
c

and
from the
volving
e find

ts some

to all

plasma
ange of
utations
merical
ue to the
he modes
f
rithms to
Computer Physics Communications 172 (2005) 119–132

www.elsevier.com/locate/cp

A numerical instability in an ADI algorithm for gyrokinetics

E.A. Belli ∗, G.W. Hammett

Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA

Received 14 December 2004; received in revised form 25 May 2005; accepted 26 June 2005

Available online 8 August 2005

Abstract

We explore the implementation of an Alternating Direction Implicit (ADI) algorithm for a gyrokinetic plasma problem
its resulting numerical stability properties. This algorithm, which uses a standard ADI scheme to divide the field solve
particle distribution function advance, has previously been found to work well for certain plasma kinetic problems in
1 spatial and 2 velocity dimensions, including collisions and an electric field. However, for the gyrokinetic problem w
a severe stability restriction on the time step. Furthermore, we find that this numerical instability limitation also affec
other algorithms, such as a partially implicit Adams–Bashforth algorithm, where the parallel motion operatorv‖∂/∂z is treated
implicitly and the field terms are treated with an Adams–Bashforth explicit scheme. Fully explicit algorithms applied
terms can be better at long wavelengths than these ADI or partially implicit algorithms.
 2005 Elsevier B.V. All rights reserved.

PACS: 52.65.Tt; 52.65.-y; 52.35.Ra

Keywords: Gyrokinetics; ADI; Eulerian

1. Introduction

Edge plasmas are known to play a critical role in tokamak confinement. A complete model of fusion edge
turbulence requires a full gyrokinetic description for all ions and electrons to accurately capture the large r
spatial scales due to the high degree of variation in the collisionality across the edge region. While comp
of the electrostatic gyrokinetic equation with adiabatic electrons can be performed with straightforward nu
schemes, the inclusion of kinetic electrons and electromagnetic effects has been numerically challenging d
smaller length scales and faster time scales associated with the fast parallel electron dynamics relative to t
of interest. Furthermore, for edge turbulence codes, the existence of an Alfvén wave in the lowβ edge/scrape-of
region, where the wave is even faster than the thermal electron motion, causes most standard explicit algo
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need very small time steps for numerical stability. A semi-implicit or fast implicit algorithm that could use
time steps, without excessive computational overhead, would thus be advantageous.

Various hybrid methods have been studied for extending Lagrangian particle-in-cell (PIC) gyrokinetic
to include kinetic electrons and fully electromagnetic dynamics (see[1–3] and references therein). Recent bre
throughs in the PIC approach to electromagnetic gyrokinetics have been achieved via careful treatment o
lations that should occur in the magnetic potential field equation[4]. In this paper we focus on algorithms use
for Eulerian codes (where these cancellations are straightforward to ensure and are in fact automatic
formulations). Eulerian codes are being intensively used for nonlinear electromagnetic gyrokinetic simulat

Eulerian/continuum codes use finite difference and/or spectral methods on a discrete grid. While ther
teresting issues involved in various choices of spatial discretization of the gyrokinetic equation[5–7], here we will
focus on the time-advancement algorithm and will just Fourier transform in the spatial directions. Many E
codes use explicit or semi-implicit time-stepping algorithms. For example, the GENE code, which has bee
for studying various regimes of drift-Alfvén and ETG turbulence[8], uses an explicit Lax–Wendroff finite dif
ference technique for the linear terms with a multi-dimensional, second-order upwind method for the no
terms[9]. Other explicit algorithms for the linear terms in GENE have recently been studied[5]. The initial algo-
rithm of the semi-global GYRO code[6] was a fully explicit, 5 stage, fourth-order Runge–Kutta scheme. How
this algorithm was found to be numerically unstable at smallk⊥ρi even at time steps well below the electron a
vective Courant limit (v‖�t/�L � 1) since it was mathematically connected with the electrostatic Alfvén bra
Recent implementation of a second-order Implicit–Explicit Runge–Kutta splitting scheme in GYRO[10] using
precomputed plasma response matrices for the parallel dynamics (a variant of GS2’s approach) has yie
proved stability by naturally cutting off high frequency oscillations, while still asymptotically preserving acc
in the stiff limit, unlike some higher-order splitting schemes. The Eulerian flux tube-based GS2 code[7,11] was
the first implementation of the fully electromagnetic, nonlinear 5D gyrokinetic equations including trappe
passing particle dynamics. It employs a fully implicit treatment of all of the linear terms (parallel dynamiω∗
diamagnetic terms, and magnetic drifts), and thus has no time restrictions on stability in the linear limit. Of
there is a stability limit from the explicit treatment of the nonlinear terms, but the implicit treatment of the
terms is still a significant advantage because they contain high frequency waves that do not interact m
the turbulence of interest but still need to be treated in a numerically stable way. While these various E
gyrokinetic codes have been quite successful, there is some overhead in the precomputation of the plasma
implicit matrices, so there is interest in exploring faster semi-implicit algorithms.

