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Abstract

We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem and
its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve from the
particle distribution function advance, has previously been found to work well for certain plasma kinetic problems involving
1 spatial and 2 velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem we find
a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affects some
other algorithms, such as a partially implicit Adams—Bashforth algorithm, where the parallel motion opgdgtaris treated
implicitly and the field terms are treated with an Adams—Bashforth explicit scheme. Fully explicit algorithms applied to all
terms can be better at long wavelengths than these ADI or partially implicit algorithms.
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1. Introduction

Edge plasmas are known to play a critical role in tokamak confinement. A complete model of fusion edge plasma
turbulence requires a full gyrokinetic description for all ions and electrons to accurately capture the large range of
spatial scales due to the high degree of variation in the collisionality across the edge region. While computations
of the electrostatic gyrokinetic equation with adiabatic electrons can be performed with straightforward numerical
schemes, the inclusion of kinetic electrons and electromagnetic effects has been numerically challenging due to the
smaller length scales and faster time scales associated with the fast parallel electron dynamics relative to the modes
of interest. Furthermore, for edge turbulence codes, the existence of an Alfvén wave in {hietime/scrape-off
region, where the wave is even faster than the thermal electron motion, causes most standard explicit algorithms to
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need very small time steps for numerical stability. A semi-implicit or fast implicit algorithm that could use larger
time steps, without excessive computational overhead, would thus be advantageous.

Various hybrid methods have been studied for extending Lagrangian particle-in-cell (PIC) gyrokinetic codes
to include kinetic electrons and fully electromagnetic dynamics [5€&] and references therein). Recent break-
throughs in the PIC approach to electromagnetic gyrokinetics have been achieved via careful treatment of cancel-
lations that should occur in the magnetic potential field equdtnin this paper we focus on algorithms useful
for Eulerian codes (where these cancellations are straightforward to ensure and are in fact automatic in some
formulations). Eulerian codes are being intensively used for nonlinear electromagnetic gyrokinetic simulations.

Eulerian/continuum codes use finite difference and/or spectral methods on a discrete grid. While there are in-
teresting issues involved in various choices of spatial discretization of the gyrokinetic edafigrhere we will
focus on the time-advancement algorithm and will just Fourier transform in the spatial directions. Many Eulerian
codes use explicit or semi-implicit time-stepping algorithms. For example, the GENE code, which has been useful
for studying various regimes of drift-Alfvén and ETG turbuleri8g uses an explicit Lax—Wendroff finite dif-
ference technique for the linear terms with a multi-dimensional, second-order upwind method for the nonlinear
terms[9]. Other explicit algorithms for the linear terms in GENE have recently been st{lie@ihe initial algo-
rithm of the semi-global GYRO codé] was a fully explicit, 5 stage, fourth-order Runge—Kutta scheme. However,
this algorithm was found to be numerically unstable at sthali; even at time steps well below the electron ad-
vective Courant limit ¢ Ar/A; < 1) since it was mathematically connected with the electrostatic Alfvén branch.
Recent implementation of a second-order Implicit—Explicit Runge—Kutta splitting scheme in GMR@sing
precomputed plasma response matrices for the parallel dynamics (a variant of GS2’s approach) has yielded im-
proved stability by naturally cutting off high frequency oscillations, while still asymptotically preserving accuracy
in the stiff limit, unlike some higher-order splitting schemes. The Eulerian flux tube-based GS§¢htjavas
the first implementation of the fully electromagnetic, nonlinear 5D gyrokinetic equations including trapped and
passing particle dynamics. It employs a fully implicit treatment of all of the linear terms (parallel dynaspics,
diamagnetic terms, and magnetic drifts), and thus has no time restrictions on stability in the linear limit. Of course
there is a stability limit from the explicit treatment of the nonlinear terms, but the implicit treatment of the linear
terms is still a significant advantage because they contain high frequency waves that do not interact much with
the turbulence of interest but still need to be treated in a numerically stable way. While these various Eulerian
gyrokinetic codes have been quite successful, there is some overhead in the precomputation of the plasma respon:
implicit matrices, so there is interest in exploring faster semi-implicit algorithms.

