trapped particldng removes the fast parallel time scale, these trapped elec-
dynamics in a wide range of plasma phenomena, but we wiltron fluid equations are not numerically stiff. Coupled with
focus on tokamaks, where trapped electrons can be an inthe gyrofluid ion equations derived in Refs. 6—8, these equa-
portant cause of turbulent transpbithrough wave-particle tions can be used efficiently in high resolution three-
resonances, trapped electrons can destabilize the dissipatidenensional3-D) toroidal simulations which simultaneously
or collisionless trapped electron moEEM), and, as shown include trapped electron effects as well as the ITG drive. In
below, can double the growth rate of the ion temperatureaddition, these equations enable calculation of the full trans-
gradient(ITG) mode in some regimes. We include these ki-port matrix: electron and ion heat fluxes and particle fluxes.
netic resonances by using an extension of the method of Ref.
2 to take fluid moments of the bounce averaged drift kinetic
equation of Ref. 3.

Although much progress has been made recently in nonE.QNU(,)Alill_(I)'\ll\lEAR BOUNCE AVERAGED KINETIC
linear simulations of electrostatic core tokamak turbulence

arising from the ITG |nStab|I|ty, more rea”stic Simu|ati0nS The e|ectron dynamics are actua”y Simp|er than the ion
require proper treatment of the trapped electron dynamicsiynamics in two respects, becausg<m; . First, the turbu-
To date, most simulations have focused on ion heat transpofént scales are on the order of the ion gyroradius, so
and have assumed adiabatic electrons, ig=nge®/T,,  k, p,<1 and we can neglect finite Larmor radius effects for
wheren, is the fluctuating electron density anbl is the the electrons and use the drift kinetic equation. Second, the
fluctuating electrostatic potential. For realistic tokamak pa-turbulent time scalegon the order of the ion transit fre-
rameters, however, thenoradiabatic electron response, quency, wi=v;/qR, or the diamagnetic frequency,
which primarily comes from trapped electrons, is often im-w, =k, p;v;i/L,e) are long compared to the electron bounce
portant. To describe electron heat transport and particlrequency,w<wpe= eve/qR. Thus we can average over
transport in addition to ion heat transport, proper treatmenthe fast bounce motion so that the trapped electron dynamics
of the nonadiabatic electron response is necessary. If the tuare described by the nonlinear bounce averaged drift kinetic
bulence is electrostatic and the electrons are purely adiabatiequatior® It is useful to rewrite this equation fdif ), , the
there is no net particle transport, since th&B convection bounce averaged distribution function, instead of the nona-
of the perturbed electron density is ze®XB-VNn,=0). diabatic pieceh, as in Ref. 3; the two are related by
In this paper, a sophisticated bounce averaged trappefd=F.e®/T.+h., whereF, is the Maxwellian equilibrium.
electron fluid model is derived which retains the pitch angleAt this point we normalized to e/T.. In addition, we use
dependence of the electron response, as opposed to mdre field-aligned coordinate system given by the transforma-
simplified models which assume all electrons are deeplyion Eq. (10) in Ref. 9, wherex is the radial variabley is
trapped! Retaining this pitch angle dependence is importanperpendicular and mostly poloidal, azek qRé is the coor-
for advanced tokamak configurations in the second stabilitglinate along the field line at fixedandy. Reference 8 gives
regime or with reversed magnetic shéavhere a large frac- details of the simplification of Eq:31) of Ref. 3, which can
tion of the trapped electrons have favorable toroidal preceshe rewritten:
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d separate integrals over passing and trapped particles. Since
a+|wde)<fe>b:<c>b(<fe>b_Fe<q)>b) the passing particles are adiabatiqe=[,d% ®F,
+ftdavfe = fdeUqJFe + ftdsv(<fe>b_<q)>b|:e+q)|:e)-

