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A wavenumber dependent eddy viscosity is calculated for a simple two-dimensional drift wave
model from direct numerical simulations for a wide range of parameters and cutoff wavenumber.
The damping rate given by this eddy viscosity is well modeled by a hyperviscosity, where the power
and magnitude are parameterized as functions of the shear in the resolved advecting velocity. Tests
in simulations with low resolution find that the use of this parameterized hyperviscosity yields
somewhat better results than the use of hyperviscosity with fixed power and is significantly better
the use of no extra damping term or a Smagorinsky type eddy viscosity. This parameterized
hyperviscosity is very useful computationally, since reducing resolution requirements by even a
factor of 2 reduces the computational requirements by a factor of 8 in two dimensions, or 16 in three
dimensions. ©1997 American Institute of Physid$$1070-664X97)00204-§

I. INTRODUCTION Eddy viscosities attempt to model the sink of energy at
small scales by introducing dissipation into the resolved
Models for the subgrid scale dissipation in numericalscgles. The Smagorinsky nonlinear viscoSifgr example,
simulations of turbulence have long been necessary in thg 4 simple model with a long history of applications in fluid
study of atmospheric and oceanographic turbulence, wherg i, jence. The damping given by the Smagorinsky viscosity
the direct numerical simulation of the full range of scales iSig proportional tdk|2, which is rigorously correct only in the

H H 1 : : "
infeasible. “Large Eddy Simulations™ (LES) evolvg the _limit where the separation of scales between resolved and
largest scales of a problem and model the average interaction . . o
. NSO unresolved modes is asymptotically large. When there is sig-
with the unresolved small scales through dissipative terms... . . )
ificant transfer of energy that is local ik-space, as in

called eddy viscosity. Our goal is to apply these techniqueg ) o .
to simulations of drift wave turbulence in tokamaks. This Navier-Stokes turbulence, the contribution to the eddy vis-

preliminary study tests some basic dissipative terms in é:os_ity from local transfer to unresolyed modes near Fhe cut-
simple two-dimensional2D) drift wave model. By restrict- off is poorly represented bykf damping raté.A theoretical
ing the problem to two dimensions, a large number of simu£ddy viscosity has been tested for the inverse cascade range
lations can be performed with sufficient time histories for thein large eddy simulations of 2D Navier-Stokes turbulence.
statistics necessary to compute the eddy viscosity. The re- The ideas of hyperviscosity and eddy viscosity are com-
sulting parameterization of the eddy viscosity has been sudined here to create a nonlinear filter for use in simulations
cessfully applied to fully three-dimension@D) simulations  of drift wave turbulence. Since theoretical predictions of the
of drift wave turbulence which will be reported in a future nonlinear transfer do not exist for comprehensive models of
paper. drift wave turbulencdor even for the simple model consid-
When it is Computationally impOSSibIe to resolve the diS'ered herh the hyperviscosity model is chosen by Compari_
sipation scales in homogeneous isotropic turbulence, thgon with direct numerical simulations. The eddy viscosity is
standard tool used in numerical simulations is hyperviscosga|cylated for a given set of parameters and resolution from a
ity, a damping rate of the forv [k|", where the powep is  gher resolution simulation by calculating the transfer from
larger than 2 which gives ordinary viscosity. Hyperwscosﬂymodes that are contained in the low resolution simulation to

mtroduces an artificial d|SS|pat|or) range into the problem,a” other modes. We calculate the eddy viscosity in this fash-
that is narrower than the usual dissipation range and there- . A .
jon for a wide range of parameters and various resolutions.

fore requires less resolution. The choice of power and mag- L _ S . .
nitude is somewhat arbitrary. Numerical studies of 2D e then fit this damping rate by adjusting the hyperviscosity

Navier-Stokes turbulence have found that a moderately high®Wer and magnitude. The powprand magnitudev were
power (p=8 or p=16) allows the hyperviscosity to effec- then parameterized as functions of the resolved modes based

tively remove energy from small scales with a minimum of ON insights from Kraichnan’s eddy viscosity for the 2D en-
unphysical dissipation at the large scala&hile the dissipa-  Strophy range.

tion range introduced by hyperviscosity acts as a model for ~ The resulting parameterized hyperviscosity has several
the true dissipation range, the damping provided by hyperadvantages over traditional approaches. The choice of power
viscosity has not been systematically compared with the nomand magnitude are calculated from functions of the resolved
linear transfer rates to unresolved scales. scales, eliminating what are arguably free parameters in the
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standard application of hyperviscosity. The damping ratdions!**introduce linear drive through a simple model for

comes closer to modeling the actual eddy damping rate thatine non-adiabatic part of the electron response. The model

eddy viscosities like Smagorinsky’s which have dampingequation derived here is a simplified §” model, with an

rates proportional t&?. For problems of interest, the actual additional term added to model Landau damping at long

eddy damping rate has not been predicted theoretically andavelengths.

can only be calculated from high resolution simulations. This  There are a number of derivations in the literature of this

method is straightforward to implement in spectral simula-model starting from standard fluid equations. Here we sketch

tions of homogeneous turbulence, wh&rdependent damp- the derivation from a gyrokinetic/gyrofluid perspective. The

ing rates are trivial to incorporate. starting point is just a conservation equation for the ion guid-
The parameterization is based on the general physicahg center densityg.

processes of nonlinear advection and 2D enstrophy cascade.

