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ABSTRACT

Recent calculations by Quataert et al. (2002) found that the growth rates

of the magnetorotational instability (MRI) in a collisionless plasma can differ

significantly from those calculated using MHD. This can be important in hot

accretion flows around compact objects. In this paper we study the transition

from the collisionless kinetic regime to the collisional MHD regime, mapping out

the dependence of the MRI growth rate on collisionality. A kinetic closure scheme

for a magnetized plasma is used that includes the effect of collisions via a BGK

operator. The transition to MHD occurs as the mean free path becomes short

compared to the parallel wavelength 2π/k‖. In the weak magnetic field regime

where the Alfvén and MRI frequencies ω are small compared to the sound wave

frequency k‖c0, the dynamics are still effectively collisionless even if ω � ν,

so long as the collision frequency ν � k‖c0; for an accretion flow this requires

ν <∼ Ω
√

β. The low collisionality regime not only modifies the MRI growth rate,

but also introduces collisionless Landau or Barnes damping of long wavelength

modes, which may be important for the nonlinear saturation of the MRI.

1. Introduction

Balbus & Hawley (1991) showed that the magnetorotational instability (MRI), a local

instability of differentially rotating magnetized plasmas, is the most efficient source of angular

momentum transport in many astrophysical accretion flows (see Balbus & Hawley 1998 for

a review). The MRI may also be important for dynamo generation of galactic and stellar

magnetic fields. Most studies of the MRI have employed standard MHD equations which
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are appropriate for collisional, short mean free path plasmas. Recently, however, Quataert,

Dorland & Hammett (2002; hereafter QDH) studied the MRI in the collisionless regime

using the kinetic results of Snyder, Hammett & Dorland (1997). They showed that the MRI

persists as a robust instability in a collisionless plasma, but that at high β � 1 (ratio of

plasma pressure to magnetic pressure), the physics of the instability is quite different and

the kinetic growth rates can differ significantly from the MHD growth rates.

One motivation for studying the MRI in the collisionless regime is to understand radia-

tively inefficient accretion flows onto compact objects. An example of non-radiative accretion

is the radio and X-ray source Sagittarius A∗, which is thought to be powered by gas accreting

onto a supermassive black hole at the center of our galaxy (see Quataert 2003 for a review). In

radiatively inefficient accretion flow models, the accreting gas is a hot, low density, plasma,

with the proton temperature large compared to the electron temperature (Tp ≈ 1012 K

� Te ≈ 1010 − 1011 K). In order to maintain such a two-temperature configuration, the ac-

cretion flow must be collisionless in the sense that the timescale for electrons and protons to

exchange energy by Coulomb collisions is longer than the inflow time of the gas (for models

of Sagittarius A*, the collision time close to the black hole is ≈ 7 orders of magnitude longer

than the inflow time).

In this paper we extend the kinetic results of QDH to include collisions; we study

the behavior of the MRI in the transition from the collisionless regime to the collisional

MHD regime. Instead of using a more accurate but very complicated Landau or Balescu-

Lenard collision operator, we use a simpler Bhatnagar-Gross-Krook (BGK) collision operator

(Bhatnagar, Gross & Krook 1954) that conserves number, momentum and energy.

There are several reasons for studying the behavior of the MRI with collision frequency:

(1) one gains additional understanding of the qualitatively different physics in the MHD

and kinetic regimes, (2) one of the key differences between the MRI in kinetic theory and

MHD is the anisotropic (with respect to the local magnetic field) pressure response in a col-

lisionless plasma (QDH). Even if particle collisions are negligible, high frequency waves with

frequencies ∼ the proton cyclotron frequency may tend to isotropize the proton distribution

function. Our treatment of “collisions” can qualitatively describe this process as well; and

(3) the transition from the collisional to the kinetic MRI could be dynamically interesting

if accretion disks undergo transitions from thin disks to hot radiatively inefficient flows (as

has been proposed to explain, e.g., state changes in X-ray binaries; Esin et al. (1997)). For

example, there could be associated changes in the rate of angular momentum transport (α).

The paper is organized as follows. In the next section (§2) we briefly discuss the lin-

earized kinetic equations in the long-wavelength, low frequency limit (the “MHD” limit);

this is a review of the formalism used by QDH. In §3 we then derive the kinetic equation
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for the perturbed pressure including effects of proton-proton collisions via a BGK operator;

this result is needed to “close” our basic equations and derive the dispersion relation for the

plasma. In §4 we discuss simpler Landau-fluid (Snyder et al. 1997) closure schemes for de-

riving the perturbed pressure. The Landau-fluid closure approximations agree well with the

exact kinetic results from §3 in the low and high collisionality regimes and provide a smooth

transition for intermediate regimes. In §5 we numerically solve for the growth rate of the

kinetic MRI and discuss the effects of collisions. Finally in §6 we summarize our results and

discuss their astrophysical implications.