FiFo(wge— 0y H{P)p. (1)  Combining the adiabatic pieces for trapped and passing par-

ticles givesng,=ny® + [,d3v ({fo)p,— (P),Fe). The velocity
This equation is four dimension&#-D) (two velocity and  space integral over trapped particlesvirand « variables is:
two space dimensiofpssince the variation along the field . 1
line has been removed by bounce averaging and the rapid fd3v<fe>b:j 47rdv02J 2Begr(fe)p
particle gyration frequencyw..=eB/m.c, has been aver- t 0 sin(6/2)
aged over. Equatiofil) employs the usual two-scale expan-
sion, where the fluctuation scales are much smaller than the X dic/ \Bijn— BBryin(1—2e€pr?).
equilibrium scales. The bounce average is defined byve introduce the following shorthand notation for the pitch
<A>b=(95dZN|UH|)/(9SdZ/|U|||), where the integration is angle part of this integration:
along an orbit. To lowest order in/w,e, the fast electron
parallel motion causeb, to be constant along a field line, (A(K)) o= Jl 2BegkA(k)dk @
which prescribe$,=(fo)p,— Fo(®),+ F P for trapped elec- “ Jsinor)\JB2. —BBpin(1—2€gk?)
trons andf,=F.® for passing electrons. The nonlinear term L ) . _
describing convection by the bounce averagedB drift has Averaging in pitch angle turns functions &finto fgncnons
been absorbed im/dt=d/at+bx(d),-V. The collision Of ¢» because of the dependence of the Jacobian and the
éurnlng points. The electron density in real space is just the

term is discussed below. The diamagnetic frequency iK average of the-averaged ), . Defining ax-dependent
w5o= (kyCTe/BLy[ 1+ me(v*/20(—32)], where . “density” by integrating eolrzlny over v: nyX,y,«)

=Lne/Lte, and the toroidal precession frequeney, is the ~ ~ 7 5 _ '
bounce average®B and curvature drift frequency. Our =Jo4mdvv(fe)y, the total density in real space is:
derivation is correct for general magnetic geometry, but by  ng(X,y,z) =ne® +{ny(X,¥,x) )= No({P)p(X, Y, &) ) -
expanding for large-aspect-ratio circular flux surfaces,

fche bougce average can be written_ in terms of ellipticthe average of @), in Eq. (3) is analogous to the polar-
integrals We combine the geometric and pitch anglezation density in the ion real space density, and comes from

dependence in the usual mannerGn wqe=(kycTe/€BR)  the 7.dependent part of the total electron distribution func-
X(UZIZUfe)G(s,K). It is important to keep the pitch angle o
dependence ab, to describe the stabilization of the trapped
electron mode(TEM) in reversed shear configurations
(5<0). The limiting values ak=0 andx=1 are indepen- lll. BOUNCE AVERAGED FLUID EQUATIONS
dent of shear, but as decreases, the precession drifts of
barely trapped particles are reversed, so they cannot reson
with the TEM. We have recently emphasized that the Shafr
nov shift can be even more effective in reversing these drift
and stabilizing the TEM?

It will be most convenient to use the velocity space vari-
ablesv andx, wherev is the total velocity E=muv?/2) and
k is a pitch angle variable defined by?=(1— uB s/
E)/2eg, where eg=(Bmax— Bmin)/2Bmaxs Bmax @nd Bpmin
are the maximum and minimum values of the magnetic fiel
on the flux surface, an¢e=mvf/28. Thus « is the pitch
angle at the outer midplane normalized to unity at th
trapped-passing boundatwhereE= uB,,), and is a con-
stant of the bounce motion. For deeply trapped electron
(with E= uBin), k=0, and the maximuna for passing par-
ticles (where .=0) is 1\2eg. For trapped particlegc<1), trapped electron fluid equations look similar to the 3-D ion

