
ar
X

iv
:a

st
ro

-p
h/

03
08

25
2 

v1
   

14
 A

ug
 2

00
3

On the Saturated State of the Nonlinear Small-Scale Dynamo
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We consider the problem of incompressible, forced, nonhelical, homogeneous and isotropic MHD
turbulence with no mean magnetic field and large magnetic Prandtl number. This type of MHD
turbulence is the end state of the turbulent dynamo, which generates folded fields with small-scale
direction reversals. We propose a model in which saturation is achieved as a result of the velocity
statistics becoming anisotropic with respect to the local direction of the folded fields. The model
combines the effects of weakened stretching and quasi-two-dimensional mixing and produces folded-
field spectra that are in remarkable agreement with numerical results at least in the case of a
one-scale flow. We conjecture that the statistics seen in numerical simulations could be explained
as a superposition of these folded fields and Alfvén-like waves that propagate along the folds.

PACS numbers: 91.25.Cw, 47.27.Gs, 95.30.Qd, 47.27.Eq, 47.65.+a

The term “MHD turbulence” embraces a number of
turbulent regimes in conducting fluids. In this Letter,
we consider what is perhaps the oldest MHD turbulence
problem dating back to Batchelor’s work in 1950 [1]: in-
compressible, randomly forced, nonhelical, homogeneous,
isotropic MHD turbulence described by

∂tu + u · ∇u = ν∆u −∇p + B · ∇B + f , (1)

∂tB + u · ∇B = B · ∇u + η∆B, (2)

where the pressure p (determined from ∇ · u = 0) and
the magnetic field B are rescaled by ρ and (4πρ)1/2, re-
spectively (ρ is density). Turbulence is excited by the
random external forcing f . No mean field is imposed.
We are primarily interested in the case of large magnetic
Prandtl number Prm = ν/η which is appropriate for the
warm ISM, coronal, and cluster plasmas [2]. Numeri-
cal evidence suggests that the popular choice Prm = 1
is in some respects similar to the large-Prm regime [3].

Prm ≫ 1 implies that the resistive scale ℓη ∼ Pr−1/2
m ℓν

is much smaller than the viscous scale ℓν. Thus, the
problem has two scale ranges: the hydrodynamic (Kol-

mogorov) inertial range ℓ0 ≫ ℓ ≫ ℓν ∼ Re−3/4ℓ0 (ℓ0 is
the forcing scale) and the subviscous range ℓν ≫ ℓ ≫ ℓη.

For a moment, let us consider the traditional view of
fully developed incompressible MHD turbulence in the
presence of a strong, externally imposed mean field. This
view is based on the idea of Iroshnikov [4] and Kraich-
nan [5] that it is a turbulence of strongly interacting
Alfvén-wave packets. Their phenomenology, modified by
Goldreich and Sridhar [6] to account for the anisotropy
induced by the mean field, predicts steady-state spectra
for magnetic and kinetic energies that are identical in
the inertial range and have Kolmogorov k−5/3 scaling.
An essential feature of this description is that it implies
scale-by-scale equipartition between magnetic and veloc-

ity fields: indeed, δuk = δBk in an Alfvén wave. Nu-
merics appear to confirm Alfvénic equipartition provided
there is an imposed strong mean field B0 ≫ urms [7].

In the case of zero mean field, it has been widely as-
sumed that essentially the same description applies, ex-
cept now it is the large-scale magnetic fluctuations that
play the role of effective mean field along which smaller-
scale Alfvén waves can propagate. However, numerical

simulations of isotropic MHD turbulence do not show

scale-by-scale equipartition between kinetic and magnetic

energies. There is a definite and very significant excess
of magnetic energy at small scales. This is true for both
Prm > 1 and Prm = 1 (Fig. 1). This result persists at
the highest currently available resolution (10243, see [8]).