We therefore expect this model to be useful for more general n9°+ V. [n,{Ve+uz)]=0 )

drift wave calculations which resolve the main energy injec- t o T '

tion scales, and are using this hyperviscosity only to reducghere

the resolution needed for modes at scales smaller than the R

injection scales. This model may also be useful for passive Vvg=(c/B)zXV ¢ 2

scalar advection problems. Situations with inverse cascad.I the EXB drift velocity, ¢ is the potential, andi, is the

and SIQn[;fICfant Zn_ergy PFOOLU‘;]“(;” zt unre_sotlvek()i ]scales, SLZJC arallel ion flow. Most of the ion FLR effects are ignored
Navier-Stokes turbulence, result in negative eddy viscositiel/ 2 ("¢ ASSUMPLOM,<To) while the ion polarization ef.
' 9 y ects are retained by including the ion polarization density in

and are therefore clearly beyond the scope of this model, but, ... L oo - )
have been studied with other modals. Lijdg?(;): ;Z;Zﬁygwdmg center density in determining the ac

Il. MODEL EQUATIONS pge 2
N =Ngc+ noT—VL ¢, ©)
e

The model equation for this study was chosen to be as
simple as possible while retaining the basic physics relevanf . e p=c./Q, is the gyroradius using the ion gyrofre-

to subgrid turbulence processes in fluid simulations of driﬂquency,Qci:eB/mic, and the sound speed,= \T,/m.

wave turbulence. Saturation in toroidal gyrofluid turbulence(-l-hiS approach is the standard method used in the gyroki-
simulation§ involves a balance between the source of ﬂuc—netic Poisson equaticfi-1) For the ion parallel flow veloc-

tuations in linearly unstable modes and the dissipation ir?ty, we will use a “1-moment” model of Landau dampirid,
modes that are stabilized by terms that model Landau
damping’ Fluctuation energy is transferred from unstable to
stable modes through the advection nonlinearity. A useful

2D model will at the least contain tHexB drift advection _ )
nonlinearity, a linear instability, and dissipation to model WhereC, andC, are constants of order unity. Making use of

Landau damping, which is primarily a function of the paral- the standard two-scale approximatideee Ref. 18 for some

lel wavelength and should therefore be present at long peff OUr notation to expandng in Eq. (1) via
pendicular wavelengths. Though the system we will study in

this paper includes models of these three essential effects, it Ngc=No
is a relatively simple one-field 2D equation which results

from major simplifications and approximations. For ex-into a long scale equilibrium part with density gradient scale
ample, it is missing the bad curvature and ion temperaturéength,L,,, and a short scale fluctuating componentleads
dynamics which are important instability mechanisms in theto
core region of many tokamaks. As a 2D model, it is missing

d
Mo 35U~ Cavilkil(n+ &)~ Cau [k [n, (4

X—Xg

+n; 5

1+

n

. ) o 2dn; _  Nge Ceps d
a special constraint on the adiabatic electron response which! Ve VA + — Ps 9P
enhances the role of thg,=k,=0 component of the elec- Jt Te Ln oy
trostatic potentia¥, leading to turbulence-generated sheared 2
. . . . . . 10,11 CS~ CSpS 2~
flows which are important in toroidal simulatiofr&1% =—aNi+tpu—— Vi, (6)
n n

Nevertheless, the system used in this study is a useful para-
digm for studying certain effects important in plasma turbu-The density gradient in the long scale equilibrium introduces
lence where th& xB nonlinearity is important, and some of the diamagnetic drift term containing the derivative of the
the lessons learned in this simple model can then be appligobtential. The collisional viscosityu, is expected to be
in more complicated three-dimensional multi-field simula-small, but is included to provide a sink for fluctuation energy
tions. at highk. The other dissipative ternan; , introduces damp-
There is a significant literature on two-dimensional mod-ing at long wavelengths and is intended as a simple model
els for drift wave turbulence. The prototypical model of Ha-for the Landau damping caused by a small but firkje
segawa and Mim3& captures the basic physics of tkxB [~ (qR) ! in a tokamak Three-dimensional simulations of
nonlinearity in a one-field 2D equation, but contains no lin-drift wave turbulence have found that the bulk of the dissi-
ear drive to produce fluctuations. So-calleds" equa-  pation comes from Landau dampifigo it is necessary to

Phys. Plasmas, Vol. 4, No. 4, April 1997 S. A. Smith and G. W. Hammett 979

Downloaded-17-Aug-2009-t0-129.31.253.39.-Redistribution—subject-to-AlP-license-or-copyright;=see-http://pop.aip.org/pop/copyright.jsp



include a model for this process in 2D simulations where
k, has been ignored. A simple fluid model for Landau damp-
ing wc;uld set the damping rateycs/L,,, proportional to
[kj|vg .

H To close the model system, we must relate the fluctua-
tion density to the potential. The real space ion density,
on; , is just the sum of the guiding space densiiy, and the
ion polarization densitypszvf ep/T,. As a crude model for
the electron response that will provide linear drive we set
one=(1— 8ypsdl dy)edlT.. Quasineutrality therefore gives
us

_  nge

292 J
ni_T_e 1-ps VL_b‘OpSW @. (7)

Using normalized variables,

Cs L, e
7= —Tt, X,:Xpsv y,:ypsv l//:——
ps Te

Ly
and then dropping the primes we obtain the evolution equasince we are interested in applications to more sophisticated

FIG. 1. Contours of potential for saturated turbulence at one instant.

¢ (8

tion, models of drift wave turbulence. The toroidal gyro-fluid
3 3 equation$:'® which evolve multiple fields and contain sig-
—+a—,qu) 1—Vf—50—}¢ nificantly more complicatedhence more accuratdinear
a7 % physics, share the same basic nonlinear advection term con-
R 9 o tained in this model. Hence the eddy viscosity calculated in
+zxVy-V —Vf—éow Y+ W:O' (9) this study is parameterized as a function of the advecting

velocity without reference to the linear physics.
Expressing the potential as a sum of Fourier modes,

=2 exp(k-x) i, gives the mode coupling equation, Ill. PHYSICS OF THE SATURATED STATE

d

E_*‘iwk_)’k_?’(k‘)lﬂk:Nk, (10

Before considering the effects of subgridscale effects,
we examine the results of simulating the model, &, for
a typical set of parameters. Simulations were performed with
periodic boundary conditions using the standard dealiased
pseudospectral approach. A hyperviscous damping term of

where the nonlinear term is defined as,

zxk’ k[ |k—K'[2=i 8o(k, k)]

Nk=2 T+ [K2—1 6K K P—xr the form discussed in the next section was used for the re-
k' 0%y 11 sults considered here. Initially we consider a box of size
(19 500X 50p¢, using a 12& 128 grid in real space, for param-
and the linear frequency and growth rate are given by, eters5,=0.35, «=0.035, andu=0.0001, with a hypervis-
ky(1+|k|2) cosity defined by Eq(33) with powerp=16 and coefficient

(12)  set to the average rate of sheay=S(t). [See Eq.(34).]
This choice ofé, gives growth rates large enough that the
saturated state is in the strong turbulence regime. The instan-
taneous potential late in the simulation is shown in Fig. 1.