Recently, an Alternating Direction Implicit (ADI) algorithm developed by Kupfer et al.[12] has been considere
for kinetic edge microturbulence simulations. This two-step scheme splits the treatment of the parallel ad
terms from the treatment of the electric field acceleration terms, treating them implicitly on alternating step
method has the advantage of avoiding the set up of large plasma response matrices needed for an unsp
treatment of the linear gyrokinetic terms. Kupfer successfully used this ADI algorithm for a kinetic equati
electrons with 1 spatial dimension (in the parallel direction) and 2 velocity dimensions, including collision
fixed Maxwellian background ions and imposing a quasineutrality constraint. While this model is useful for
standing aspects of scrape-off layer plasmas, the equations used did not contain the Alfvén wave dynam
full gyrokinetic equation, which would be needed for a complete 3D simulation of edge plasmas.

ADI algorithms are often useful in solving PDEs where an operator that is difficult to invert can be split in
operators that are much simpler to invert. ADI schemes often have the property that they are absolutely s
arbitrarily large time step, which makes them relatively robust (though of course there are accuracy limits
time step). For a general problem of the form∂y/∂t = (L1 +L2)y, whereL1 andL2 are arbitrary split linear oper
ators, stability of an ADI scheme is guaranteed ifL1 andL2 are diagonalizable and if all of the eigenvalues ofL1
andL2 satisfy�(λ1,j ) � 0 and�(λ2,j ) � 0 [13]. Thus, in practice, application of ADI schemes to many phys
problems has been successful. For example, an ADI scheme applied to a parabolic problem with two spa
ables (such as the 2D heat conduction equation) can easily be shown to be absolutely stable[14,15]. Furthermore,
stabilizing correction schemes, also a class of implicit schemes of alternating direction, can be used to ac
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solute stability for purely parabolic problems of higher dimensionality[15] as well as for some advection–diffusio
and advection–reaction equations[13].

In this paper we use a simple kinetic Alfvén wave limit of the gyrokinetic equation to test an ADI algor
We find the somewhat surprising result that not only does the ADI algorithm for this equation have a stabili
on the time step, but also that stability limit can be quite short for long wavelength modes, even worse tha
fully explicit algorithms. This problem exists even at higherβ where the Alfvén wave is slower than the electro
Thus one needs to look at other options for faster gyrokinetic algorithms.

2. Kinetic Alfvén wave test problem

As a starting point, we consider the test problem of a shear kinetic Alfvén wave at smallk⊥ρi . Thus, for the
simplified starting equations, we consider the gyrokinetic equation[16–18]in the linear, collisionless limit in slab
geometry with a uniform magnetic field and uniform background Maxwellian particles. For further simplici
also neglect the kinetic equation for ion perturbations, assumingω � k‖vti . Thus, the only ion contribution t
perturbations will be through the ion polarization density. With these assumptions, the kinetic and field eq
become:

(1)
∂fe

∂t
+ v‖

∂fe

∂z
= −Zee

T0e

v‖FMe

(
∂Φ

∂z
+ 1

c

∂A‖
∂t

)
,

(2)
(Zie)

2n0i

T0i

k2⊥ρ2
i Φ = Zee

∫
d3v fe,

(3)k2⊥A‖ = 4π

c
Zee

∫
d3v v‖fe.