Recently, an Alternating Direction Implicit (ADI) algorithm developed by Kupfer efi#l] has been considered
for kinetic edge microturbulence simulations. This two-step scheme splits the treatment of the parallel advection
terms from the treatment of the electric field acceleration terms, treating them implicitly on alternating steps. This
method has the advantage of avoiding the set up of large plasma response matrices needed for an unsplit implici
treatment of the linear gyrokinetic terms. Kupfer successfully used this ADI algorithm for a kinetic equation for
electrons with 1 spatial dimension (in the parallel direction) and 2 velocity dimensions, including collisions with
fixed Maxwellian background ions and imposing a quasineutrality constraint. While this model is useful for under-
standing aspects of scrape-off layer plasmas, the equations used did not contain the Alfvén wave dynamics of the
full gyrokinetic equation, which would be needed for a complete 3D simulation of edge plasmas.

ADI algorithms are often useful in solving PDEs where an operator that is difficult to invert can be split into two
operators that are much simpler to invert. ADI schemes often have the property that they are absolutely stable for
arbitrarily large time step, which makes them relatively robust (though of course there are accuracy limits on the
time step). For a general problem of the fodnrydr = (L1 + L)y, whereL1 and L are arbitrary split linear oper-
ators, stability of an ADI scheme is guaranteed ifand L, are diagonalizable and if all of the eigenvalued.af
andL» satisfydi(ry, ;) <0 and®i(rz ;) <0[13]. Thus, in practice, application of ADI schemes to many physical
problems has been successful. For example, an ADI scheme applied to a parabolic problem with two spatial vari-
ables (such as the 2D heat conduction equation) can easily be shown to be absolute]§4thbjd-urthermore,
stabilizing correction schemes, also a class of implicit schemes of alternating direction, can be used to achieve ab
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solute stability for purely parabolic problems of higher dimension§lib} as well as for some advection—diffusion
and advection—reaction equatidas)].

In this paper we use a simple kinetic Alfvén wave limit of the gyrokinetic equation to test an ADI algorithm.
We find the somewhat surprising result that not only does the ADI algorithm for this equation have a stability limit
on the time step, but also that stability limit can be quite short for long wavelength modes, even worse than some
fully explicit algorithms. This problem exists even at higlgewhere the Alfvén wave is slower than the electrons.
Thus one needs to look at other options for faster gyrokinetic algorithms.

2. Kinetic Alfvén wave test problem

As a starting point, we consider the test problem of a shear kinetic Alfvén wave atismallThus, for the
simplified starting equations, we consider the gyrokinetic equ#tiéal8]in the linear, collisionless limit in slab
geometry with a uniform magnetic field and uniform background Maxwellian particles. For further simplicity, we
also neglect the kinetic equation for ion perturbations, assumifg k| v;;. Thus, the only ion contribution to
perturbations will be through the ion polarization density. With these assumptions, the kinetic and field equations
become:
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Here, f,(z, v, 1) is the electron distribution function,andv; are the position and velocity along the magnetic field,
@ is the electrostatic potentiadi; is the parallel component of the perturbed magnetic vector poteptia,the
thermal ion gyroradius]y; and Tg. are the ion and electron temperatures, &hd is a Maxwellian distribution

for the background electrons. For simplicity in this analysis, we also assum&ithatl (Z, = —1). These or
very similar equations have been used previously to study kinetic Alfvén waves and various numerical methods
[2,5,19-21]