the poloidal angle of the banana tip or turning poift, IS fiq equations derived in Ref. 8, with the parallel coordinate
related tox by «x= sin(6/2). This can be seen by using rohaceqd by the pitch angle variable, This has the advan-
E=uB, where B at the turning point is By 506 of retaining the full pitch angle dependence of the elec-
=By /(1+ € cosé). Our pitch angle variable differs slightly tron moments, the toroidal precession frequeagy, and
from Ref. 3, but for trapped particles the difference is negli-q honce averaged potential. When the real space electron
gible sincev~v, . Writing |v)| in terms ofv and «: [v)l  gensity or pressure is needed, we perform thaverage in
=v\1—(1—2egk?)B/B,,,, the bounce time is7,(k) Eq. (2).
=$dzly], agnd the bounce average beconidgy(x.y, «) We derive trapped electron fluid equations by averaging
=(qR/v Tb)f—tatd‘gq)(x’y"9)/‘/1_(1_2€BK2)B/Bmin- Eqg. (1) over v. Since only even powers ob appear
Before taking moments of Eql), it is instructive to in Eq. (1), we wil only need even moments:
calculate the total electron density, which we break inton,(x,y,x)=(4m/ng)[5dvv®(fe)p, pt(x,y,x)=(4w/3n0vt29)

The separable and « dependence of Eql) and the
%ﬁch angle dependence ¢), suggest a significantly dif-
erent approach for deriving trapped electron fluid equations.
Both the gyrokinetic and drift kinetic equations have already
reduced the velocity space dimensions from three to two by
gyroaveraging. For the ions, we take moments ayeand
v, of the five-dimensional5-D) fi(x,y,z,v,v ) to obtain
3-D ion fluid equation$.For the electrons, we start with the
-D fo(x,y,z,v,k) and bounce average, which removes the
arallel coordinate. Then we only need to take moments over
v of (fo)p(X,Y,v,x) to obtain 3-D pitch angle dependent
fluig” equations for the electrons, which are functions of
X, ¥, and k. These moments can be thought of as the elec-
fron density, pressure, etc., of banana tips, sincedirectly
related to the turning point bx= sin(6/2). The resulting
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Xfi)cdvv4<fe>br rt(xrva): (477/15,‘]01)'(49) fgdvv6<fe>b1
t(X,y, k) =(47/105qv) [5dvvd(fe)p, and wv(X,y,k)

= (471945 e) [dvv%f.),, which have been normal-
ized to their Maxwellian values. The? dependence 0ége
brings the next higher even moment into each dynamical
equation, introducing the usual closure problem of the
coupled moments hierarchy. Performing theintegration

and redefining wge=Gky,cT./eBR and
w,e=KkyCTe/eBL,e, we have:
dn, 3

gt T 21 0P (P)p) Tiw, o P)p=(Chp(n—(P)y),

dp, 5. [
E—'— E|wde(rt—<(1)>b)'f'|(1+ 7e) Wi e{ Pp
=(Chp(Pe—=(P)y),

dr,

; (4)
gt 51 @ad b (P)p) +i(1+270) o D)o

=(C)p(ri—(P)p),

dt, 9 ,
at 21 0aev (P)p) +i(1+ 30w, o D)y

=(Chp(t—=(P)p).
We require a closure approximation for the highest moment
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to model toroidal precession drift phase mixing, using an -2 0 2 4 6 8
extension of the method of Ref. 2. For a 3-moment electron w/w,

model (evolving n,, p;, andr,) we chooset,= —i (|wgyel/ .
wge) (vani+ vppi+ very), and in the 4-moment modéalso 2 —lcﬂ o ‘.I T inetie
evolving t), we choose: v,=—i(|wgd/wge)(vaN; i A fluid: ]
+ vppi+ vl + vti). As in Ref. 8, each closure coefficient r o i $Z$ ]

has both a dissipative and nondissipative piece,
v=v,+ivi|wgd/wge, but Noww, is pitch angle dependent.
We choose these closure coefficients to closely match the
collisionless bounce averaged kinetic response function,
given by: Re=ny(x)/{P)p(x)=(4mIng)[dvv?Fo(— wge
+wIe)/(w—wde). This can be factored into the form:
Re=Reot (w4 e/ wge) Re1 T (0, eMe/ wge) Rex. These inte-
grals? become functions ofx,=w/wge and « (through
wgelK)): Rep=1+2%—2xTZ(—\X;), Ry=-2[1
—XeZ(=VXe)],  Rep= —[1+2xe=2x3"Z(— xe)] +3[1

— XeZ(— VXe)], WhereZ is the plasma dispersion function.