One useful macroscopic parameter that can be expressed
We have introduced an additional growth rag€,, for the  in this model is the volume averaged particle flux,
dissipation model which can be defined to be the regular
hyperviscosity given by Eq33) or the parameterized hyper- == j X-Veh; dx
viscosity given by Eq(36) or set to zero[ The Smagorinsky A
eddy viscosity of Eq(22) does not have the form of a simple cT. p

. . . . . e S

damping rate irk-space] The linear physics of this model O(EL_
agrees with a model for dissipative trapped electron drift n

T L+ KD+ 867Kk,

Soky?
KTk + 507k,
0y

a—ulk|2. 13

)?; k2l vl (14

waves derived by Liangt al* to first order in&, (Dg in
their notation and second order irkps. Setting a=0,

The gyro-Bohm scaling of the flux is the natural scaling for
this system, since the use of periodic boundary conditions

©=0, and 6,=0, gives the equation of Hasegawa andand a constant background gradient prevents the system

Mima.'?

scale from directly entering the analys{§he system scale

The model equation used here was chosen for simplicitgould in principle enter through the size of the simulation
and only contains the gross features of drift wave turbulencedomain L, XL, implying a Bohm scaling. The fact that
To be of practical use, in fact, our results concerning eddysuch “flux-tube” simulations saturat®;?* and that the satu-

viscosity should not depend on the precise nature of(&q.
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FIG. 2. Particle flux from simulation of the model equation in a periodic box FIG. 4. Growth rates for the simulation of Fig. 2. K® hyperviscosity
(50psX50ps) in the strong turbulence regimed,=0.35, a=0.035, damping term has been used to improve the resolution of the inertial range.

w=0.0001.

taken over the band df's at radiusk. (The growth rates for
this simulation are displayed in Fig.)4Attempting to infer
an inertial range power law scaling from this spectrum would

domain indicates that a gyro-Bohm scaling regime exists fo
sufficiently smallps/L.) The time history of the flux for our

" Since abeervable physical quaniiics such as the paric¥e (9~K? vith —4=p= 3 which is very diferent
phy 9 P fom the 2D Navier-Stokes higk inertial range where en-

flux and mean square density fluctuations can be expressel fophy scales as 1,222 fact, simulations of 2D Navier-

as qugdraﬂc functmns_of the potential, one is Ied_to study tm:étokes turbulence have typically observed inertial ranges sig-
evolution and saturation of the squared magnitude of the... . . 1
ificantly steeper than theoretically predicted. Tké

modes. There is only one quadratic quantity that is conserveﬁ

by the nonlinear term of our model, E®), corresponding to enstrophy range is gn_asymptoﬂc limit that can only be ob-
: .. served when the dissipation scales are separated from the
the fact that the volume integrated square density

Ini(x)? dx, is conserved by divergence free advection. Weforcmg .scales by at Ieagt two orders O.f ma@gmtﬁ‘dé’.he .
will denote this conserved quantitgh, and define a normal- separation of scales required to observe inertial range scaling

. I . is particularly large in 2D turbulence, where the enstrophy
ized modal contribution to the conserved quantity, transfer is very nonlocal. Such a scenario is highly unlikely

Q=3[ (1+]K|%)2+ 357K, 1| ¢l 2. (15)  for plasma turbulence problems where significantly damped
OFnodes exist at wavenumbers very close to the unstable
Q?odes driving the turbulence. Therefore, one should not ex-
pect to find universal exponents in drift wave simulations.
The evolution equation for this quadratic invariant is
just,
1e+02§ SRR T T ' ((?

E_ZVK)QKZTK' (16)

Figure 3 displays the saturated spectrum for the initial set
parameters, where the standard two-dimensional spectr
density is defined byQ) (k) = 27k(Q,), where the average is

10T E where the nonlinear transfeF, , is given by,

— Ti=[(1+]K[%)Z+ 807Ky *1 (N * + ¥ Ny). (17)

] In steady state, the nonlinear transfer balances the pro-
. duction and dissipation of fluctuations due to linear growth
E or damping.(See Fig. 5 for typical example of the linear
production) For two-dimensional equations of this form,
with only one quadratic invariant, it has been noted that ar-
] guments from statistical mechanics imply transfer to small
E scales® in contrast to the dual cascade picture from 2D
] Navier-Stokes turbulence. With moderate dissipation due to
o o Landau damping at all scales, there is no clearly defined
1 10 inertial range or cascade. The production of the conserved
Wavenumber, |k|p, quantity for a typical run is plotted in Fig. 5. Note that the
dominant source and the major sink for fluctuation energy

FIG. 3. Time averaged spectrum of density fluctuations for the simulation of20th lie near the peak of the sp_ec_trum. The major transfer in
Fig. 2. k-space of fluctuation energy is in fact not a cascade, and

1e+00
1e-01 F
1e-02 |

1003 |

Conserved Quantity, Q(k)

1e-04
0.1

Phys. Plasmas, Vol. 4, No. 4, April 1997 S. A. Smith and G. W. Hammett 981

Downloaded-17-Aug-2009-t0-129.31.253.39.-Redistribution—subject-to-AlP-license-or-copyright;=see-http://pop.aip.org/pop/copyright.jsp



6 ' ' posed into a resolved parqz{_, and a subgrid contribution,
) 5= — . The filtered evolution equation can be written as

] PR o
‘- E_¢=N(¢)+N +L, (20

] where the subgrid contribution to the nonlinear term is de-
4 fined by,

NS=N()— N(¥). (21)

Given the resolved fieIdT, pseudospectral evaluation of the

0 2 4 6 nonlinear term gives preciseN(), so the only term in the
K, 05 evolution Eq.(20) that is not calculated in a simulation of the
resolved field is the subgrid contributioN?.
?S-s?ﬁqllizgs";fﬁ":%edZp(::%f:]‘:gﬂ?: Z‘][‘(d d(i)ss;;aatli;;cﬁf d;:f“ié’ f';“i;“;g:\?gj for  The field of Large Eddy Simulation is concerned with
mode. Solid lines ar?e contours of theyl;)rcrduction region at 0,1,2,5,10, an&ienvIng approximate models ,for the effect of the SUbg“d
20 (dimensionless unitsDashed lines are contours of the dissipation region €M, N®, that can expressed in terms of the resolved field,
at—1,-2,—5,-10, and—20. The dotted lines are contours-a0.05 and . Traditionally it is argued that the average contribution of
-0.1. the subgrid termNS3, can be viewed as an eddy viscosity,
draining energy from the resolved scales.