Using a Fourier transform in time and space, jie= f.e~**'*i12 we find that
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Using this result in the field equations and expanding to lowest non-trivial order in the limitsfkv,., we

obtain the dispersion relation
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wherep, = 8rnoTo./B?, p? = c2/£2.; is the sound-based gyroradiug,= To./m; is the sound speed, and =
(2/5,,,,)cs2 is the Alfvén speed. Note that this is just the dispersion relation for a simple shear Alfvén wave in a
straight magnetic field, with some finite gyroradius corrections. (A gyrofluid version of this derivation can be
found in[19].) If B, < 2m,./m;, such as in regions of very low density edge and scrape-off plasmas, then the
Alfvén wave is faster than the thermal electron speed. A stable treatment of this wave in this regime is important.
However, consideration of these equations in the pure electrostatic limiB{i-e. 0) yields the high frequency
electrostatic shear Alfvén way21], i.e.? = kv, /(K p?). Thus, to avoid this excessively high frequency mode
atlowk , itis useful to include magnetic perturbations fretp, as we do here.
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Following the approach used in most existing continuum gyrokinetic codes (such as the GENB]cale
the GYRO codd6]), we eliminate thed A, /9¢ term from the electron kinetic equation by definigg= f., +

Zg‘ Fured Aj. (Other codes, such as G$Z, which uses a linearly fully implicit algorithm, retain thoed /o1

c

term, though both formulations are equivalent.) With this substitution, the equations for our kinetic Alfvén wave
test problem become:

Bge Bge Z e 1P v 8A||
- _ 1}, 6
ot o 9z Toe g Me<82 c 0z ©)
Z;
ﬂk @ = Zee/dgv Ze> (7)
Toi
47 (Z,€)ng 4
<kL =z —_ = A= —Zee/d3v V) &e- (8)
M, c

The equivalent standard normalized equations are givAppendix A

3. Implementing and testing an ADI algorithm

Kupfer's ADI algorithm as applied to the kinetic equation is a two-step algorithm: the first step is implicit in the
parallel advection term and explicit in the field terms, while the second step is explicit in the parallel advection and
implicit in the fields. (This is equivalent to a standard view of ADI as an “alternating direction” approach, since the
electric field term represents motion in the velocity directiorizof) phase space.) Thus, the discrete equations
are:
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Using the ansatz’*IZ for the perturbed quantities, we combine E(.and (10)to express the time advanced
distribution functiong”** in terms of the fields:
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Defining a complex amplification factor per time stepuas ¢ ~“2! and using the further ansatz for all fields that
g" =a"g.(v), we find that
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wherew is an effective frequency defined such tlﬁt} =—iwAt/2,0r

_1-ioAt)2

= " | 15
1+iwAt/2 (15)

For realo, |a| = 1 and perfect stability with no artificial damping is obtained, even for arbitrarily large time step.
Absolute stabilityla| < 1 also occurs for all modes with I@) < 0. However, we will find that if the time step is
too large, then the numerical dispersion relation for the ADI algorithm has roots with) I 0, which correspond
to |a| > 1 and thus a numerical instability.

Using the result of Eq(14) in the field equations and again expanding to lowest non-trivial ordéyin /@,
we find that
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Note that this discrete version of the dispersion relation agrees with the analytic result (&) Eg.the limit
At — 0. In the electrostatic limit§. — 0), the dispersion relation becomes

(17)

2
= (k|vre)2[ 1+ 3(kjvieAt/2) }
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Thus, for both the electrostatic limit and the general electromagnetic case @ the algorithm is numer-
ically unstable ifAt/2 > |k“’5 |. Figs. 1 and Zhow plots ofw and|a| as a function of the temporal resolution
kjv;e At for the right-moving wave for a set of standard parameters, showing the onset of the numerical insta-
bility at |kjvieAt| ~ |2k ps| ~ 0.06. This result implies that, with this algorithm, the electrostatic shear Alfvén
wave must be fully resolved for stability in both the electrostatic and electromagnetic limits. Overall, this can be a
potentially severe limitation for numerical simulations employing this type of ADI algorithm.
While the results thus far have focused on the limit of i@y/2) (m; /m.), where the Alfvén wave is faster than
the electron thermal speed and expansiong;in./w <« 1 could be done, we have also analyzed the numerical
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Fig. 1. Normalized mode frequency vs. normalized time step for the kinetic Alfvén wavemt= 0.03 and(B./2)(m; /m.) = 0.1 using an
ADI algorithm.
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Fig. 2. Amplification factor vs. normalized time step for the kinetic Alfvén wavé gbs = 0.03 and(B./2)(m;/m.) = 0.1 using an ADI
algorithm.

