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Abstract

Within this thesis, the impact of current-driven drift waves and mi-

croturbulence in fusion energy devices is studied. The analytic study

is based on a model that contains fluid ions and a simplified kinetic

description of electrons.

To examine numerically the impact of an electron current on drift

waves, a program was written in Mathematica. It provides the calcu-

lation of the real and imaginary parts of the drift wave frequency and

the diffusion, based on the mixing length approximation. The model

used to describe the drift waves considers a plane plasma slab geom-

etry and contains kinetic ions, kinetic electrons and an additional ion

polarization term. The plasma dispersion function is approximated

by a four-pole approximation. After the discussion of the functional-

ity of the program, numerical studies of growth rates, frequencies and

diffusion are provided.

The prediction, based on the analytic study of the destabilizing in-

fluence of an electron current on drift waves, is verified by numerical

results. The diffusion generated by the current-driven drift wave, is

predicted by this model to be potentially significant in some parame-

ter regimes relevant to the Alcator C-Mod experiment, leading to the

suggestion that current-driven drift waves should be included in full

gyrokinetic codes.



Zusammenfassung

Im Rahmen der vorliegenden Arbeit wird der Einfluss von stromgetrie-

benen Driftwellen (CDDWs) und Mikroturbulenzen in Fusionsanlagen

untersucht. Die analytische Untersuchung basiert auf einem Modell,

das Ionen als kalte Flüssigkeit und Elektronen kinetisch beschreibt.

Um den Einfluss eines parallelen Elektronenstroms auf Driftwellen

numerisch zu untersuchen, wurde ein auf Mathematica basierendes

Programm entwickelt, das die Berechnung von Real- und Imaginär-

teil der Frequenz, wie auch der Diffusion erlaubt. Das der numerischen

Betrachtung zugrunde liegende Modell basiert auf kinetischen Ionen

und kinetischen Elektronen, ergänzt durch einen Term, der die Polari-

sationsdrift der Ionen berücksichtigt. Die Plasmadispersionsfunktion

wird durch eine Vierpolnäherung beschrieben.

Die auf der analytischen Untersuchung basierende Vorhersage der

destabilisierenden Wirkung eines Elektronenstroms auf Driftwellen

konnte im Rahmen der numerischen Analyse bestätigt werden. Die

durch CDDWs verursachte Diffusion ist möglicherweise in einigen für

das Alcator C-Mod-Experiment relevanten Parameterbereichen von

Bedeutung. Daher wird empfohlen, CDDWs zur weiteren Analyse in

gyrokinetische Codes zu integrieren.
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1

Introduction

Considering matter as conglomerate of neutral atoms and molecules, there are

three common states: solid, fluid and gaseous. Dependent on pressure and tem-

perature, matter cross over from one state to another. Increasing the temperature

in the gaseous state results finally in an ionization of the gas molecules. This state

is essentially affected by the long-range Coulomb forces between the charged par-

ticles, while the ionized gas is neutral in sum.

Beside the usual collision processes, collective phenomena arise causing new

interesting effects. This special state was first called a “plasma” by Langmuir in

1928 as he wrote “we shall use the name plasma to describe this region containing

balanced charges of ions and electrons” [30]. Plasma is also labeled as the fourth

state of matter, following the named three states, while simultaneously stressing

the fundamental new characteristics of plasma.

Besides the wide actual application spectrum, for example in material science

for surface treatment, plasma is our great hope for solving the future energy

problems of the earth.



2 1. INTRODUCTION

1.1 Fusion

The sun is the archetype of all fusion energy devices that try to mimic the sun’s

power on earth. The source of the sun’s energy, which provides all life on earth, is

fusion: Combining of lighter elements into heavier ones, while setting free energy.

In the sun the proton-proton cycle dominates:

H1
1 + H1

1 ! H2
1 + e+ + ⌫

e

,

H2
1 + H1

1 ! He32 + � ,

He32 + He32 ! He42 + 2H1
1 .

Hydrogen is burned into helium [40]. Since the mass balance is broken in these

reactions, the mass converts to energy according to

E = mc2 . (1.1)

Equation 1.1 states the equivalence of mass m and energy E. The proportionality

factor c ⇡ 3 · 108m/s is the speed of light. As c2 is a high number, a small amount

of mass contains huge energy. The difference between the sum of all masses of

the nucleons and the actual smaller mass of the atom nucleus is the mass deficit,

connected with the binding energy through the Einstein-relation (1.1).

Figure 1.1 shows the binding energy per nucleon versus the atomic mass num-

ber. The maximal binding energy is reached at the atomic mass number of 56,

which is iron. For heavier nuclides the energy sinks, caused by the increasing

amount of protons and their rejecting Coulomb force. For all nuclides lighter

than iron, the strong interaction outweighs the Coulomb force. Thus there are

two ways of gaining energy through nuclear power: fission of heavier nucleus and

fusion of lighter ones.
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Figure 1.1: Binding energy curve - Average binding energy versus atomic mass
number. Energy can be gained by fission of heavier nuclei or fusion of lighter ones,
whereas the maximum binding energy is reached for iron. Data from [37].



4 1. INTRODUCTION

For terrestrial applications, the fusion of two isotopes of hydrogen H1
1 , deuterium

(D = H2
1 ) with tritium (T = H3

1 ), is promising, producing 17.6MeV of energy

D + T ! 4He+ n (�E = 17.6MeV ) .

The energy �E is distributed between the ↵-particle, 4He, with 3.5MeV and

the neutron. Both deuterium and tritium can be gained easily in most places on

earth. Deuterium is part of every hydrogen-compound and hence, as an easily

extractable part of sea water, a virtually infinite source of energy. Tritium is

radioactive (�-emitter) with a half-life of 12.5 years. It can be produced out

of lithium with the help of neutrons via the following process, supplemented by

neutron multipliers like beryllium or lead:

n+

6Li ! T +

4He (�E = 4.78MeV ) ,

n+

7Li ! T +

4He+ n (�E = �2.47MeV ) . (1.2)

As the first reaction has a large cross section for slow and the second for fast

neutrons, these reactions can be achieved in a lithium blanket in a fusion energy

supply as illustrated in figure 1.2. Lithium is a wide-spread resource, found

in the earth’s crust and sea water. Thus with the second ingredient breeding on

site, this kind of energy source, assuming the needed technical knowledge, may be

used world wide without the need of importing expensive resources for permanent

operation [44].

For most experimental fusion devices, another reaction is used:

D +D ! T +H (�E = 4MeV ) ,

D +D ! 3He+ n (�E = 3.25MeV ) .

No tritium has to be generated for this reaction, which has two huge advantages
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for testing purposes. First, without tritium there are fewer radioactive materials,

allowing technicians to make adjustments of the inner parts without risking their

health. The second advantage are the lower costs, tritium is expensive compared

to deuterium, and cannot be bred by experimental devices at present.

Figure 1.2: Fusion power plant - deuterium and tritium are filled into the
reactor and fuse to ↵-particles and neutrons. The generated neutrons produce new
tritium in the lithium blanket. The resulting heat drives a turbine, which generates
power (taken from Ref. [11]).

Figure 1.2 shows a prototype of a fusion reactor. Deuterium and tritium are fed

into the plasma chamber, where they fuse. The generated ↵-particles heat the

plasma and the neutrons escape to the walls, where they react with the lithium

to tritium according to (1.2) or being decelerated by the walls. The produced

heat is led away, driving a turbine and thus producing power.

There are different concepts for how to prevent the hot plasma from hitting

the wall, amongst others magnetic and inertial confinement. The plasma chamber
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for inertial confinement is the reaction chamber, while for magnetic confinement,

it is for example the tokamak (see section 2.5.1).

1.1.1 Lawson Criterion

Fusion research is aimed at producing a plasma, generating more energy than

needed to create and maintain it. The quantity Q = P
Fusion

/P
ext

, the ratio of

the power contained in fusion products to the power needed to heat the plasma,

measures the fusion performance of a power plant. Q = 1 is called the break-even,

the moment that more energy is gained than invested. Ignition corresponds to

Q = 1 and a plasma burns for about Q > 5. While for an efficient power plant

at least Q ⇠ 15 is necessary, for ITER Q > 10 is intended.

Lawson’s original paper [31] considers both an ignition criterion for a steady

state system and a simpler engineering net gain criterion for a driven cyclical

system. According to the last-mentioned, a net energy is gained, if

⌘(R + 1) > 1,

where R = E
out

/E
in

and ⌘ is the efficiency of transformation of the energy, re-

leased from the reaction into heating of the walls, further to electrical, mechanical

or chemical energy. For a driven cyclical system,

R =

⌧P
R

⌧P
B

+ 3nkT
,

with the fusion reaction power P
R

and the radiated power per unit volume P
B

.