Let us consider the genesis of the magnetic field in
isotropic MHD turbulence. As there is no mean field, all
magnetic fields are fluctuations self-consistently gener-
ated by the small-scale dynamo. This type of dynamo is
a fundamental mechanism that amplifies magnetic energy
in sufficiently chaotic 3D flows with large enough mag-
netic Reynolds numbers and Prm & 1. The amplification
is due to random stretching of the magnetic-field lines by
the ambient velocity field. During the kinematic (weak-
field) stage of the dynamo, the field energy grows expo-
nentially in time and its spectrum is peaked at the resis-
tive scale, kη ∼ Pr1/2

m kν , and grows self-similarly [9, 10].
The dynamo growth rate is of the order of the turnover
rate of the fastest eddies, which, in Kolmogorov turbu-
lence, are the viscous-scale ones.

Although the bulk of the magnetic energy concentrates
at the resistive scale, the dynamo-generated fields are
not at all randomly tangled, but rather organized in
folds within which the fields remain straight up to the
scale of the flow and reverse direction at the resistive
scale [11, 12]. One immediate implication of the folded
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FIG. 1: Energy spectra in simulations with Prm = 1,
Reλ ≃ 147 and with Prm = 10, Reλ ≃ 43. The thin (red)
lines are the model-predicted spectra of the folded field com-
ponent (normalized to have the same energy as the numerical
spectra). The Kolmogorov slope is given for reference.

field structure is the criterion for the onset of nonlinear-
ity: for incompressible MHD, the back reaction is con-
trolled by the Lorentz tension force B ·∇B ∼ k‖B

2. This
quantity depends on the parallel gradient of the field and
does not know about direction reversals (k‖ ∼ kν [12]).
Balancing B · ∇B ∼ u · ∇u, we find that back reaction
is important when magnetic energy becomes comparable
to the energy of the viscous-scale eddies. Clearly, some
form of nonlinear suppression of the stretching motions
at the viscous scale must then occur. However, the eddies
at larger scales are still more energetic than the magnetic
field and continue to stretch it at their (slower) turnover
rate. When the field energy reaches the energy of these
eddies, they are also suppressed and it is the turn of yet
larger and slower eddies to exercise dominant stretching.
The folded structure is preserved with folds elongating
to the size ℓs of the dominant stretching eddy. The key
question is whether ℓs can increase all the way to the
outer scale or stabilizes just above the viscous scale [13].

The nonlinear suppression of stretching motions does
not mean complete elimination of all turbulence: only
the b̂b̂ : ∇u component of the velocity-gradient tensor
leads to work being done against the Lorentz force and,
therefore, must be suppressed. It is then natural to ex-
pect a local anisotropization of the velocity field. In this
Letter, we demonstrate how a simple model accounting
for this nonlinearly induced local anisotropy can produce
solutions that are in remarkably good agreement with
numerically observed magnetic-energy spectra.

The idea is to use the standard Kazantsev [9] model ve-
locity, Gaussian and white in time, 〈ui(t,x)uj(t′,x′)〉 =
δ(t− t′)κij(x−x

′), but let κij depend on the local direc-

tion of the magnetic field, b̂ = B/B. In the Lagrangian

frame (with local rotation transformed out), b̂ orients it-
self along the stretching Lyapunov direction of the flow,
which stabilizes exponentially in time [14]. Therefore, in

this frame, b̂ can be assumed to vary slowly with time.
In the presence of one preferred direction defined by b̂ib̂j ,
the velocity correlator in k space has the following form

κij(k) = κ(i)(k, |µ|)
(

δij − k̂ik̂j

)

+ κ(a)(k, |µ|)
(

b̂ib̂j

+ µ2k̂ik̂j − µb̂ik̂j − µk̂ib̂
j
)