2. Linearized Kinetic-MHD Equations

The analysis in this paper is restricted to fluctuations that have wavelengths much larger

than proton Larmor radius and frequencies well below the proton cyclotron frequency. In

this limit, a plasma can be described by the following magneto-fluid equations(Kruskal &

Oberman 1958; Rosenbluth & Rostoker 1959; Kulsrud 1983):

∂ρ

∂t
+ ∇ · (ρV) = 0, (1)

ρ
∂V

∂t
+ ρ (V · ∇)V =

(∇× B) ×B

4π
−∇ · P + Fg, (2)

∂B

∂t
= ∇× (V × B) , (3)

P = p⊥I +
(

p‖ − p⊥
)

b̂b̂, (4)

where ρ is the mass density, V is the fluid velocity, B is the magnetic field, Fg is the

gravitational force, b̂ = B/|B| is a unit vector in the direction of the magnetic field, and

I is the unit tensor. In equation (3) an ideal Ohm’s law is used, neglecting effects such as

resistivity. P is the pressure tensor that has different perpendicular (p⊥) and parallel (p‖)

components with respect to the background magnetic field (unlike in MHD, where there is

only a scalar pressure). The pressures are determined by solving the drift kinetic equation

given below. P should in general be a sum over all species but in the limit where ion

dynamics dominate and electrons just provide a neutralizing background, the pressure can

be interpreted as the ion pressure. This is the case for hot accretion flows in which Tp � Te.

We assume that the background (unperturbed) plasma is described by a non-relativistic

Maxwellian distribution function with equal parallel and perpendicular pressures (tempera-

tures). Although the equilibrium pressure is assumed to be isotropic, the perturbed pressure

is not. We take the plasma to be differentially rotating, but otherwise uniform (we neglect

temperature and density gradients). Equilibrium analysis for equation (2) in presence of a
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subthermal magnetic field with vertical (Bz = B0 sin θ) and azimuthal (Bφ = B0 cos θ) com-

ponents gives a Keplerian rotation (Ω ∝ R−3/2) provided the magnetic field is sufficiently

weak (B2

0
� GM0ρ0/R, where M0 is the mass of the central object).

In a differentially rotating plasma, a finite BR leads to a time-dependent Bφ, which

greatly complicates the kinetic analysis (unlike in MHD, where a time-dependent Bφ can

be accounted for; Balbus & Hawley 1991); we therefore set BR = 0. For linearization we

consider fluctuations of the form exp[−iωt + ik · x], with k = kRR̂ + kzẑ, i.e., axisymmetric

modes; we also restrict our analysis to local perturbations for which |k|R � 1. Writing

ρ = ρ0 + δρ, B = B0 + δB, p⊥ = p0 + δp⊥, and p‖ = p0 + δp‖, V = φ̂ΩR + δv (with

Keplerian rotation Ω(R)), and working in cylindrical coordinates, the linearized versions of

equations (1)-(3) become (QDH):

ωδρ = ρ0k · δv, (5)

−iωρ0δvR − ρ02Ωδvφ = −ikR

4π
(BzδBz + BφδBφ) +

ikzBzδBR

4π
− ikRδp⊥, (6)

−iωρ0δvφ + ρ0δvR
κ2

2Ω
=

ikzBzδBφ

4π
− ikz sin θ cos θ[δp‖ − δp⊥], (7)

−iωρ0δvz = −ikzBφδBφ

4π
− ikz[sin

2 θδp‖ + cos2 θδp⊥], (8)

ωδBR = −kzBzδvR, (9)

ωδBφ = −kzBzδvφ − ikzBz

ω

dΩ

d ln R
δvR + Bφk · δv, (10)

ωδBz = kRBzδvR, (11)

where κ2 = 4Ω2 + dΩ2/d lnR is the epicyclic frequency. To complete our system of equa-

tions and derive the dispersion relation for linear perturbations, we need expressions for

δp⊥ and δp‖. These can be obtained by taking moments of the linearized and Fourier

transformed drift-kinetic equation that includes a linearized BGK collision operator. The

drift-kinetic MHD model is described by Kulsrud (1983) based on earlier work by Kruskal

& Oberman (1958) and Rosenbluth & Rostoker (1959). The drift-kinetic equation for the

distribution function including the effects of gravity is

∂f

∂t
+
(

v‖b̂ + vE

)

· ∇f +

(

−b̂ · DvE

Dt
− µb̂ · ∇B +

e

m
(E‖ + Fg‖/e)

)

∂f

∂v‖
= C (f) , (12)

where vE = c (E× B) /B2, µ = (v⊥ − vE)2/2B is the magnetic moment (conserved in our

approximations in the absence of collisions), Fg‖ = GM0mR̂ · b̂/R2, and D/Dt = ∂/∂t +
(

v‖b̂ + vE

)

·∇. The fluid velocity V = vE + b̂u‖, so the E×B drift vE is determined by the
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perpendicular component of equation (2). [Only the E×B drift appears directly in equation

(12). Other drifts such as the grad B, curvature, or gravity ×B drifts are higher order in the

MHD drift kinetic ordering (Kulsrud 1983), which assumes the frequencies are low compared

to the cyclotron frequency and the gyroradius small compared to gradient scale lengths. On

the other hand, the parallel component of the gravitational force Fg‖ is included as it can be

the same order as the parallel electric field, which is small compared to the perpendicular

electric field in ideal MHD.] Note the addition of a collision operator on the right hand side

of the kinetic equation to allow for generalization to collisional regimes. In the next section

we derive the linearly-exact kinetic expressions for δp‖ and δp⊥ using the BGK collision

operator in equation (12). We then compare these with closure approximations from Snyder

et al. (1997).

