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Abstract

An efficient, iterative semi-implicit (SI) numerical method for the time integration of stiff wave systems is presented.
Physics-based assumptions are used to derive a convergent iterative formulation of the SI scheme which enables the
monitoring and control of the error introduced by the SI operator. This iteration essentially turns a semi-implicit
method into a fully implicit method. Accuracy, rather than stability, determines the timestep. The scheme is second-
order accurate and shown to be equivalent to a simple preconditioning method. We show how the diffusion operators
can be handled so as to yield the property of robust damping, i.e., correctly dissipating the solution at all values of
the parameter D∆t, where D is a diffusion operator and ∆t the timestep. The overall scheme remains second-order
accurate even if the advection and diffusion operators do not commute. The method is tested on the problem of
Kinetic Alfvén wave mediated magnetic reconnection. A 2-field gyrofluid model is used and an efficacious SI operator
for this problem is demonstrated. CPU speed-up factors over a CFL-limited explicit algorithm ranging from ∼ 20 to
several hundreds are obtained, while accurately capturing the results of an explicit integration.
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1. Introduction

One ubiquitous property of the dynamics of fluids and plasmas is their inherent multiscale character, both
spatial and temporal [1, 2]. This translates into a stiffness of the partial differential equations (PDEs) that
are used to describe the physical systems of interest. The numerical solution of stiff systems of coupled PDEs
is notoriously difficult, presenting a serious challenge to present day computational resources.

Wave-induced temporal stiffness occurs when the characteristic time scale of interest is much slower than
that of the fastest waves present in the system. Fortunately, however, it is often the case that it is not
necessary to accurately capture these waves in order to obtain accurate solutions of the slowly evolving
physics [3, 4]. Examples are the gravity wave in weather modeling [4, 5], or the Alfvén and whistler waves in
studies of some instabilities in plasmas [6, 7, 8, 9, 10, 11, 12]. When that occurs, implicit and semi-implicit (SI)
numerical methods have been employed as very powerful tools to potentially allow the stable and accurate
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time integration of the PDEs on timescales which largely exceed those imposed by these high frequency,
fast waves (see, for example, the paper by Knoll et al. [13] and references therein). More conventional and
easy to implement explicit numerical schemes are limited by the well-known Courant-Friedrichs-Lewy (CFL)
condition and thus, in order to be stable, require integration timesteps of the order of the inverse of the
maximum frequency present – a very severe, and generally unfeasible, requirement.

There are advantages and disadvantages to both purely implicit and SI numerical methods. Implicit and
SI methods can both use time steps much larger than the CFL limit. Implicit methods are more robust
and accurate but can be harder to implement, in some cases requiring more extensive modifications to the
structure of an existing code. Direct solution of an implicit scheme can require the storage and inversion of
impractically large matrices (though direct sparse matrix solvers with reordering can be effective for some
problems that are not too large). Thus implicit methods often employ preconditioned iterative methods, like
Jacobian-Free Newton-Krylov (JFNK) methods, sometimes in combination with multigrid or FFT solvers
(see for example references [14, 13]). To obtain a net speed up, it is often crucial to have a sufficiently good
preconditioner that can still be efficiently inverted. While there are many options [14, 13, 15, 16], finding
such a preconditioner is problem-dependent and can be a non-trivial task. If no preconditioner is used, a
Krylov iterative solver applied directly to a hyperbolic wave/advection problem will usually give at most an
order unity speed up in net CPU time, because the larger time step allowed by an implicit method is largely
offset by the increased number of iterations required per time step. However, when a good preconditioner
exists, or a multigrid or FFT solver can be used, then significant savings in CPU time are possible.

SI methods are usually simpler to implement and work well for some problems. However, they have to be
used with some care, because in some parameter regimes there can be splitting errors (due to the different
treatment of the operators involved) and/or uncontrolled approximations to the equations that are made in
their derivation (such as linearization of the fast wave physics). The reader is referred to the work of Knoll,
Keyes, et al. [14, 13] for an overview of SI methods in a variety of applications and their comparison to the
JFNK approach to fully implicit methods .

In this paper, we revisit SI methods as they are traditionally formulated in the field of plasma physics [17,
18, 6, 19]. Using physics-based assumptions, we are able to consistently derive an iterative formulation of SI
schemes, which lends itself to an efficient way of monitoring and controlling the error introduced by the SI
operator. Accuracy, rather than stability, determines the timestep. It is shown that this iterative extension
of an SI scheme leads to essentially a fully implicit method with the SI operator providing a preconditioner.
We also demonstrate how the diffusive terms can be treated so as to yield the property of robust damping,
i.e., the consistent damping of all the modes present in the simulation domain in the limit ∆t → ∞. The SI
method presented here is second-order accurate even if the diffusion and nonlinear advection operators do
not commute.

The method is then applied to the problem of gyrofluid magnetic reconnection. This is a very stiff appli-
cation due to the presence of a high frequency dispersive wave, the Kinetic Alfvén wave (KAW). Compared
to explicit integrations schemes, our SI scheme yields CPU speed-up factors of ∼ 20 to several hundreds
while accurately reproducing the results of an explicit integration.

Finally, we note that although our focus is in the plasma physics field, the derivation of the iterative
SI method presented is general and should apply well to other stiff-wave physics phenomena that can be
described by means of advection-diffusion PDEs.

2. Numerical scheme

2.1. Derivation of the method

As mentioned above, we are interested in dealing with coupled sets of advection-diffusion partial differential
equations. Let us consider the following set as our general model:
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∂ψ

∂t
= F(φ, ψ) −Dηψ, (1)

∂φ

∂t
= G(φ, ψ) −Dνφ. (2)

Here, φ, ψ are arbitrary scalar fields, the operators F ,G represent the nonlinear advection-like operators and
the Dη,Dν are generalized diffusion operators which, in Fourier space, can be written in general form as:

Dη =
∑

n

ηnk
2n
⊥ , Dν =

∑

n

νnk
2n
⊥ . (3)

The diffusion terms can be integrated analytically by means of the following variable transformations:

ψ = e−Dηtψ̃, φ = e−Dνtφ̃. (4)

Equations (1–2) thus become:

∂ψ̃

∂t
= eDηtF(φ, ψ), (5)

∂φ̃

∂t
= eDνtG(φ, ψ). (6)

We now apply a Crank-Nicolson discretization scheme (spatial indices omitted for simplicity):

ψ̃n+1 − ψ̃n

∆t
=

1

2
F(φn, ψn) +

1

2
eDη∆tF(φn+1, ψn+1), (7)

φ̃n+1 − φ̃n

∆t
=

1

2
G(φn, ψn) +

1

2
eDν∆tG(φn+1, ψn+1). (8)

(Without loss of generality, we have defined tn = 0, so tn+1 = ∆t.)
Note that the handling of the diffusion terms through the variable substitutions of (4) is a trivial step for

spectral and pseudo-spectral codes, but more complicated in real-space codes. However, the derivation of
the semi-implicit method that follows holds irrespective of how the diffusion terms are handled – this is only
important for the robust damping property, to be discussed later on in section 2.6. As we will see later, after
reversing the variable substitution in Eq. 4, what has to evaluated in the final equations are operators like
e−D∆t. One way to evaluate this with a real-space code could be with a variation of Exponential Propagation
Iterative methods [20]. Another way would be to use a 2cd-order rational-function approximation

e−D∆t ≈ (1 + aD∆t)(1 + bD∆t)−1(1 + bD∆t)−1,

with a = 1 +
√

2, b = (2 +
√

2)/2. This retains the second order accuracy of a Crank-Nicolson treatment
of damping while having the advantage of robust damping in the large D∆t limit (unlike Crank-Nicolson
where e−D∆t ≈ (1 + D∆t/2)−1(1 − D∆t/2) → −1), and still remaining relatively easy to evaluate, since
inverting the (1 + bD∆t) operator is equivalent to a standard implicit step.

Usual purely implicit schemes would now try to invert the second term on the RHS of equations (7–8), thus
obtaining equations for the unknowns, ψn+1, φn+1 in terms of the known quantities, ψn, φn. This operator
inverting step translates into the inversion of a very large matrix. If a direct inversion was done, the very
large timestep enhancements that can be obtained relative to an explicit scheme might be severely offset by
the increased CPU time per step.