) If there were a true separation of scales, and the subgrid
takes energy from unstable modes near khe 0 axis 10 fig|q 4 had asymptotically short wavelengths and short time
Landau damped que_s o-f near.ly the same magnitude N€8tales compared to the resolved fig¢ithen the subgrid term
the k.y=0 axis. (Realistic simulations of trapsport t_he_refore would truly act like a viscosity Averaging over a time that
require accurate que!s of Landau dampinthe dISSIpa-. is short for the resolved modes but long compared to the
tion near the cutoff indicates a small cascade of fluctuation ..\« time for the subgrid modes, we would find that

energy to highk. This picture of energy production ik (NS)= Veddyvzw where the eddy ViScoSityieqq,. is a func-

space s qualitatively similar to that observed in tormdaltion of the statistics of the small scales. In reality, however,

gyro-fluid S|mulat|ons.($ee_F|g. 5.9 .Of Re_f. 6The small the length and time scales of the subgrid modes are nearly
amount of transfer to highk is dynamically insignificant, so . :
identical to those of barely resolved modes.

we can conclude that the level of turbulence is set primarily Various approaches to estimating the subgrid contribu-

by eddy turnover at long wavelengths. Simulations of just. . . . :
. . tion have been proposed. We will examine two simple esti-
the long wavelengths are therefore theoretically feasible. As ) .
. L . ates, &-space dependent eddy viscosity, and the Smagor-
we shall see, however, simply eliminating modes that lie. : : . . ! L
; . insky eddy viscosity. In numerical simulations, application
beyond the bulk of the spectrum can give catastrophic results . ; . .
. s " of these approaches corresponds to introducing a simple dis-

as the small transfer of fluctuation energy “piles up” secu-

sipative term] N~ k%, or NS~V »(x)V ¢, respectively
larly at the cutoff. where the dampingv, or »(x)] is predicted either theoreti-
cally or empirically as a function of the resolved scales. Sev-
IV. EDDY VISCOSITY AND HYPERVISCOSITY eral authors have pointed out that in a turbulent state, subgrid
scales do not act in a purely dissipative fashion, and that a
more complete model would contain terms to simulate noise
d and backscatter of energy from the subgrid sc&l&imple
T Y=N)+Ly, (18) damping terms, however, are extremely efficient to calculate.
It is not clear which approach, adding higher order terms to
the subgrid model or increasing grid resolution with a simple
subgrid model, is more efficient at improving the statistics of
the long wavelength modes for a given increase in computa-
tional complexity. For the current study, we consider simple
dissipative terms.

Our model equation can be written symbolically as,

whereL is a linear operator, and the quadratic nonlinearity
defined by Eq(11). Numerical simulations cannot follow the
detailed behavior of the continuous fieldg, We consider
pseudospectral simulations on a periodic box of dizé,
with a finite number of modes. The resolved modémse
that are evolved in a simulatiprtan be defined through a
filter function, f —f, such that, in Fourier space A. Smagorinsky eddy viscosity

f_k:kak- (19) A traditional view of eddy viscosity is that the short
wavelength modes in some sense act like a thermal noise on

where G, =1 for |k,|<k; and [ky|<ky, and G =0 other-  the resolved scales and hence serve to enhance the regular

wise. (The boundary wavenumbeis; andk;, are called the viscosity. Estimating the subgrid contribution by a spatially

cutoff wavenumbers. For theoretical studies of isotropic turvarying eddy viscosity yields,

bulence, a spherical region krspace, k| <k, is typically

used) Fields such as the potential, can then be decom- N°~V veqqy( X) V #4(X). (22
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Smagorinsky gave heuristic arguments for the scaling of thisubgrid energy transfer comes from coherent straining of the
eddy viscosity in the context of simulations of quasi- short wavelength modes by long wavelength velocity shear,
geostrophic turbulenceéand concluded that, which causes the eddy viscosity to become large and positive
near the high-wavenumber cutoi,. Our simulations cor-
Veddy(X) = (Csd)?S(X,1), (23 :

Ny oV,

2

respond most closely to the two-dimensional case where the
whereCq is a non-dimensional constant,is an estimate of cutoff, k., lies in the enstrophy range. For this case, the
the subgrid length scale, ai{x,t) is the local strain rate of significant positive contribution to the eddy viscosity lies in a
the velocity field defined by, region near the cutoff wavenumbds,, of width ky, where
5 , the straining field is dominated by wavenumbers of dige
Sx.t)= \/(ﬁ_\/x) N ((9_\/y> N 1 and smaller. The shape of the eddy viscosity function in this
' X ay 2 region depends on the nature of the spectrum at long wave-
. ) ) lengths. For an artificial spectrum that allowed for a simpler
Note thatS=0 for rigid rotation, as well as for uniform calculation, the eddy viscosity in the near cutoff region was
flows. found to be
The Smagorinsky model has been applied in computa- -
tions of flows far outside the realm of its original derivation _ c”
with success in many cases. This model was used in simula- Veday K) = (0keko) 1f( Ko ) for (ke—k)<ke, (27
tions in th|.s study for the purpose of_comparls.on, to '".UStratewhere 6 is eddy circulation time of the long wavelengths.
the behavior of the standard eddy viscosity withdamping. .
Different choices of length scale and constant have beeL1See Eq(6.9 in Ref. 4]
found to give optimal results in different situations in fluid
turbulence. We therefore arbitrarily sdtto the physical C. Numerical eddy viscosity
space grid spacing, and us€d=0.1 based on initial tests
for one choice of parameters with moderate resolution.