R is a function of the temperature T , density n and the confinement time ⌧ . [31]

These are the three critical quantities to be optimized. The temperature T

has to be high enough for fusion to take place, which for a deuterium-tritium

plasma is about 10� 30 keV. Assuming ⌘ = 1/3, the original guess of Lawson,
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Figure 1.3: Fusion product - This figure shows the progress made in fusion
research. While JET is closest to the ignition condition at this time, ITER is
believed to operate slightly beyond the threshold of ignition (taken from Ref. [35]).
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power is gained for n⌧
E

> 10

20
m

�3. [4]

For a typical plasma density of 1020 m�3 and a confinement time of 1� 2 s a

surplus of energy is possible. There are more modern ways of determining the

optimal values of confinement time, density and temperature, the triple prod-

uct nT ⌧
E

. Again calculated for a deuterium-tritium plasma the triple product

becomes nT ⌧
E

> 10

21
keV s/m�3. Figure 1.3 illustrates the triple product, also

called fusion product. The minimum of the fusion product is also sometimes

called the Lawson criterion.

1.1.2 Inertial Fusion Energy

As pointed out in the last section, the plasma has to be trapped long enough with

a high enough pressure to ensure sufficient fusion reactions to produce energy.

There are some ideas for realizing a long enough confinement time, using either

inertial or magnetic confinement. Since this work is based on experiments in a

tokamak, magnetic fusion will be explained in detail in section 2.

The principle for inertial fusion is to bring the density to a very high level,

which allows a very short confinement time. The deuterium-tritium mixture is

packed in a small pellet, which is compressed until explosion. The explosion time

is actually the confinement time, however it is not anymore a confinement in a

conventional meaning. The compression is done by either a laser or a particle

beam. Due to Rayleigh-Taylor instabilities, a spherical irradiation is crucial.

There are two main principles for compression: via the direct or indirect drive.

In direct drive, the laser hits the pellet directly, while in indirect drive the beams

are first absorbed on the walls, which heat up, in order to irradiate the pellet

more uniformly, as depicted in figure 1.4.
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Figure 1.4: Inertia fusion - The laser (blue) is directed to the pellet (red, with
black blanket). a. Direct drive: the laser hits the pellet directly. b. Indirect drive:
the beams are first absorbed on the walls, which heat up in order to irradiate the
pellet more uniformly (adapted from Ref. [10]).

1.2 Scope of the Project

This thesis was inspired by the work of L. Lin, M. Porkolab at al. In their 2009

paper titled, “Studies of turbulence and transport in Alcator C-Mod ohmic plas-

mas with phase contrast imaging and comparisons with gyrokinetic simulations”

[33], turbulence and thermal transport in Alcator C-Mod ohmic plasmas were

determined through numerical and experimental studies. A key question investi-

gated in this paper is the change of plasma behavior between “Neo-Alcator” and

“saturated ohmic” regime. “Neo-Alcator”, also called the “linear ohmic” regime,

describes the range in which confinement time is proportional to the density,

⌧
E

/ n̄
e

. An increase of the density leads to the saturated ohmic regime, in

which the confinement time has a weak dependency of the density. As shown in

figure 1.5 for the Alcator C-Mod case, for n̄
e

< 0.7 · 1020 m�3 there is a linear

dependency and the confinement time is saturated for n̄
e

> 0.8 · 1020 m�3.

For high densities it was possible to show, that - as assumed - the instability

is driven primarily by the ion temperature gradient (ITG). Turbulent wave prop-

agation in the ion diamagnetic direction, as expected for ITG turbulence, was
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Figure 1.5: Linear and saturated ohmic regime and the transition-zone
- The energy confinement time ⌧

E

is plotted versus the line-average density n̄
e

for
Alcator C-Mod Parameter (taken from Ref. [33]).

also measured. In the saturated regime, the simulated predictions of GYRO fits

within the experimental uncertainty to the experimental results, which is ±60%

for the case of the absolute fluctuation wave number spectrum. For the ther-

mal diffusivities for electrons, �
e

, ions, �
i

and the effective thermal diffusivity,

�
eff

⇠ (�
e

+�
i

)/2, agreement could be reached after reduction of the normalized

ion temperature gradient a/L
T,i

by 20%, which is as well within the experimental

error. For the saturated regime, the predictions of GYRO are acceptable, though

they found discrepancies in the linear regime.

In the linear regime, where the density is lower, the electron transport exceeds

the transport of the ions, �
e

� �
i

, according to experimental results. Though

GYRO simulations of long wavelength turbulence predicts �
i

> �
e

, the effective

thermal diffusivity agrees with the experiments after reduction of the ITG by 20%.

For the given parameters, trapped electron modes (TEMs) and electromagnetic

effects could be excluded as source of the high electron transport.
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As possible explanations, they suggested the possibility of influences of shorter

wavelength turbulence (electron temperaturere gradient (ETG) turbulence), tur-

bulent energy exchange or electron drift velocity. Simulations for short wavelength

turbulence up to k
y

⇢
s

⇠ 4 were done, so simulations with k
y

⇢
s

> 4 are required

to perhaps explain the electron transport.

Another possible explanation could be the existence of electron drift velocity

connected with “ohmic toroidal plasma current”, which could drive electron drift

waves. Since the electron drift velocity is very small in the standard gyrokinetic

ordering, it is neglected in existing gyrokinetic turbulence codes. However, for

the Alcator C-Mod experiments at low densities this drift velocity could be non-

negligible compared to the electron thermal velocity and even exceed the ion

sound speed [33]. This idea was the starting point for this thesis, which will

evaluate the influence of the current-driven drift wave based on the described

transport problem.
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2

Magnetic Confinement Fusion

In this chapter the most basic concepts for plasma description will be introduced.

Starting with the motion of single particles in magnetic fields and the resulting

drifts, the kinetic model of plasmas is sketched. Coming from this microscopic

picture, the fluid description of plasmas is outlined. All these concepts will play

an important role in modeling drift wave behavior in chapter 3.

2.1 Single Particle Motion in Magnetic Fields

Consider the plasma as a conglomerate of negatively and positively charged par-

ticles, each moving with a different velocity v through a uniform magnetic field

B. Because of their charge, the Lorentz force (2.1) acts on each particle,

F

L

= q

✓
E+

1

c
v ⇥B

◆
, (2.1)

where c is the speed of light, q the charge and v = const. the velocity of the

particle.
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Figure 2.1: Gyration - Charged particles describe a circle around magnetic field
lines due to the Lorentz force. The direction of the gyration depends on the charge.
a. Gyration of negative charged particle, b. Gyration of positive charged particle.

Defining the coordinate system so that B = Bˆ

z, the force in absence of an electric

field E becomes

F =

qB

c

0

BBBB@

v
y

�v
x

0

1

CCCCA
. (2.2)

The force F is purely perpendicular to the magnetic field. Differentiating the

equation of motion F = ma = m ˙

v with respect to time,

¨

v =

qB

mc

0

BBBB@

v̇
y

�v̇
x

0

1

CCCCA
,

and inserting the original equations (2.2) gives

¨

v? = �
✓
qB

mc

◆2

v? , (2.3)

v̈
z

= 0 ,

where v? = v
x

ˆ

e

x

+ v
y

ˆ

e

y

. Because of the perpendicular nature of the force, the
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particle moves parallel to the magnetic field with constant velocity of v
z,0,

z(t) = z0 + v
z,0t .

Equation (2.3) for the perpendicular velocity consists of two decoupled second

order differential equations of the form ¨⇠ = �⌦

2⇠. The solution is an oscillation

with frequency ⌦, ⇠(t) = A cos(⌦t) + B sin(⌦t). Comparing with (2.3), the

frequency for the perpendicular motion is

⌦

c

=

qB

mc

and the solutions for the perpendicular velocity components of (2.3) are

v
x

(t) = v
x1 cos(⌦c

t) + v
x2 sin(⌦c

t) , (2.4)

v
y

(t) = v
y1 cos(⌦c

t) + v
y2 sin(⌦c

t) . (2.5)

Consider v̇
x

= ⌦

c

v
y

from (2.2), and insert the solution (2.4) for v
x

, the velocity

in y-direction becomes

v
y

(t) = v
x2 cos(⌦c

t)� v
x1 sin(⌦c

t) .

This implies v
y1 = v

x2 and v
y2 = �v

x1. Assuming the initial conditions v(t =

0) = v
x,0ˆx + v

y,0ˆy and x(t = 0) = x0ˆx + y0ˆy, (2.4) and (2.5) give the conditions

v
x,0 = v

x1 and v
y,0 = v

y1. Integration of (2.4) and (2.5) with respect to time and

using the boundary conditions, gives the equations of the particle’s position in a

straight magnetic field:

x(t) = x0 +
1

⌦

c

(v
x,0 sin(⌦c

t) + v
y,0[1� cos(⌦

c

t)]) ,

y(t) = y0 +
1

⌦

c

(v
y,0 sin(⌦c

t)� v
x,0[1� cos(⌦

c

t)]) ,

z(t) = z0 + v
z,0t .
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The so described particle propagates in a circle on the perpendicular plane around

the magnetic field line, which is called the gyration motion, illustrated in figure

2.1. Due to the initial parallel velocity, these equations describe a helical motion

as shown in figure 2.2. The magnetic field has no influence on the parallel motion.