The aim of our method, like more complicated iterative methods, is to circumvent this constraint by
solving the implicit equations without the need to directly invert the nonlinear operators. Instead, we use a
simple iterative method, with a semi-implicit operator providing an effective physics-based preconditioner.
The first step is to reformulate equations (7–8) in an iterative way, as follows:

ψ̃n+1,p+1 − ψ̃n

∆t
=

1

2
F(φn, ψn) +

1

2
eDη∆tF(φn+1,p+1, ψn+1,p+1), (9)

φ̃n+1,p+1 − φ̃n

∆t
=

1

2
G(φn, ψn) +

1

2
eDν∆tG(φn+1,p+1, ψn+1,p+1). (10)
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This formulation can be seen as a simple Predictor-Corrector (PCp) scheme with an arbitrary number p of
Corrector iterations. Let us proceed further by introducing one simple, but crucial, physics based assumption:
that the stiff waves arise through the coupling of the equations and are well described by the assumptions

F(ψn+1,p+1, φn+1,p+1)≈F(ψn+1,p, φn+1,p+1),

≈F(ψn+1,p, φn+1,p) +
δF
δφ

(

φn+1,p+1 − φn+1,p
)

, (11)

G(ψn+1,p+1, φn+1,p+1)≈G(ψn+1,p+1, φn+1,p)

≈G(ψn+1,p, φn+1,p) +
δG
δψ

(

ψn+1,p+1 − ψn+1,p
)

. (12)

In other words, we are assuming that the dependence of F on ψ is relatively weak and can be approximated
from the previous iteration p, while it depends more sensitively on φ and so we need to keep its dependence
on the present p + 1 iteration value by using a Taylor series (and vice-versa for G). This is certainly true
in the linear limit for our model, as shown by equations (61–62). Most wave phenomena involve oscillations
between two different variables (for example, pressure and velocity for sound waves, or position and velocity
for a pendulum), so that approximations like the above are often justified. A key step when extending this
approach to more complicated systems of equations, which might contain multiple waves, is to identify the
key terms involved in the fast wave dynamics.

[We have written the Jacobians in the above Taylor-series expansions as functional derivatives, such as
δF/δφ, since F may be a non-local functional that operates on φ. After spatial discretization, δF/δφ will
in general be a large sparse matrix. However, we will be working in Fourier space, where these operators
become local, and so will replace the functional derivative notation with the standard notation ∂F/∂φ. Note
that in our final algorithm we never actually need to explicitly evaluate the Jacobian, just the action of a
Jacobian on a vector, and so this formulation is “Jacobian-free”.]

With this assumption, the nonlinear future time term in equation (7) can be simplified by means of the
Taylor expansion, i.e.:

ψ̃n+1,p+1 − ψ̃n

∆t
=

1

2
F(φn, ψn) +

+
1

2
eDη∆t

[

F(φn+1,p, ψn+1,p) +
∂F
∂φ

(φn+1,p+1 − φn+1,p)

]

. (13)

An expression for the last term on the RHS of this equation is straightforwardly obtained (for p > 0) by
taking the difference between equation (10) evaluated for two successive values of p:

φn+1,p+1 − φn+1,p =
∆t

2

∂G
∂ψ

(

ψn+1,p+1 − ψn+1,p
)

, (14)

where again we have used the approximations of equation (11). Undoing the variable substitution of equa-
tion (4), equation (13) thus becomes:

ψn+1,p+1 = e−Dη∆tψn+
∆t

2
e−Dη∆tF(φn, ψn) +

∆t

2
F(φn+1,p, ψn+1,p) +

+
∆t2

4

∂F
∂φ

∂G
∂ψ

(ψn+1,p+1 − ψn+1,p). (15)

At this point we note that if the above equation is iterated until convergence, i.e., |ψn+1,p+1 − ψn+1,p| < ǫ,
where ǫ is the prescribed accuracy, the last term becomes negligible. Therefore, it is not important to
retain its exact functional form as long as convergence is reached at each timestep. We can thus simplify
equation (15) by replacing the last term on the RHS with an analytically invertible approximation. We use:

∂F
∂φ

∂G
∂ψ

= −ω̂2 (16)
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where ω̂ is given by the dispersion relation, or an approximation to it. [Specific forms for the operator ω̂2

will be discussed later, for now it should just be thought of as an operator that is relatively easy to invert.]
The steps we have just taken are similar to those for some previous SI derivations and share some key

advantages for high-frequency waves, since it is only the combination (∂F/∂φ)(∂G/∂ψ) that has to be
approximated by the semi-implicit operator, and not (∂F/∂φ) and (∂G/∂ψ) separately. As discussed in
the SI literature, this is much simpler because one does not have to worry about getting the sign of the
approximation ω̂ correct (i.e., one does not have to worry about the direction of propagation of the waves).
Chacón and Knoll [11, 14, 13] have shown how this kind of physics-based semi-implicit operator can be
related to a Schur complement preconditioner, turning an originally hyperbolic problem into a diagonally
dominant parabolic problem that can be efficiently solved by preconditioned Krylov (if the preconditioner
is sufficiently effective) and/or multigrid iterative techniques. In some cases, the resulting problem can also
be efficiently solved with FFTs, which we use here.

So far, we have:

ψn+1,p+1 = e−Dη∆tψn +
∆t

2
e−Dη∆tF(φn, ψn) +

∆t

2
F(φn+1,p, ψn+1,p) +

− ω̂
2∆t2

4
(ψn+1,p+1 − ψn+1,p), (17)

φn+1,p+1 = e−Dν∆tφn +
∆t

2
e−Dν∆tG(φn, ψn) +

∆t

2
G(φn+1,p, ψn+1,p+1). (18)

Equations (17–18) constitute the basis of our iterative semi-implicit method. Since this iteration converges
(as we will later show) to the right answer for an arbitrary initial condition (within some domain), it is
tempting to just use these equations with the initial guess ψn+1,0 = ψn, φn+1,0 = φn. However, one finds
that if one does this for an undamped wave test problem, the amplitude of the solution converges to the
right answer from above, so the algorithm is numerically unstable for any finite number of iterations. One
can demonstrate this by considering the test problem F = ωφ, G = −ωψ, Dη = Dν = 0, finding that the
squared amplification factor for the first iteration gives |A|2 = ((ψn+1,1)2 + (φn+1,1)2)/((ψn)2 + (φn)2) =
1 + 2ω2∆t2/(4 + ω̂2∆t2). For high frequency modes that we are trying to treat implicitly, this becomes
|A|2 ≈ 1 + 2ω2/ω̂2, which is significantly larger than unity. While further iterations would converge towards
the Crank-Nicolson solution, which has |A|2 = 1, this significant numerical amplification would still be
problematic, and would require that the semi-implicit operator be an extremely good approximation to the
real dynamics in order to converge quickly. Furthermore, it is somewhat bothersome that this algorithm
would give such a large numerical amplification, since it is supposed to be an approximation to the stable
Crank-Nicolson algorithm given by equations (7–8). However, note equations (17–18) were derived using
equation (14), which is valid only for p > 0, so an expression for the initial p = 0 step of the iteration
requires further consideration. It turns out that a more careful treatment of the initial step will also make
the final algorithm stable. Using equation (12) in equation (18) for p = 0, we have:

φn+1,1 = e−Dν∆tφn +
∆t

2
e−Dν∆tG(φn, ψn) +

+
∆t

2

[

G(φn+1,0, ψn+1,0) +
∂G
∂ψ

(

ψn+1,1 − ψn+1,0
)

]

. (19)

Let us define the quantity φn+1,∗ as:

φn+1,∗ = e−Dν∆tφn +
∆t

2
e−Dν∆tG(φn, ψn) +

∆t

2
G(φn+1,0, ψn+1,0), (20)

which reduces equation (19) to:

φn+1,1 = φn+1,∗ +
∆t

2

∂G
∂ψ

(

ψn+1,1 − ψn+1,0
)

. (21)

Substituting this into equation (13) evaluated at p = 0, and using equation (12), yields
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ψn+1,1 = e−Dη∆tψn +
∆t

2
e−Dη∆tF(φn, ψn)

+
∆t

2
F(φn+1,∗, ψn+1,0) +

∆t2

4

∂F
∂φ

∂G
∂ψ

(

ψn+1,1 − ψn+1,0
)

, (22)

where again the last term on the RHS can be simplified making use of approximation (16). Equation (22)
followed by equation (18) (evaluated for p = 0) would give a 1st order accurate prediction of (ψn+1,1, φn+1,1).
This could then be iterated once with Equations (17–18) to obtain a second order accurate calculation for
(ψn+1,2, φn+1,2). However, a small modification to the prediction step can give a 2cd order accurate results
for (ψn+1,1, φn+1,1). This is done by replacing ψn+1,0 in the nonlinear term of equation (22) with a 1st order
accurate approximation, ψn+1,∗, so that equation (22) becomes

