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Non-existence of normal tokamak equilibria with negative central current
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Recent tokamak experiments employing off-axis, non-inductive current drive have found that a
large central current hole can be produced. The current density is measured to be approximately
zero in this region, though in principle there was sufficient current drive power for the central
current density to have gone significantly negative. Recent papers have used a large aspect-ratio
expansion to show that normal Magnetohydrodynamic (MHD) equilibria (with axisymmetric nested
flux surfaces, non-singular fields, and monotonic peaked pressure profiles) can not exist with negative
central current. We extend that proof here to arbitrary aspect ratio, using a variant of the virial
theorem to derive a relatively simple integral constraint on the equilibrium. However, this constraint
does not, by itself, exclude equilibria with non-nested flux surfaces, or equilibria with singular fields
and/or hollow pressure profiles that may be spontaneously generated.

PACS numbers: 52.55.-s, 52.55.Fa

I. INTRODUCTION

Tokamaks with reversed central magnetic shear (and
thus low core current density) are of interest for at least
two reasons: 1) internal transport barriers associated
with reduced turbulence are often observed in them, lead-
ing to improved energy and particle confinement; and
2) they are the natural result of high beta operation
and high bootstrap current fraction used to reduce non-
inductive current drive requirements for steady state op-
eration. Both of these features could make reversed mag-
netic shear operation attractive for a tokamak reactor.

Recent experiments on the Joint European Torus
(JET)1,2,3,4 and the Japan Atomic Energy Research In-
stitute Tokamak-60 Upgrade (JT-60U)5,6,7 have pushed
the core current density to very low values using off-axis,
non-inductive current drive. Large central current holes
(regions of nearly zero current density) are produced be-
cause off-axis, non-inductive current drive in the same
direction as the Ohmic current induces a back electro-
motive force inside the non-inductive current drive radius
that decreases the core current density.

An interesting feature of current hole discharges is that
the core current density is approximately zero (within
Motional Stark Effect diagnostic measurement errors),
even though there is often sufficient current drive power
that the core current could in principal go significantly
negative2,3 (negative relative to the direction of the to-
tal plasma current). Recent non-linear toroidal resis-
tive MHD (Magnetohydrodynamic) simulations2,8 pre-
dict that current hole discharges undergo rapid n = 0
reconnection events (axisymmetric sawteeth) that clamp
the core current near zero. More generally, this reconnec-
tion occurs whenever the current density profile is such
that the rotational transform, ι, goes to zero on any sur-
face in the plasma (this includes the case where the cur-
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rent density on-axis is positive, but the current profile
goes sufficiently negative somewhere off-axis that the to-
tal current enclosed by some flux surface vanishes). Re-
duced MHD simulations in cylindrical geometry have also
shown that n = 0 resistive kink instabilities can clamp
the core current density at zero when it attempts to go
negative.9 Breslau et al.8 and Stratton et al.2 stated that
a second-order, large aspect ratio expansion of the MHD
equations indicates that a normal toroidal equilibrium is
not possible if ι crosses through 0 at some radius. (They
also stated that a more general proof is needed, which we
provide here.) A recent paper by Chu and Parks10 used
a second order aspect ratio expansion to prove that a
normal equilibrium with a peaked pressure profile is not
possible with negative core current. They extended the
analysis to provide matching conditions at the bound-
ary of a central region with no current and no pressure
gradient, showing explicitly that current hole equilibria
are theoretically possible (with zero, but not negative,
current).

This paper extends some of these results to arbitrary
aspect ratio, employing a relatively simple constraint
based on a version of the virial theorem to show that
a “normal” toroidal MHD equilibrium (with axisymmet-
ric nested flux surfaces around a single magnetic axis,
non-singular continuous fields, and a monotonic peaked
pressure profile) is not possible with negative core cur-
rent. Or more generally, a normal equilibrium is not
possible if the toroidal current enclosed by any flux sur-
face goes negative relative to the direction of the total
plasma current, so that there is an ι = 0 surface some-
where in the plasma where the poloidal field vanishes (the
null surface). Though the starting point of this analysis
is based on well-known equations, they are often special-
ized to large aspect ratio or simplified geometry, while
the present analysis is more general.