Here,fe(z, �v, t) is the electron distribution function,z andv‖ are the position and velocity along the magnetic fie
Φ is the electrostatic potential,A‖ is the parallel component of the perturbed magnetic vector potential,ρi is the
thermal ion gyroradius,T0i andT0e are the ion and electron temperatures, andFMe is a Maxwellian distribution
for the background electrons. For simplicity in this analysis, we also assume thatZi = 1 (Ze = −1). These or
very similar equations have been used previously to study kinetic Alfvén waves and various numerical m
[2,5,19–21].

Using a Fourier transform in time and space, i.e.fe = f̂ee
−iωt+ik‖z, we find that

(4)f̂e = Zee

T0e

FMe

k‖v‖(Φ − ω
k‖cA‖)

ω − k‖v‖
.

Using this result in the field equations and expanding to lowest non-trivial order in the limit ofω � k‖vte, we
obtain the dispersion relation

(5)ω2 = k2‖v2
A

1+ 2
βe

me

mi
k2⊥ρ2

s

,

whereβe = 8πn0T0e/B
2, ρ2

s = c2
s /Ωci is the sound-based gyroradius,c2

s = T0e/mi is the sound speed, andv2
A =

(2/βe)c
2
s is the Alfvén speed. Note that this is just the dispersion relation for a simple shear Alfvén wav

straight magnetic field, with some finite gyroradius corrections. (A gyrofluid version of this derivation c
found in [19].) If βe < 2me/mi , such as in regions of very low density edge and scrape-off plasmas, the
Alfvén wave is faster than the thermal electron speed. A stable treatment of this wave in this regime is im
However, consideration of these equations in the pure electrostatic limit (i.e.βe → 0) yields the high frequenc
electrostatic shear Alfvén wave[21], i.e.ω2 = k2‖v2

te/(k
2⊥ρ2

s ). Thus, to avoid this excessively high frequency mo
at low k⊥, it is useful to include magnetic perturbations fromA‖, as we do here.
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Following the approach used in most existing continuum gyrokinetic codes (such as the GENE code[8] and
the GYRO code[6]), we eliminate the∂A‖/∂t term from the electron kinetic equation by definingge = fe +
Zee
T0e

FMe
v‖
c
A‖. (Other codes, such as GS2[7], which uses a linearly fully implicit algorithm, retain the∂A‖/∂t

term, though both formulations are equivalent.) With this substitution, the equations for our kinetic Alfvén
test problem become:

(6)
∂ge

∂t
+ v‖

∂ge

∂z
= −Zee

T0e

v‖FMe

(
∂Φ

∂z
− v‖

c

∂A‖
∂z

)
,

(7)
(Zie)

2n0i

T0i

k2⊥ρ2
i Φ = Zee

∫
d3v ge,

(8)

(
k2⊥ + 4π

c2

(Zee)
2n0e

me

)
A‖ = 4π

c
Zee

∫
d3v v‖ge.

The equivalent standard normalized equations are given inAppendix A.

3. Implementing and testing an ADI algorithm

Kupfer’s ADI algorithm as applied to the kinetic equation is a two-step algorithm: the first step is implicit
parallel advection term and explicit in the field terms, while the second step is explicit in the parallel advect
implicit in the fields. (This is equivalent to a standard view of ADI as an “alternating direction” approach, sin
electric field term represents motion in the velocity direction of(z, v‖) phase space.) Thus, the discrete equat
are:

(9)
1

�t/2

(
g

n+1/2
e − gn

e

) + v‖
∂g

n+1/2
e

∂z
= −Zee

T0e

v‖FMe

(
∂Φn

∂z
− v‖

c

∂An‖
∂z

)
,

(10)
1

�t/2

(
gn+1

e − g
n+1/2
e

) + v‖
∂g

n+1/2
e

∂z
= −Zee

T0e

v‖FMe

(
∂Φn+1

∂z
− v‖

c

∂An+1
‖

∂z

)
,

(11)
(Zie)

2n0i

T0i

k2⊥ρ2
i Φn+1 = Zee

∫
d3v gn+1

e ,

(12)

(
k2⊥ + 4π

c2

(Zee)
2n0e

me

)
An+1

‖ = 4π

c
Zee

∫
d3v v‖gn+1

e .

