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A recent paper, “Dual cascade and its possible variations
in magnetized kinetic plasmas turbulence” (Ref. 1, hereafter
Zhu10), tries to carry out calculations of the statistical abso-
lute equilibrium of fluctuations in the 2-D gyrokinetic equa-
tions for plasmas in the continuum velocity limit, i.e., without
making a Galerkin truncation in the velocity dimension. This
paper misapplies some results from an earlier paper by that
author and myself (Ref. 2, hereafter Zhu-Hammett10). In par-
ticular, the paper Zhu10 appears to contain some mathemati-
cal mistakes (or contains assumptions that are not explained),
as I explain below. Unless otherwise specified, all equation
and page numbers below will refer to equations in Zhu10.

The heart of the matter is that Zhu10 replaces a singularity
that would result from evaluating a Dirac delta function δ(u−
v) at u = v with just δ(0) = 1, which is incorrect. There are
at least two different, straightforward ways to see the problem:

(1) Start with his definition of G(v) from the first displayed
equation on p.3, at the beginning of Sec. II:

G(v) =

�
d2R

2V
g2(R, v, t)

where V is the integration volume. The function G(v) is a
conserved quantity, so we can equivalently replace the RHS
with its ensemble-averaged value in statistical equilibrium:
G(v) =

�
d2R�g2(R, v)�/(2V ). Expanding g(R, v) =�

k ĝ(k, v) exp(ik ·R) gives

G(v) =
�

k

�ĝ(k, v)ĝ∗(k, v)�/2,

Equating this with the definition of the spectral representation
G(v) = ��

kG(k, v) =
�

k G(k, v)/2 (the Fourier conven-
tions are described in more detail in Zhu-Hammett10, but in
brief, �

�
k is a sum over the upper half �k plane, while

�
k is a

sum over all Fourier modes) leads to

G(k, v) = �ĝ(k, v)ĝ∗(k, v)�,

Since the correlation function is given by C(k, u, v) =
�ĝ(k, v)ĝ∗(k, u)�, according to Eq. 13, this means

G(k, v) = C(k, v, v)

However, C(k, u, v) = δ(u−v)/α(v)+..., as given in Eq. 12,
which goes to infinity if one evaluates this at u = v (ignoring
for the moment the second term in C(k, u, v)). One gets his
Eq. 14 only by ignoring this problem and setting δ(v − v) =
δ(0) = 1, which is incorrect.

(2) Another way to see the problem is to note that his
continuous result in Eq. 12 rigorously follows from his dis-
crete result in Eq. 16 (which agrees with our earlier results
for the discrete case in Zhu-Hammett10) with the substitu-
tion αi = α(vi)mi = α(vi)∆vi (as he gives after Eq. 16,

where mi = ∆vi is the velocity lattice spacing) and taking
the continuous limit ∆vi → 0. For this to work, as he says,
he must use δi,j/∆vi ↔ δ(u − v), which is correct. But if
he were to apply the same prescription to go from the discrete
result for Gi(k) in Eq. 18 to the continuous result, then the
first term would give G(k, vi) = 1/(α(vi)∆v) (if the other
terms can be neglected), which blows up as ∆v → 0 and dis-
agrees with the claim in Eq. 14 that the continuous result is
G(k, v) = 1/α(v).

Zhu10 tries to justify his treatment of the delta functions
in Appendix B. That appendix seems to be confusing this
case with other cases where delta functions can arise (such as
in Fourier spectra for statistically homogeneous fluctuations
on an infinite domain), but the problem can always be rigor-
ously reformulated in consistent ways to handle this. There
is no justification for introducing additional integrations over
infinitesimal regions du, as tried in Appendix B. Something
similar to what the author is trying to do might be okay if
G(k, v) was defined by G(k, v) =

�∞
−∞ duC(k, u, v) or de-

fined through C(k, u, v) = G(k, v)δ(u− v)+ . . ., but neither
of these is true.

Taking the continuous limit of the velocity coordinate (i.e.,
an infinite number of velocity grid points) is physically very
subtle. It is similar to trying to take the limit of an infinite
number of Fourier modes when calculating absolute equilib-
rium in fluids, instead of the standard approach of a Galerkin
truncation of a finite set of Fourier modes (the standard ap-
proach is explained further in Refs. [3 and 4]). The discrete
set of velocity grid points in the gyrokinetic calculation of
Zhu-Hammett10 is the analog of the finite set of Fourier ba-
sis functions in the standard fluid approach. There might be
some academic reasons why one would want to consider abso-
lute equilibrium for continuum cases where G(v) is infinite.
On the other hand, the ∆v → 0 continuum limit has been
considered while holding G(v) finite, which leads to partic-
ular scalings for the αi and α0 coefficients as the continuum
limit is approached. This is discussed briefly at the end of Ap-
pendix D of Zhu-Hammett10. Since G(v) is related to the en-
tropy and generalized free energy of the system, the physical
implications of finite vs. infinite G(v) needs to be understood
before drawing any strong conclusions. It is not clear how
much new is to be learned from the absolute equilibrium of
the continuum case relative to what was learned from the pre-
vious discrete velocity case. A higher priority seems to be to
consider more realistic non-equilibrium turbulence with forc-
ing and dissipation, which introduces natural cutoffs at small
scales due to dissipation.
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Note added Nov. 28, 2011:  This draft comment is in response to version 2 of 
http://arxiv.org/abs/1008.0330v2
I have not yet had time to look at version 3, whose title and contents have changed to some extent.  -GWH