Figure 2.2: Helix - Charged particles with a velocity component parallel to the
magnetic field propagate in form of a helix around the magnetic field.

The perpendicular velocity v? =

q
v2
x,0 + v2

y,0 together with the strength of the

magnetic field determine the radius of the gyration, also called gyro- or Larmor-

radius

⇢
L

=

v?
⌦

c

. (2.6)

The oscillation frequency ⌦

c

is also called the gyro-frequency. Ions and electrons

gyrate in opposite directions due to the charge dependency of ⌦

c

. Electrons

describe a right-hand screw, while ions propagate left-handedly. For a deuterium

plasma the mass ratio between electrons and ions is m

i

m

e

⇠ 3669. Since ⌦

c

⇠ 1/m,

the electrons gyrate much faster than the ions with ⌦

c,e

⇠ 3669⌦

c,i

and the

electrons’ gyro-radius is small compared to the ions’, ⇢
e

⇠ ⇢
i

/60. In addition,

the dependency on charge and mass increases ⌦
c

linearly with the magnetic field,

which results in a decrease of the radius.
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In many cases it is convenient to describe the particle motion as a superposition

of the motion of the center of the gyration, the guiding center, and the gyration

around it. Neglecting the fast electron gyration for example clarifies the physics

behind the guiding center drifts. The drift kinetic theory takes advantage of this.

This guiding center drift depends on the characteristics of the particle: charge,

mass and energy, but also on external factors such as gradients or additional

fields. In the next section some important particle drifts for the understanding

of drift waves are described in detail.

2.2 Particle Drifts

Ions and electrons as charged particles experience forces in electric and magnetic

fields. In this chapter the most important particle drifts for understanding the

drift wave, covered in section 3.1, will be introduced. All drifts covered here are

valid in the lowest order of the ratio of gyroradius to the background variation

scale.

2.2.1 E⇥B - Drift

In presence of an additional field causing the force F

ext

, the particle drifts per-

pendicular to that field and the magnetic field with the drift velocity

v

D

=

c

q

F

ext

⇥B

B2
. (2.7)

To derive (2.7), one starts with the equation of motion,

m ˙

v =

q

c
v ⇥B+ F

ext

,
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and defines with B = Bˆ

b

u ⌘ v � c

qB
F

ext

⇥ ˆ

b .

Since ˙

u =

˙

v,

m ˙

u =F

ext

+

qB

c
u⇥ ˆ

b+ (F

ext

⇥ ˆ

b)⇥ ˆ

b

=

qB

c
u⇥ ˆ

b+ (

ˆ

b ·F
ext

)

ˆ

b ,

resulting in a velocity perpendicular and parallel to the magnetic field. Shifting

back to the original frame, the drift velocity (2.7) is gained.

All particle drifts described below may be considered special cases of this

force’s drift. Assume the force in (2.7) originates from an electric field with the

corresponding force

F

e

= qE .

As shown in figure 2.3 a. the magnetic field remains pointing in ẑ-direction and

the electric field points in x̂-direction. In a purely B-field, a single positively

charged ion will gyrate around the magnetic field line describing a concentric

circle around the origin. An additional electric field causes an acceleration of the

ion along E.

Simplifying the circle into a square with sides parallel to the axes, the ion is

accelerated while moving in positive ˆ

x-direction, and decelerated in the reverse

E-direction. These acceleration and deceleration result in different velocities and

thus the gyration radius (2.6) is greater on one half of the circle than on the other,

as depicted in figure 2.3 a. Thus the electric field combined with the magnetic

field causes a perpendicular net drift of the ions, as depicted in figure 2.3 b.
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Figure 2.3: E ⇥B - drift - An electric field perpendicular to the magnetic field
causes a charge-independent perpendicular drift. a. The ion is accelerated parallel
to E and decelerated antiparallel, resulting in a greater radius on the upper half-
circle and a reduced radius on the lower side. This leads to an E⇥B - drift in �ŷ
- direction (b.).

The E⇥B - drift velocity becomes

v

E

=

c

B
E⇥ ˆ

b .

This drift is independent of the particles’ charge, ions and electrons drift in the

same direction with the identical velocity, thus the net current is zero.

2.2.2 Polarization - Drift

In all real devices, for many reasons, time-varying electric fields are present, which

cause additional effects. In section 2.2.1 it is described how the acceleration

and deceleration of the particle parallel and antiparallel to the electric field with

|a
acc

| = |a
dec

| causes the E⇥B - drift. Assuming a time-dependent electric field,

the absolute values of the acceleration and deceleration differs, |a
acc

| 6= |a
dec

|.

Thus an additional drift component in the direction of the time variation of the
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electric field arises,

v

p

=

c

B

1

⌦

c

d
t

E . (2.8)

This drift velocity is inversely proportional to the gyration frequency ⌦

c

and

thus dependent on mass and charge of the particle. Negative electrons drift in

the opposite direction of positive ions, causing a separation of charge. Therefore

this drift is called “polarization drift” causing a net current. Expressing the

polarization drift (2.8) in form of the E ⇥B - drift points out the differences in

the magnitude:

v

p

=

c

B

1

⌦

c

d
t

E =

1

⌦

c

ˆ

b⇥ d
t

v

E

. (2.9)

Since v
p

⇠ !

⌦
c

v
E

, the polarization drift is second order of 1/⌦
c

and small compared

to the E ⇥ B - drift. For electrons usually this drift may be neglected since

v

p

⇠ 1
⌦

c

.

2.2.3 Diamagnetic Velocity

In contrast to the previously discussed drifts, the diamagnetic velocity is actually

no gyrocenter drift. However, in some literature it is called “diamagnetic drift”.

As depicted in figure 2.4, an inhomogeneous distribution of guiding centers caused

by a density gradient produces a net electric current through superposition of the

ring currents. Assuming a temperature gradient instead of a density gradient,

the particles’ gyroradius ⇢ ⇡
p
T is changed, causing the same effect as a density

gradient. Thus in general the diamagnetic velocity is caused by the pressure

gradient rp = r(nT ). The name “diamagnetic velocity” originates from the fact

that the diamagnetic current

j⇤ = � c

B
rp⇥ ˆ

b
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Figure 2.4: Diamagnetic velocity - A density gradient produces a diamagnetic
current j.

generally reduces the magnetic field inside the plasma. The diamagnetic velocity

for a straight magnetic field in the ˆz-direction with a constant temperature T and

density gradient in the ˆ

x-direction becomes

v⇤ =
cT

qB

d
x

n

n
ˆ

y . (2.10)

In the following sections equation 2.10 with q = �e is denoted as the “electron

diamagnetic velocity,” v
de

.

2.2.4 Drifts in non-uniform magnetic fields

Besides the covered E ⇥ B - and polarization-drifts, there are other drifts that

generally influence the way particles move in fusion devices. Above, the magnetic

field was assumed to be temporally and spatially constant and straight in ẑ-

direction. Similar to the way the time-varying electric field caused polarization

drift, a softening of these restrictions on the magnetic field results in additional

drifts. The rB-drift arises due to a gradient in the magnetic field strength, while

a curvature of B results in the so-called curvature drift. Assuming a magnetic

field, characterized by both gradient and curvature, the resulting particle drift
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becomes [3, 20]

v = v

c

+ vrB

=

cmv2k
qB2

R

c

⇥B

R2
c

+

cv2?
2⌦

c

B⇥rB

B3
.

R

c

= �((

ˆ

b ·r)

ˆ

b)/(|(ˆb ·r)

ˆ

b|2) is the vector radius of the curvature as illustrated

in figure 2.5 a. It is defined to be perpendicular to ˆ

b.

Figure 2.5: rB and curvature drift - a. A gradient in the magnetic field
causes a drift with direction depending on the particle’s charge. b. Definition of
the curvature vector R

c

.

After illustrating some of the most important particle drifts, the next sections

discuss concepts of plasma descriptions that avoid calculating equations of motion

for each single particle.

2.3 Microscopic Picture - The Kinetic Theory

In the last chapter the motion of a single particle in a given external field was

considered, neglecting the influence of the particle on the field. Since there are

many particles in a plasma, each of them giving rise to currents and space charges,

which influence the fields, a single particle description is impractical. Additionally

the impact of thermal motion leading to collisions has to be taken into account.
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There are different approaches to describing a plasma as a superposition of all

particles with the mentioned effects. Each of them can be traced back to one of

these two basic concepts: the microscopic and the macroscopic description. The

microscopic description deals with the particles themselves and is outlined in this

section.