, (3)

where k̂ = k/k, µ = k̂ · b̂. Let us ignore the spatial
dependence of all quantities that vary at the flow scale
and slower. The velocity will only enter via its gradient
ui

j = ∂ju
i, which is now a function of time only with

statistics 〈ui
m(t)uj

n(t′)〉 = δ(t − t′)
∫

d3k knkmκij(k). We

can assume that b̂ also depends on time only, because
it will always enter via the tensor b̂ib̂j , which varies at
the scale of the flow (because of the folded structure of
the magnetic field, the field’s curvature is very small [12],

so the fast spatial variation of b̂ is limited to sign rever-
sals and cancels in b̂ib̂j). With these assumptions, the
solution to Eq. (2) can be written in the form (cf. [15])

B(t,x) = b̂(t)

∫

d3k0 B̃(t,k0)e
ix·k(t,k0), (4)

where k(0,k0) = k0 and

∂tB̃ = b̂ib̂mui
mB̃ − ηk2B̃, (5)

∂tkm = −ui
mki, (6)

∂tb̂
i = b̂mui

m − b̂lb̂mul
mb̂i. (7)

Equations (5–7) are a modification of the so-called zero-
dimensional model of the dynamo [16]. A closed equa-
tions can be obtained for the joint PDF of B̃, k, and
b̂, P(B̃,k, b̂) = δ(|b̂|2 − 1)δ(b̂ · k)(4π2k)−1P (B̃, k),
via an averaging procedure analogous to, e.g., the one
in Ref. [12]. The magnetic-energy spectrum M(k) =
(1/2)

∫ ∞

0
dB̃ |B̃|2P (B̃, k) is then found to satisfy

∂tM =
1

8
γ⊥

∂

∂k

[

(1 + 2σ‖)k
2 ∂M

∂k

− (1 + 4σ⊥ + 10σ‖)kM

]

+ 2(σ⊥ + σ‖)γ⊥M − 2ηk2M, (8)

where γ⊥ =
∫

d3k k2
⊥κ⊥, σ⊥ = (1/γ⊥)

∫

d3k k2
‖κ⊥, σ‖ =

(1/γ⊥)
∫

d3k k2
‖κ‖, k⊥ = k(1 − µ2)1/2, k‖ = kµ, κ⊥ =

(1/2)
(

δij − b̂ib̂j
)

κij , κ‖ = (1/2)b̂ib̂jκij , and κij is defined

in Eq. (3). In the isotropic case, κ(i) = κ(i)(k), κ(a) = 0,
which gives σ⊥ = 2/3, σ‖ = 1/6. Equation (8) then
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reduces to the standard equation for the magnetic-energy
spectrum in the kinematic dynamo [9, 10]. With a zero-
flux boundary condition imposed at low k [13], Eq. (8)
has an eigenfunction (in the limit η → +0)

M(k) ≃ kseγtK0(k/kη), (9)

where K0 is the Macdonald function, kη =
[

(1 +

2σ‖)γ⊥/16η
]1/2

, s = 2(σ⊥ + 2σ‖)/(1 + 2σ‖), and γ =

(γ⊥/8)
[

16(σ⊥ + σ‖) − (1 + 2σ⊥ + 6σ‖)
2/(1 + 2σ‖)

]

. As
magnetic back-reaction makes velocity more anisotropic,
the values of σ⊥, σ‖ drop compared to the isotropic case,
and so does the growth rate γ — until the dynamo is shut
down (for a purely two-dimensional velocity, σ⊥ = σ‖ = 0
and γ = −γ⊥/8). Thus, saturation can be achieved purely

by anisotropizing the statistics of the velocity field.

How do we make connection from a theory based on
the δ-correlated model velocity to the “real turbulence”
that has a finite correlation time? The simplest pre-
scription is to write finite expressions for equal-time ve-
locity correlators by replacing the δ function by 1/τc:
〈ui(k)uj∗(k)〉 = Iij(k) ∼ τ−1

c κij(k). If the correlation
time of a given type of motions is taken to be com-
parable to their turnover time, we can use τc ∼ γ−1

⊥

to write γ⊥ = 3 c1

[

(2/5)
∫

d3k k2
⊥I⊥

]1/2
, where c1 is

a model-dependent constant of order unity. By the

same token, σ⊥ =
[

(2/3)
∫

d3k k2
‖I⊥

/∫

d3k k2
⊥I⊥

]1/2
and

σ‖ =
[

(1/6)
∫

d3k k2
‖I‖

/∫

d3k k2
⊥I⊥

]1/2
.