3. Kinetic Closure Including Collisions

In this section we use a simple BGK collision operator (Bhatnagar et al. 1954) to cal-

culate δp‖ and δp⊥ from equation (12). Since we consider only ion-ion collisions, the BGK

operator is CK (f) = −ν (f − FM) where ν is the ion-ion collision frequency and FM is a

shifted Maxwellian with the same density, momentum and energy as f (so that collisions

conserve number, momentum, and energy). The integro-algebraic BGK operator greatly

simplifies the calculations while adequately modeling many of the key properties of the full

integro-differential collision operator. In some situations the effects of weak collisions can

be enhanced in a more complete collision operator due to sharp velocity gradients in the

distribution function. We leave investigation of such effects to future work. In this section,

we calculate the linearization of the drift-kinetic equation around an accretion disk equilib-

rium including equilibrium flows and gravity. It turns out that a number of complicating

intermediate terms end up cancelling, and the final forms of the closures used (from equa-

tions (26-27) onwards) are identical to what one would get from perturbing around a simple

stationary slab equilibrium. We carried out the more detailed calculation to verify that there

were no missing terms in the final closures.

The equilibrium distribution function f0 is given by

f0 =
n0

(2πT0/m)3/2
exp

(

− m

2T0

|v − V0|2
)

, (13)

where V0 = vE0 + u‖0b̂0 is equal to the Keplerian rotation velocity in φ̂ direction. Since

|v −V0|2 = (v‖ − u‖0)
2 + 2µB0, f0 can be expressed in terms of

(

µ, v‖
)

as

f0 =
n0

(2πT0/m)3/2
exp

(

− m

2T0

(

(v‖ − u‖0)
2 + 2µB0

)

)

. (14)
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We shall linearize the drift-kinetic equation and the BGK collision operator. The distribution

function is given as f = f0 + δf where δf is the perturbation in the distribution function.

The shifted Maxwellian that appears in the BGK collision operator is given by

FM =
NM

(2πTM/m)3/2
exp

{

− m

2TM

(

(

v‖ − u‖M

)2

+ 2µB
)

}

. (15)

FM has three free parameters (NM , u‖M , TM) which are to be chosen so as to conserve

number, parallel momentum and energy. When taking moments of the BGK operator, it is

important to note that
∫

d3v =
∫

2π (B0 + δB) dµdv‖. From equation (15) and conservation

of number, momentum and energy it follows that

NM = n0 + δn ≈ n0

(

1 +
δB

B0

)

+ 2πB0

∫

dµdv‖δf, (16)

NMu‖M = NM (u‖0 + δu) ≈ n0u‖0

(

1 +
δB

B0

)

+ 2πB0

∫

dµdv‖δfv‖, (17)

NMTM = p0 + δp = p0 + (δp‖ + 2δp⊥)/3, (18)

δp‖ ≈ p0δB/B0 + 2πB0

∫

dµdv‖δfm(v‖ − u‖0)
2, (19)

δp⊥ ≈ 2p0δB/B0 + 2πB0

∫

dµdv‖δfµmB0, (20)

where the approximate expressions retain only linear terms in perturbed quantities. Lin-

earizing the expression for the relaxed Maxwellian in equation (15) about f0, the drift-kinetic

BGK collision operator is given by

CK (δf) = −νδf + νf0 ×
{(

δn

n0

− 3δT

2T0

)

+
m

T0

(

(

v‖ − u‖0

)

δu +
(

v‖ − u‖0

)2 δT

2T0

)

− mµB0

T0

(

δB

B0

− δT

T0

)}

.(21)

The drift-kinetic equation including the BGK operator can be linearized to obtain the fol-

lowing equation for δf

δf = uφ0(v‖ − u‖0)f0 sin θ
(δBφ sin θ − δBz cos θ)m

T0B0

+
m
(

v‖ − u‖0

)

f0

T0

(

−iω + ik‖

(

v‖ − u‖0

)

+ ν
) ×

(

−ik‖µδB +

(

eE‖ + Fg‖

)

m

)

+
νf0

(

−iω + ik‖

(

v‖ − u‖0

)

+ ν
) ×

(

δn

n0

− 3

2

δT

T0

+
m(v‖ − u‖0)δu

T0

+
m(v‖ − u‖0)

2

2T0

δT

T0

+
mµB0

T0

δT

T0

− mµδB

T0

)

, (22)

where Fg‖ = GM0mδBR/B0R
2 is the component of gravitational force in the direction of

magnetic field. Choosing a compact notation where −iω sin θ (δBφ sin θ − δBz cos θ) muφ0/eB0
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+Fg‖/e + E‖ → E‖, the moments of the perturbed distribution function δf in drift coordi-

nates (v‖, µ),
∫ (

1, 2µB0, (v‖ − u‖0)
2
)