stability of the ADI algorithm more generally, including the regime of high/2)(m;/m.), where the Alfvén

wave is slower than the thermal electron speed. This analysis was performed via consideratiorhebiater
generalized Lorentzian approximation (i€ ~ (1 + 3)~") for the parallel component of the Maxwellian in

Eq. (14). It can be shown that > 3 is necessary for convergence of the velocity integrals over the Maxwellian
terms in the field equations. For consistency in the transformation of the field equations upon elimination of the
dA) /ot term, we have added normalization constants to the Lorentzian approximation to ensure that the density
and pressure integrals are exact. Specifically, we assume that

n0e Co
Fye(v)) =~ , (18)
N 21 vge 1+ Cl%)n
where
_ TmIY2(n —3/2)
0T T2 —1/2) (19)
_ T(n—3/2)
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For this analysis, a third-order Lorentzian approximation was used and the field equations ugity) &ith
Eqg. (18) as an approximation fog, were solved numerically using Map[g2] for given values oft, p;, and
(B./2)(m;/m,). (If an exact Maxwellian is used, the integrals cannot be evaluated analytically but can be written in
terms of the plasma dispersi@nfunction. With a LorentziarF. (v)), Maple is able to do the integrals analytically,
resulting in essentially a multipole approximation to théunction. Alternatively, one can interpret the resulting
dispersion relation as exact for an equilibrium distribution function given by this generalized Lorentzian, and so it
is a physically realizable exact dispersion relation. Since Alfvén waves should be physically stable even with this
Lorentzian equilibrium according to the Penrose stability criterion, this provides a useful test of the stability of
numerical algorithms.)
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Fig. 3. Normalized mode frequency vs. normalized time step for the kinetic Alfvén wavemt= 0.03 and(8./2)(m;/m.) = 10 using an
ADI algorithm.
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Fig. 4. Amplification factor vs. normalized time step for the kinetic Alfvén wavé ab; = 0.03 and(B./2)(m;/m.) = 10 using an ADI
algorithm.

The result, demonstrated kigs. 3 and 4surprisingly also shows a severe stability limit on the ADI algorithm
of |kjve At] ~ |2k ps| ~ 0.06, i.e. the same stability criterion as found in fhe= 0 limit in Eq. (17), even though
the Alfvén wave is slower than the electron thermal velocity at §&112) (m; /m.). A time step ok v, At = 0.06
corresponds taAr = 0.02, so both the parallel electron motion time scale and the actual mode frequency would
appear to be very well resolved, yet still there is a numerical instability.
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4. Simpler illustration of the difficulties

Here we further illustrate the numerical difficulties of an ADI algorithm by an equivalent application of the
algorithm to a Landau-fluid approximation to the kinetic equation. This reduces the operators involvedto 2
matrices. This limit is useful for understanding why the ADI algorithm in this case has a stability limit at all, unlike
other applications where an ADI algorithm is absolutely stable.