Using the ansatzeik‖z for the perturbed quantities, we combine Eqs.(9) and (10)to express the time advance
distribution functiongn+1

e in terms of the fields:

gn+1
e = 1− ik‖v‖�t/2

1+ ik‖v‖�t/2

[
gn

e − Zee

T0e

(ik‖v‖�t/2)FMe

(
Φn − v‖

c
An‖

)]

(13)− Zee

T0e

(ik‖v‖�t/2)FMe

(
Φn+1 − v‖

c
An+1

‖
)

.

Defining a complex amplification factor per time step asa ≡ e−iω�t and using the further ansatz for all fields th
gn

e = anĝe(v), we find that

(14)ĝe = Zee

T0e

FMe

(
Φ̂ − v‖

c
Â‖

)
k‖v‖

ω̂ − k‖v‖
(
1+ k‖v‖ω̂(�t/2)2),
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whereω̂ is an effective frequency defined such thata−1
a+1 ≡ −iω̂�t/2, or

(15)a = 1− iω̂�t/2

1+ iω̂�t/2
.

For realω̂, |a| = 1 and perfect stability with no artificial damping is obtained, even for arbitrarily large time
Absolute stability|a| � 1 also occurs for all modes with Im(ω̂) � 0. However, we will find that if the time step
too large, then the numerical dispersion relation for the ADI algorithm has roots with Im(ω̂) > 0, which correspond
to |a| > 1 and thus a numerical instability.

Using the result of Eq.(14) in the field equations and again expanding to lowest non-trivial order ink‖vte/ω̂,
we find that

(16)ω̂2 =
[

k2‖v2
A(k⊥ρs)

2(1+ 3(k‖vte�t/2)2)

( 2
βe

me

mi
k2⊥ρ2

s + 1+ 3(k‖vte�t/2)2)((k⊥ρs)2 − (k‖vte�t/2)2)

]
.

Note that this discrete version of the dispersion relation agrees with the analytic result in Eq.(5) in the limit
�t → 0. In the electrostatic limit (βe → 0), the dispersion relation becomes

(17)ω̂2 = (k‖vte)
2
[

1+ 3(k‖vte�t/2)2

(k⊥ρs)2 − (k‖vte�t/2)2

]
.

Thus, for both the electrostatic limit and the general electromagnetic case of Eq.(16), the algorithm is numer
ically unstable if�t/2 > | k⊥ρs

k‖vte
|. Figs. 1 and 2show plots ofω̂ and |a| as a function of the temporal resolutio

k‖vte�t for the right-moving wave for a set of standard parameters, showing the onset of the numerica
bility at |k‖vte�t | ∼ |2k⊥ρs | ∼ 0.06. This result implies that, with this algorithm, the electrostatic shear Al
wave must be fully resolved for stability in both the electrostatic and electromagnetic limits. Overall, this ca
potentially severe limitation for numerical simulations employing this type of ADI algorithm.

While the results thus far have focused on the limit of low(βe/2)(mi/me), where the Alfvén wave is faster tha
the electron thermal speed and expansions ink‖vte/ω � 1 could be done, we have also analyzed the nume

Fig. 1. Normalized mode frequency vs. normalized time step for the kinetic Alfvén wave atk⊥ρs = 0.03 and(βe/2)(mi/me) = 0.1 using an
ADI algorithm.
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Fig. 2. Amplification factor vs. normalized time step for the kinetic Alfvén wave atk⊥ρs = 0.03 and(βe/2)(mi/me) = 0.1 using an ADI
algorithm.

stability of the ADI algorithm more generally, including the regime of high(βe/2)(mi/me), where the Alfvén
wave is slower than the thermal electron speed. This analysis was performed via consideration of annth-order
generalized Lorentzian approximation (i.e.e−x ≈ (1 + x

n
)−n) for the parallel component of the Maxwellian

Eq. (14). It can be shown thatn � 3 is necessary for convergence of the velocity integrals over the Maxwe
terms in the field equations. For consistency in the transformation of the field equations upon elimination
∂A‖/∂t term, we have added normalization constants to the Lorentzian approximation to ensure that the
and pressure integrals are exact. Specifically, we assume that

(18)FMe(v‖) ≈ n0e√
2πvte

C0

(1+ C1
v2‖

2v2
te

)n
,

where

(19)C0 = 
(n)
1/2(n − 3/2)


3/2(n − 1/2)
,

(20)C1 = 
(n − 3/2)


(n − 1/2)
.