As in every gas, there are generally two problems to deal with. First, there

are too many particles: the number of particles is in the order of N
A

⇡ 10

23.

Even if one could know the equation of motion of every particle, it is impossible

to solve this system of equations, even with present-day computers - besides the

huge number of equations, they are all coupled to each other. The second issue

to deal with are the unknown initial conditions. The particles’ positions and

velocities at a given time are not measurable. For these reasons, as for all gases,

there is a strong need for a statistical description, the kinetic theory.

Define a distribution function for N particles

F (x1, y1, z1, x2, y2, z2, ..., xN

, y
N

, z
N

, v1,x, v1,y, v1,z, ..., vN,x

, v
N,y

, v
N,z

, t) ,

giving the possibility that particle 1 is at (x1, y1, z1, v1,x, v1,y, v1,z) at a time t,

particle 2 at (x1, y1, z1, vN,x

, v
N,y

, v
N,z

) and so on. Provided that each particle has

f degrees of freedom, all N particles combined have 2Nf degrees of freedom.

Therefore this distribution function F is settled in a 2Nf - dimensional space,

called the �-space. [7]

To receive an one-particle distribution function for the i-th particle F
i

, F is

integrated over all remaining particles’ positions and velocities. This distribution

function F
i

gives the possibility that particle i is at (x
i

, y
i

, z
i

, v
i,x

, v
i,y

, v
i,z

) at the

time t in the six- (2f -) dimensional µ-space. In a collision-free, low �1-plasma,

1� decribes the ratio of plasma pressure to magnetic field pressure.
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it is possible to neglect the particle interaction, so that f
i

= f
j

. As the particles

cannot be distinguished, indices are dropped and

f(x, y, z, v
x

, v
y

, v
z

)dx dy dz dv
x

dv
y

dv
z

becomes the number of particles between x and x+dx, y and y+dy,z and z+dz,

v
x

and v
x

+dv
x

, v
y

and v
y

+dv
y

, and between v
z

and v
z

+dv
z

at a time t [7]. The

equation of motion for f is the Boltzmann-equation, which in plasma physics in

the collisionless limit is also called the Vlasov-equation,

df

dt
=

@f

@t
+ u ·rf +

q

m

✓
E+

1

c
(u⇥B)

◆
·r

u

f = 0 . (2.11)

In section 3.2.2 the drift kinetic equation for electrons is derived based on the

concept given in this section.

2.4 Macroscopic Picture - The Fluid Description

In many cases a full kinetic description contains too much information for solving

the actual problem. It has been shown that modeling of plasmas as one or more

fluids delivers a deep insight into many plasma physical questions. By averaging,

the kinetic quantities and equations can be transferred into macroscopic quantities

and the fluid equations.

The macroscopic quantities are obtained via calculation of the moments of

the probability density function. As first moment, the density is calculated via

n(x, t) =

Z
f(x,v, t)d3v .
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The other macroscopic quantities are achieved via

hg(x, t)i =
R
g(x,v, t)f(x,v, t)d3vR

f(x,v, t)d3v

=

R
g(x,v, t)f(x,v, t)d3v

n(x, t)
.

The function g(x,v, t) is to be chosen dependent on the calculated macroscopic

quantity. The momentum can be calculated by setting g = mv and the energy

by using g = mv2/2. [48]

The fluid equations are calculated by averaging over the Vlasov equation (2.11).

The first fluid equation is the continuity equation, it describes the temporal evo-

lution of the particle density n:

@
t

n+r · (nu) = S , (2.12)

where the bulk velocity u is defined as

u(x, t) = hvi =
R
vf(x,v, t)d3v

n(x, t)

and S contains sources and sinks. In (2.12), the partial differentiation @/@t is

shortened to @
t

. The second fluid equation is the momentum balance equation

[19]. In its most used standard form it reads

mn (@
t

u+ (u ·r)u) = nF
L

�r ·P�mSu , (2.13)

where P is the pressure tensor, defined by

P
ij

= mn(hv
i

v
j

i � u
i

u
j

),

and the Lorentz-force

F

L

= q

✓
E+

u⇥B

c

◆
.

The content of the outer bracket on the left hand site of equation 2.13 can be
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written in short form as the total derivative d
t

:

d
t

= @
t

+ u ·r .

Fluid equations are a non-closed system of equations. After the first two, a

hierarchy of higher-order equations follows, each containing a quantity defined

by the next order equation. Therefore, every fluid model requires an appropriate

number of equations and a closing assumption to determine the final variable.

This task is often referred to as a “closure problem”. In chapter 3 a fluid model

is used to describe ions in order to achieve a drift wave model.

2.5 Fusion Energy Devices

As stated in chapter 1, the main goal of fusion energy is to ensure the earth’s

energy supply with a minimum of environmental impact. Two concepts for fusion

energy, based on magnetic confinements, are described in the following sections:

tokamaks and stellarators. In section 2.1 it was shown that charged particles

cannot be trapped along a magnetic field. The obvious solution is to wrap the

magnetic field line into a torus: this is the basis for all magnetic fusion energy

devices.

2.5.1 Tokamak

One possibility to confine the plasma is a tokamak, which was invented in Rus-

sia 1952. A tokamak is a torus-shaped chamber with magnetic coils to confine

the plasma. A strong toroidal magnetic field B
�

contains the high temperature

plasma within the torus. Unfortunately due to the curved magnetic field the

ions will drift downwards leading to a charge imbalance. This drives an outward
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pointed E⇥B - drift, as depicted in figure 2.6 a.

Figure 2.6: Torus - a. Due to the torus geometry rB- and curvature drifts occur.
Ions drift downwards, an electric field is produced and the particles drift outwards
due to E ⇥ B - drift. b. The induced plasma current results in a twisting of the
magnetic field lines in a torus.

Figure 2.7: Tokamak - Sketch of coils and magnetic fields of the Joined European
Tokamak JET (taken from Ref. [1]).

Thus the particles will rapidly drift outwards, hitting the wall and making fusion

impossible. An additional weaker poloidal magnetic field is used to twist the

magnetic field lines, resulting in nested surfaces that keep the particles trapped.

To generate this poloidal field, a toroidal plasma current is induced by a primary

winding, employing the plasma itself as secondary winding of a transformer. The

plasma current is induced by changing of the magnetic flux B, which is perpen-
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dicular to the torus and located in its center. This additional magnetic field as

well as the resulting twisted field lines are illustrated in figure 2.6 b.; the whole

configuration in shown in figure 2.7.

The deuterium and tritium ions are trapped long enough in the resulting

nested surfaces and will, provided with enough energy to overcome their Coulomb

barrier, fuse and free energy. As one tries to improve the �-limit, it turns out that

the optimal cross-section is non-circular [15]. As a consequence, most modern-day

tokamaks are characterized by a shape combining elongation and triangularity as

illustrated in figure 2.8 c.

Figure 2.8: Tokamak and spherical tokamak - a. Classical tokamak, b. spher-
ical tokamak, c. both can be characterized by triangularity and elongation.

Still, not all problems are cured: the outside of the tokamak is called the “bad

curvature region”, because instabilities are more prevalent. The inner side is the

“good curvature region”, since analysis shows that modes are more stable there.

As the twisting of the magnetic field brings the particles from the bad back to

the good curvature region, one tries to avoid the bad curvature side, which leads

to a new concept, the spherical torus. Its shape is illustrated in figure 2.8 b. As

depicted in figure 2.9 b., the particle’s trajectory is more in the good curvature

than in the outside region. The spherical torus has improved confinement and

pressure limits, but the disadvantage is less room in the center for coils, making
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the use of superconducting magnets impossible [16].

Figure 2.9: Spherical tokamak - a. Schematic sketch of the NSTX magnetic
fusion device (taken from Ref. [42]). b. Magnetic field lines of a spherical tokamak:
the particles stay longer on the inner, good curvature side than on the outer, bad
curvature side.

The major disadvantage of the tokamak concept is the pulsed mode of operation.

Resistivity will decrease the induced plasma current, which is critical for the

field design as well as for ohmic heating of the plasma. In modern tokamaks,

mechanisms such as “current drive”, radio-frequency, and neutral beam injections

are used to drive the plasma current. They are limited through the Greenwald

limit and other effects, which make it difficult to generate the entire required

current by current drive. However, there are other mechanisms to drive the

toroidal plasma current without induction. [14]

To avoid problems resulting from the requirement of a plasma current in

order to maintain the field geometry, consider another fusion energy device: the

stellarator, covered in the next section.
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2.5.2 Stellarator

In times when fusion was a restricted science, parallel to the construction of toka-

mak in the USSR, the stellarator concept was invented by Lyman Spitzer in 1950

[45]. In contrast to a tokamak, in a stellarator the magnetic cage is generated

without a toroidal plasma current, so there is no need for a transformer. Thus

stellarators work in a non-pulsed mode of operation. To provide the required

magnetic cage without a parallel plasma current, there is no longer axial sym-

metry, but the coils are shaped in complex geometry. The geometry of the coils

as well as the resulting plasma shape is illustrated in figure 2.10. It shows the

sketch for Wendelstein 7-X, a new stellarator, which is being built in Greifswald,

Germany. The advanced configuration of the magnetic field will show the future

of the stellarator concept as a candidate for fusion power plants.