ψn+1,1 = e−Dη∆tψn +
∆t

2
e−Dη∆tF(φn, ψn) +

∆t

2
F(φn+1,∗, ψn+1,∗) − ω̂2∆t2

4

(

ψn+1,1 − ψn+1,0
)

, (23)

where ψn+1,∗ is defined as:

ψn+1,∗ = e−Dη∆tψn +
∆t

2
e−Dη∆tF(φn, ψn) +

∆t

2
F(φn+1,0, ψn+1,0). (24)

Note that the replacement of F(φn+1,∗, ψn+1,0) with F(φn+1,∗, ψn+1,1) is consistent with the assumption
of equation (11) that the dependence of F on ψ is relatively weak, but is useful to ensure second order
accuracy of the calculation of ψn+1,1. Similarly, when calculating φn+1,0 from equation (18) for p = 0, the
term G(φn+1,0, ψn+1,1) is replaced by G(φn+1,∗, ψn+1,1). This gives a 2cd order accurate result for φn+1,1.
The choice ψn+1,0 = ψn, φn+1,0 = φn closes the specification of our semi-implicit scheme.

The final equations for the iterative SI algorithm can be written in a compact form as follows:

φn+1,∗ = e−Dν∆tφn +
∆t

2

(

1 + e−Dν∆t
)

G(φn, ψn), (25)

ψn+1,∗ = e−Dη∆tψn +
∆t

2

(

1 + e−Dη∆t
)

F(φn, ψn), (26)

ψn+1,p+1 = e−Dη∆tψn +
∆t

2
e−Dη∆tF(φn, ψn) +

∆t

2
F(φn+1,p, ψn+1,p) +

− ω̂
2∆t2

4
(ψn+1,p+1 − ψ̄n+1,p), (27)

φn+1,p+1 = e−Dν∆tφn +
∆t

2
e−Dν∆tG(φn, ψn) +

∆t

2
G(φn+1,p, ψn+1,p+1). (28)

where now φn+1,0 = φn+1,∗, ψn+1,0 = ψn+1,∗ and ψ̄n+1,0 = ψn, ψ̄n+1,p = ψn+1,p for p > 0.
We mentioned above that these equations ought to be iterated until convergence, at which point the last

term on the RHS of equation (27) is negligible and these equations become equivalent to the fully implicit
equations (7–8). The relative importance of this term can be quantified by:

Ep+1
ji =

∣

∣

∣

∣

∣

∣

∣

∣

L
(

ψn+1,p+1
ji − ψ̄n+1,p

ji

)

√

1
N

∑

ji

∣

∣

∣
ψn+1,p+1

ji − ψn
ji

∣

∣

∣

2

∣

∣

∣

∣

∣

∣

∣

∣

, (29)

where L = ω̂2∆t2/4, j, i are the Fourier (or real) space grid point indexes and N is the total number of
grid points. The timestep of the integration and/or the number of p iterations is thus determined by the
requirement:

max |Ep+1
ji | < ǫ (30)

where ǫ is the user prescribed accuracy. For convenience, we also define the total number of iterations
of equations (27–28) as pmax. I.e., pmax is the number of times the semi-implicit operator is inverted in

6



corrector steps. pmax = 1 evaluates equations (27–28) once, for p = 0, to determine (ψn+1,1, φn+1,1). pmax =
2 evaluates equations (27–28) twice, for p = 0, 1, and calculates up to (ψn+1,2, φn+1,2).

There are several variations of SI methods and their derivations in the literature, some using a more
heuristic approach of adding and subtracting an operator to the RHS of one of the equations, and some
taking a more systematic approach to deriving an SI operator. Also, some SI algorithms have used a leap-
frog-like staggered time grid. Our final result is closest to certain SI methods using non-staggered grids. For
example, our equations (25–28) for pmax = 1 are equivalent to Eqs.(11-14) of [18]. The formulation presented
here makes it clear how to extend other semi-implicit methods to use additional iterations if desired (in this
regard, note that it is important that the definition of ψ̄n+1,p is different on the first p = 0 corrector step
than in later iterations). These additional iterations provide a simple way to turn a semi-implicit method
into a fully implicit method, and further demonstrate the relation between SI ideas and preconditioning for
iterative methods, as discussed in section 2.4.

2.2. Linear stability analysis

We will now show under which conditions the method described by equations (25–28) is unconditionally
stable with respect to the timestep ∆t. For simplicity, we neglect the diffusive terms (since these terms are
treated implicitly, they have a stabilizing effect). In line with the assumptions of (11), we assume that, in
the linear regime, the following is true:

F(φ, ψ) ≈ fφ,

G(φ, ψ) ≈ gψ. (31)

Taking the simplest case of pmax = 1 (i.e., a predictor-corrector scheme) equations (25–28) can be written
in matrix form as:





1 −∆t/2 g

0 1









φn+1,1

ψn+1,1



 =







1 ∆t/2 g

∆tf

1 + L 1 +
∆t2fg

2(1 + L)











φn

ψn



 , (32)

where L = ω̂2(∆t)2/4. Inversion of the matrix on the LHS yields the equation




φn+1,1

ψn+1,1



 = A





φn

ψn



 , (33)

where A is the amplification matrix:

A =









1 +
fg∆t2

2L + 2

∆tg
(

fg∆t2 + 4L + 4
)

4(L + 1)
∆tf

L + 1
1 +

fg∆t2

2L + 2









. (34)

The method is unconditionally stable when the eigenvalues λ± of the matrix A are such that |λ±| ≤ 1. Using
fg = −ω2, we obtain:

λ± =
4 +

(

ω̂2 − 2ω2
)

∆t2 ± 2iω∆t
√

4 + (ω̂2 − ω2)∆t2

4 + ∆t2ω̂2
(35)

It is straightforward to show that this algorithm is symplectic, |λ±| = 1, if the argument of the square root
is positive. Thus we have unconditional stability for arbitrarily large ω∆t if ω̂2∆t2 > ω2∆t2 − 4, or in the
relevant limit of ω∆t≫ 1, if ω̂2 > ω2. Since the magnitude of the error at each iteration, expression (29) is
proportional to ω̂2, it is clear that setting ω̂2 ≈ ω2 (but ω̂2 > ω2) is the best choice for stability and accuracy.
(Of course, nonlinearly ω2 is not known, so one wishes to set ω̂2 to be an approximate upper bound on the
true operator ω2.) Here we have demonstrated that the first corrector step, pmax = 1, gives a solution that
is symplectic (at least for this linear wave test problem). Additional iterations would eventually converge to
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the Crank-Nicolson solution, which is also symplectic. We have also proven that the algorithm is symplectic
for arbitrary pmax, as discussed at the end of the next section.

Finally, note that a Taylor series expansion of expressions (35) yields:

λ± = 1 ± iω∆t− ω2∆t2

2
±O(∆t3), (36)

consistent with the fact that the first order accurate predictor step of equations (25–26) ensures that the
corrector iterations are 2cd order accurate.

2.3. Linear convergence rate

To determine the convergence rate of the iterative scheme presented in equations (25–28) we set:

φn+1,p+1 = φn+1 + δφn+1,p+1, (37)

ψn+1,p+1 = ψn+1 + δψn+1,p+1. (38)

where the first term on the RHS is the converged solution and δφn+1,p+1, δψn+1,p+1 are the error at each
iteration. Again using the linear approximations of equations (31), it is straightforward to obtain the equation





δφn+1,p+1

δψn+1,p+1



 =









∆t2fg

4(L + 1)

∆tgL
2(L + 1)

∆tf

2(L + 1)

L
L + 1













δφn+1,p

δψn+1,p



 . (39)

The matrix on the RHS has the eigenvalues

λ1 = 0, λ2 =
∆t2

(

ω̂2 − ω2
)

4 + ω̂2∆t2
. (40)

Clearly λ2 is the eigenvalue of interest. In the limit of ω̂∆t≫ 1, this expression simplifies to:

λ2 = 1 − ω2

ω̂2
. (41)

We showed in the previous section that ω̂2 ≈ ω2 is the best choice in terms of achieving stability while
minimizing the error (29) at each iteration. Expression (41) shows that this is also the best choice in order
to maximize the convergence rate. However, the iteration will converge as long as the semi-implicit operator
is large enough. The stability condition for the first iteration, ω̂2∆t2 > ω2∆t2 − 4 from the previous section,
is also a sufficient condition for convergence.