For this analysis, a third-order Lorentzian approximation was used and the field equations using Eq.(14) with
Eq. (18) as an approximation for̂ge were solved numerically using Maple[22] for given values ofk⊥ρs and
(βe/2)(mi/me). (If an exact Maxwellian is used, the integrals cannot be evaluated analytically but can be wr
terms of the plasma dispersionZ function. With a LorentzianFMe(v‖), Maple is able to do the integrals analytical
resulting in essentially a multipole approximation to theZ function. Alternatively, one can interpret the resulti
dispersion relation as exact for an equilibrium distribution function given by this generalized Lorentzian, a
is a physically realizable exact dispersion relation. Since Alfvén waves should be physically stable even w
Lorentzian equilibrium according to the Penrose stability criterion, this provides a useful test of the stab
numerical algorithms.)
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hm

would
Fig. 3. Normalized mode frequency vs. normalized time step for the kinetic Alfvén wave atk⊥ρs = 0.03 and(βe/2)(mi/me) = 10 using an
ADI algorithm.

Fig. 4. Amplification factor vs. normalized time step for the kinetic Alfvén wave atk⊥ρs = 0.03 and(βe/2)(mi/me) = 10 using an ADI
algorithm.

The result, demonstrated inFigs. 3 and 4, surprisingly also shows a severe stability limit on the ADI algorit
of |k‖vte�t | ∼ |2k⊥ρs | ∼ 0.06, i.e. the same stability criterion as found in theβe = 0 limit in Eq. (17), even though
the Alfvén wave is slower than the electron thermal velocity at high(βe/2)(mi/me). A time step ofk‖vte�t = 0.06
corresponds toω�t = 0.02, so both the parallel electron motion time scale and the actual mode frequency
appear to be very well resolved, yet still there is a numerical instability.
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4. Simpler illustration of the difficulties

Here we further illustrate the numerical difficulties of an ADI algorithm by an equivalent application o
algorithm to a Landau-fluid approximation to the kinetic equation. This reduces the operators involved to× 2
matrices. This limit is useful for understanding why the ADI algorithm in this case has a stability limit at all, u
other applications where an ADI algorithm is absolutely stable.

Integrating the normalized Eqs.(A.1)–(A.3) over velocity and defining the perturbed densityρ = ∫
dv‖ ge, the

perturbed fluid velocityu = ∫
dv‖ gev‖, and the perturbed pressurep = ∫

dv‖ gev
2‖ leads to the fluid equations:

(21)
∂ρ

∂t
= −∂u

∂z
− ∂A‖

∂z
,

(22)
∂u

∂t
= −∂p

∂z
+ ∂Φ

∂z
,

(23)k2⊥Φ = −ρ,

(24)
(
k2⊥ + β̂

)
A‖ = −β̂u.

Assuming a general closure approximation of the form−∂p/∂z = −
∂ρ/∂z − ν|k‖|u (see[23] and reference
therein for a discussion of closure approximations that model kinetic effects such as Landau-damping) and
transforming in space leads to

(25)
∂ρ

∂t
= −ik‖u − ik‖A‖,

(26)
∂u

∂t
= −ik‖
ρ − ν|k‖|u + ik‖Φ

which can be written as

(27)
∂

∂t

(
ρ

u

)
=

(
0 −ik‖

−i
k‖ −ν|k‖|
)(

ρ

u

)
+


 0 ik‖β̂

k2⊥+β̂

− ik‖
k2⊥

0


(

ρ

u

)
.

Denoting the first matrix on the RHS byP, which represents the spatial propagation operator, and the se
matrix on the RHS byE, which represents the electric field term, and denoting the state vector�y = (ρ,u), this can
be written as

(28)
∂ �y
∂t

= P�y + E�y.