Figure 2.10: Wendelstein 7-X - Scetch of the plasma (orange) and the magnetic
coils (blue) of the Stellarator Wendelstein 7-X (taken from Ref. [36]).

Experiments will show which configuration, tokamak or stellarator, is the op-

timum for future power plants. Not only the physical parameters, but also the

cost, will determine this decision. Wendelstein 7-X and ITER hopefully will bring

answers to light to solve the earth’s energy problem.
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2.6 Plasma Transport

The transport of particles in a tokamak greatly exceeds the predicted rates of

classical and even that of neoclassical transport theory. Particle collisions alone

are not able to explain the high transport coefficients. The reason for the high

particle loss in fusion devices are fluctuations in density, potential and tempera-

ture. These microinstabilities can drive turbulence [50]. Plasma confinement is

today assumed to be mainly affected by turbulent transport.

The first part of this section introduces the random walk, used as a basis

for estimations of particle and heat transport. The subsequent parts introduce

mixing length theory and gyro-Bohm transport scaling.

2.6.1 Random Walk Diffusion

In 1827 Robert Brown observed the random motion of pollen in water, which

was later named after him “Brownian motion” [17]. The Brownian motion as

simulated three-dimensional random walk is depicted in figure 2.11. The mecha-

nism behind it was long unknown, until 1905 when Einstein gave the explanation

in his famous work “Über die von der molekularkinetischen Theorie der Wärme

geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen” [12].

He concluded that the motion of the pollen is caused by collisions with ran-

domly moving water molecules, whose motion is so complex that they have to

be described probabilistically. His explanation is based on the assumption of the

existence of atoms, which was, in contrast to the observation of the Brownian

motion, a questionable theory at that time. He assumed that each pollen particle

is pushed a small distance away after a certain amount of time, which leads to
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Figure 2.11: Random walk - 3-dimensional random walk.

the already known diffusion equation for the particle density n,

@n

@t
= D

@2n

@2x
,

with the general solution

n(x, t) =
1p
4⇡Dt

e�
x

2

4Dt .

Einstein related the diffusion coefficient D to the arithmetic mean of the square

of the displacement

hx2i = 2Dt .

In the formulation of random walk, the diffusion coefficient is the squared length

of one step (�x)2 divided by the time between two steps �t,

D =

(�x)2

2�t
. (2.14)

With good assumptions of �x and �t, it is possible to estimate the diffusion of



2.6 Plasma Transport 33

confined plasma particles using a similar argument to the one leading to (2.14).

In the next section this concept is used for the estimation of particle diffusion

due to drift waves in the context of mixing length theory.

2.6.2 Mixing Length Theory and Turbulent Transport

The mixing length theory was developed by Prandtl, giving an approximation

of the diffusion rate. Considering a small fluid element traveling in the fluid,

Prandtl assumed the existence of a distance that the fluid element can travel

before becoming decorrelated. This distance is the “mixing length”, whereas the

time it takes a fluid element to decorrelate from its initial state is called the

“decorrelation time”. Obviously the argument follows the random walk analogy,

with the correlation length as mean free path [5].

Drift wave instabilities are fundamental to linear theory and can morph into a

turbulent state [49]. Drift wave turbulence is strongly assumed to be responsible

for the high transport at the plasma edge of a confined toroidal system [39]. As

the focus of this thesis lies on drift waves, they are covered in detail in chapter

3. At this point, the order of magnitude for the diffusivity will be calculated,

without specifying the mechanism or accurate growth rate of the drift wave.

Advection caused by drift waves is mainly due to E⇥B - velocity, leading to

an incompressible flow. Considering a fluid element propagating a distance �x,

the fluctuation becomes ñ ⇠ �x r?n̄, where r?n̄ is the gradient of the mean

density. The mixing length �x is estimated in terms of a characteristic wave

number �x ⇠ k�1
? . The decorrelation time is estimated as �t ⇠ 1/�, the inverse

drift wave growth rate �. With the typical scales k? ⇠ 1/⇢
s

and � ⇠ L
n

/c
s

an estimation of the density diffusion coefficient for drift wave turbulence is the
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drift-wave - or gyro-Bohm diffusivity

D ⇠ �

k2
?
⇠
✓
⇢
s

L
n

◆✓
cT

e

eB

◆
,

with the density gradient scale length 1/L
n

= �@
x

ln(n). The second factor

is the Bohm-diffusivity D
B

= cT
e

/eB [27]. Since ⇢
s

/L
n

⌧ 1, the first factor

significantly lowers the diffusivity and adds the “gyro-” to the Bohm-diffusivity.

While all diffusion processes can be interpreted as a random walk process

(2.14), the finding of the relevant step size �x and step time �t is crucial. It de-

pends on various factors involving Lagrangian versus Eulerian decorrelation times,

the anisotropy of the turbulence and multiple possible decorrelation mechanisms

(see for example different types of mixing length theories in Ref. [28, 38, 51])

[24]. For the purpose of this thesis, D is estimated as D ⇠ �(k
y

, kk)/k
2
y

. A

more accurate treatment can be given by fully nonlinear gyrokinetic turbulence

calculations.

Even though it is tempting, the mixing length estimation of the drift wave

diffusivity only predicts the approximate size and is not to be used for calculation

of explicit values. Simulations of particle diffusivity due to drift waves based on

the mixing length theory are provided in section 5.2.
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Drift Waves and Microinstabilities

As pointed out in section 2.6, drift wave turbulence is responsible for anomalous

transport at the plasma edge of a toroidal confinement system. In simple terms,

drift waves are electrostatic, low-frequency dynamics appearing in every confined

plasma. Without any special geometric requirements, they are the most universal

modes that exist in neutral, magnetized plasmas with pressure gradients. The

drift wave instability needs an additional source of dissipation, like resistivity or

kinetic effects, to become unstable. Thus, unlike for example Rayleigh-Taylor

instabilities, drift wave instabilities have both real frequencies and growth rates

and hence are typically not only purely growing, but also traveling in space.

In this chapter drift waves are discussed in detail. Starting with a description

of the general drift wave mechanism, the drift wave instability is analyzed. After

a short discussion of a nonlinear drift wave model, two linear models are derived

in detail. The first model includes drift kinetic electrons and cold fluid ions. The

second one treats electrons and ions as kinetic and adds ion polarization drift and

finite Larmor radius effects as additional terms to the dispersion relation.
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3.1 Drift Wave Instability

To discuss the mechanism of drift waves, a low density plasma in a local slab

geometry [8] is assumed. The following consideration is based on figure 3.1, which

shows the slab geometry embedded in its original three-dimensional structure.

Figure 3.1: Drift wave - a. Section of a torus shaped plasma. In equilibrium
the isobar is a concentric circle (red). A small density perturbation drives a drift
wave, the mechanism for which is shown in b. The embedding of the plane plasma
slab-geometry in a torus is shown in the passage from a. to b.

Consider a constant and homogenous magnetic field parallel to the ˆ

z-axis and

a density gradient in negative ˆ

x-direction with rn0/n0 = const. The ions are

assumed to be cold and there is no electron temperature gradient. Looking at the

plasma tube on the left of figure 3.1, in equilibrium the curve of constant density

is a concentric circle around the ˆz-axis. Assume there is a small oscillating density

perturbation

ñ ⇠ n0e
i(k?y+kkz�!t)

with k? � kk. This perturbation in the slab limit of figure 3.1 b., when translated
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to the geometry of figure 3.1 a., causes isobars with a shape of a twisted cylinder,

as depicted in figure 3.1 a.

Choose a value of kk that is big enough to consider the electrons as free along

the magnetic field, kkvte � !, but kkvti ⌧ !, to enable neglecting the ions’

motion in the ˆ

z-direction. This simplification allows the assumption of adiabatic

electrons, fulfilling the linearized Boltzmann-relation

n = n0 + ñ = n0e
e�̃
T

e ⇡ n0

 
1 +

e˜�

T
e

!
. (3.1)

In this case the perturbed potential ˜

� and the perturbed density, ñ = n0e˜�/Te

,

are in phase. Assuming the electrons move freely along the magnetic field, they

would spread away from density maxima into density minima, generating parallel

currents. Since the ions have much higher inertia than the electrons, they remain

in the density maxima, which would result in positive space charge. These space

charges are depicted in figure 3.1 with red indicating positive and blue indicating

negative preponderance. In reality, there will be a potential ˜

� developing that

will attract the electrons, as given in equation 3.1, so that the electron density

perturbation nearly cancels the ion density perturbation, which is called “quasi-

neutrality” and will be elaborated more in section 3.2.1.