δf2πB0dµdv‖ give

δn

n0

=
δB

B0

(1 − R) +
eE‖

ik‖T0

R − ζ2

{(

δn

n0

− 3

2

δT

T0

)

Z +

(

δT

T0

− δB

B0

)

Z

+
√

2
δu

c0

R +

(

δT

T0

+ 2i sin θ
k‖uφ0

ν

(δBφ sin θ − δBz cos θ)

B0

)

ζR

}

, (23)

δp⊥
p0

= 2
δB

B0

(1 − R) +
eE‖

ik‖T0

R − ζ2

{(

δn

n0

− 3

2

δT

T0

)

Z + 2

(

δT

T0

− δB

B0

)

Z

+
√

2
δu

c0

R +

(

δT

T0

+ 2i sin θ
k‖uφ0

ν

(δBφ sin θ − δBz cos θ)

B0

)

ζR

}

, (24)

δp‖
p0

= −2
δB

B0

ζ2R +
eE‖

ik‖T0

(

1 + 2ζ2R
)

− ζ2

{

2

(

δn

n0

− 3

2

δT

T0

)

ζR + 2

(

δT

T0

− δB

B0

)

ζR

+
√

2
δu

c0

(

1 + 2ζ2R
)

+

(

δT

T0

+ 2i sin θ
k‖uφ0

ν

(δBφ sin θ − δBz cos θ)

B0

)

ζ
(

1 + 2ζ2R
)

}

.(25)

E‖ can be eliminated by taking appropriate combinations of these three equations:

δρ

ρ0

− δp⊥
p0

= −δB

B0

(1 − R) + ζ2Z

(

δT

T0

− δB

B0

)

, (26)

and

(

1 + 2ζ2R
) δρ

ρ0

− R
δp‖
p0

=
δB

B0

(

1 + 2ζ2R − R
)

− ζ2 (Z − 2ζR)

(

δρ

ρ0

− δT

2T0

− δB

B0

)

, (27)

where δT =
(

2δT⊥ + δT‖

)

/3, δB = b̂0 · δB, ζ = (ω + iν) /
√

2|k‖|c0, ζ2 = iν/
√

2|k‖|c0,

k‖ = b̂0 · k, T‖,⊥ = mp‖,⊥/ρ, and c0 =
√

T0/m is the isothermal sound speed of the ions. In

equations (26) and (27), R = 1 + ζZ is the plasma response function, where

Z (ζ) =
1√
π

∫

dx
exp[−x2]

x − ζ
(28)

is the plasma dispersion function (NRL plasma formulary 2000). Equations (26) and (27)

can be substituted into the linearized fluid equations in §2 to derive the dispersion relation

for the plasma. The full closures are, however, very complicated, so it is useful to consider

several simplifying limits that isolate much of the relevant physics. In addition, the solution

of the MHD equations from §2 with fully kinetic closures will give an implicit equation for

the growth rate (involving the Z function) that would have to be solved numerically.

The closure equations can be simplified in two limits, |ζ | � 1, the collisionless limit,

and |ζ | � 1, the high collisionality limit. The derivation of the asymptotic solution for the
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closure equations in these two limits is given in the Appendix. For high collisionality

δp⊥
p0

=
5

3

δρ

ρ0

+
ζ1

ζ2

(

4

3
+

5

9ζ2

1

)

δρ

ρ0

− 2
ζ1

ζ2

δB

B0

, (29)

and
δp‖
p0

=
5

3

δρ

ρ0

+
ζ1

ζ2

(

−2

3
+

5

9ζ2

1

)

δρ

ρ0

+
ζ1

ζ2

δB

B0

, (30)

where ζ1 = ω/
√

2|k‖|c0. Notice that in the limit that the collision frequency is very high,

ζ2 → ∞, and one recovers the MHD result that the perturbations are adiabatic and isotropic:

δp‖/p0 = δp⊥/p0 = 5δρ/3ρ0. Inspection of equations (29) and (30) suggests that the MHD

limit will be reached whenever |ζ1/ζ2| � 1, i.e., ν � ω. Later we shall show that in fact

ν �
√

2|k‖|c0 is required, i.e., the collision time must be much less than the sound crossing

time of the wavelength of the mode. This is important because the MRI has ω � |k‖|c0 in

a high β plasma so the regime ω � ν � |k‖|c0 is an interesting one.

For low collisionality, |ζ | � 1, to second order in ζ ,

δp⊥
p0

=
δρ

ρ0

− i
√

πζ1

δB

B0

− πζ1ζ2

3

δρ

ρ0

+ ζ1ζ2

(

2 − π

3

) δB

B0

, (31)

and

δp‖
p0

=
δρ

ρ0

− i
√

πζ1

(

δρ

ρ0

− δB

B0

)

+
δρ

ρ0

(

4ζ1ζ2 − πζ2

1
− 7πζ1ζ2

6

)

+

δB

B0

(√
πζ1ζ2 −

πζ1ζ2

6
− 2ζ2 − 4ζ2ζ

)

. (32)

To first order, there is no effect of collisions on the growth rate of the MRI; the results above

are then exactly same as equations (20) and (21) in QDH (who neglected collisions entirely).