Integrating the normalized Eq§A.1)—(A.3) over velocity and defining the perturbed dengity [ dv; g, the
perturbed fluid velocity: = [ dv| g.v, and the perturbed pressyse= [ dy gevﬁ leads to the fluid equations:

dp _ du 94y (21)
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M__Lo7 22
ot 0z + 0z (22)
Ko =—p, (23)
(k% + B)A; =—Pu. (24)

Assuming a general closure approximation of the fordp/dz = —I'0p/dz — vik|lu (see[23] and references
therein for a discussion of closure approximations that model kinetic effects such as Landau-damping) and Fourier
transforming in space leads to
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Denoting the first matrix on the RHS Wy, which represents the spatial propagation operator, and the second
matrix on the RHS by, which represents the electric field term, and denoting the state vieet@p, u), this can
be written as

-

L — Py +Ey. 28
” y +Ey (28)

Applying the ADI algorithm to this in an equivalent way as used in E@)s-(10) where the electric field is explicit
on the first half step while all other terms are implicit and then vice versa on the next step, leads to
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Combining these two steps of the ADI algorithm gives
Ar \7t At At \7t At
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In common ADI cases where the operators being split are diagonalizable and have eigenvalues with zero or
negative real part, the ADI algorithm is absolutely stable for arbitrarily large time step (though of course there are
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accuracy restrictions), becauae appears in the numerators of the RHS of this equation. Consider our case firstin
the electrostati@ = 0 limit. Then the operator corresponding to the electric filis not diagonalizable because

its only non-zero entry is off-diagonal. This operator has the propertyethat 0 for alln > 1 (i.e.E is a nilpotent
matrix). This means thatl — 4! > E)” 1- =1+5 AL E and what appeared to be an implicit step was actually equivalent
to an explicit step. Thus the ADI aIgorlthm for this case will be unstable if the time Ateig too big. (In fact,
analysis of the eigenvalues of the amplification matrix corresponding t(8Eyfor this case recovers the onset of

a numerical instability ajicj At| ~ |2k |, as found for the kinetic equations.) For the more general eIectromagnetic
case, thouglfE is diagonalizable for nonzerp, the eigenvalues of E are given byr2 = (k”/kL)z/S’/(k2 + A,

and the positive branch gives an instability. This is in contrast to the behavior of the unsplit ofefraigrwhich

has negative values af (in thev = 0 limit for simplicity), which correspond to stable oscillations.

5. Comparison with Adams—Bashforth algorithms

For comparison, we perform a similar analysis of the kinetic Alfvén wave test problem using an Adams—
Bashforth algorithm. We first consider a partially implicit scheme, in which the parallel derivative term is treated
implicitly and time-centered while the field terms are treated fully explicitly with a second-order Adams—Bashforth
algorithm. Thus, the single-step discrete kinetic equation becomes

1
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Again using the ansat*1? and defininge” = a" g, (v), we find that
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whereaw is again defined in agreement with Ef5).

We again examine the stability of the algorithm in both the low and Wg&2) (m; /m.) limits. For the low
(Be/2)(m;/m,.) analysis, substitution of E¢33)into the field equations and expansion to lowest ordéijin, /&
yields a fourth-order complex equation &t which we solve numerically with Maple using our standard para-
meters. Analysis in the higtB./2)(m; /m.) limit is likewise performed as before, using a third-order Lorentzian
approximation for the parallel component of the Maxwellian tern38) and using Maple to numerically solve
the field equations with this approximation.

Figs. 5 and 6show the results of the analysis for the kinetic Alfvén wave. Though there is a slight artificial
decay for both the low and higtg./2)(m; /m.) cases, the numerical instability that we saw for the ADI scheme
does not occur in either regime for these roots. However, the discrete dispersion relation contains multiple roots
and these plots are for the eigenmode corresponding to the physical Alfvén wave only. Furthermore, an Adams—
Bashforth algorithm introduces unphysical “computational modes” which must be also damped or there will still be
a numerical instability. For both the low and high./2)(m;/m.) cases, the physical modes found in the analysis
are numerically stable over the rangeof studied. These include the right and left moving kinetic Alfvén waves
and a heavily damped entropy mode related to Landau damping (there are 3 physical roots of the analytic dispersion
relation for a third-order Lorentzian equilibrium). However, one of the computational mode becomes numerically
unstable. The amplification factor as a function of normalized time step for this mode is shdvign i for
k1 ps = 0.01, 0.03 (our standard case), and 0.05, for b@tty2) (m;/m.) = 0.1 and(B./2)(m;/m.) = 10. The
onset of the numerical instability occurs|&afv,. At| ~ |k ps|, as indicated by the rapid rise in the modulus of the
amplitude above 1. Thus, the partially implicit Adams—Bashforth algorithm is subject to a stability limit which is
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Fig. 5. Normalized mode frequency vs.