However, the virial constraint does not necessarily
eliminate the possibility of more exotic equilibria, such
as with non-nested flux surfaces with islands, or with sin-
gular fields and/or off-axis peaks in the pressure profiles
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that may be spontaneously generated by the plasma near
the null surface. Some examples are considered here. In
this paper we investigate the consequences of only one in-
tegral constraint on equilibria, while there can be other
constraints that further limit the types of theoretically
possible or experimentally realizable equilibria10.

The non-existence of normal equilibria with negative
core current, and/or the rapid axisymmetric sawteeth
that are predicted to occur if the enclosed current goes
negative, may also explain the results of other experi-
ments, such as the low efficiency seen in some electron
cyclotron counter current drive experiments6,11.

II. DERIVATION

The MHD equilibrium equation ∇p = j × B/c can be
written as

0 = −∇
(

p+
B2

8π

)

+
1

4π
(B · ∇)B (1)

One common use of the virial theorem is to take the inner
product of this equation with the position vector x and
integrate over all space to show that an isolated MHD
equilibrium can not exist by itself (unless there are phys-
ical coils or gravity to provide overall force balance).12,13

Here we use a version of the virial theorem that can be
used to derive the Shafranov shift14, by focusing on radial
force balance of axisymmetric equilibria in cylindrical co-
ordinates (R,Z, φ). Taking the inner product of Eq. (1)

with R = RR̂, the radial vector in cylindrical geometry,
and integrating over space out to some flux surface of
volume V , gives

0 = −
∫

dVR · ∇
(

p+
B2

8π

)

+
1

4π

∫

dVR · (B · ∇)B

(2)
For the second integral we use the identity R·(B ·∇)B =
∇ · (BR · B) − B2

R − B2
φ. The integral of ∇ · (BR · B)

vanishes because B · dS = 0 on a flux surface. The first
integral can be integrated by parts using ∇ · R = 2, so
that Eq. (2) becomes

0 = −p(ρ)
∫

dS · R −
∫

dS · RB2

8π

+2

∫

dV

(

p+
B2

8π

)

− 1

4π

∫

dV
(

B2
R +B2

φ

)

= −p
∫

dS · R −
∫

dS · RB2

8π
+ 2

∫

dV

(

p+
B2

Z

8π

)

,

(3)

where p = p(ρ) is the pressure at the surface labeled
by ρ enclosing the volume V (ρ), and BZ is the vertical
magnetic field. For the first surface integral we can use
Gauss’ theorem to write

∫

dS · R =
∫

dV∇ · R = 2V .

For the second surface integral, we use dS = 2πRφ̂ ×
d~ℓ, where d~ℓ is a poloidal path length element along the

Z

R

dl dS

FIG. 1: Sketch of hypothetical equilibrium with nested flux
surfaces and negative central current (relative to the total
current), so that the poloidal field points clockwise near the
axis, counterclockwise near the edge, and is zero on a flux
surface in between. A normal equilibrium is not possible in
this case (with a normal peaked pressure profile)

surface, to write dS · R = 2πR2Ẑ · d~ℓ so
∫

dS · R =

2π
∮

R2Ẑ ·d~ℓ = 2π
∮

R2dZ. Since the toroidal field Bφ ∝
1/R in a flux surface, the B2

φ contribution to this surface
integral vanishes, and we have

0 = −p(ρ) − 1

V

∮

d~ℓ · ẐπR2
B2

pol

8π
+ 〈p〉 +

〈

B2
Z

8π

〉

(4)

where 〈. . .〉 =
∫

dV . . . /
∫

dV denotes a volume aver-
age, and B2

pol = B2
R + B2

Z is the poloidal field strength
squared. The poloidal field can be written as Bpol =

∇φ ×∇ψ = (φ̂ ×∇ρ)(∂ψ/∂ρ)/R, where ρ is a flux sur-
face label. [While ψ is also constant on a flux surface,
there can be two surfaces with the same value of ψ in
the presence of negative central current, so it is con-
venient to choose another flux surface label ρ, such as
based on the enclosed volume or toroidal flux, to main-
tain monotonic labeling.] If the toroidal current near the
magnetic axis is in the opposite direction as the total
plasma current, then the poloidal field must reverse di-
rection somewhere and there must be a null surface on
which the poloidal magnetic field is everywhere zero, as
shown in Fig. 1. Another way to see this is to note that
the poloidal field is related to the enclosed toroidal cur-

rent by 4πIφ(ρ)/c =
∮

d~ℓ·Bpol = (∂ψ/∂ρ)
∮

d~ℓ·φ̂×∇ρ/R,
so Bpol ∝ ∂ψ/∂ρ = 0 on any flux surface that encloses
zero toroidal current. This is also the flux surface on
which the rotational transform ι = 0 (corresponding to
the safety factor q = ∞). [These arguments assume that
Bpol is continuous and finite, we consider a singular ex-
ception in the next section.]