Collisional effects modify the closure only at order ζ2, though one has to go to this order to

find the first order dependence of ω on ν in the dispersion relation.

4. Comparison with Landau-Fluid Closures

The results from the last section provide useful expressions for δp⊥ and δp‖ in the low

and high collisionality regimes, |ζ | � 1 and |ζ | � 1, but it would be convenient to have a

single set of equations that can provide a robust transition between these two regimes. The

Snyder et al. (1997) closure approximations, which we discuss in this section, can do this.

The second moments of the drift kinetic equation (eq. [12]) yield evolution equations

for δp⊥ and δp‖ (see, e.g., eqs. [16]-[17] of Snyder et al. 1997). The linearized versions of
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these equations, including a BGK collision operator, are given by 1

−iωδp‖ + p0ik · δv + ik‖q‖ + 2p0ik‖δv‖ − 3p0Ω cos θ
δBR

B0

= −2

3
ν
(

δp‖ − δp⊥
)

, (33)

and

−iωδp⊥ + 2p0ik · δv + ik‖q⊥ − p0ik‖δv‖ +
3

2
p0Ω cos θ

δBR

B0

= −1

3
ν
(

δp⊥ − δp‖
)

. (34)

As is usual with moment hierarchies, the above equations for δp‖,⊥ depend on third moments

of the distribution function, q‖ and q⊥, the parallel and perpendicular heat fluxes. Snyder

et al. introduced closure approximations for q‖ and q⊥ that determine δp⊥ and δp‖ without

solving the full kinetic equations of the previous section. These Landau-fluid approximations

“close” equations (1)-(4) and allow one to solve for the linear response of the plasma.

The linearized heat fluxes in the perpendicular and parallel directions are given by

q⊥ = −p0c
2

0

ik‖ (δp⊥/p0 − δρ/ρ0)
(

√

π/2|k‖|c0 + ν
) (35)

and

q‖ = −8p0c
2

0

ik‖

(

δp‖/p0 − δρ/ρ0

)

(√
8π|k‖|c0 + (3π − 8) ν

) . (36)

As discussed in earlier work (Snyder et al. 1997; Hammett et al. 1992, 1993; Smith

1997), Landau-fluid closure approximations provide n-pole Padé approximations to the exact

plasma dispersion function Z(ζ) that appears in the kinetic plasma response of §3. These

Padé approximations are thus able to provide robust results that capture kinetic effects

such as Landau damping, and that can also smoothly transition between the high and low

ζ regimes.2 We have found that, not surprisingly, the fluid approximations remain robust

when collisions are included. That is, in all of the numerical tests we have carried out, we

have found good agreement between the results from equations (33)-(36) and the asymptotic

kinetic results from the previous section for the low and high collisionality regimes. Thus all

1A comparison of our equations (33) and (34) with equations (30) and (31) in Snyder et al. shows that

our equations have an extra term proportional to the Keplerian rotation frequency; this is because Snyder

et al. (1997) did not include gravitational effects and Keplerian rotation in their linearized equations.

2The approximations are fairly good near or above the real ζ axis, though they will have only a finite

number of damped roots, corresponding to the finite number of poles in the lower half of the complex plane,

while the full transcendental Z(ζ) function has an infinite number of damped roots.
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of the plots in this paper are calculated with the Snyder et al. (1997) Landau-fluid closure

approximations of equations (33)-(36).

The Snyder et al. Landau-Fluid closure approximations provide a useful way to extend

existing non-linear MHD codes to study key kinetic effects. The closure approximations are

independent of frequency (or the Z function), and so are straightforward to implement in an

initial value nonlinear code (though they do require FFT’s or non-local heat flux integrals to

evaluate some terms(Snyder et al. 1997; Hammett et al. 1992)). But one should remember

that they are approximations and so do not accurately model all kinetic effects in all regimes,

particularly near marginal stability (Mattor (1992); Smith (1997); Dimits et al. (2000)),

though we have generally found in other applications that they work fairly well in strong

turbulence regimes (Hammett et al. (1993); Parker et al. (1994); Smith (1997); Dimits et

al. (2000)).

As an aside, we note that the double adiabatic theory of Chew, Goldberger, & Low

(1956), which is a simpler closure approximation that sets q‖ = q⊥ = 0 in equations (33) and

(34), generally does a poor job of reproducing the full kinetic calculations. This is because

the perturbations of interest have ω � |k‖|c0 and are thus far from adiabatic (see also QDH).

5. Collisionality dependence of the MRI growth rate

Figures 1 and 2 show the growth rate of the MRI for intermediate values of collisionality

in addition to the limits of zero and infinite (MHD) collision frequency (the latter two cases

were shown in QDH). To produce these plots, we have used equations (5)-(11) and (33)-(36).

These equations were solved both with a linear initial value code to find the fastest growing

eigenmode, and with Mathematica to find the complete set of eigenvalues ω.

Figures 1 and 2 show that the transition from the MHD to the collisionless regime is

fairly smooth and occurs, for these particular parameters, in the vicinity of ν/Ω ∼ 103, which

corresponds to ν ∼ 10kc0, or kλmfp ∼ 0.1, where λmfp = c0/ν is the mean free path. Figure

3 shows the growth rate versus collisionality for βz = 100 and βz = 104, and for Bφ = Bz,

kR = 0 and Bφ = 0, kR/kz = 0.5.