In the previous section, we demonstrated that the algorithm for pmax = 1 is symplectic. We have also
shown this is true for arbitrary pmax, and here we summarize the main steps. First write Equation (39),
which holds for pmax ≥ 1, in the vector-matrix form δyn+1,p+1 = B δyn+1,p = (B)p δyn+1,1, where (B)p

denotes the matrix B raised to the p’th power (as opposed to an index superscript). Expressing the converged
Crank-Nicolson solution as yn+1 = Cyn (where the matrix C can be easily calculated), and the pmax =
1 solution as yn+1,1 = Ayn (where A is given by Equation (34)), this can be written as yn+1,p+1 =
[C + (B)p(A − C)] yn .

= Apy
n. The eigenvalues of the matrix Ap can then be calculated using a symbolic

mathematics package for simplicity (we used Maple[21] for this calculation). To reduce the complexity
of intermediate equations, it is useful to express (B)p = E(D)pE−1, where the columns of E are the
eigenvectors of B and the diagonal matrix (D)p = (0, 0; 0, (λ2)

p) (without yet substituting the actual value
of the eigenvalue λ2 from Equation (40)). One can then show that the eigenvalues of Ap can be written in
the form λp,± = c1 ± i

√
c2, where c1 is real and and a sufficient condition that c2 be positive is again the

stability criterion from the previous section, ω̂2∆t2 > ω2∆t2 − 4. The terms c1 and c2 satisfy c21 + c2 = 1,
thus showing that this algorithm is symplectic for an arbitrary number of iterations pmax.
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2.4. On the relation between the iterative semi-implicit method and a preconditioned Jacobian-Free Newton

iterative method

To investigate some of the properties of this algorithm, let us for simplicity consider now a more compact
vector form provided by the following equation:

∂ψ

∂t
= F(ψ) −Dηψ, (42)

where ψ = ψi(x, t) may be a vector field (with components i = 1..N), F is a nonlinear operator, and Dη

is a linear operator (which represents dissipation in our problems). Introducing the variable transformation
ψ(t) = e−Dηtψ̃(t), this becomes

∂ψ̃

∂t
= eDηtF(ψ)

.
= F̃(ψ̃). (43)

(A definition is denoted by
.
=.) For simplicity we will drop the tildes over variables in the rest of this subsec-

tion. It is not hard to see that, in this case, the numerical scheme of equations (27–28) (using equation (11)
to approximate F) is equivalent, for p > 1, to:

ψn+1,p+1 = ψn +
∆t

2

[

F(ψn) + F(ψn+1,p) + F̂(ψn+1,p+1 − ψn+1,p)
]

, (44)

where F̂ is the semi-implicit operator, and therefore, chosen to be invertible. Equation (44) can thus be
easily manipulated to yield:

ψn+1,p+1 =

(

1 − ∆t

2
F̂

)−1 [

ψn +
∆t

2
F(ψn) +

∆t

2
F(ψn+1,p) − ∆t

2
F̂(ψn+1,p)

]

(45)

We now show how the above equation can be obtained with a Jacobian-free Newton algorithm coupled with
a preconditioned simple functional iteration. A Crank-Nicolson discretization of equation (43) leads to:

ψn+1 − ∆t

2
F(ψn+1) = ψn +

∆t

2
F(ψn) (46)

As mentioned before, directly inverting the LHS of this equation is often hard and impractical. A common
and useful approach is to resort to preconditioned iterative methods. For nonlinear cases like this, it is
useful to use an outer Newton iteration for the nonlinear part of the problem, and an inner iteration with
preconditioning for the resulting linear part of the problem. I.e., introducing a Newton iteration count p,
the above equation becomes:

ψn+1,p+1 − ∆t

2

[

F(ψn+1,p) +
δF
δψ

(ψn+1,p+1 − ψn+1,p)

]

= ψn +
∆t

2
F(ψn), (47)

Because δF/δψ is a complicated, large sparse matrix, it is still impractical to directly solve this problem.
If we have an approximation to δF/δψ, denoted by F̂ , that is not too hard to invert, we can use this as a
preconditioner, and write equation (47) as

(

1 − ∆t

2
F̂

)−1 (

1 − ∆t

2

δF
δψ

)

ψn+1,p+1 =

(

1 − ∆t

2
F̂

)−1 [

ψn +
∆t

2
F(ψn) +

∆t

2
F(ψn+1,p) − ∆t

2

δF
δψ

ψn+1,p

]

. (48)

This is of the form Â−1Aψn+1,p+1 = bp. If the preconditioner is sufficiently good, then Â−1A is close
enough to the identity matrix that a simple functional iteration should be sufficient. Using an index q to label
these iterations within each Newton step, this would become ψn+1,p+1,q+1 = bp+(1−Â−1A)ψn+1,p+1,q, with
the initial condition ψn+1,p+1,0 = ψn+1,p. This should converge as long as the magnitude of the eigenvalues
of (1 − Â−1A) = Â−1(Â − A) are all less than unity. If we do only one inner functional iteration (q = 0)
per outer Newton iteration, then this exactly reproduces equation (45). [Alternatively, replacing δF/δψ
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in equation (47) with the approximate Jacobian F̂ leads to equation (45).] The Iterative Semi-Implicit
algorithm presented in this paper is essentially this, with a particular physics-based form for F̂ appropriate
for high frequency waves arising from coupling between differential equations, and a modification of the first
step to give a symplectic second-order accurate result after one corrector step.

More advanced iterative methods could be used, such as Krylov methods like GMRES or restarted Flexible
GMRES [22], and will accelerate convergence for some types of problems. However, we have found that simple
functional iteration works quite well for our problems, converging in just an iteration or two. In part, this
is because there is very little energy contained in the high frequency waves in these problems. In principle,
convergence might be slow if there were a significant component of the error vector in these high frequency
waves, for which Â−1(Â−A) has the largest eigenvalues. But there is very little physical coupling between
the low frequency dynamics of interest and the high frequency waves, so if they are treated in a numerically
stable way, they will have been damped away on previous time steps and do not require many iterations on
subsequent time steps.

Although we use a simple functional iteration, note that the optimal method for inverting the physics-based
preconditioner (1− ∆t

2 F̂) itself might in some cases be an iterative algorithm (more on this in section 3.2), or
in other cases with FFTs or a direct sparse matrix solver. For our application, we are already using FFTs for
a pseudo-spectral evaluation of the nonlinear terms, so it is easy to implement and very efficient to directly
invert our physics-based preconditioner in wave-number space.

2.5. Second order operator splitting

In the derivation of the numerical scheme of section 2.1, the nonlinear advection operators and the diffusion
operators are treated differently. Operator splitting methods can give rise to splitting errors in numerical
schemes, resulting in an overall order of the scheme which is lower than that of any of the individual methods
applied to treat each of the operators. In this section, we show that our scheme is second order accurate
even if these operators do not commute. To demonstrate this point, it is sufficient to consider the paradigm
posed by the compact vector form of equation (42). Crank-Nicolson discretization of equation (43) yields

ψ̃n+1 − ψ̃n =
∆t

2
eDη(t+∆t)F(ψn+1) +

∆t

2
eDηtF(ψn). (49)

Undoing the variable transformation and rearranging gives

ψn+1 − ∆t

2
F(ψn+1) = e−Dη∆t

(

ψn +
∆t

2
F(ψn)

)

. (50)

Through second-order accuracy, the LHS can be expanded as LHS=ψn+1−(∆t/2)
[

F (ψn) + (∂F/∂ψ)(ψn+1

−ψn)]. Then the above equation becomes

(

1 − ∆t

2

∂F
∂ψ

)

ψn+1 = e−Dη∆t

(

ψn +
∆t

2
F(ψn)

)

+
∆t

2
F(ψn) − ∆t

2

∂F
∂ψ

ψn (51)

From a second order Taylor-series expansion, ψ(t+ ∆t) = ψ(t) + ∆tψ′ + 1
2∆t2ψ′′, we see that the solution

to equation (42) through second order accuracy should be:

ψn+1 = ψn + ∆tF (ψn) − ∆tDηψ
n

+
∆t2

2

[

∂F
∂ψ

F (ψn) − ∂F

∂ψ
Dηψ

n −DηF (ψn) + D2
ηψ

n

]

. (52)

Inverting the operator on the LHS of equation (51) and expanding, one can show that equation (51) agrees
with equation (52) through second order. Thus we have demonstrated that our splitting scheme is second
order accurate even if the advection (F) and the diffusion (Dη) operators do not commute.
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Fig. 1. Plot of the solution of equation (53) as obtained analytically, expression (54), and with three different numerical methods.