normalized time step for the kinetic Alfvén wawg @t = 0.03 using a partially implicit
Adams—Bashforth algorithm.
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Fig. 6. Amplification factor vs.

normalized time step for the kinetic Alfvén wave gb; = 0.03 using a partially implicit Adams—Bashforth
algorithm.

twice as strict as that found for the ADI algorithm. Though it is the physical mode which becomes numerically
unstable for the ADI algorithm, while just the computational mode (which is introduced solely as a result of
the numerical discretization) becomes unstable for the partially implicit Adams—Bashforth algorithm, the more
severe stability limit for the partially implicit Adams—Bashforth algorithm makes it highly unpractical for edge
gyrokinetic simulations. We have also tried a partially implicit algorithm using a third-order Adams—Bashforth for
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Fig. 7. Amplification factor vs. normalized time step for the computational mode using a partially implicit Adams—Bashforth algorithm.

the electric field terms and found that it had an even smaller stability limit on the time step than the second-order
Adams—Bashforth method.

For comparison, we also consider the stability of a fully explicit Adams—Bashforth algorithm. For this case, we
treat the parallel derivative operator term as well as the field terms with a second-order Adams—Bashforth scheme.
Using our usual ansatz, we find that

. Ze.e PO TN kv
go=125 FMe(cb - —'m)ii, (34)
Toe ¢ o—ky

where here the effective frequency is defined such%@% = —icf)At/Z.
The result of Eq(34) has the same form as the exact time continuous result (i.e. the equivalent(d Ear.
our starting equations) and is thus surprisingly not subject to the same stability restricfigpaz| < |k1 ps| as
the ADI and partially-implicit Adams—Bashforth algorithms for this problem.
As is well known, a second-order Adams—Bashforth algorithm does induce a small amount of artificial growth.
The amplification factor for this case is given by

a= }[1— Ei@mi\/l—ic%m— g(éum)z] (35)
2 2 4
as shown irFig. 8for the low and high8./2)(m; /m.) cases. We show both the physical Alfvén mode, for which
la] — 1 in the limit of Az — 0, and the unphysical computational mode, for whigh— 0 in the limit of Az — 0.
These levels of artificial growth would be quite adequate for many gyrokinetic turbulence simulations. One just
needs to keep the time step sufficiently small so that this artificial amplification is small compared to physical
dissipation mechanisms, or in turbulent systems, small compared to the rate at which nonlinear interactions take
energy out of undamped modes and transfer energy to damped modes. Overall, this analysis suggests that ever
a second-order purely explicit Adams—Bashforth algorithm can be better at long wavelengths than the ADI or
partially implicit Adams—Bashforth algorithms explored here.

By going to an even higher-order explicit algorithm, one can completely eliminate artificial growth over a range
of time step, since the stability boundaries in the comple@x plane are well knowii24,25]. Often a third-order
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Fig. 8. Amplification factor vs. normalized time step for the physical mode and the computational mtode at 0.03 using a fully explicit
Adams-Bashforth algorithm.

Adams—Bashforth (AB3) or a fourth-order Runge—Kutta (RK4) algorithm is chosen to provide a good balance
between maximum stable time step and computational cost. On the eeds$, the maximum stable time step for
AB3 is |w|At = 0.72, while for purely damped modes the maximum stable time step for AB3|ist = 0.55.