It is clear from these figures that the transition from the collisionless to the collisional

MRI takes place at far higher collision rates than ν ∼ Ω ∼ ω. That is, ν > ω is not a

sufficient criterion to be in the collisional regime. Instead, the collisional regime requires

ν � |k‖|c0, which can be written as ν/Ω �
√

β|k‖|vAz/Ω ≈
√

β. Figure 3 shows that the

much of the dependence on collisionality for different values of βz can be captured by plotting

the growth rates vs. ν/
√

βzΩ, though there is some residual variation.
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At high β � 1, the Alfvén and MRI frequencies are small compared to the sound

wave frequency, and there exists a regime ω � ν <∼ k‖c0 where the collisionless results still

hold despite the fact that the collision time is shorter than the growth rate of the mode.

Physically, this is because in order to wipe out the pressure anisotropy that is crucial to the

MRI in a collisionless plasma (see QDH) the collision frequency must be greater than the

sound wave frequency, rather than the (much slower) growth rate of the mode. This can

also be seen by comparing Figures 1 and 2 with the corresponding figures in QDH: the effect

of increasing collisions (decreasing pressure anisotropy) is similar to that of decreasing βz

(decreasing pressure force relative to magnetic forces). From the point of view of Snyder

et al.’s fluid approach, the weak dependence of growth rate on collisionality even if ν is

as large as ω can be understood from the fact that the terms proportional to ω and ν in

equations (33) and (34) are both much smaller than the dominant terms involving convection,

heat conduction, and magnetic forces. So the relative magnitudes of ω and ν are not that

important, and it is not until ν is large enough to be relevant in equations (35)-(36) that

collisional effects become noticeable.

Figure 4 shows the complete spectrum of eigenmode frequencies as kz is varied, including

the propagating and damped modes in addition to the unstable MRI branch. We show all

of the waves present in collisionless Landau fluid and MHD calculations for a fairly general

choice of wavenumbers and a moderate βz = 10. The MRI is operational at lower kz, while

at high kz the eigenfrequencies eventually approach the uniform plasma limit.

Focusing first on the MHD solutions at high kz, we see the standard set of 3 MHD waves:

in order of descending frequency these are the fast magnetosonic wave, the shear Alfvén

wave, and the slow wave. Equations (5)-(11) with an MHD adiabatic pressure equation

ωδp = p0k · δv is a set of 8 equations with 8 eigenvalues for ω. The standard 3 MHD waves

provide 6 of the eigenvalues (±ω for oppositely propagating waves). The remaining roots are

zero frequency modes (not shown in the plot). One is an entropy mode, corresponding to

δρ/ρ0 = −δT/T0 so that δp = 0. The other solution corresponds to an unphysical fluctuation

that violates ∇ · B = 0, which is eliminated by imposing the proper initial condition that

∇·B = 0. At lower kz in the MHD plots in Figure 4, it is the slow mode that is destabilized

to become the MRI, as discussed in Balbus & Hawley (1998).

Turning next to the collisionless limit in Figure 4, there are two roots plotted in addition

to the three “MHD-like” modes; this is because the single pressure equation of MHD is

replaced by separate equations for the parallel and perpendicular pressure, so that there are

now two entropy-like modes, both of which have non-zero frequencies but which are also
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strongly damped by collisionless heat conduction (which is neglected in MHD).3

The fast, Alfvén, and slow waves in the collisionless calculation can again be identified in

order of descending (real) frequency at high kz. At lower kz, one of the slow modes becomes

destabilized to become the MRI, as in MHD. Unlike in MHD, however, the fast magnetosonic

waves are strongly Landau damped since the resonance condition ω ∼ k‖c0 is easily satisfied.

In addition, it is interesting to note that both the shear Alfvén and slow waves have some

collisionless damping at the highest kz used in this plot, though the damping will approach

zero for very high kz. In a uniform plasma the shear Alfvén wave is undamped unless its

wavelength is comparable to the proton Larmor radius or its frequency is comparable to the

proton cyclotron frequency (neither of which is true for the modes considered here). By

contrast, the slow mode is strongly damped unless k⊥ � k‖ (e.g., Barnes 1966; Foote &

Kulsrud 1979). The damping of small kz shear Alfvén waves in Figure 4 is due to the fact

that our background plasma is rotating so the uniform-plasma modes are mixed together.

Thus the well-known dissipation of the slow mode by transit-time damping also leads to

damping of what we identify as the shear Alfvén wave (based on its high kz properties).

6. Summary and Discussion

In this paper we have extended the linear axisymmetric kinetic magnetorotational in-

stability (MRI) calculation of QDH to include the effect of collisions. The MHD limit is

recovered when the mean free path is short compared to the MRI wavelength, i.e., ν � k‖c0,

with a fairly smooth transition between the collisionless and collisional regimes. Interest-

ingly the collisionless MRI results hold not only if ν � ω, but even when ω � ν � k‖c0.