In the original work on this eddy viscosifythe subgrid
transfer(T®), was viewed as a theoretically derived quantity
B. Kraichnan’s eddy viscosity containing contributions from all three-mode couplings that
cross the cutoff irk-space. The standard approach to calcu-
lating eddy viscosity in numerical simulaticis®defines the
subgrid transfer based on the subgrid contribution to the non-
linear term as defined in EQR1). For our model the subgrid
transfer is defined by,

One approach to defining a damping term originating
from the subgrid modes is by comparing the nonlinear trans
fer term with the viscous term in a two-point closure thebry.
Considering the splitting of modes into resolved and subgrid
our evolution equation for the quadratic invariant, Etp),

can be written as, R=[(1+ K122+ 867k 1 (dNR* + i N). (28
d s Substituting this definition foll® into the definition of eddy
E-_Zyk Q=T+ Ty, (25 viscosity in Eq.(26), we find that

where the transfer defined in E(.7) has been decomposed K)=— Real (i Ni)) (29

into a resolved pieceT}, and the subgrid piecd; . In the Vedaf K) = K|yl

context of this equation, the analog to Kraichnaeftective

eddy viscosityvould be defined as, Using this definition, the eddy viscosity approximation for

the subgrid term,
S
Vedd)(k) — ﬁ, (26) Nﬁ% - Vedd)(k)kzllfk f (30)
k can be viewed as the lineén ) approximation that mini-
for some appropriately defined ensemble average. The motmizes the mean squared residual error.
vation for this definition of an eddy viscosity comes from To calculate the eddy viscosity for a given low resolu-
introducing a damping term of the form; vedm(k)kzwk on tion simulation with cutoff wavenumbes,, a simulation is
the right hand side of the primitive EGL0). This damping performed at much higher resolution containing a large num-
term would introduce the term-(Ty)Q, /(Q,) to the right  ber of higherk modes (k|>k.) along with all the modes
hand side of Eq(25) above, which, on average, will balance resolved by the low resolution simulation. The ‘“unre-
the subgrid transfer tern,, . solved” component of the nonlinear terid?, defined in Eq.
Kraichnan derives predictions of this eddy viscobity ~ (21), is calculated for the low resolution simulation from
2D and 3D Navier-Stokes inertial ranges using the Test Fieladnodes resolved in the higher resolution simulation. Calculat-
Model?® While plasma turbulence is not expected to exhibiting the eddy viscosity from high resolution simulations to
inertial range behavior, there are several generic conclusiorapply to low resolution simulations cannot by itself reduce
about eddy viscosity worth noting. The primary discoverythe computational cost of a particular problem since presum-
was that the eddy viscosity does not give a damping ratably the high resolution simulations yield accurate results
proportional tok? that is traditionally associated with an already. It is hoped that by parameterizing the eddy viscosity
eddy viscosity. The eddy viscosity does asymptote to a conealculated for a number of runs, we can obtain a model for
stant value at long wavelengths. This constant, however, ithe eddy viscosity that extrapolates to drift wave problems
negative for 2D turbulence. The major contribution to thefor a larger range of parameters.
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) . . . ) FIG. 7. Heuristic picture of a fluctuation wave packet undergoing shear. As
FIG. 6. Eddy viscosity calculated for the simulation of Fig. 2. The tranSferdiscussed in Sec. IV D, the region of significant eddy viscosity near the

was calculated for a box of 3739 modes(representing a simulation with . ¢ (the grey regioh acts as an absorbing buffer for fluctuation energy

half the actual resolutionto modes outside the box, but resolved by the ot \yould leave the system unaided if the system were truly unbounded.
simulation. The dotted line is the linear growth rate, expressed as a viscosity

by dividing by k2. The eddy viscosity has a small negative component as

k—0, but it is negligible compared to the linear driving term. The eddy

viscosity becomes important in a small region near the cutoff. The dashed . . L.

line is the parameterized hyperviscosity derived in Sec. V. For these paranfime is denoted byd. The advection part of the continuity
eters and cutoff wavenumber the parameterization provides a good fit to thequation then has the form of a shear flow in Fourier space as
actual eddy viscosity. well,

17

K, ki (K). (31

J_
E ni(k) +671
The sample simulation mentioned in Sec. Il was used to

calculate the eddy viscosity for a simulation with half of its Figure 7 illustrates this process. The wave packet will be
resolution. The resulting eddy viscosityq(k) is plotted in ~ advected ink-space in a particular direction depending on
Fig. 6 with the linear drive and damping for lines of modesthe local shear. The random variations of the local shear will
out to the cutoff wavenumber in two directions krspace. thus lead to a random walk diffusion of this wave packet in
As noted in Sec. I, we do not expect inertial range behaviok-space, with a net transfer of fluctuation energy to high
in simulations of this kind of plasma turbulence, and there igk. %t
no inverse cascade of energy from very short Wa\/e|engths_ In the numerical simulation, however, the absence of the
While there is a small negative eddy viscosity at long wave-nonlinear interactions with unresolved modes and the conser-
lengths for this simulation, it is dynamically insignificant vative nature of the nonlinearity cause the cutofkispace
compared to the linear drive and dissipation at long wavelo act as a reflecting boundary. Thus in Fig. 7, the wave
lengths. The dominant effect of the eddy viscosity lies in aPacket, represented by the dark circle, would be reflected
narrow region near the cutoff where it becomes positive andack to long wavelengths instead of leaving the system. A
large compared to the linear drive. The mechanism for thigeasonable estimate of the amount of eddy damping required
damping near the cutoff is the loss of fluctuation energy fronPy an eddy viscosity, therefore, would be given by the in-
resolved modes by the coherent straining due to long wavezerse of the time which a wave packet spends in the near
length mode$. This damping mechanism is probably the cutoff region of widthAkeyq, where the eddy viscosity oper-
dominant physical effect of subgrid modes in drift wave tur-ates.(In reality a wave packet may enter and leave this re-
bulence simulations, so the focus of this study is to effecgion ofk-space several times as it random walks to the dis-
tively model the positive eddy viscosity in the region nearsipation range. Thus we do not expect the actual eddy
the cutoff. viscosity needs to be large enough to fully damp fluctuations

before they are reflected back to large scal€sr this ex-

ample, the velocity of the packet kyspace isf ™~ 1k, so the

o ) time it spends in the edge region ﬂkx‘lAkeddy. An eddy
D. Heuristic arguments for the scaling of the eddy damping rate of the form,