Applying the ADI algorithm to this in an equivalent way as used in Eqs.(9)–(10), where the electric field is explic
on the first half step while all other terms are implicit and then vice versa on the next step, leads to

(29)
�yn+1/2 − �yn

�t/2
= P�yn+1/2 + E�yn,

(30)
�yn+1 − �yn+1/2

�t/2
= P�yn+1/2 + E�yn+1.

Combining these two steps of the ADI algorithm gives

(31)�yn+1 =
(

1− �t

2
E

)−1(
1+ �t

2
P
)(

1− �t

2
P
)−1(

1+ �t

2
E

)
�yn.

In common ADI cases where the operators being split are diagonalizable and have eigenvalues with
negative real part, the ADI algorithm is absolutely stable for arbitrarily large time step (though of course th
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accuracy restrictions), because�t appears in the numerators of the RHS of this equation. Consider our case
the electrostatiĉβ = 0 limit. Then the operator corresponding to the electric fieldE is not diagonalizable becaus
its only non-zero entry is off-diagonal. This operator has the property thatEn = 0 for all n > 1 (i.e.E is a nilpotent
matrix). This means that(1− �t

2 E)−1 = 1+ �t
2 E and what appeared to be an implicit step was actually equiva

to an explicit step. Thus the ADI algorithm for this case will be unstable if the time step�t is too big. (In fact,
analysis of the eigenvalues of the amplification matrix corresponding to Eq.(31) for this case recovers the onset
a numerical instability at|k‖�t | ∼ |2k⊥|, as found for the kinetic equations.) For the more general electromag
case, thoughE is diagonalizable for nonzerôβ, the eigenvaluesλ of E are given byλ2 = (k‖/k⊥)2β̂/(k2⊥ + β̂),
and the positive branch gives an instability. This is in contrast to the behavior of the unsplit operatorP+ E, which
has negative values ofλ2 (in theν = 0 limit for simplicity), which correspond to stable oscillations.

5. Comparison with Adams–Bashforth algorithms

For comparison, we perform a similar analysis of the kinetic Alfvén wave test problem using an A
Bashforth algorithm. We first consider a partially implicit scheme, in which the parallel derivative term is t
implicitly and time-centered while the field terms are treated fully explicitly with a second-order Adams–Bas
algorithm. Thus, the single-step discrete kinetic equation becomes

1

�t/2

(
gn+1

e − gn
e

) + v‖
∂

∂z

1

2

(
gn+1

e + gn
e

)

(32)= −Zee

T0e

v‖FMe

∂

∂z

(
1

2
(3Φn − Φn−1) − v‖

c

1

2

(
3An‖ − An−1

‖
))

.

Again using the ansatzeik‖z and defininggn
e = anĝe(v), we find that

(33)ĝe = Zee

T0e

FMe

(
Φ̂ − v‖

c
Â‖

)
k‖v‖

ω̂ − k‖v‖
(1− iω̂�t)

(1+ iω̂�t/2)

(1− iω̂�t/2)
,

whereω̂ is again defined in agreement with Eq.(15).
We again examine the stability of the algorithm in both the low and high(βe/2)(mi/me) limits. For the low

(βe/2)(mi/me) analysis, substitution of Eq.(33) into the field equations and expansion to lowest order ink‖vte/ω̂

yields a fourth-order complex equation forω̂, which we solve numerically with Maple using our standard pa
meters. Analysis in the high(βe/2)(mi/me) limit is likewise performed as before, using a third-order Lorentz
approximation for the parallel component of the Maxwellian term in(33) and using Maple to numerically solv
the field equations with this approximation.