The corresponding response functions from the 3-momerg,g 1.

electron fluid equations arerE wqe/|wgdl):
no_T 122+ 42 0 veXe— 30+ 105i o vy +iove—1)
e 8x5— 28 o v xa— 70 ovpXe— 105 v, '

8x2— 28 ovXe— 70 o vy + 12— 42 v+ 30

|
-
L L R

v,=(0.290,-0.071),
=(0.817,1.774) for the 3-moment

clev v b b v by

-2 0 2 4 6

w/w,

CO""'"‘

Kinetic and fluid bounce averaged response functi¢@sRe,
(b) Re1, and(c) R, for the 3- and 4-moment electron models.

v,=(—1.102,-0.689),
model,

R - . - L
el 8x3— 28 o v x2— 70 ovyX.— 105 o v,

12x,—42iov.+ 60

Reo= " - )
e2 8Xg— 28i avcxg— 70 ovpXe— 10501,

with similar expressions for four momeritsve use Powell’'s
method? to find the closure coefficients by minimizing the
error between the fluid and kinetic response functiétg,
Re1, and Ry,, along the realx, axis. The best fits are
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v,=(—0.038,0.073), v»,=(0.657~0.060), v,=(—1.522,
—1.085), andvy=(0.905,2.073) for the 4-moment model.
The response function for the 3- and 4-moment models are
shown in Fig. 1. Very good agreement is obtained for both
models.

We now derive collision terms from the Lorentz colli-
sion operator: C= (ve(v)/2)dl 9&[ (1— £2) of o/ 9], where
é=v|/v. The energy dependent collision frequency is:
ve(v) =(47ne* IN A/MEv®) (Ze+Hedv/v1e)), Where the
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Z.s part accounts for electron-ion collisiongassuming v, which leads to the simple form of the collision terms in
v>vy) summed over ion specieszgﬁ=Eijznj/ne), and Egs.(4). A better approximation w_iII_be descril:_)ed in fu_ture
the Hee(x) part is from electron-electron collisions, where work, which leads to weaker collision terms in the higher
Hod(X) = v2/7 exp(—x4I2)Ix+[1—1/(x?)]erf(x/\2). This Moment equations to model the~1/v® dependence.

collision operator conserves particles and energy, but not We now describe how these electron moment equations

momentum. The bounce average of this collision opetator are solved. The emphasis is on numerical solution, but ana-

enters Eq(1), and in our variables, is: lytic solution follows conceptually similar procedures. In our
numerical simulation&®1° the ion gyrofluid moments are
Ve d 5. Tb | |/ Bmin stored and evolved inx(y,z) space. The electron moments
<C>b:8_€§m K (1= 2epk )m B -1 are stored and evolved iy, «) space, and separate elec-
b

tron moments are independently evolved in each magnetic
J well along z. The bounce averagedb),(«) is calculated
+2€BK2}E(<fe>b_Fe<q)>b)}- (5)  from ®(z) by numerically integrating along, and is then
used to advance the electron moments in time. The electron
{onlinearities are evaluated pseudospectrally, as the ion non-
inearities, but ink rather than inz. The electron collision
terms are evaluated implicitly. Only the electron density

algebraic Krook modélautomatically incorporates the in- needs to be evaluated in real space. To solve the gyrokinetic

creasing importance of pitch angle scattering near thduasineutrality equation, the real space densitfz), is cal-
trapped-passing boundary. Thus, barely trapped electrorfs_leated by performing the averages OhF(K) a”?’<q’>b as

will scatter more quickly into the passing region than deeplyd!Ven by Eas(2) and(3). Then the quasineutrality equation
trapped electrons. Once electrons are scattered to passiHﬁ,SOIVe_d ford, gnd t_he_cy_cle IS rgpeated. . .