The charge imbalances produce perpendicular electric fields ˜

E?. As described

in section 2.2.1, this leads to local E⇥B - drifts in the perpendicular plane, which

causes plasma advection [6]. Since the guiding center distribution is inhomoge-

neous, the initial density perturbation drifts with the diamagnetic velocity as a

transversal wave in the ˆ

x-ˆy-plane, perpendicular to both the magnetic field and

the density gradient [27], as described in section 2.2.3.

Yet the wave is perfectly stable, since nothing affects the amplitude of the

density distribution. As illustrated in figure 3.2, potential ˜� and density ñ are in
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phase as described; the E⇥B-drift has a relative phase difference of ⇡/2.

Figure 3.2: Mechanism of the linear drift wave in the perpendicular
plane of a local-slab model - The density gradient rn0 is depicted by the
gray color gradient, while the linear periodic density instability is embedded. The
electrons, moving faster than the ions, cause local negative space charges, which
are illustrated in blue for negative charge preponderance and red for positive. The
generated E ⇥ B - field is depicted with green arrows. In a. drift waves, while in
b. drift wave instabilities are illustrated. Respectively on the left side curves for
E

y

= �r�̃ in green, � in dark gray and ñ in light gray are plotted. In a. there is
no phase shift between ñ and �̃ and a |⇡/2| phase difference to E

y

, resulting in a
linearly stable, propagating drift wave. In b. there is a phase shift between ñ and
�̃, which describes a linearly unstable drift wave. (adapted from Ref. [6]).

The key to a damping or growing of the drift wave lies in the coupling between

the parallel electron motion and the perpendicular drift [41]. Both ions and

electrons move with the E⇥B - velocity, but to offset the rapid parallel motion

of the electrons, an electrostatic potential must be created. Modeling as before the

electrons as an ideal gas parallel to the magnetic field, the pressure is proportional

to the density. Density and potential are coupled by the parallel electron current

density ñ $ ˜jk $ ˜

� [41].

There are some possibilities that break the assumption of adiabatic electrons

and result in dissipative coupling [41]: resistivity, which gives rise to resistive drift
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waves, and electron Landau damping, which is caused by kinetic effects. Another

possibility is inductive coupling. The slower electron motion compared to the

adiabatic assumption causes a delay in the potential perturbation, resulting in a

phase shift between the perturbed potential ˜� and ñ and in a reduced phase shift

between E⇥B and the density perturbation. The E⇥B - drift in turn increases

the density perturbation, resulting in an unstable wave. Figure 3.2 shows the

phase shifts between the variables.

Figure 3.3: Three dimensional dynamic of the drift wave - a. The density
perturbation ñ generates currents: the electrons stream parallel to B0 with jk away
from the maxima (depicted in blue), and the ions experience the perpendicular
polarization drift j? (depicted in red). b. These currents lead to space charges,
generating electric fields, which produce drifts [47] (adapted from Ref. [6, 47]).

The description of the three-dimensional mechanism of the drift wave is based on

figure 3.3. Until now only the perpendicular part of the wave vector k = k? +kk

was considered for the drift wave dynamics. However, the examined parallel

dynamic causes an additional parallel part, where k? � kk, i.e. �? ⌧ �k.

This gives rise to a stretched wave along the magnetic field as depicted in figure

3.3. The electrons, dominating the parallel dynamic due to their higher mobility,

create the mentioned parallel currents ˜jk, which are constrained by self-induction

@
t

B. The ions experience polarization drift. The perpendicular electric field,

causing advection of the plasma, is depicted in figure 3.2 [6].
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Drift waves in toroidal geometry

The drift wave was considered in local slab geometry, first in two dimensions, then

in the three-dimensional case. To be more realistic, it is interesting to examine

the case of cylindric geometry. Though the plasma shape of a tokamak is not

cylindric, a nonlocal model in form of a closed cylinder, i.e. a torus, is a good

model for understanding the functionality of the drift wave in a tokamak. For this

purpose, the variables are transformed from the local slab geometry into cylindric

coordinates via (x, y) ! (r, ✓) [13]. Figure 3.4 shows the equidensity and equipo-

tential surfaces of a drift wave in a cylindrical geometry. Both equidensity and

equipotential are twisted around the magnetic field, on the perpendicular plane,

density and potential perturbations propagate with the diamagnetic velocity.

Figure 3.4: The drift wave in cylindrical geometry - The eigenmode struc-
ture is azimuthal with mode numbers m = rk?[6, 13]. a. Surface of equidensity
and b. potential perturbation in cylindrical geometry (taken from Ref. [6]).

Microinstabilities in magnetically confined plasmas

Besides the discussed drift wave, other instabilities arise in magnetically confined

plasmas. Figure 3.5 illustrates the location of the most important microinsta-
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bilities using the example of ASDEX upgrade. In the core region, ITGs, ETGs

and TEMs dominate the particle transport. Drift waves are important in the

edge plasma and interchange instabilities dominate in the scape-off-layer (SOL)

[34]. ITGs and TEMs are variants of drift waves that involve toroidal magnetic

geometry.

Figure 3.5: Location of microinstabilities - The typical location of microin-
stabilities in tokamaks, shown in the cross-section of ASDEX upgrade. In the core
region ITG, ETG and TEM are present, while in the edge drift waves dominate,
and the interchange instability arises in the scape-off-layer (taken from Ref. [34]).

An important criterion to distinguish the modes from each other is the perpen-

dicular scaling, as well as the direction of the group velocity and the instability

mechanism. In figure 3.6 the typical microinstabilities of a confined plasma are

arranged according to their growth rate � and perpendicular scale k?⇢s.
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Figure 3.6: Microinstability scaling - Perpendicular scaling of the typical mi-
croinstabilities of confined plasmas [24].
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3.2 Drift Wave Models

To describe drift waves mathematically, different models, each stressing distin-

guishing features, are developed in this section. The simplest linear drift wave

model with adiabatic electrons will confirm that drift waves propagate with the

electron diamagnetic frequency. Since this model is too simplified to cover all drift

wave effects, the Hasegawa-Mima equation and the i�-model are derived, which

include nonlinear effects. To describe the drift wave instability, a more compre-

hensive model is necessary. For the analytic study of drift wave effects, cold ions

and a reduced kinetic electron model is used. To examine the current-driven drift

wave numerically, kinetic effects of both ions and electrons are included.

3.2.1 Adiabatic Electrons

In this first, simplified model for drift waves, adiabatic electrons and fluid ions

are assumed. The unperturbed density gradient provides the free energy to drive

the instability. Assuming small scale perturbations ñ, ñ ⌧ n0. As the density

perturbations do not only have small amplitudes but also short wavelengths, the

gradient of the density perturbations rñ is in the range of the gradient of the

unperturbed density rn,

rñ ⇠ rn0 . (3.2)

As previously discussed in section 3.1, the assumption of adiabatic electrons and

cold ions is consistent with the mechanism of drift waves. Thus the electrons

fulfill the linearized Boltzmann equation (3.1), ñ
e

= n
e,0e˜�/T0,e. Assuming cold

ions, T0,i ⌧ T0,e with finite T0,i/T0,e, the ions’ thermal velocity is much less than

the electrons’, v
t,i

⌧ c
s

⌧ v
t,e

. Since the diamagnetic velocity is according to

equation 2.10 proportional to the temperature, v
di

⌧ v
de

. As a consequence the
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ion thermal velocity is negligible and ions are described as cold fluid, characterized

by the conservation law

@
t

n
i

+r · (n
i

u) = 0 , (3.3)

neglecting higher order fluid equations. Since the equilibrium value of the density

n0,i does not depend on time, n
i

(x, t) = n0,i(x) + ñ
i

(x, t), equation 3.3 becomes

@
t

ñ+ u ·r(n0,i + ñ
i

) + n
i

r ·u = 0 . (3.4)

Simplication can verify the prediction of section 3.1, namely that the classic drift

wave propagates with the electron dielectric frequency. First, ignoring the parallel

dynamics and polarization effects of the ions, the velocity u becomes the E⇥B

- drift velocity v

E

= c/B(

ˆ

e

z

⇥ r�). Due to the slab limit assumption, which

is described in detail in section 3.2.2, the last term in (3.4), ⇠ r ·u, can be

dropped. Although the second term dotted with u, ⇠ rñ
i

, is nonlinear, it has to

be kept to satisfy the gradients’ ordering assumption in (3.2). However, for this

simplified linear consideration the nonlinear term is neglected.

After Fourier transformation and the application of the quasineutrality con-

dition, equation (3.4) becomes the dispersion relation for linear drift waves,

! =� k
y

cT0,e

eB

@
x

n0

n0
=

k
y

cT0,e

eBL
n

= !⇤e .