The stability limit of a fourth-order Runge—Kutta algorithm is comparable (after dividing by 4 to account for the 4
intermediate steps that make up a full step of a fourth-order Runge—Kutta algorithm), equivademtste- 0.71

for realw, and|w|At = 0.70 for purely damped modes. The dispersion relation that follows from the third-order
Lorentzian in Eq(18) has 3 roots. Fo(8,/2)(m;/m.) = 0.1 andk, p; = 0.03, these roots are = £3.2k v,

(the Alfven waves) and = —5.2ikjv;. (a heavily damped entropy mode related to Landau damping). This heavily
damped mode would set a stability limit for an RK4 algorithntpf;. Ar = 0.14, 2.2 times better than the stability
limit of the ADI algorithm. For lowerk; modes, a fully explicit RK4 or AB3 algorithm would be even better in
comparison to the ADI and patrtially implicit algorithms studied here.

6. Discussion and summary

Though ADI algorithms applied to many problems have the nice property that they are absolutely stable for
arbitrarily large time step, and though Kupfer's ADI algorithm has previously worked for a related plasma kinetic
problem, we have found that the implementation in a gyrokinetic problem yields a severe time step restriction. It
is somewhat surprising not only that the ADI algorithm for this problem has a stability limit, but also that this
stability limit is so short, even worse than some fully explicit algorithms.

Specifically, for a test problem of a shear kinetic Alfvén wave at sigd;, the ADI algorithm is numerically
unstable forAr/2 > |k ps/(kjvse)| in both the low(B,/2)(m;/m.) regime and the higlig,./2) (m;/m.) regime,
where the Alfvén wave is slower than the electron thermal speed and all of the important dynamics would seem
to be well resolved. Furthermore, this stability problem is not unique to the ADI algorithm, as a partially implicit
Adams—Bashforth scheme yielded a restriction on the time step twice as low as the ADI algorithm for this problem.
A simple set of gyrofluid model equations was constructed to illustrate the source of the problems. In the simple
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electrostatic limit, one of operators used in the alternating implicit steps was nilpotent and was not diagonalizable,
so that what appeared to be an implicit step was actually equivalent to an explicit step.

Eventually, the best approach for kinetic edge microturbulence simulations might be a fully implicit algorithm
for the linear terms, perhaps employing preconditioned Krylov solvers from an advanced package such as PETSc
[26] or SUNDIALS[27]. A key to successful use of such iterative methods is a good preconditioner. As part of the
preconditioning, one might use precomputed plasma response matrices as used in the linearly fully implicit GS2
algorithm[7] or a similar approach used in GYH@)]. As a starting point short of these more complicated implicit
methods, one might use a fully explicit fourth-order Runge—Kutta algorithm. Though we have found severe stability
restrictions for a standard ADI algorithm and one form of a semi-implicit Adams—Bashforth algorithm, perhaps
there is some other variant of a semi-implicit algorithm for parallel dynamics that could be more successful.
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Appendix A

Egs.(6)—(8) provide a relatively simple problem with 1 spatial and 1 velocity coordinate that could provide a
very useful testbed for studying alternative gyrokinetic algorithms. With appropriate normalizations, these equa-
tions can be written as the following set of integro-differential equations:

08

age 0P 8A”
—oe€ =22 = Fye| — — vy —2 ), Al
ar TUIG, =M <8z Y1752 (A1)
k2o = —/dv” ge, (A.2)
(kT +B) A = —3/de V| &es (A3)

Whereki is normalized taZ; ,os2 andﬁ = (ﬁe/Z)Z—i. The electron thermal velocity,, has been normalized to unity,
so that the Maxwellian equilibrium i8y, = exp(—vﬁ/Z)/«/Zn. Because;i =2 /B, Eq.(5) becomes

2.2
o ki/B

1+k5/B

A more complete general comprehensive test of the numerical stability of an algorithm for this problem would

include a typical range of parameters, particularly= 0.01-10 ang8 = 0.1-10, and perhaps also the addition of
collisions in Eq.(A.1) to test the collisional component of the algorithm.

(A.4)
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