they are free to move rapidly along the field line and phase As in the ad|ab_at|c limit, spemal treatment is required for
mix, relaxing to an adiabatic response. Because we assurﬁ%ro'da"y symmetnc_ perturbations wity =0, which have a
that passing electrons become adiabatic instantaneousffmponent which is constant on flux surfaces. WH@n
(since wpe~Kjuye is large, there is some boundary layer 0, trappepl eleptrons scaﬁtergd onto passing orbits quickly
near the trapped-passing boundary which we do not resoly@ecome adiabatic, but this is not true I(§,=0 When
The width of this boundary layer is perhaps of <=0 @de=@,e=0, o the bounce averaged kinetic equa-

O(NJove wpe), and so is usually negligible for the moderate tion reduces_ to d<fe>b/(_jt:<c>*?(<fe>b__Fe<q)>b)' This
quation applies to passing particles witkt 2<<1/\/2eg as

collisionalities we consider. Note that the bounce averagin% " d ol ith h H )
procedure of Ref. 3, which we follow, uses the ordering"V€!l s trapped particles with-Ox<1. Thus the passing
k,=0 electron moments interact only via collisions with

W~ W, o™~ Wye™ Veif<wpe, and so can continuously handle 7Y e ) .
the transition from what is usually called the “collisionless trappedky =0 moments, which in turn mterac_t with trappe_d
trapped electron” regimei< w, where the trapped elec- " 0 moments only through _the nonlinear terr.n n
trons give a significant nonadiabatic response due to preced/dt=d/dt+bx(®),-V. Conservative boundary conditions
sion resonancego what is usually called the “dissipative for (C)y ensure that there is no flux across the 1\2eg
trapped electron” regimé w< ves< wpe, Where collisions bou_ndary. The _bounce average is generalizedcforl to an
wipe out most of the trapped electrons and the nonadiabatf/Pit average witl— = so that only thé, =0 component
electron responsb,~(w/vey) is becoming sma)l This ~ Of @ or fe leads to a nonzered);, or (fe),, since® and
has been confirmed in comparisons of our calculations witfe Must vanish ag— x o for ky # 0 but not fork,=0. The
fully kinetic calculations which do not bounce averd§e, UPPer bounds on the integrals in Eqs(2) and(3) are ex-
which we will report in the future. However, the present tended tox=1/y2¢g for k,=0 modes. Note that in the final
ordering cannot handle very large collision frequencies@nalysis there is nk,=0 electron response to a component
V> wpe~Kjvie, Where collisional drag on passing elec- ® of ® which is constant on a flux surface, sinek),=® is
trons begins to impede their parallel flow. This is the domi-independent ok so (C)p(®),=0.
nant drive for the classic resistive drift wave instability. For
Veff™ Wpe, the nonadiabagic response due tp drag on passinR/. COMPARISON WITH KINETIC THEORY
electrons scales agqw/ w,, and is still relatively small be-
causew<wp.. Thus we believe that the present equations To conclude, we demonstrate the accuracy of these
are appropriate for moderate to low collisionalities typical oftrapped electron fluid equations by comparing fully nonlocal
most tokamaks, but they would need extension to includdinear results with kinetic theory in the collisionless limit.
collisional drag on passing electrons, which may become imThe eigenfrequencies from the six moment toroidal gyrofluid
portant very close to the edge of some tokamaks. equation8and the three moment trapped electron fluid equa-
The collision operator in Eq5) must be integrated over tions are compared with fully kinetic calculatidfisn Fig. 2.
v to find the collision terms in the trapped electron fluid These results are for a pure deuterium plasma with
equations. The velocity dependence@fshould introduce 7= 7,=3,5=1, q=1.5, L,./R=1/3, andr/R=1/6, as in
coupling between different fluid moment equations, just ad-ig. 1 of Ref. 14. The gyrofluid results with adiabatic elec-
the velocity dependence @4, did. However, for the time trons are also shown. The trapped electron response doubles
being we will assume/,= constant when integrating over the growth rates for these parameters, even though this is an

To makef, continuous at the trapped-passing boundary, w
apply the boundary conditioff o)p=F¢(®), at k=1. The
use of a full differential operator i for C instead of an
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