2.6. Robust damping

Let us consider a simple test problem based on a linear scalar version of equation (42) with F = −iω and
Dη a real number,

dψ

dt
= −(iω + Dη)ψ. (53)

The analytic solution is straightforward:

ψ = ψ0e
−(iω+Dη)t, (54)

where ψ0 is the initial condition. A plot of the magnitude of this solution is shown in Figure 1, for the
parameters ω = 10, ψ0 = 1 and Dη = 1 (full black line). Also shown are the numerical solutions of equa-
tion (53) with three different numerical methods: in red (dashed line), the solution yielded by equation (50)
(i.e., the method described in this paper) ψn+1 = (1 + iω∆t/2)−1e−Dη∆t(1 − iω∆t/2)ψn ; in green (dotted
line) the result obtained by the analytic integration of the diffusive exponential, as described in appendix A
and, in blue (dash-dotted line), the solution given by a Crank-Nicolson (CN) discretization of the RHS.
As seen, for ω∆t < 1, all three methods reproduce the exact solution. However, only the discretization of
equation (50) is capable of capturing the behavior of the exact solution for any value of ∆t, as is desirable
for a robust treatment of damping with implicit integration, where Dη∆t ≫ 1. One might try to improve
the CN approach by using CN for the wave term and backwards Euler for the damping term, i.e., discretize
equation (53) as (ψn+1 −ψn)/∆t = −iω(ψn+1 +ψn)/2−Dηψ

n+1. However, in the limit ∆t→ ∞ this gives
ψn+1/ψn = −ω/(ω − i2Dη), which for Dη ≪ ω gives very little damping, even though Dη∆t >> 1.

The algorithm presented here preserves the property of robust damping, which mathematically is termed
L-stability. An algorithm that is stable for the equation (53) for arbitrary ∆t (for Dη ≥ 0) is called A-stable.
An algorithm is L-stable if it is A-stable and has the property of the exact solution that ψn+1/ψn → 0 as
∆t→ ∞. It is well known that Crank-Nicolson is A-stable but not L-stable. In physical terms, while Crank-
Nicolson has the nice property of giving no artificial damping of pure wave problems (i.e., it is symplectic for
Dη = 0), it has a difficulty in not giving significant damping for problems that should be strongly damped in
the large ∆t limit. Examples of L-stable algorithms include the 2cd order Backward Differentiation Formula
(BDF2), and certain Rosenbrock or Implicit-Explicit Runge-Kutta algorithms. The iterated semi-implicit
method presented here is based on a kind of integrating-factor variation of Crank-Nicolson that makes it
L-stable. (An algorithm based on the Modified Crank-Nicolson algorithm [23, 24] could be another way to
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improve the treatment of damping.) Alternatively, one could develop an iterative semi-implicit algorithm
starting from BDF2 instead of CN. This would be automatically L-stable and would treat the damping and
other terms in a balanced way that might have certain advantages for some applications. On the other hand,
BDF2 introduces a weak numerical damping of resolved waves, |ψn+1/ψn| ≈ (1− (ω∆t)4/4+O(∆t6)), while
the algorithm presented here has the advantage of retaining the CN property of being dissipation free in the
limit Dη = 0. Future work could investigate the relative advantages of these different approaches.

3. Application – gyrofluid magnetic reconnection

The field of plasma physics is particularly rich in stiff wave problems. One such application is magnetic
reconnection [25, 26], a phenomenon in which magnetic field lines that are being convected with the plasma
flows suddenly break and reconnect in a different configuration. Magnetic energy is released in this process,
giving rise to high velocity plasma flows, energetic particles and plasma heating. Reconnection is the cause
of solar flares [27, 28]; it is also manifest in the interaction between the solar wind and the Earth’s magnetic
field [29] in the magnetopause [30] and magnetotail [31]. In fusion devices it plays a crucial role in the
development of the sawtooth instability, which can be detrimental to the plasma confinement [32].

In the absence of external forcing, magnetic reconnection arises as a result of a well known plasma instabil-
ity called the tearing mode [33]. Regardless of the physical framework [i.e., resistive magnetohydrodynamics
(MHD), Hall-MHD 1 , kinetic, etc.], this instability is particularly hard to simulate numerically (see, e.g.,
[2, 11]). The reason is essentially one: the intrinsically multiscale character, both temporal and spatial, of
magnetic reconnection. With respect to its time evolution, the problem arises because the typical growth
rate γ of the tearing instability is much smaller than the frequency of the fastest waves present in the system
(e.g., Alfvén waves, Kinetic Alfvén waves, whistler, etc.); spatially, this problem requires the simulation of at
least two, but often more, spatially distinct scales: the large scale equilibrium and the short scale dissipation
layer. The separation between these two scales is a function of the magnitude of the field-line breaking terms
(e.g., resistivity, electron inertia) which, in order to address a physically meaningful region of parameter
space, have to have extremely small magnitudes, and thus become important only in very narrow regions
in the plasma where strong gradients arise. It follows from these conditions that numerical simulations of
magnetic reconnection require extremely high spatial resolutions and either an implicit time integration
scheme or, if an explicit scheme is adopted, timesteps which are much smaller than 1/γ.

In many plasmas of interest, such as those in fusion devices, or at the magnetotail or solar flares, it has long
been suspected that an MHD description is too simple to fully explain the complexity of the observations.
The discrepancy is obvious in the observed and calculated reconnection rates which, in the MHD framework,
differ by several orders of magnitude. Interest has diverged to non-MHD effects which might cause a speed-
up of this process [34, 35, 36]. The potential candidates differ depending on the specific geometry and
plasma parameters. For example, in most present fusion plasmas, the ion Larmor radius exceeds, or at
least is comparable to, the width of the dissipation region. Thus, finite ion Larmor radius (FLR) effects
cannot be neglected and are, in fact, known to produce a speed up of the reconnection rate [34, 37]. From
the numerical point of view, the FLR terms bring about one further complication: their inclusion in the
equations fundamentally changes the dispersion relation of the shear Alfvén wave, essentially generalizing it
to the so-called Kinetic Alfvén wave (KAW), which has a high frequency dispersive character, i.e., ω ∼ k2

⊥,
where ω is the wave frequency and k⊥ the wavenumber (the counterpart to the FLR effects in the absence
of a strong magnetic field is the Hall term in Ohm’s law, which also introduces a high frequency dispersive
wave, the whistler – see [38] for a detailed discussion of the relative roles of these waves). Explicit numerical
integration schemes are forced to resolve the highest frequencies present in the system, i.e., they must
integrate on a timestep ∆t ∼ 1/ωmax. Therefore, when dispersive waves are present, ∆t ∼ 1/k2

⊥,max. Since
k⊥,max ∼ 1/∆, where ∆ is the grid-spacing, the time step becomes impractically small as higher resolutions
are required to resolve the extremely thin reconnection layer. One common way to make this problem slightly
less demanding is the inclusion of hyper-diffusion in the equations (usually of the form D∇4, where D is a

1 Hall-MHD consists in extending the usual MHD Ohm’s law to include the so-called Hall term, J × B.
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diffusion coefficient). These terms effectively introduce a cut-off at the highest k’s (shortest wavelengths),
thereby reducing the maximum frequency present in the grid. However, it is often the case that in order to
have a significant effect in allowing for larger timesteps, the hyper-diffusion coefficients need to be set to
values which are likely to affect the physics of the system.