This intermediate regime can exist in β >∼ 1 plasmas because the MRI growth rate is slow

compared to the sound wave frequency, ω ∼ k‖vA = k‖c0

√

2/β � k‖c0.

If we consider the application of our results to accretion flows, the collisionless limit will

be applicable so long as ν/Ω <∼
√

β. This condition is amply satisfied for proton-proton and

proton-electron collisions in all hot radiatively inefficient accretion flow models, suggesting

that the collisionless limit is always appropriate. However, high frequency waves such as

3We should point out that while our equations using the Snyder et al. (1997) 3+1 Landau-fluid closure

approximations have 8 eigenfrequencies, the equations using the more accurate 4+2 Landau-fluid closure

approximations have 10 eigenfrequencies, with 2 additional strongly damped roots. If the exact kinetic

response were used, one would find an infinite number of strongly damped eigenmodes because the Z(ζ)

function is transcendental. These strongly damped modes are related to “ballistic modes” and transients in

the standard analysis of Landau damping.
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ion-cyclotron waves can isotropize the proton distribution function and thus provide an

effective “collision” term crudely analogous to that considered here. It is difficult to estimate

the importance of this process (e.g., whether its effective collision frequency is >∼ Ω
√

β)

because we don’t know to what extent high frequency waves will be excited in the accretion

flow. They are probably not significantly excited by the underlying MHD turbulence that

drives accretion since this maintains low frequencies throughout the turbulent cascade (see

Quataert’s 1998 discussion based on Goldreich & Sridhar 1995). High frequency waves may,

however, be excited by shocks, reconnection events, or velocity space anisotropies.

One might anticipate that the linear differences between the collisionless and collisional

MRI highlighted here and in QDH will imply differences in the nonlinear turbulent state in

hot accretion flows (see, e.g., Hawley & Balbus 2002; Igumenshchev et al. 2003 for MHD

simulations of such flows). Not only are there differences in the linear growth rates of the

instability that drives turbulence, but the spectrum of damped modes is also very different.

In particular, in the kinetic regime there exist modes at all scales in |k| that are subject to

Landau/Barnes collisionless damping, while in the MHD regime the only sink for turbulent

energy is due to viscosity/resistivity at very small scales (very high |k|). Indeed, as we have

shown, even long wavelength Alfvén waves can be damped by collisionless effects because

of the mixture of uniform-plasma modes in the differentially rotating accretion flow (§5 and

Fig. 4). Whether these differences are important or not may depend on how efficiently

nonlinearities couple energy into the damped modes. These could modify the nonlinear

saturated turbulent spectrum (e.g., the efficiency of angular momentum transport) or the

fraction of electron vs. ion heating (the heating may also be anisotropic), which in turn

determine the basic observational signatures of hot accretion flows (the accretion rate and

the radiative efficiency). One approach for investigating nonlinear collisionless effects would

be to extend existing MHD codes to include anisotropic pressure, the Snyder et al. (1997)

fluid closure approximations for kinetic effects, and the BGK collision operator considered

here. By varying the collision frequency, one can then scan from the collisionless kinetic to

the collisional MHD regime, and assess any differences in the nonlinear turbulent state.
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A. Closure for high collisionality: |ζ | � 1

For |ζ | � 1, Z (ζ) ≈ −1/ζ − 1/2ζ3 − 3/4ζ5, R ≈ −1/2ζ2 − 3/4ζ4, 1 + 2ζ2R ≈ −3/2ζ2 −
15/4ζ4, Z − 2ζR ≈ 1/ζ3 + 3/ζ5. Equation (26) then becomes

δn

n0

− δp⊥
p0

= −δB

B0

(

1 +
1

2ζ2

)

− ζ2

ζ

(

1 +
1

2ζ2

)(

δT

T0

− δB

B0

)

. (A1)

Assuming |ζ1/ζ2| � 1 (a high collisionality limit ω � ν) and using the binomial expansion

we get

δn

n0

− δp⊥
p0

= −
{

1 − ζ1

ζ2

+
1

ζ2

2

(

1

2
+ ζ2

1

)

− ζ1

ζ3

2

(

1

2
+ ζ2

1

)}(

ζ1

ζ2

δB

B0

+
δT

T0

)

. (A2)

To the lowest nonvanishing order one gets

δn

n0

ζ1

ζ2

− δp⊥
p0

(

1

3
+

2

3

ζ1

ζ2

)

+
δp‖
p0

(

1

3
− ζ1

3ζ2

)

= −ζ1

ζ2

δB

B0

. (A3)

Expanding equation (27) gives

−δn

n0

(

3

2ζ2
+

15

4ζ4

)

+
δp‖
p0

(

1

2ζ2
+

3

4ζ4

)

= −δB

B0

(

1

ζ2
+

3

ζ4

)

+

(

δB

B0

− δn

n0

+
δT

2T0

)

ζ2

(

1

ζ3
+

3

ζ5

)

. (A4)

This preprint was prepared with the AAS LATEX macros v5.0.
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Again using the binomial expansion for |ζ1/ζ2| � 1 we get

δn
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. (A5)