damping rate

Consider a fictitious wave packet of short wavelength Yeddy K)~ — 6~k Ak 1]{@ (32)

dd ,
fluctuations, localized irk-space and real space so that the Y Akeday

long wavelength advecting velocity field looks locally like a would therefore effectively damp fluctuations being sheared
shear flow. Without loss of generality, consider the action oo high wavenumber. The maximum damping rate given by
the local shear flowyg(x,y) = — 6~ 'yx, where the shearing the theoretical enstrophy range eddy viscosity defined in Eq.
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(27) scales aSVedd)Xkc)kczz 6 Ykcko ! while — Yeddy( Ke) number of models for drift wave turbulence each of which
X k2 ~ 0_1kcAkeddy_1! so the same basic scaling is obtainedWwill saturate with a different spectrum, so in general we will

if we identify ko with AKeggy- expect a different eddy viscosity from that predicted for
Navier-Stokes turbulence by Kraichnhience we are mo-
E. Hyperviscosity tivated to parameterize the basic features of the eddy viscos-

) o ] ) ity in terms of the large scale flow.
Hyperviscosity is defined as a damping term of the form =y perviscosity provides significant damping in a narrow
K[\P region near the cutoff wavenumber, just as the calculated
Y :_Vh(k_) : (383)  eddy damping for this model doe§ig. 6). An obvious
¢ method of fixing the two hyperviscosity parameters, the
wherep is larger than two. Hyperviscosity has been used fofpowerp and magnitudév in Eq. (36), is to match the width
a long time as a numerical tool for simulating high Reynoldsand overall damping rate with the calculated eddy damping
number turbulence, in order to provide an artificial dissipa-term. The width and the damping are functions of the large
tion range in the resolved modes. Hyperviscosity has beegcale flow, so to apply the results to simulations we must
regarded as an artificial damping term that does not attempiefine quantities corresponding to the long wavelength scale
to estimate the subgrid interaction. Authors have, howeverko and eddy circulation tim#. As a surrogate for the long
viewed hyperviscosity as a kind of subgrid model in the waywavelength eddy turnover time we used the volume averaged
that it serves as a sink for small scale fluctuation enérgy. shearing rate,
The choice of poweip and size of the hyperviscosity
vy, is rarely discussed in the literature. Typically the size of S(t) =
the damping is set experimentally so that a dissipation range
appears within the resolved modes. Studies of 2D NavierA ber of the | les is i by di
Stokes turbulencehave found that large power{ 16) N average wavenumber of Ihe jarge scales 1s given by di-
. . viding the rate of shear by the root mean square of the ve-
work well, but that the optimal choice depends on the resoiocity field
lution of the simulation. With insufficient damping at the ’
cutoff fluctuation energy will tend towards equipartition in 1 ) )
the Fourier modes leading to a spectr@inik) « k towards Kav= S(Kf Vi“+Vy~ dx
the cutoff which disagrees with the converged dissipative
result. If the power used is too small, then damping that isVe will use the average wavenumbey, as an estimate for
sufficient to prevent unphysical behavior at the cutoff will the long wavelength scale, and the inverse rate of shear
introduce significant damping at long wavelengths andS(t) * as an estimate for the eddy circulation tire
strongly affect the results. On the other hand, there must The hyperviscosity used for the simulations considered
clearly be an upper limit to the power used. For a very highhere introduces a damping term of the form,
power there would be virtually no damping for almost all the ke |P Ky |P
kxc> ! ( kyc>

modes except for a few modes near the cutoff which would ~ y,=—M

be extremely damped. The results would be similar to per-

forming a simulation with those modes removed and ndnto the model, Eq(10), by settingyﬂzyh. This hypervis-

damping on the remaining modes. This behavior may bgous damping termy,, can be compared to the damping

considered analogous to impedance matching at the end gjte, Vedd)(k)kzl given by the theoretical eddy viscosity of

an electrical cable, where strong reflections occur if the loageq. (27), and to the heuristic eddy damping rate defined in

impedance is either too small or too large. Eq. (32). The width of the theoretical eddy viscosity scales
The constantyy,, is typically chosen so that modes near with the long wavelength scalk, while the width of this

the cutoff experience damping that is large compared to th@yperviscosity scales ds./p, so we expect to find thap

eddy turnover rate. An artificial dissipation region is intro- o k_/k,,. Comparing the magnitude of the three damping

duced into the resolved modes that is much narrower iﬁ}ates at the cutoff Wavenumbb&" we expect the magnitude

k-space than the dissipation region given by the usdal tg scale adl « Sk /Kay-

damping term. If the precise form of the dissipation does not  An estimate for the powep and magnitudéM was ob-

affect the large scale dynami¢as we will find in Sec. VI, tained from the numerically calculated eddy viscosity by set-
then the use of artificial damping terms like hyperviscosityting two moments irk-space to zero,

can yield significant savings in computation by greatly re-

1/2
%f S(x,t)? dx) . (34)

~172
(35

: (36)

ducing the required resolution. ; (— Veddy(k)kz— y) =0,
V. HYPERVISCOSITY AS A MODEL FOR EDDY (37
VISCOSITY 2 (— VegaK)K? = ) min (kye—[Kyl, kye[ky[)=0.

The exact form of the eddy damping depends on the
detailed nature of the saturated spectrum and the mode-moddis estimate matches the width and magnitude of the damp-
coupling to unresolved modes. If one could accurately preing region given by the hyperviscosity to that of the eddy
dict the eddy viscosity from theory then there would be noviscosity. The estimate for the power and magnitude from
point in performing numerical simulations. There are a largesimulations with a range of parameters and resolutions are
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FIG. 8. Hyperviscosity power predicted from direct numerical simulations. [ ) T I
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summarized in Figs. 8 and 9. The scaling of the po(eed Wavenumber, [k|p,

hence the width of the damping regjoiseems very robust.