On such a flux surface where the poloidal field vanishes,
the second term of Eq. (4) vanishes and we are left with
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Z

R

FIG. 2: Ideal MHD formally allows singular solutions where
the poloidal field vanishes almost everywhere on a flux surface,

so that the enclosed current ∝

∮

d~ℓ · Bpol = 0 but
∮

dℓB
2

pol

is finite. Such an equilibrium could then in principle satisfy
the integral force balance Eq. (4). In this case, adjacent flux
surfaces approach one another at one point where the poloidal
field becomes infinite, but this is an integrable singularity
with finite energy. [All of these sketches are intended only to
illustrate topology and are not precise.]

constraint

0 = −p+ 〈p〉 +

〈

B2
Z

8π

〉

(5)

Since the last two terms are positive definite, the only
way this equation can possibly be satisfied is if the pres-
sure at this flux surface, p, is larger than the volume-
averaged pressure inside that flux surface, 〈p〉. I.e., the
pressure profile must be hollow at least in some region,
and can not be a monotonically decreasing function of ρ
at all radii as usual pressure profiles do.

This is in agreement with the result of Chu and
Parks10, who also found that a normal equilibrium with
a negative central current is not possible if the pressure
profile is monotonically decreasing. These earlier results
used a second-order large aspect ratio ordering while our
derivation is valid for arbitrary aspect ratio. In other
ways, their calculation goes beyond ours, as they have
investigated additional constraints that can further limit
the class of accessible equilibria.

III. POSSIBLE ALTERNATE SOLUTIONS

Here we consider several possible alternate solutions
for satisfying force balance in equilibria. Each differs
from “normal” equilibria in a different way.

The argument in the previous section applies rigor-
ously only for nested flux-surfaces where the fields are
continuous and finite. Within the framework of ideal

Z

R

FIG. 3: An equilibrium with this topology of non-nested flux
surfaces is not ruled out by the integral force balance Eq. (4).
Note that the toroidal current in the inner part of the plasma
is in the reverse direction from the total plasma current.

MHD, in principle there could be a singular poloidal

field on a flux surface such that
∮

d~ℓ · Bpol = 0 so
that this surface encloses zero toroidal current, but
∫

d~ℓ · ẐπR2B2
pol/(8π) is still finite and can contribute

to Eq. (4) so that integrated force balance can be satis-
fied. An example of such a field might be the limiting
case Bpol ∝ |∇ψ| ∼ C exp(−ℓ2/w2)/

√
w. Then in the

limit as w → 0 we have zero toroidal current enclosed
while still giving a finite contribution to the second term
of Eq. (4) (due to a singularity in the field chosen to be
at ℓ = 0 in this example). Although Bpol is becoming in-
finite at some point on the flux surface, it is an integrable
singularity containing a finite amount of energy, and so
could formally be considered as an admissible solution of
ideal MHD. Since the spacing between two nearby flux
surfaces labeled by poloidal flux ψ1 and ψ2 is given by
∆ ≈ (ψ2 − ψ1)/|∇ψ| (except where second derivatives
have to be considered), there will be flux surfaces with
finite separation at some places which will approach one
another at the singular point where |∇ψ| ∝ Bpol → ∞.
The topology of this configuration is illustrated in Fig. 2.
[This sketch is intended only to illustrate the topology
of a possible solution which satisfies the integral force
balance constraint, Eq. (4). An actual detailed solution
that would satisfy force balance locally at all points is
left for future work, and may involve highly distorted
flux-surface shapes with boundary layers15,16,17.] Note
that not only is the poloidal field infinite at the singular
point, it must also flip signs from +∞ to −∞ in the limit
as the singular point is approached radially from oppo-
site directions. Of course this singular configuration is
strongly susceptible to magnetic reconnection when re-
sistivity is included, consistent with the interpretation of
rapid reconnection observed in simulations2,8. If finite
resistivity is included, then the singularity in the field
is smoothed out and loss of equilibrium can help drive
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reconnecting flows.