For the frequency to be positive, either the density gradient or the perpendicular

wave number, k
y

, has to be negative. In this work the density gradient is defined

to be negative, d
x

n0 = �n0/Ln

and thus k
y

> 0. This result is consistent with

the consideration of the basic drift wave mechanism in section 3.1: The basic

drift wave propagates with electron diamagnetic velocity v
de

.
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Repeating this derivation without dropping nonlinear terms and including ion

polarization effects additional to the E⇥B - drift results in the Hasegawa-Mima

equation [25].

The i�-Model and the Hasegawa-Mima-Equation

The Hasegawa-Mima equation is the simplest nonlinear model, covering drift

waves, by describing electrostatic potential fluctuations in the presence of a back-

ground density gradient. As drift waves also cover the domain of microinstabilities

with small structures k?⇢s > 1, the ion polarization drift has to be considered.

Thus, the ion velocity u in (3.3) consists of the E ⇥ B - drift, v
E

, and the ion

polarization drift, v
i,p

,

u = v

E

+ v

i,p

.

The actual ion density consists of the guiding center density, n
i,gc

, and the ion

polarization density, n
i,pol

, [32, 43]

n
i

= n
i,gc

+ n
i,pol

.

Thus the fluid equation 3.3 becomes

(@
t

+ v

E

·r)n
i,gc

+ (@
t

+ v

E

·r) ñ
i,pol

+ v

i,p

·r(n
i,gc

+ ñ
i,pol

) + (n
i,gc

+ ñ
i,pol

)r ·v
i,pol

= 0 . (3.5)

The gyrocenter density n
i,gc

fulfills equation 3.4, which is equivalent to (3.5) with

u
i,pol

= 0. The terms ⇠ v

i,p

·rn and ⇠ ñ
i,pol

r ·v
i,p

can be neglected since

|v
i,p

| ⌧ |v
E

| and |ñ
pol

| ⌧ |n
i,gc

|. Thus, equation 3.5 becomes

(@
t

+ v

E

·r)n
i,gc

+ (@
t

+ v

E

·r) ñ
i,pol

+ n
i,gc

r ·v
i,pol

= 0 . (3.6)

Solving the last two terms, d
t

n
i,pol

= �n
i,gc

r ·v
i,pol

, results after integration in
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time in the ion polarization density:

ñ
i,pol

= n
i0⇢

2
s

r2
?
e˜�

T0,e
. (3.7)

Considering the first term of equation 3.6, the gyrocenter density, which consists

of an equilibrium and a perturbed part, n
i,gc

= n
i0 + ñ

i,gc

, satisfies

@
t

ñ
i,gc

+ i!⇤e
e˜�

T0,e
n
i,0 + v

E

·rñ
i,gc

= 0 . (3.8)

The quasi-neutrality condition, ñ
i

⇡ ñ
e

with n
i,0 ⇡ n

e,0, reads now

ñ
i,gc

+ ñ
i,pol

= ñ
e

. (3.9)

As discussed in the previous section 3.1, the drift wave is stable, unless there is

additional dissipation to create a phase shift between density and potential. To

cover drift wave instabilities the i�-model is used, which adds a small imaginary

phase to the Boltzmann-relation [27],

n
e

= n0,ee
e�̃
T0,e e�i�k . (3.10)

With the linearization of (3.10), the perturbed part of the density becomes

ñ
e

⇡ n
e,0[1� i�

k

]

e˜�

T0,e
. (3.11)

Inserting (3.7), ñ
i,pol

, in the quasi-neutrality condition (3.9) and using the lin-

earized i�-Boltzmann relation (3.11), the perturbed ion gyrocenter density be-

comes

ñ
i,gc

= n
e,0[1� i�

k

� ⇢2
s

r2
?]

e˜�

T0,e
. (3.12)

The concept of the “quasineutrality approximation” appears to be contradictory,

since with an exact neutrality, no potentials could exist in the plasma. How-

ever, the quasi-neutrality condition (3.9) can be replaced with the exact Poisson
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equation:

�r2
� = 4⇡e (ñ

i,gc

+ ñ
i,pol

� ñ
e

) .

With the insertion of the equations 3.7 and 3.11, the perturbed ion gyrocenter

density becomes

ñ
i,gc

= n
e,0[1� i�

k

� (⇢2
s

+ �2
De

)r2
?]

e˜�

T0,e
. (3.13)

This is comparable to equation 3.12, which was achieved by using quasineutrality,

with the additional term involving the Debye length �
De

=

p
T
e

/(4⇡ne2). For

typical plasma parameters, �2
De

/⇢2
s

⇠ 10

�3 is negligible. Thus, the potential is

determined by the “quasineutral” requirement: it attracts electrons in order to

nearly balance out the ions.

Finally, inserting equation 3.12 into equation 3.8, the i�-model can be written as

n0[1� i�
k

� ⇢2
s

r2
?]@t

e˜�

T0,e
+ i!⇤e

e˜�

T0,e
n0

+

c

B
ˆ

e

z

⇥r˜

� ·r(n0[1� i�
k

� ⇢2
s

r2
?]

e˜�

T0,e
) = 0 . (3.14)

The Hasegawa-Mima equation is obtained by setting the phase shift �
k

= 0. It

describes an undriven, purely stable drift wave. The last term in (3.14) includes

the nonlinear terms. As the two-dimensional vorticity is

⌦ =

ˆ

e

z

·r⇥ v

E

=

c

B
r2

� ,

this term includes the advection of vorticity [29]. The Hasegawa-Wakatani equa-

tion is an advancement of the Hasegawa-Mima equation, including resistive cou-

pling and thus a decrease or increase of the growth rate of the mode, which can

be represented by �
k

6= 0.
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In contrast to the oversimplified case ! = !⇤e, the frequency of the drift wave,

described by the i�-model, is [47]

! =

!⇤e

1 + ⇢2
s

k2
? � i�

k

. (3.15)

It is obvious that the polarization drift becomes the more important the smaller

the structure is. Figure 3.7 illustrates the growing influence of the polarization

drift on the frequency, as k
z

⇢
s

becomes bigger.
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Figure 3.7: Drift wave dispersion relation according to (3.15) - Difference
between inclusion (green curve) and exclusion (blue straight line) of ion polarization
drift effects. The parameters are i� = 0 and T

e

= 1keV, B = 5.2T and L
n

=
25.8563cm.

The growth rate � of the drift wave in this model becomes

� =

!⇤e

1 + ⇢2
s

k2
?
�
k

.

Thus, the drift wave is unstable if !⇤e�k > 0. In the following sections drift wave

models that include kinetic effects as sources of dissipation are developed. As the

purely drift-kinetic treatment used in this work does not include ion polarization

drift (but is reducible to the adiabatic case), the previously-developed model will
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be used to include this important effect.

3.2.2 Kinetic Electrons

We are interested in non-resistive drift waves, driven unstable by kinetic effects to

determine the influence of a parallel electron current. The first model, developed

in this chapter, includes kinetic electrons and fluid ions, a second model in the

next section will treat both electrons and ions as kinetic.

In the first step the drift-kinetic equation for electrons is derived including

density and temperature gradients and a parallel electron current. As before,

the electrostatic case in a plane plasma slab is assumed. The derivations and

thoughts of this section are guided by [21].

Drift Kinetic Description of the Electrons

As explained in 2.3 the equation of motion for the kinetic theory is the Vlasov

equation

@
t

f
e

+r
x

· (f
e

˙

x) +r
v

· (f
e

˙

v) = 0 , (3.16)

where a constant mass is assumed and r
v

· = (@
v1 , @v2 , @v3) · is the three-dimensional

divergence with respect to the velocity coordinates.

To build a model covering the behavior of drift waves in a local slab geometry,

the Vlasov equation (3.16) will be simplified in several steps. The main assump-

tion is the neglect of the particle gyration, leading to a drift-kinetic description.

The main spatial scale is ⇢
s

, the ions’ gyroradius evaluated at the electrons’ tem-

perature. Since ⇢
e

= ⇢
s

µ�1 with µ =

p
m

i

/m
e

⇡ 60, the gyration radius of

electrons is small compared to ⇢
s

, allowing to equate the particle distribution

function to the distribution function of the gyration center, f
e

= f
gc

. In this drift
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kinetic description the gyro center motion and additional drift motions, described

in section 2.1, are considered.

For the guiding center description the dimension can be reduced by one by writing

the velocity components in cylindrical coordinates:

@
t

f
e

+r
x

· (f
e

· ˙x) + 1

v?
@
v?(v̇?v?fe) + @

vk(v̇kfe) = 0 . (3.17)

Assuming electrostatic waves in a plane plasma slab with a strong, uniform and

straight magnetic field in the ˆ

z-direction, B = B ˆ

e

z

, the component parallel to

the magnetic field is vk = v
z

. The plasma is defined to be uniform and infinite

extended in the ˆ

y- and ˆ

z-directions, and all gradients are assumed to be in the

ˆ

x-direction.