The estimate from these simulations gives FIG. 10. Convergence of simulations using hyperviscosity at moderate tur-

bulence levels(The parametersj,=0.15, «=0.015, andu=0.0001, were
p~ 1.7k /k,,+ 2.4, used with periodic box size pQx 50ps.) A hyperviscosity with ara priori
fixed powerp=16 was used as is typically done in simulations of isotropic
M~0.1Sk./ky,. turbulence. The damping was set to the rate of shegr ) to ensure that
resolved highk modes were sufficiently damped. The large scale average

The scaling of the magnitudgig. 9) is less robust than the wavenumberk,,, calculated from the highest resolution simulation is in-
scaling of the powe(Fig. 8. There may be other macro- cluded for reference.
scopic quantities that can be used to refine the estimate for

the size of the damping.

(38)

damping. Resulting spectra for simulations using the fixed
power hyperviscosity are shown in Fig. 10 for the parameter
Simulations were performed for a range of parametersghoice that gave moderate levels of turbulence. We expect
and grid sizes ranging from 3232 to 256x 256 to test the the rate of transfer of fluctuations to short wavelengths to
performance of three dissipation models against each othexcale with the rate of she&; so our choice of a hypervis-
and against the use of no dissipation model. An ordinarycous damping of the forn$(k/k;)P corresponds to setting
hyperviscosity was tested with powpr=16 and coefficient the dissipation wavenumber to a fixed fraction of the cutoff
set based on the rate of sheay=S. The Smagorinsky eddy wavenumbek,. (The dissipation wavenumber is the scale at
viscosity was tested with the constadj=0.1 chosen arbi- which the damping of the conserved quantity becomes dy-
trarily. Based on the results from the previous sectionhamically significan). The spectrum at long wavelengths ob-
we tested the parameterized hyperviscosity with poweserved in simulatiorf§ is a slowly changing function of Rey-
p=1.7./k,+ 2.4 and magnitud® = 0.1S(t)k. /K. nolds number for the 2D Navier-Stokes enstrophy cascade
Typically simulations of isotropic turbulence will use an where hyperviscosity is the primary source of dissipation.
a priori fixed power hyperviscosity to provide the necessarySince the physics of our drift-wave model is dominated by
production and dissipation of fluctuations at long wave-
lengths(see Fig. 5 we expect to find an even weaker de-

VI. TESTS OF HYPERVISCOSITY

Mean Shear, SL,/c,

~ 0.3 pendence of the long wavelength saturation on the precise
< - 2 Swong Tutulenco ] details of the dissipation range. Moving the hyperviscous
o | @ Weak Tubulence 1 dissipation scale with the cutoff allows us to resolve more of
= - . the small scale dynamics with increased resolution. The
g o2 - 7] spectra are almost identical at long wavelengths for grid
%’ I _ sizes 12& 128 and 25& 256, so we are confident that the
é" - ’ . 256x 256 case well represents the converged solution.

> 01 L A s N The results of simulations using no eddy viscosity or
K L e . - hyperviscosity term are shown in Fig. 11 for comparison. It
2 r® 4 ] is well known that lack of an eddy viscosity leads to un-
52 I ] physical results in Navier-Stokes turbulence when the small
E= 00' — '0'5' o i — '1'5' - '2 scale dissipation wavenumber exceeds the cutoff. One might

think that since dissipation from terms that model Landau
damping at long wavelengths is the dominant drain of energy

FIG. 9. Hyperviscosity magnitude predicted from direct numerical simula-th€n the transfer to small spatial scales can be completely

tion.
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FIG. 11. Convergence of simulations using no added dissipative terms fofIG. 12. Convergence of simulations using the Smagorinsky eddy viscosity
the same choice of parameters used in Fig. 10. The lower resolution resulwith C,=0.1, for the same choice of parameters used in Fig. 10.
failed to give reasonable results in this case.

sonable model of the actual eddy damping process. Note that

only partially true. Given sufficient resolution, the spectrumin the lowest resolution run here, a significant portion of
converges to the reference spectrum obtained from the higtlriven modes lie beyond the cutoff wavenumber, so the
est resolution hyperviscosity run. The lower resolution runssPectrum falls below the reference spectrum. It is possible
however, give wildly inaccurate results despite the fact thathat even better results may be obtained for low resolution
the lowest resolution considered here ¥3) resolves the Simulations by modeling the transfer of energy from unre-
primary production and dissipation wavenumbers in Fig. 5S0lved small scales to resolved long wavelengths by adding a
Drift wave turbulence will typically exhibit only a moderate Negative term to the eddy viscosity to model this backscatter.
separation of scales between the spectral peak and the dissi- Convergence of the measured flux is summarized for
pative range, so it is practical to perform 2D simulations withSimulations of weakly driven, moderately driven, and
sufficient resolution that an eddy viscosity or hyperviscositystrongly driven turbulenceFigs. 14, 15, and 16, respec-
term is unnecessary. On the other hand, for three-dimeriively). In each case, the measured flux is normalized to a
sional simulations of drift wave turbulence, the reduction infeference value obtained from a high resolutignid size
required resolution can be significant. 256X 256) simulation using hyperviscosity. In all cases the
Performance of the Smagorinsky eddy viscosity with
constantC,=0.1, for the same parameter choice is shown in
Fig. 12. Again, given sufficient resolution, the spectrum con-
verges to the reference spectrum. Results at long wave-
lengths kps~0.4) for lower resolution runs are better than
those obtained using no additional dissipation terms but not
as good as those obtained using a hyperviscosity. We found
that choosing a larger value of the const&gtwill improve
the results somewhat at lower resolution but degrades the
results for the 128 128 case. The constafi; is probably
not universal for the kind of turbulence we are studying here,
in contrast to the case of the inertial range in Navier-Stokes
turbulence. A fundamental problem with applying any eddy
viscosity that gives damping scaling k% however, is that
providing sufficient damping for modes near the cutoff