In order to model gradual anisotropization of the ve-
locity statistics by the nonlinear back reaction, we intro-
duce the stretching wave number ks(t) such that the total
magnetic energy W (t) at time t is approximately equal to
the energy of the hydrodynamic eddies at k > ks (before
they feel the nonlinearity). We assume that the eddies
at k < ks remain isotropic (unaffected by back reaction),
while those at k > ks are two-dimensionalized. Specifi-
cally, for k0 < k < ks(t), let

4πk2I(i)(k, |µ|) = E(k), I(a)(k, |µ|) = 0, (10)

while for ks(t) < k < kν ,

4πk2I(i)(k, |µ|) = 2r2DE(k) δ(µ), (11)

4πk2I(a)(k, |µ|) = 2Ẽ(k) δ(µ). (12)

Here ks(t) is defined by c2

∫ kν

ks(t)
E(k) = W (t) [W (t) is

the total magnetic energy at time t], I(i) and I(a) are
coefficients of Iij analogous to κ(i) and κ(a) [Eq. (3)],
k0 and kν are the forcing and viscous wave numbers, c2

and r2D are adjustable parameters. We take E(k) =
CKǫ2/3k−5/3 for k0 < k < kν . We emphasize that this is
purely a choice of convenience: the behavior of our model
is largely insensitive to the particular form of E(k). Ẽ(k)
will not figure in what follows, because it multiplies µ
in all relevant expressions. Coefficients in Eq. (8) now

depend on W (t): a straightforward calculation gives

γ⊥(t) =
6

5
γ̄

[

1 −
1

(1 + W0/Wν)2

]−1/2
[

Γ(t)
]1/2

,(13)

σ⊥(t) = 4σ‖(t) =
2

3

[

1

(1 + W (t)/Wν)2

−
1

(1 + W0/Wν)2

]1/2
[

Γ(t)
]−1/2

, (14)

Γ(t) =
1

(1 + W (t)/Wν)2
−

1

(1 + W0/Wν)2

+
5

4
r2D

[

1 −
1

(1 + W (t)/Wν)2

]

,

where γ̄ = c1

[∫ kν

k0

dk k2E(k)
]1/2

, the viscous-eddy en-

ergy is Wν/c2 = (3/2)CKǫ2/3k
−2/3
ν , and the total en-

ergy of the velocity field (before suppression) is W0/c2 =
∫ kν

k0

dk E(k). Equations (13–14) represent a generaliza-

tion of the model first introduced in Ref. [13] and reduce
to it when r2D = 0. They include the effect of quasi-
2D mixing of the folded magnetic fields by eddies whose
stretching component has been suppressed. The spec-
trum of these mixing motions is modelled by Eq. (11),
where r2D parametrizes the strength of the mixing rela-
tive to the original unsuppressed 3D turbulence.

The behavior of our model is easy to predict. The
initial kinematic growth stage [γ⊥ = (6/5)γ̄, σ⊥ = 2/3,
σ‖ = 1/6, and s = 3/2, γ = (3/4)γ̄ in Eq. (9)] lasts
until the total magnetic energy becomes comparable to
the energy of the viscous-scale eddies, W ∼ Wν . Af-
ter that, the velocity is gradually anisotropized, stretch-
ing is weakened, but mixing continues at k > ks(t). A
steady solution is reached as soon as σ⊥ and σ‖ have de-
creased enough to render γ = 0 in Eq. (9). This gives
σ⊥ = 4σ‖ ≃ 0.078. The corresponding spectral exponent
in the interval kν ≪ k ≪ kη is s ≃ 0.23. This solution is
valid in the limit kη ≫ kν (Prm ≫ 1), but convergence
in Prm is only logarithmic. In practice, numerical solu-
tion of Eq. (8) with coefficients defined by Eqs. (13–14)
shows that scale separations of about 7 decades are re-
quired for the scaling to be discernible. Obviously, this
is not achievable in direct numerical simulations. We
have, therefore, solved Eq. (8) numerically with physical
parameters approximating those used in our direct nu-
merical simulations of the MHD turbulence [3]. There
are three adjustable constants: c1, c2, and r2D. The re-
sults do not, in fact, depend very strongly on them: c2