Figs. 5 and 6show the results of the analysis for the kinetic Alfvén wave. Though there is a slight art
decay for both the low and high(βe/2)(mi/me) cases, the numerical instability that we saw for the ADI sche
does not occur in either regime for these roots. However, the discrete dispersion relation contains multip
and these plots are for the eigenmode corresponding to the physical Alfvén wave only. Furthermore, an
Bashforth algorithm introduces unphysical “computational modes” which must be also damped or there wil
a numerical instability. For both the low and high(βe/2)(mi/me) cases, the physical modes found in the anal
are numerically stable over the range of�t studied. These include the right and left moving kinetic Alfvén wa
and a heavily damped entropy mode related to Landau damping (there are 3 physical roots of the analytic d
relation for a third-order Lorentzian equilibrium). However, one of the computational mode becomes num
unstable. The amplification factor as a function of normalized time step for this mode is shown inFig. 7 for
k⊥ρs = 0.01, 0.03 (our standard case), and 0.05, for both(βe/2)(mi/me) = 0.1 and(βe/2)(mi/me) = 10. The
onset of the numerical instability occurs at|k‖vte�t | ∼ |k⊥ρs |, as indicated by the rapid rise in the modulus of
amplitude above 1. Thus, the partially implicit Adams–Bashforth algorithm is subject to a stability limit wh
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Fig. 5. Normalized mode frequency vs. normalized time step for the kinetic Alfvén wave atk⊥ρs = 0.03 using a partially implicit
Adams–Bashforth algorithm.

Fig. 6. Amplification factor vs. normalized time step for the kinetic Alfvén wave atk⊥ρs = 0.03 using a partially implicit Adams–Bashfort
algorithm.

twice as strict as that found for the ADI algorithm. Though it is the physical mode which becomes nume
unstable for the ADI algorithm, while just the computational mode (which is introduced solely as a re
the numerical discretization) becomes unstable for the partially implicit Adams–Bashforth algorithm, the
severe stability limit for the partially implicit Adams–Bashforth algorithm makes it highly unpractical for
gyrokinetic simulations. We have also tried a partially implicit algorithm using a third-order Adams–Bashfo
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Fig. 7. Amplification factor vs. normalized time step for the computational mode using a partially implicit Adams–Bashforth algorit

the electric field terms and found that it had an even smaller stability limit on the time step than the secon
Adams–Bashforth method.

For comparison, we also consider the stability of a fully explicit Adams–Bashforth algorithm. For this ca
treat the parallel derivative operator term as well as the field terms with a second-order Adams–Bashforth
Using our usual ansatz, we find that

(34)ĝe = Zee

T0e

FMe

(
Φ̂ − v‖

c
Â‖

)
k‖v‖

ˆ̃ω − k‖v‖
,

where here the effective frequency is defined such thata(a−1)
3a−1 = −i ˆ̃ω�t/2.

The result of Eq.(34) has the same form as the exact time continuous result (i.e. the equivalent of Eq.(4) for
our starting equations) and is thus surprisingly not subject to the same stability restrictions|k‖vte�t | � |k⊥ρs | as
the ADI and partially-implicit Adams–Bashforth algorithms for this problem.

As is well known, a second-order Adams–Bashforth algorithm does induce a small amount of artificial g
The amplification factor for this case is given by

(35)a = 1

2

[
1− 3

2
iω̂�t ±

√
1− i ˆ̃ω�t − 9

4
( ˆ̃ω�t)2

]

as shown inFig. 8 for the low and high(βe/2)(mi/me) cases. We show both the physical Alfvén mode, for wh
|a| → 1 in the limit of�t → 0, and the unphysical computational mode, for which|a| → 0 in the limit of�t → 0.
These levels of artificial growth would be quite adequate for many gyrokinetic turbulence simulations. O
needs to keep the time step sufficiently small so that this artificial amplification is small compared to p
dissipation mechanisms, or in turbulent systems, small compared to the rate at which nonlinear interacti
energy out of undamped modes and transfer energy to damped modes. Overall, this analysis suggests
a second-order purely explicit Adams–Bashforth algorithm can be better at long wavelengths than the
partially implicit Adams–Bashforth algorithms explored here.

By going to an even higher-order explicit algorithm, one can completely eliminate artificial growth over a
of time step, since the stability boundaries in the complexω�t plane are well known[24,25]. Often a third-order
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Fig. 8. Amplification factor vs. normalized time step for the physical mode and the computational mode atk⊥ρs = 0.03 using a fully explicit
Adams–Bashforth algorithm.