1e+01 |
1e+00 [

1e-01 F

1e-02 F

1e-03 F

Conserved Quantity, Q(k)

forces one to introduce a significant artificial damping into i reference \ ]

the long wavelength modes that dominate the nonlinear 1e-04 e N

physics. 01 1 10
Simulation results using the parameterized hyperviscos- Wavenumber, |k|ps

ity are shown in Fig. 13. In this case, results at low resolution

are obtained that are, superior to those from all other apl-:IG. 13. Convergence of simulations using the parameterized hyperviscos-
proaches 'con3|dered n our StUQY- The performa.nce of thgy (p=1.7%, /k.,+ 2.4, M=0.1Sk. /k,) for the same choice of parameters
parameterized hyperviscosity indicates that it provides a reassed in Fig. 10.
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FIG. 14. Convergence of the measured flux as a function of resolutiorF!G. 16. Convergence of the measured flux as a function of resolution for
for the case of weakly driven turbulencéThe parametersgs,=0.20, the cases of s_trongly driven turbulen¢8ee Fig. 2 for the pargmete_ré'.he
@=0.03, andu=0.0001, were used with periodic box sizepg8 40p;.) flux is normalized to the flux measured by a reference simulation where
The flux is normalized to the flux measured by a reference simulation wher&c/Kay~13. The results are similar to those obtained for the case of mod-
ke /ka~13. In this case the nonlinear transfer to shorter wavelengths is £rately driven turbulencerig. 19.

small effect, so the use of a subgrid damping term is unnecessary.

VIl. RESOLUTION REQUIREMENTS

most reasonable results obtained at lower resolution Werle \tNe fha\t/e ot;sgrved that if tthetrc]utoftfhwaltvenumberl IS ‘1
obtained using the parameterized hyperviscosity orkitfe east a factor ot 5 or so greater than the long waveleng

hyperviscosity. For the moderate and strong turbulenc?calke Kay, (OF robugTLy a factor Ofb? Iargelrtthan ﬂ;)e s%?c.tral q
cases, one obtains reasonable results at resolutions at lea wavenumberthen reasonable results can be obtaine

factor of 2 smaller than those necessary for simulations with't the use of a hyperviscosity. There are several sources of

no added dissipation. For the case of weakly driven turbuEror in calculating macroscopic quantities such as the flux

lence, however, the nonlinear coupling to unresolved mode om lower resolution simulations. 'Cor.fgrlbutlons (o the flux
rom unresolved modes may be significant or the resolved

is less important and there is little difference between any o

the models used. In summary, a hyperviscous damping tenWOdeS may fail to saturate at the correct level. Incorrect satu-

works effectively in drift wave simulations at low resolutions :f;o?olz/:éilr?ﬁg gg ddugstc(:)o;hf glggemoih%ufraﬂa::n;?t:czlga-
(working down tok./k,,~4) and moderate to strong levels K . y VIScosily i y
viscosity to model the physics of unresolved modes.
of turbulence. : . ) : L
For the lowest resolution simulations considered in this
study, the contribution to the flux from unresolved modes, is
too small(5% or lesg to explain the discrepancy between the
calculated flux at low and high resolution. As is clear from
T T the spectra in Figs. 10 and 13, the error in the calculated flux
- s . at the lowest resolution comes from the failure of resolved
[ no closure . 1 modes to saturate at the correct level. The eddy viscosity
1.5 - calculated for grid size 3232 for moderate levels of turbu-
i N lence is plotted in Fig. 17. The parameterization overesti-
1 mates the eddy viscosity significantly in this case. As well,
| e =3 the calculated eddy viscosity is significantly anisotropic and
L wemp——”e- ° the negative viscosity at long wavelengths is of comparable
paratfieterized hyp.e~” ] size to the positive portion that the parameterization models.
| Smagorinsky e~~~ : For comparison, we used the calculated eddy viscosity in a
0.5 7] simulation at this resolution. The resulting spectrum is
- | | T shown compared to the hyperviscosity simulations and the
2 3 4 5 6 7 8 910 high resolution reference spectrum in Fig. 18. Using the cal-
Resolution (k./k,,} culated eddy viscosity gives very accurate results in this
case. The flux calculated from this simulation is within 5%
FIG. 15. Convergence of the measured flux as a function of resolution foof the flux calculated from the highest resolution run.
the cases of moderately driven turbulen(®ee Fig. 10 for the parameters. The current limits of the parameterized hyperviscosity
The flux is normalized to the flux measured by a reference simulation Wher%lre therefore clearly due to its failure to model accurately the
k. /ka~15. In this case the nonlinear transfer is sufficiently strong that the . . y . . y
simulations will blow up with no damping term for lower resolution runs. A _eddy viscosity at low rgsolgtlon. Future quk will attempt to
high powered hyperviscosity outperforms the Smagorinsky viscosity. improve the parameterization of the magnitude of the hyper-

21 T T

Flux (T/Tref)
4
4
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ke damping term, or a Smagorinsky-type eddy viscosity. Accu-

T e ] rate results are obtained provided the cutoff wavenumber,
“'Qf 0.04 | ’ 3 k., is approximately four or more times greater than the
T_f 00z b 3 characteristic wavenumber of the advecting velodity, At

o F ; i lower resolutions, the parameterization fails to accurately
T = Teaay ] model the eddy viscosity.

L) SPRIN B I EIFSE SRR IR S e This new hyperviscosity model is easy to implement in
N 0z 04 K O'(Sk =0§"8 ! L2 3D psuedospectral simulations. Finite difference analogues
> o T ke involving VP operators are conceivable, but would require
el AR RARERARERERARY ALK MARE more effort to implement, and generalizations to non-
S o004l - uniform turbulence with boundary layers would be a topic
IOe S 3 for another study. S . _
2 ___,/’ ot ] Because this hyperviscosity is based on physics generic
S ol T — y ] to most drift-wave turbulence, application to more complete

PP PR RPN BRI N R/t B P models is straightforward. This hyperviscosity is very useful
0

02 04 . 0-(6k —o?'a L computationally, since reducing resolution requirements by
e V5= even a factor of 2 reduces the computational requirements by

. o ) a factor of 8 in two dimensions, or 16 in three dimensions.
FIG. 17. Eddy viscosity calculated for a low resolution simulation at mod-

erate levels of turbulencéSee Fig. 10 for the parameterfn this case, the
parameterized hyperviscosity grossly overestimates the damping. Note that

the calculated eddy viscosity is anisotropic in this case and has a significar?t‘CK’\lO\NLEDGMENTS
negative component at long wavelengths. Simulations at this resolution es-

timatedk, /Ky~ 3. Dr. A. Chekhlov graciously provided a 2D Navier-
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