is irrelevant as it amounts to overall rescaling of energy,
c1 is a rescaling of time (though it also affects the value
of kη), and r2D has to vary by an order of magnitude
to produce significant change. We have compared the
model solutions for the same fixed values c1 = 1/3 and
r2D = 0.75 with the (normalized) spectra obtained in nu-
merical simulations at various Prm and Re. A sequence of
runs with large Prm and low Re (the so-called viscosity-
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FIG. 2: The thick lines are the normalized saturated energy
spectra for simulations in the viscosity-dominated regime [3].
The thin (red) lines are the spectra predicted by our model.

dominated limit: a necessary compromise at current res-
olutions [3]) is very well fitted by the model in both kine-
matic (not shown) and nonlinear (Fig. 2) regimes (except
at k/2π = 1, where boundary conditions are important).

It is extraordinary that a semi-heuristic minimal model
has been able to reproduce non-asymptotic numerical
spectral profiles so well. We do not claim that our model
constitutes a quantitative theory of nonlinear dynamo.
It does, however, provide a simple demonstration that
the available numerical data (Fig. 2) is consistent with
magnetic spectra that would exhibit a very flat positive
spectral exponent in the interval kν ≪ k ≪ kη if suffi-
ciently large scale separations were resolved.

It is clear that the viscosity-dominated simulations
(low Re) are described very well by our model. It is much
harder to assess its performance for the case Re ≫ 1,
Prm ≫ 1. If mixing by velocities in the interval ks < k <
kν remains efficient [as is implied by our crude 2D approx-
imation (11–12)], then ks stabilizes at a value ∼ kν and
saturated magnetic energy scales with Re as the energy
of the viscous eddies, 〈B2〉 ∼ Re−1/2〈u2〉. This outcome
does not appear to be borne out by the available nu-
merical evidence, which rather suggests 〈B2〉 . 〈u2〉 [8]
(though limited resolutions do not allow one to make a
definitive statement). In our own runs with Prm = 10
and Taylor-microscale Reynolds number Reλ ≃ 43 and
with Prm = 1, Reλ ≃ 147, our model in its present form
overestimates somewhat the magnetic energy at large k,
but underestimates it at low k (Fig. 1): an indication of
too much mixing in the model. Indeed, when Re ≫ 1,
the nature of the anisotropized velocities in the interval

ks < k < kν can be very different from the interchange-
like motions that give the 2D mixing in the viscosity-
dominated case. In Ref. [13], we argued that these mo-
tions are Alfvén waves that propagate along the folds.
The saturated spectrum is then the result of a super-
position of waves and folds (which accounts for the large
amount of small-scale magnetic energy). Since the Alfvén
waves are dissipated by viscosity, they can only exist if
the stretching scale becomes much larger than the vis-
cous scale: possibly as large as the outer scale. This is
only allowed if the waves do not mix magnetic field as effi-
ciently as the interchange motions do. For our model, the
required modification would be that the mixing rate γ⊥
should decrease with ks. The dynamo saturation would
then be due to a balance between stretching and mixing
by partially anisotropized motions at the stretching scale.

Detecting the Alfvén waves along folds is a challenge
for future numerical work. The main conclusion of the
present study is that the nonlinear dynamo in a ran-
dom one-scale flow can be described by a simple model
where saturation is achieved via partial anisotropization
of the ambient velocity, a result quantitatively supported
by agreement with direct numerical simulations.
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