Another possible way of satisfying integrated force bal-
ance with negative central current, while keeping the field
finite and continuous, is if the flux surfaces are non-
nested. An example is shown in Fig. 3, which is sim-
ilar to the intermediate configurations observed during
some toroidal simulations of axisymmetric reconnection
in negative central current plasmas (for example, Fig. 11
of Ref. 2, though in other cases they see islands with
higher poloidal mode numbers). This case has an ax-
isymmetric islandand the poloidal field is non-zero almost
everywhere (except at the two magnetic axes and at the
X-point) and so in principle can be arranged to give a
negative contribution to the second term of Eq. (4) to
satisfy integrated force balance. This is related to the
role in a normal equilibrium of the Shafranov shift, which
provides a larger value of R2B2

pol on the outer part of a
flux surface than on the inner part, so that the second
term in Eq. (4) is negative. The X-point of a non-nested
equilibrium might not be on the low-field side, and an-
other possible equilibrium might be obtained by rotating
Fig. 3 by 180◦ and shifting the spacing between flux sur-
faces so that the integral of R2B2

pol on the outer part of
the flux surface is again larger than on the inner part.
One or the other of these configurations may be an un-
stable equilibrium and prefer to flip to the other orienta-
tion. [Takizuka18 earlier proposed another possible non-
nested equilibria with negative central current, involving
(m = 2, n = 0) islands, while the example we discussed
here has an (m = 1, n = 0) island.]

Another way of thinking about ideal MHD equilibria
is to modify the time-dependent ideal MHD equations to
include viscosity and parallel thermal conduction while
retaining the ideal Ohm’s law13. Since viscosity should
eventually damp the velocity u to zero, and parallel ther-
mal conduction will lead to B · ∇p = 0, the dissipative
terms vanish in a stationary steady state and the solu-
tion is also an ideal MHD equilibrium. One can then start
with any arbitrary initial configuration of the magnetic
field (which can be assumed to be nested flux surfaces)
with arbitrary initial profiles, as functions of toroidal flux
Φ, for the rotational transform ι(Φ) and the adiabatic pa-
rameter µ(Φ) = p/nΓ (where p(Φ) is the pressure profile,
n(Φ) is the density profile, and Γ is the ratio of spe-
cific heats). Since this initial condition is not necessar-
ily an equilibrium, flows will be driven and the plasma
will move about, perhaps oscillating for a while. But it
seems reasonable to assume that the viscosity will eventu-
ally damp out the oscillations and the plasma will settle
into an equilibrium configuration while conserving ι(Φ)
and µ(Φ). (The motions are assumed to be constrained
to be axisymmetric to find such an equilibria. This ap-
proach to equilibria of course does not address the issue
of stability, and these equilibria might then be unstable
to symmetry-breaking perturbations.)

This was the logic that motivated the flux-conserving
tokamak equilibria concepts13 that showed that there is
formally no equilibrium limit on the pressure in a toka-

mak, since as the pressure increases, the Shafranov shift
and the current can also increase to provide sufficient
poloidal magnetic field on the outboard side to provide
force balance.

Presumably this procedure would also find an equilib-
rium even if the rotational transform changed sign so that
there was a null flux surface where ι = 0. In some cases
with certain initial conditions, it might be possible for the
plasma to spontaneously adjust flux surfaces near the null
ι surface to produce a local peak in the pressure profile
that can satisfy Eq. (5). [We have focussed on the con-
sequences of only one integral constraint that rules out
“normal” equilibria with negative central current, and
there can be other constraints that would further limit
the practical accessibility of such non-monotonic pressure
equilibria10.] The more typical case is probably that the
equilibrium that is approached will have a singular struc-
ture, such as in Fig. 2, in order to satisfy Eq. (4). [This
is similar to studies showing that the nonlinear satura-
tion of an internal kink mode approaches a neighbouring
equilibrium state with singular currents15,16.] These sin-
gular or near-singular states will be subject to strong re-
connection if a small amount of resistivity is introduced,
and the change in topology may dominate what happens.
Realistic evaluations of what happens may depend on
fully including various dissipation mechanisms (thermal,
momentum, and particle anisotropic transport driven by
small scale turbulence and collisional effects, as well as
resistivity, current drive, heating and loss mechanisms).
We leave detailed investigation of these issues to other
work.