3.1. Equations

To study FLR effects in magnetic reconnection we chose a 2 field gyrofluid model, described by the
following normalized equations:

∂ne

∂t
+ [φ, ne] = [ψ,∇2

⊥ψ] + ν∇2
⊥ne − νH∇4

⊥ne, (55)

∂ψ

∂t
+ [φ, ψ] = ρ2

s[ne, ψ] + η∇2
⊥(ψ − ψeq) − ηH∇4

⊥(ψ − ψeq), (56)

ne =
1

ρ2
i

[

Γ̂0(b) − 1
]

φ. (57)

Here ne is the perturbed electron density, φ represents the electrostatic potential, ψ is the magnetic flux,
related to the in-plane magnetic field by B⊥ = ez ×∇ψ, [P,Q] = ∂xP∂yQ− ∂yP∂xQ is the Poisson bracket
and ρi and ρs are the ion and the ion-sound Larmor radius, respectively. Auxiliary quantities are the parallel
current density, j‖ = ∇2

⊥ψ, and the flow velocity, v⊥ = ez × ∇φ. Dissipation is provided by the viscosity ν
and the resistivity η. We also add, for physical reasons and numerical convenience, phenomenological hyper-
diffusion coefficients, νH and ηH [39, 40]. In equation (56), the equilibrium is subtracted from the nonideal
terms on the RHS in order to impose an ideal equilibrium [this is equivalent to imposing an external electric
field, Eext =

(

η∇2
⊥ − ηH∇4

⊥

)

ψeq ] – see appendix B for how to include this term in the numerical scheme of
equations (25–28). Time is normalized to the Alfvén time, lengths to the equilibrium scale length.

These equations are reminiscent of the more complete models of Snyder and Hammett [41] and Schep
et al. [42]. Equation (57) is known in the literature as the gyrokinetic Poisson equation [43]. The integral
operator Γ̂0 expresses the average of the electrostatic potential over rings of radius ρi. In Fourier space, this
operator simply becomes

Γ0(b) = e−bI0(b), (58)

where b = k2
⊥ρ

2
i and I0 is the modified Bessel function of zeroth order. In other words, within the gyrokinetic

work frame, the particle is allowed to experience different values of the electrostatic potential as it orbits
the magnetic guide field. The purpose of the Γ0 operator is to average φ over such orbits and over the
Maxwellian velocity distribution. When implemented numerically in real space, a Padé approximant of this
operator is often used [44]:

Γ0(b) − 1 ≈ − b

1 + b
, (59)

which converts equation (57) into:
(

1 − ρ2
i∇2

⊥

)

ne = ∇2
⊥φ. (60)

In our case, equation (57) is solved in Fourier space and thus no approximation to Γ0(b) is required. In
the limit k⊥ρi → 0, the above set of equations reduces simply to the Reduced MHD (RMHD) model of
Strauss [45].

Sets of fluid equations similar to the above, or their collisionless version, which further include electron
inertia, have been in use for quite some time to study magnetic reconnection (e.g. Kleva et al. [37]). The
particular form presented, however, differs from most in that it also includes the effect of finite ion temper-
ature (i.e., ρi 6= 0) and is unique, so far, in magnetic reconnection studies, in keeping the full form of the
Gyrokinetic Poisson law, equation (57), instead of its Padé approximant, equation (60) (see, e.g., Grasso et

al. [46]).
For simplicity, let us for now ignore the diffusive and hyper-diffusive terms and consider an equilibrium

described by B⊥,eq = B0ey, ne,eq = 0 and φeq = 0. We want to linearise equations (55–57) assuming that all
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the fields can be written as χ = χeq + χ1(x, y), where χ1 represents small perturbations to the equilibrium
of the form χ1(x, y) = χ1(x)e

ikyy. Dropping the subscripts, equations (55–56) become:

∂ne

∂t
= fψ, (61)

∂ψ

∂t
= gne, (62)

where

f =−ikyB0k
2
⊥, (63)

g =−ikyB0

(

ρ2
s −

ρ2
i

Γ0(b) − 1

)

. (64)

Combining these two equations, we have:
∂2ψ

∂t2
= −ω2ψ, (65)

and similarly for ne, where ω2 is given by:

ω2 = −fg = k2
⊥

(

ρ2
s −

ρ2
i

Γ0(b) − 1

)

k2
yB

2
0 . (66)

This is the general dispersion relation for the Kinetic Alfvén wave (KAW). In the limit of k⊥ρi ≪ 1 this
relation reduces to:

ω2 =

[

1 + k2
⊥ρ

2
i

(

3

4
+

1

τ

)]

k2
yB

2
0 (67)

where τ = Ti/Te. The first term on the RHS constitutes what is usually referred to as the shear Alfvén wave,
and the remaining k2

⊥ρ
2
i terms are the FLR corrections. [Note that |k · Beq|2 = k2

yB
2
eq,y = k2

yB
2
0 because

kz = 0 in this 2-D problem and the guide field Beq,z only enters through the gyroradii ρi and ρs.] The
opposite limit of k⊥ρi ≫ 1 gives:

ω2 = k2
⊥ρ

2
τk

2
yB

2
0 (68)

where ρ2
τ = ρ2

s +ρ2
i . The numerical difficulties faced in the explicit integration of the set of equations (55–57)

at k⊥ρi > 1 are obvious from expression (68), where we basically find that ω ∝ k⊥ky ∝ k2.

3.2. Semi-Implicit operator

Based on the linear dispersion relation, equation (66), a plausible first choice for the SI operator ω̂2 could
be:

ω̂2 = k2
⊥

(

ρ2
s −

ρ2
i

Γ0(b) − 1

)

k2
ya

2
0B

2
0 , (69)

where a0 is a dimensionless constant, set to a value that ensures the stability of the algorithm and, to account
for a spatially varying equilibrium magnetic field, Beq = Beq(x), B0 can be chosen to be its maximum value.
However, in the nonlinear regime, the magnetic field will no longer be a function of x alone, but rather an
arbitrary function of x and y. This suggests a qualitative generalization of this expression in order to also
apply to the nonlinear regime:

ω̂2 = k4
⊥

(

ρ2
s −

ρ2
i

Γ0(b) − 1

)

a2
0B

2
⊥,max, (70)

where we simply have made the transformations ky → k⊥ and B0 → B⊥,max, where we define B⊥,max =

max(
√

B2
x +B2

y) is the maximum magnitude of total in-plane magnetic field, updated at each new timestep.

Inclusion of the spatial dependence of the magnetic field would provide a more accurate operator, but it
would no longer be analytically invertible in k, which defeats the purpose of this method. In places where
k⊥ρi ≫ 1, this operator simply reduces to the spectral equivalent of the real-space ∇4

⊥ operator proposed
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by [7] for the whistler wave. Note, however, that whereas k⊥ρi will certainly be very large in the vicinity of
the X-point, it will also be negligibly small far away. It is therefore very useful to retain the full form of the
Γ0 operator in the expression for ω̂.

Our code works in Fourier-space, where it is very easy to invert this SI operator, but it is also possible
to implement a very similar SI operator in real space. Using a Padé approximation for the Γ0 function and
Fourier-transforming to real space, equation (70) becomes ω̂2 = −a2

0B
2
⊥,max∇2

⊥

(

1 − ρ2
τ∇2

⊥

)

. The resulting

SI operator (1 + ∆t2ω̂2/4) is a symmetric positive-definite parabolic operator that could be solved with a
preconditioned iterative Krylov solver or multigrid algorithm. (In some cases, a direct sparse-matrix solver
can also be used.) It should be noted that if a Krylov solver is used, it is important to use a very good
preconditioner. For these types of parabolic problems without preconditioning, the number of iterations
required for Krylov solvers like Conjugate Gradients or GMRES scales with the square root of the condition
number of the matrix[47, 48], Niters ∝

√

1 + ∆t2ω̂2
max/4 ∝ ∆tω̂max, which would give it at most an order

unity speed up over an explicit code. To get a significant speed up, an iterative solver must be aided by
further algebraic preconditioning, such as Modified-ILU [49], multigrid, or multilevel additive Schwarz [14],
or some combination thereof. However, one does not need to worry about these issues with a pseudo-spectral
code as used here, where direct inversion of this operator in Fourier space is trivial.

An important property of this SI operator is its ability to act on each value of k⊥ individually. For instance,
the magnitude of ω̂ is small for the lower values of k⊥, meaning that the large scale features are left relatively
unaffected. Also, it is well behaved in the limit of k⊥ρi ≪ 1, where it reduces to

ω̂ =

[

1 + k2
⊥ρ

2
i

(

3

4
+

1

τ

)]

k2
⊥a

2
0B

2
⊥,max, (71)

a form which makes transparent the operator’s ability to equally stabilize the shear Alfvén wave.
Finally, we note that the substitution ky → k⊥ in the expression for the SI operator implies that during

the linear and early nonlinear regimes the parameter a0 can be set to values which are smaller than 1. This
is important since, as mentioned, we want the operator ω̂ to be sufficiently large to satisfy the stability
condition ω̂2 > ω2 (and ideally, ω̂2 as close as possible to ω2 for all wavenumbers), but not so large that
convergence is slow and the error defined by expression (30) (which is proportional to a2

0) is larger than it
need be.