Adams–Bashforth (AB3) or a fourth-order Runge–Kutta (RK4) algorithm is chosen to provide a good b
between maximum stable time step and computational cost. On the realω axis, the maximum stable time step f
AB3 is |ω|�t = 0.72, while for purely damped modes the maximum stable time step for AB3 is|ω|�t = 0.55.
The stability limit of a fourth-order Runge–Kutta algorithm is comparable (after dividing by 4 to account for
intermediate steps that make up a full step of a fourth-order Runge–Kutta algorithm), equivalent to|ω|�t = 0.71
for realω, and|ω|�t = 0.70 for purely damped modes. The dispersion relation that follows from the third-
Lorentzian in Eq.(18) has 3 roots. For(βe/2)(mi/me) = 0.1 andk⊥ρs = 0.03, these roots areω = ±3.2k‖vte

(the Alfvén waves) andω = −5.2ik‖vte (a heavily damped entropy mode related to Landau damping). This he
damped mode would set a stability limit for an RK4 algorithm ofk‖vte�t = 0.14, 2.2 times better than the stabili
limit of the ADI algorithm. For lowerk⊥ modes, a fully explicit RK4 or AB3 algorithm would be even better
comparison to the ADI and partially implicit algorithms studied here.

6. Discussion and summary

Though ADI algorithms applied to many problems have the nice property that they are absolutely sta
arbitrarily large time step, and though Kupfer’s ADI algorithm has previously worked for a related plasma
problem, we have found that the implementation in a gyrokinetic problem yields a severe time step restri
is somewhat surprising not only that the ADI algorithm for this problem has a stability limit, but also tha
stability limit is so short, even worse than some fully explicit algorithms.

Specifically, for a test problem of a shear kinetic Alfvén wave at smallk⊥ρi , the ADI algorithm is numerically
unstable for�t/2 > |k⊥ρs/(k‖vte)| in both the low(βe/2)(mi/me) regime and the high(βe/2)(mi/me) regime,
where the Alfvén wave is slower than the electron thermal speed and all of the important dynamics wou
to be well resolved. Furthermore, this stability problem is not unique to the ADI algorithm, as a partially im
Adams–Bashforth scheme yielded a restriction on the time step twice as low as the ADI algorithm for this p
A simple set of gyrofluid model equations was constructed to illustrate the source of the problems. In the
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electrostatic limit, one of operators used in the alternating implicit steps was nilpotent and was not diagona
so that what appeared to be an implicit step was actually equivalent to an explicit step.

Eventually, the best approach for kinetic edge microturbulence simulations might be a fully implicit alg
for the linear terms, perhaps employing preconditioned Krylov solvers from an advanced package such a
[26] or SUNDIALS[27]. A key to successful use of such iterative methods is a good preconditioner. As part
preconditioning, one might use precomputed plasma response matrices as used in the linearly fully impl
algorithm[7] or a similar approach used in GYRO[10]. As a starting point short of these more complicated imp
methods, one might use a fully explicit fourth-order Runge–Kutta algorithm. Though we have found severe s
restrictions for a standard ADI algorithm and one form of a semi-implicit Adams–Bashforth algorithm, pe
there is some other variant of a semi-implicit algorithm for parallel dynamics that could be more successfu
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Appendix A

Eqs.(6)–(8)provide a relatively simple problem with 1 spatial and 1 velocity coordinate that could prov
very useful testbed for studying alternative gyrokinetic algorithms. With appropriate normalizations, thes
tions can be written as the following set of integro-differential equations:

(A.1)
∂ge

∂t
+ v‖

∂ge

∂z
= v‖FMe

(
∂Φ

∂z
− v‖

∂A‖
∂z

)
,

(A.2)k2⊥Φ = −
∫

dv‖ ge,

(A.3)
(
k2⊥ + β̂

)
A‖ = −β̂

∫
dv‖ v‖ge,

wherek2⊥ is normalized toZiρ
2
s andβ̂ ≡ (βe/2)

mi

me
. The electron thermal velocityvte has been normalized to unit

so that the Maxwellian equilibrium isFMe = exp(−v2‖/2)/
√

2π . Becausev2
A = v2

te/β̂, Eq.(5) becomes

(A.4)ω2 = k2‖/β̂
1+ k2⊥/β̂

.

A more complete general comprehensive test of the numerical stability of an algorithm for this problem
include a typical range of parameters, particularly,k⊥ = 0.01–10 andβ̂ = 0.1–10, and perhaps also the addition
collisions in Eq.(A.1) to test the collisional component of the algorithm.
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