IV. RELATION TO THE SHAFRANOV SHIFT

For completeness, we show the relation of Eq. (4) to
usual expressions for the Shafranov shift12,13. The second
term of Eq. (4) can be written as

T2 = − π

V

∮

d~ℓ ·ẐR2
B2

pol

8π
= − π

V

(∂ψ/∂ρ)2

8π

∮

d~ℓ ·Ẑ|∇ρ|2

(6)
At this point, many previous calculations specialize to a
large aspect ratio expansion and/or to specified shapes
for the flux surfaces. For example, assume shifted circu-
lar flux surfaces with R(ρ, θ) = R0 − ∆(ρ) + ρ cos θ and
Z(ρ, θ) = ρ sin θ, where ρ has now been chosen to be the
minor radius of the flux surface, and ∆ is the Shafranov
shift. It can be shown that |∇ρ|2 = 1/(1 − ∆′ cos θ)2,
where ∆′ = d∆/dρ. Defining ∂ψ/∂ρ = Bp(ρ)(R0 − ∆),
we have Bpol = Bp[R0 −∆]/[R(1−∆′ cos θ)] (this would
be exact if the flux surfaces really were shifted circles),
and T2 becomes

T2 = −
B2

p

8π

R0 − ∆

r

∆′

(1 − ∆′)3/2
(7)
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where we have used
∫

dθ cos θ/(1−∆′ cos θ)2 = 2π∆′/(1−
∆′)3/2. Inserting this into Eq. (4) yields

∆′

(1 − ∆′)3/2
=

r

R0 − ∆

8π

B2
p

(

〈p〉 − p+

〈

B2
Z

8π

〉)

(8)

Evaluating this in the large aspect ratio limit at the
plasma edge where p = 0 gives the familiar form
∆′ = (r/R0)(βpol + ℓi/2), where βpol is the poloidal
beta and ℓi is the internal inductance per unit length.
[Note that ℓi/2 = 〈B2

Z〉/B2
p(a) = 〈B2

polcos
2(θ)〉/B2

p(a) =

〈B2
pol〉/2B2

p(a), so that the factor of 1/2 comes from the
fact that only the vertical magnetic field contributes to
the numerator in the shift.] The nonlinear form of the
left-hand side of Eq. (8) has the nice property of insuring
that the flux surfaces are well behaved and don’t cross
(|∆′| < 1) for arbitrarily high βpol, though this equa-
tion only rigorously applies if the flux surfaces remained
shifted circles, which breaks down at high beta.

V. SUMMARY

We have presented a relatively simple integral con-
straint on toroidally axisymmetric MHD equilibrium that
shows that a normal equilibrium (with nested magnetic
flux surfaces, non-singular fields, and a peaked pressure
profile that falls monotonically with radius) can not exist
if the toroidal current inside any flux surface is negative
relative to the total plasma current. This generalizes pre-
vious results2,8,10 to arbitrary aspect ratio.

However, the integral constraint does not necessar-
ily prevent negative central current equilibria with non-
nested or singular magnetic flux surfaces. Possible exam-

ples of this are shown in Figs. 2 and 3. A plasma with
nested flux surfaces and negative central current that is
initially out of equilibrium could presumably move to-
wards an equilibrium, though it seems most likely that
this new equilibrium would have singular or near-singular
fields and thus would be subject to strong reconnection2,8

if finite resistivity is introduced, changing the topology.
There can also be other constraints that limit the acces-
sible class of alternate equilibria10. One might be able to
understand the structure of some of these possible solu-
tions in the vicinity of the null surface as a boundary layer
analysis of a shock-like solution. But a realistic evalua-
tion of such scenarios would require including finite cross-
field transport, viscosity, resistivity, and FLR effects. We
leave these issues to future work. Other interesting ques-
tions to consider are whether such “non-normal” MHD
equilibria are stable to ideal and/or resistive MHD modes
and/or are experimentally accessible.
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