3.3. Error control and timestep determination loop

An important part of the algorithm is the error control and timestep determination loop. The basic idea
behind it is to enforce the error limit prescribed by the user,

max |Ep
ji| ≤ Emax, (72)

while maximizing the timestep that can be taken. This is done the following way. The discretized set of
equations (25–28) is iterated until p = pmax. Then, the following conditions determine the next step:

− (a) E < 0.8Emax : ∆tn+1 = C+∆tn

− (b) 0.8 < E < Emax : ∆tn+1 = ∆tn

− (c) E > Emax : loop is repeated with ∆tn+1 = C−∆tn

(73)

where C+ > 1 and C− < 1 are constants. The goal is to keep the error below but as close to the maximum as
possible. Based on the second order convergence of the numerical scheme, we set C+ = 1.08 and C− = 0.92.
At every timestep, the CFL condition for the plasma flow velocities is also evaluated, according to:

∆tflows
CFL = 0.1 min

[

∆x

vx,max
,

∆y

vy,max

]

. (74)

The next timestep is the minimum of expressions (73-74). It is important to note that the error control and
timestep determination loop just described makes the choice of a0 less vital to the algorithm than otherwise.
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The reason is that if the calculation is started with values of a0 and ∆t such that the SI scheme is unstable,
this will cause the error to diverge until it reaches the maximum allowed, at which point ∆t is decreased.
This cycle will be repeated until a sufficiently small ∆t is found for which the SI scheme is stable at that
(fixed) value of a0. Of course, if a0 is set to too small a value, stability of the SI algorithm might only be
available at values of ∆t much smaller than those which can be achieved at larger a0.

4. Numerical Tests

As mentioned, we have written a fully parallel pseudo-spectral code to evolve equations (55–57). An
explicit time-stepping version of this code has been in use for some time to study the evolution of the
resistive tearing mode in the single fluid MHD limit (ρi, ρs = 0). Details and extensive benchmarking can be
found in [50]; see also [51] for recent results. The explicit algorithm uses a modified version of the Adams-
Bashford 3rd-order method that allows for variable timesteps [52], combined with a Crank-Nicolson scheme
for the dissipative terms (in this case, the use of a CN scheme for these terms is fully justified because
ηk2

⊥∆t ∼ η ≪ 1, since ∆t ∼ 1/ωKAW ∼ 1/k2
⊥). The timestep is determined by the CFL condition, which is

evaluated at each timestep according to the formula

∆t = 0.1 min

[

∆x

vx,max
,

∆y

vy,max
,

∆x

Bx,max
,

∆y

By,max
,

2

ωKAW,max

]

, (75)

where ωKAW,max is an estimate of the maximum frequency of the KAW on the grid, defined as:

ωKAW,max = k⊥,max

(

ρ2
s −

ρ2
i

Γ0(b) − 1

)1/2

ky,maxB⊥,max (76)

The code also allows the resolution in the y-direction (i.e., perpendicular to the equilibrium direction) to vary
throughout a run, as needed. When more resolution becomes necessary in this direction the run is stopped
and the number of grid points doubled. The new data values necessary for this procedure are obtained via
linear interpolation between two adjacent points. This is a very useful feature for reconnection runs, as the
needs for resolution in the y-direction increase greatly from the linear to the nonlinear regime.

The base-case chosen for comparison between the SI method of equations (25–28) and the explicit code
is characterized as follows. The equilibrium is defined by ψ(0) = ψ0/ cosh(x)2 and φ(0) = 0. We set ψ0 =
3
√

3/4 so that the maximum value of the equilibrium magnetic field is 1. Other parameters are the resistivity
and the viscosity coefficients, set to η = ν = 5.10−4, and the instability parameter ∆′ = 17.3 (i.e., Lx =
2π, Ly = 2.18π). The hyper-resistivity ηH and hyper-viscosity νH are grid dependent, and their value is
calculated at each timestep, according to the formula:

ηH = νH = 0.1 ωKAW,max/k
4
⊥,max. (77)

Tests have been performed to insure that these coefficients are sufficiently small not to alter the physics
of the system. The tearing mode instability is initialized by perturbing this equilibrium with ψ(1) =
−10−5 cos(2π/Ly y). The initial resolution is 3072 × 128 grid points; the number of grid points the y-
direction is doubled throughout the run, up to 2048 for t >≈ 210. The most crucial test is to check how
closely the semi-implicit method described in this paper reproduces the results obtained by a conventional
explicit integration. This comparison is performed in Figures (2–3). Figure 2 shows the growth rate, defined
as γ = d logψX/dt, where X is the location of the X-point, obtained by the two methods. The agreement
between both approaches is remarkable. After an initial transient (t <∼ 30), the tearing instability is seen
here to evolve through four different stages: the linear stage (constant growth rate), the early nonlinear
period, from t ≈ 130 − 170, followed by the explosive stage, during which the growth rate dramatically
increases (t ≈ 170 − 220) and finally the growth rate slow down and saturation period.

A comparison between the contour plots for all the fields at the early stages of the explosive period
(t = 204) is shown in Figure 3. Again, the figure yields excellent agreement between the explicit and the
semi-implicit approaches.
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Fig. 2. Comparison between the explicit and SI results. The Figure shows the growth rate of the tearing instability,
γ = d logψX/dt, obtained by the explicit method (dashed black line) and the SI method with Emax = 10−3 (dotted red
line). The two curves show excellent agreement and visually overlap exactly.

Plotted in Figure 4(a) is the CPU speed-up factor, determined as follows:

CPU

CPUexp
=

∆t

(NRHS/2)∆texp
(78)

where NRHS is the number of evaluations of the RHS required at each timestep for the SI scheme to converge,
compared to an explicit scheme that requires only 2 such evaluations per timestep. CPUexp and ∆texp are
the explicit integration CPU time and timestep, respectively. As mentioned, convergence is determined by
E ≤ 10−3 at each timestep. A plot of the time evolution of the maximum error is shown in Figure 4(b).
The dashed lines in this figure identify the “comfort zone” for the SI error, defined by expression (73). We
see that for both values of pmax plotted, the error is indeed largely confined to that region, indicating the
second-order convergence of the iterative scheme. The large undershoots mark the points at which the run
was restarted with a larger resolution in the y-direction. At each restart, the ∆t is set to be equal to that
determined by the CFL condition. As shown in Figure 4(a), the SI method is remarkably successful, yielding
a CPU speed-up factor ranging from a minimum of ∼ 20 during the explosive growth period, to several
hundreds during nonlinear saturation of the instability. We also observe that, in this case, the iterative
scheme is very efficient, as is shown by the larger speed-up factors allowed for pmax = 2 (red dashed line).
The actual timesteps taken by the SI method are shown in Figure 5. We see that the SI method performs
so well that the minimum CPU enhancement (∼ 20 at t ≈ 210) is set by the flow speed, i.e., the actual
dynamics that we are interested in following (recall that the CFL condition for the flows is imposed as a
maximum for the timestep).

5. Conclusions

We have presented an efficient and accurate numerical method for the time integration of stiff wave coupled
partial differential equations. The method allows for timesteps which greatly exceed those imposed by the
CFL constraint, while accurately reproducing explicit calculations. CPU time savings over a conventional
explicit scheme range from factors of ∼ 20 to several hundreds for the test case chosen (gyrofluid magnetic
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Fig. 3. Contour plots of the fields measured at an island width W ≈ 1.6 (t ≈ 204). Left column show results obtained with the
explicit integration scheme, right column those obtained with the semi-implicit scheme. From top to bottom, shown are the
contours of ψ, j‖, φ and ne.
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Fig. 4. Fig.(a) shows the CPU speed-up factor over a conventional explicit integration for pmax = 1, 2. The timestep taken by
the SI scheme is determined by imposing E < 10−3, as seen in Fig.(b). The dashed horizontal lines limit the error “comfort
zone”, defined by expression (73). The largest undershoots in both figures (at times in the vicinity of t ≈ 200) are due to code
restarts at those times, when the resolution in the y-direction is doubled.

reconnection). The method is second-order accurate even if the diffusion and nonlinear (advection) operators
do not commute, and exhibits the property of robust damping. I.e., it correctly captures the analytic solution
in the limit Dη∆t ≫ 1, where Dη is the diffusion operator and ∆t the timestep. In the limit of no physical
dissipation, the method is symplectic (at least for a linear wave test problem), i.e., it does not introduce any
numerical dissipation.
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Fig. 5. Plot of ∆t vs. time achieved by the numerical scheme of equations (25–28) for the test case and for pmax = 1 (black
full line) and pmax = 2 (red dashed line). Also plotted for comparison are the timesteps due to each term contributing to the
CFL condition (75). Note that the timestep taken by the semi-implicit method coincides with that based on the flow velocity
during the explosive part of the instability.