The lowest order solution is

−3ζ1

2ζ2

δn

n0

+

(

1

3
− ζ1

2ζ2

)

δp‖
p0

+

(

−1

3
+

ζ1

ζ2

)

δp⊥
p0

= −ζ1

ζ2

δB

B0

. (A6)

We shall expand the parallel and perpendicular pressure perturbations as δp⊥ = δ0p⊥ +

ζ1/ζ2δ
1p⊥+(ζ1/ζ2)

2δ2p⊥+... and δp‖ = δ0p‖+ζ1/ζ2δ
1p‖+(ζ1/ζ2)

2δ2p‖+... From equations (A2)

and (A5) one gets δ0p‖/p0 = δ0p⊥/p0 = 5δn/3n0 for the lowest order, and (δp⊥− δ1p‖)/p0 =

3δB/B0 − 2δn/n0. To the next order we can expand the solution as

δp‖
p0

=
5δn

3n0

+
ζ1

ζ2

δ1p‖
p0

+

(

ζ1

ζ2

)2 δ2p‖
p0

, (A7)

δp⊥
p0

=
5δn

3n0

+
ζ1

ζ2

(
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+ 3
δB

B0

− 2
δn

n0

)

+

(
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ζ2

)2
δ2p⊥
p0

. (A8)

To the next order in ζ1/ζ2 in equation (A2) one gets

− 1

2ζ2

1

δn

n0

+
1

2

δ1p‖
p0

+
1

3

(

δ2p‖
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− δ2p⊥
p0

)

= 0. (A9)

To the next order in equation (A5) we get
(

2 +
1

3ζ2

1

)

δn

n0

− δ1p‖
p0

+
1

3

(

δ2p‖
p0

− δ2p⊥
p0

)

=
3δB

B0

. (A10)

Equations (29) and (30) follow from equations (A9) and (A10).

B. Closure for low collisionality: |ζ | � 1

This regime is useful for low collisionality ν � k‖c0 and high β, where the MRI is low

frequency as compared to the sound wave frequency. Using the asymptotic expansion for

|ζ | � 1, Z (ζ) ≈ i
√

π (1 − ζ2) − 2ζ and R (ζ) ≈ 1 + i
√

π − 2ζ2, we simplify equation (26) to

get
δn

n0

− δp⊥
p0

=
δB

B0

ζ
(

i
√

π − 2ζ
)

+

(

δT

T0

− δB

B0

)

ζ2

(

i
√

π − 2ζ
)

. (B1)
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The lowest order term in ζ gives δp⊥/p0 = δn/n0. Let δp⊥/p0 ≈ δn/n0 + ζδ1p⊥/p0. To the

next order one gets

ζ
δ1p⊥
p0

= −i
√

πζ
δB

B0

+ i
√

πζ2

δB

B0

= −i
√

πζ1

δB

B0

. (B2)

Therefore to second order in ζ , δp⊥/p0 ≈ δn/n0 − i
√

πζ1δB/B0 + ζ2δ2p⊥/po. On using the

asymptotic formula for Z and R in equation (27), one gets
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1 + i
√

πζ
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= −i
√
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δB
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(
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π − 4ζ
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(

δn
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− δB
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)

. (B3)

To the lowest order one gets δp‖/p0 = δn/n0, so let δp‖/p0 ≈ δn/n0 + ζδ1p‖/p0. To the next

order,

ζ
δ1p‖
p0

= −i
√

πζ1

δn

n0

+ i
√

πζ1

δB

B0

. (B4)

Therefore through second order δp‖/p0 ≈ δn/n0 + i
√

πζ1 (δB/B0 − δn/n0) + ζ2δ2p‖/p0. The

comparison of the terms of the order ζ2 in equation (26) give

ζ2
δ2p⊥
p0

= 2ζ1ζ
δB

B0

− π

3
ζ1ζ2

(

δB

B0

+
δn

n0

)

, (B5)

and the terms of the order ζ2 in equation (27) give

ζ2
δ2p‖
p0

=

(

4ζ1ζ2 − πζ2

1
− 7π

6
ζ1ζ2

)

δn

n0

+
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πζ1ζ − π

6
ζ1ζ2 − 2ζ2 − 4ζ2ζ

) δB

B0

. (B6)

From equations (B5) and (B6) the asymptotic expansion in equations (31) and (32) follow.
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Fig. 1.— Growth rates of the MRI as a function of kR/kz for different collision frequencies;

βz = 104 and (a) Bφ = 0, (b) Bφ = Bz. For ν/Ω ≥ 104 the growth rates are very close

to the MHD values, while for ν/Ω ≤ 102 they are quite similar to the collisionless limit.

The enhancement of the growth rate in the collisionless regime for small kR is the result of

pressure anisotropy.
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Fig. 2.— Growth rates of the MRI as a function of kz for different collisionalities.
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Fig. 3.— Variation of the MRI growth rate with collisionality for kR = 0, Bφ = Bz (top
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Fig. 4.— The real and imaginary parts of the mode frequency as a function of kz using

collisionless Landau fluid closures (a,b) and MHD (c,d) are shown (ν = 0, kRvAz/Ω = 0.5,

βz = 10, Bφ = 0).