The derivation of the SI numerical method presented here relies on the physics based assumption that
the fundamental wave dynamics arises as a result of coupling between equations. In the linear regime (small
perturbation amplitude) this statement is exact for many physical systems. Our results demonstrate that
this same SI operator (scaled to approximate an upper bound on the frequency in the nonlinear regime)
continues to be effective in the nonlinear regime as well, at least for the test problem explored here. One of
the advantages of a physics-based semi-implicit operator is that one only has to approximate ω2(k), not the
dispersion relation ω(k) itself (and in fact, one only needs an upper bound on ω2 to insure convergence).
Chacón and Knoll [11, 14, 13] have discussed how this kind of physics-based semi-implicit operator can be
related to preconditioning, and how it turns an originally hyperbolic problem into a diagonally dominant
parabolic problem that can be efficiently solved by multigrid and/or preconditioned Krylov (if the precon-
ditioner is sufficiently effective) iterative techniques. In some cases, the resulting parabolic problem can also
be efficiently solved with FFTs, which we use here.

The Iterative SI approach used here provides a way to monitor and control the SI operator splitting
errors, and essentially turns a semi-implicit algorithm into a fully implicit algorithm. Accuracy, rather than
stability, sets the time step ∆t. There are several variations of SI algorithms in the literature (such as
[17, 18, 6, 7, 53, 19]), some using staggered time grids. If only one pmax = 1 iteration is done, the underlying
SI algorithm used here is equivalent to reference [18]. The iterative approach presented here could also be
applied to other variations of SI algorithms. This could be a straightforward way to extend other existing
codes that use SI algorithms.

It is pertinent to compare the numerical method developed here to more elaborate implicit schemes and
preconditioning strategies. Within these, Jacobian-free Newton-Krylov (JFNK) methods seem to be amongst
the most sophisticated and promising [14]. (As discussed in section 2.4, our algorithm has similarities to a
Jacobian-Free Newton method, but with simple functional iteration instead of Krylov iteration within each
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Newton step.) In this respect, the main comparison factor is the CPU time speed-up over explicit approaches
– the main purpose of implicit schemes is, after all, to maximize this parameter. Of course, this is highly
problem specific, and a general comparison is not possible. For a similar problem to the one dealt with in
this paper, i.e., implicit integration of high frequency dispersive plasma waves, a JFNK implicit scheme was
developed by Chacón and Knoll [11]. The aim of these authors is the accurate implicit integration of the
whistler wave, which has a dispersion relation of the same type as the KAW, i.e., ω ∼ k2

⊥. In that work, CPU
time enhancements by factors of up to a maximum of ∼ 30 is quoted. This is roughly comparable to the
enhancement factors of 30 and higher found for our method, as shown in Figure 4(a). However, a definitive
comparison is not warranted at this time, since both the physics model and the problem are different (Chacón
and Knoll use a more complex four-field model, the flux-bundle coalescence problem is different than the
reconnection problem done here, grid sizes differ, there are subtle differences in the definition of the CFL
condition that influence this comparison, and the amount of speedup depends sensitively on the stage of the
nonlinear dynamics in our simulation).

It is interesting to note that the case in Table I of [11] that shows the largest speedup factors also
corresponds to needing no Krylov iterations for each Newton iteration (as they point out, the preconditioner
itself is providing a very good initial guess), in which case their algorithm becomes similar to the one
presented here, (except for differences in the predictor step and in the treatment of dissipation terms),
so one would in fact expect comparable performance. But short of more detailed comparisons, one should
simply conclude that the Iterative Semi-Implicit method developed here seems competitive, at least for some
problems, with these somewhat more complex approaches. The Iterative Semi-Implicit algorithm has the
relative advantage of being simpler to implement (particularly for codes that are already semi-implicit) and
works well for the type of problem we have studied here, while a full JFNK algorithm would be more robustly
convergent and may be more efficient for other types of problems where the present algorithm needs more
than a few iterations.

An important observation from the physics point of view is that these results, i.e., the fact that the KAW
can be integrated implicitly without affecting the physics of the system, confirm the parasitic role of this
wave in the reconnection process, although the terms from which they arise are essential to the observed
speed up of the instability growth rate. A similar conclusion has been reported by Chacón and Knoll [11]
for the whistler wave.

Finally, we note that this numerical method could be useful for other problems where an implicit treatment
of high-frequency waves is desired, and in particular is trivially applicable to fluid studies of collisionless
reconnection, where electron inertia is added to equations (55–57) and replaces the role played by the
resistivity in breaking the frozen flux condition.
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Appendix A. Exact integration of the diffusive exponential in equations (5–6)

It is instructive to consider one logical alternative to the discretization of equations (5–6) performed in
equations (7–8). For simplicity, let us instead consider the more compact form of the problem given by
equation (43). A formal solution to this equation can be written as:

ψ̃n+1 = ψ̃n +

∫ tn+1

tn

dt eDηtF(ψ). (A.1)
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In the Crank-Nicolson algorithm of equations (7–8), what is done is to approximate the integral with a 2cd
order midpoint evaluation, i.e.:

∫ tn+1

tn

dt eDηtF(ψ) ≈ ∆t

2

[

eDηtnF(ψn) + eDηtn+1F(ψn+1)
]

, (A.2)

from which formulas of the kind of (7,8) directly follow. Instead, one can exactly integrate the exponential
term, while using the CN discretization for the F operator alone. Undoing the variable substitutions of (4),
we obtain:

ψn+1 = e−Dη∆tψn +
∆t

2

(

1 − e−Dη∆t

Dη∆t

)

[

F(ψn) + F(ψn+1)
]

. (A.3)

Now following a procedure similar to that of section 2.5, it can be shown that this method reduces to
equation (50) in the limit of F∆t≪ 1, Dη∆t ≪ 1, i.e., it is also second-order accurate even if the operators
F and Dη do not commute. It does not, however, exhibit the property of robust damping discussed in
section 2.6 as can easily be seen by evaluating the above expression in the limit Dη∆t ≫ 1. Yet another
second-order accurate alternative is Strang-splitting [54]. For the model problem equation (53), one form
of Strang-splitting is ψn+1 = e−Dη∆t/2(1 + iω∆t/2)−1(1 − iω∆t/2)e−Dη∆t/2ψn. Similarly to our numerical
scheme of equations (25–28), this also exhibits robust-damping. However, we found this method to be much
less efficient in terms of the timestep enhancements that can be obtained over the CFL condition. Further
tests would be required to understand why our splitting scheme is a better alternative than Strang-splitting
for this problem; the interested reader is referred to a recent paper by Kozlov et al. [55] on the nature of
the local error for splitting methods applied to stiff problems.

Appendix B. Inclusion of the equilibrium source term in equations (25–28)

The equilibrium source term on the RHS of equation (56), Eext = Dηψeq, is not explicitly accounted for
in the derivation of the numerical method of equations (25–28). Since F is a general operator, it can, of
course, include this term. A more accurate alternative is obtained using the fact that ∂ψeq/∂t = 0. Thus,
equation (56) can be recast in terms of ψ1 = ψ − ψeq in the form

∂ψ1

∂t
= F(φ, ne, ψ) −Dηψ1. (B.1)

Now defining ψ1 = e−Dηtψ̃1 we obtain

∂ψ̃1

∂t
= eDηtF(φ, ne, ψ), (B.2)

which is of the same form as equation (5) and so the derivation of the method can be carried out as in
section 2.1. Equations (26–27) are thus replaced by:

ψn+1,∗ = e−Dη∆tψn +
(

1 − e−Dη∆t
)

ψeq

+
∆t

2

(

1 + e−Dη∆t
)

F(φn, ψn), (B.3)

ψn+1,p+1 = e−Dη∆tψn +
(

1 − e−Dη∆t
)

ψeq +
∆t

2
e−Dη∆tF(φn, ψn) +

+
∆t

2
F(φn+1,p, ψn+1,p) − ω̂2∆t2

4
(ψn+1,p+1 − ψ̄n+1,p). (B.4)
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