As seen in section 3.1 when analyzing the mechanism for drift waves, there

has to be a small initial disturbance in the density ñ to cause disturbances in

the electric potential ˜

�. By assuming a WKB-approximation, the variables con-

sist of an equilibrium part and a small wave-like disturbance ⇠ ei(�!t+k

y

y+k

z

z).

Considering electrostatics, E = E0 +
˜

E simplifies to

E = E0 = �r˜

� .

As pointed out in section 2.2.2 the polarization drift is negligible for electrons

in respect to the E ⇥ B-drift, so the guiding center motion, the sum of parallel

velocity and drifts, can be described as

v = vk + v

E

= v
z

ˆ

e

z

+

c

B
E⇥ ˆ

e

z

.

By assuming a uniform magnetic field and electrostatics, the E⇥B-drift leads to

an incompressible flow

r ·v
E

= 0 . (3.18)
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A further consequence of the uniformity of B is the constancy of the first adiabatic

moment µ =

mc

2Bv
2
? leading to a time-constant perpendicular velocity

v̇? = 0 . (3.19)

The parallel acceleration of the electrons is given by the electric field

v̇k = � e

m
E

z

. (3.20)

Combining (3.18), (3.19) and (3.20) and inserting in (3.17), the simplified drift

kinetic equation in the electrostatic plane plasma slab-limit is:

@
t

f
e

+

c

B
(E⇥ ˆ

e

z

) ·r?fe + v
z

@
z

f
e

� e

m
E

z

@
v

z

f
e

= 0 . (3.21)

This simplified drift kinetic equation is valid for ions as well when changing e !

�e. The negligible electron gyration radius allowed one to consider only the

gyration center motion and particle drifts. This reasoning fails for ions, so when

using drift kinetic for ions, second order effects like the polarization drift and

additional finite Larmor radius (FLR) effects must be taken into account. In

this model cold fluid ions are assumed. However for the second model derived in

section 3.2.3 drift kinetic ions are used, so that additional terms and factors alter

the ions’ response.

The next step is to calculate the response of the electrons to a small distur-

bance resulting in a drift wave. Small oscillations of the plasma and the electro-

magnetic fields are assumed in order to linearize the equations. This means, only

first-order expressions in any perturbed quantity are taken into account. Addi-

tionally the plasma is assumed to be uniform on space scales greater than one

wavelength.

These two assumptions allow a Fourier transformation of equation 3.21 in

time and space. As discussed previously, the macroscopic quantities like density
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or temperature consist of an equilibrium and a small perturbed part. Since the

macroscopic quantities are calculated from the distribution function f , as pointed

out in section 2.3, f exists likewise as f = f0 + ˜f with ˜f ⌧ f0. In many cases

a Maxwellian distribution function is valuable, so the equilibrium part of the

distribution function is assumed to be Maxwellian:

f0(x, v) = n0(x)

✓
m

2⇡T0(x)

◆3/2

e
�

m(v�uk(x)êz)
2

2T0(x) ,

assuming an x-dependency in temperature T0, density n0 and in the parallel

electron velocity uk(x)ˆez.

In the next step equilibrium and perturbed parts of the quantities are inserted

in (3.21). Fourier transformation gives @
t

f = @
t

˜f = �i! ˜f and for the gradients

in position- and velocity-space

d
x

f0 = �

1 +

⌘

2

✓
(v � u)

2

v2
t

� 3

◆
+ ⌘

u

(vk � uk)uk

v2
t

�
f0
L
n

, (3.22)

r ˜f = i(0, k
y

, k
z

)

˜f , @
vkf0 = �

vk � uk

v2
t

f0 , (3.23)

with the gradient scaling lengths L, 1/L
n

= �@
x

n0/n0 and 1/L
u

= �@
x

u0/u0.

The ratio of the scaling lengths are ⌘ = L
n

/L
T

and ⌘
u

= L
n

/L
u

. Lineariz-

ing equation 3.21 while taking into account only first order perturbations brings

further simplifications. As v

E

·r ˜f = 0,

v ·rf = ik
z

v
z

˜f + v
E,x

d
x

f0 . (3.24)

Combining (3.22), (3.23) and (3.24) and eliminating all higher order terms, the

simplified drift kinetic equation (3.21) becomes

˜f
e

=

e˜�

T0,e
f0

✓
1� ! � !⇤Q� k

z

u
z

! � k
z

v
z

◆
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with

Q = 1 + ⌘

✓
(v � u)

2

2v2
t

� 3

2

◆
+ ⌘

u

(v
z

� u
z

)u
z

v2
t

.

The diamagnetic velocity for constant T and x-dependent n, is, in slab geometry

with negative density gradient, for electrons:

v

de

=� c
rp⇥B

qB2n
=

cT0

eB

@
x

n0

n0
ˆ

e

x

⇥ ˆ

e

z

=

cT0

qBL
n

ˆ

e

y

.

Thus, the electron diamagnetic frequency is

!⇤ = k
y

v
de

=

cT0

eB

k
y

L
n

.

To calculate the response of the electrons, the distribution function is integrated

over the velocity space

ñ
e

=

Z
d3v ˜f

e

= 2⇡

1Z

�1

dvk

1Z

0

dv? v? ˜f
e

.

The integration over v? is a standard Gaussian integral. Because of its singularity

at (⇣�q), the integral over vk can be calculated with a modified plasma dispersion

function Z:

Z
u

= Z(⇣ � q) =
1p
⇡

Z
e�t

2

t� (⇣ � q)
dt , (3.25)

where t = (v
z

�uk)/(
p
2v

t

) collects the exponent and q = ukkz/(|kz|
p
2v

t

) includes

the parallel electron current. For compactness the following normed quantities

are introduced for the frequencies: ⇣ = !/(
p
2|k

z

|v
t

) is the quotient of phase

velocity to thermal velocity and ⇣⇤ = !⇤/(
p
2|k

z

|v
t

) includes the diamagnetic

velocity frequency. Integrating by parts, the perturbed electron density becomes

ñ
e

= n0
e˜�

T0,e

⇢
1� ⇣⇤ [⌘(⇣ � q) + 2⌘

u

q] (3.26)

+


⇣ � q � ⇣⇤

✓
1� ⌘


1

2

� ⇣2 + 2q⇣ � q2
�
� ⌘

u

⇥
2q2 � 2q⇣

⇤◆�
Z

u

(⇣ � q)

�
.
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For the analytic study of drift waves in section 3.4 as well as for numerical consid-

erations in section 5, Z will be approximated. For the analytic method, ! ⌧ k
z

v
te

will be assumed, so the calculation can be done by considering polar residues. In

the analytic consideration a four-pole approximation is used.

Fluid Description of the Ions

As in section 3.2.2 the ions are assumed to be cold, described by the conservation

law (3.3)

@
t

n
i

+r · (n
i

u) = 0 .

Ion polarization effects are not negligible, thus, the perpendicular velocity be-

comes according to (2.9)

u? = v

E

+ v

pi

=

c

B
ˆ

e

z

⇥r�+

1

⌦

c

ˆ

e

z

⇥ d
t

v

E

=

c

B
ˆ

e

z

⇥r�+

1

⌦

c

c

B
d
t

r?� . (3.27)

The parallel part of the electric field accelerates the ions and causes parallel

motion

d
t

uk =
e

M
E

z

. (3.28)

As for the electrons the equations (3.3) and (3.27) are inserted in (3.28) and

linearized, resulting in

ñ
i

= n
i0
e˜�

T0,e

✓
!⇤,e

!
� ⇢2

s

k2
? +

c2
s

k2
z

!2

◆
. (3.29)

The first term in (3.29) is the known electron diamagnetic frequency. The second

term arises from the ion polarization drift.
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Dispersion Relation

To close this model, the ion and electron responses are substituted into the Poisson

equation, r ·D = 4⇡⇢, which is for this case

r˜

� = �4⇡e(ñ
i

� ñ
e

) ,

resulting in an equation for ˜

�. In the here assumed limits the application of the

quasi neutrality condition n
e

= n
i

is reasonable, replacing the Poisson equation.

Inserting equation 3.26 for n
e

and (3.29) for n
i

leads to a dispersion relation for

drift waves:

1� ⇣⇤ [⌘(⇣ � q) + 2⌘
u

q]�

⇣⇤
⇣
� ⇢2

s

k2
? +

1

2µ2⇣2

�
(3.30)

=�

⇣ � q � ⇣⇤

✓
1� ⌘


1

2

� ⇣2 + 2q⇣ � q2
�
� ⌘

u

⇥
2q2 � 2q⇣

⇤◆�
Z

u

(⇣ � q) .

In section 3.4 this dispersion relation is simplified for a specific regime in order

to analytically estimate the growth rate of the drift wave instability.

3.2.3 Kinetic Ions

To drop the condition of cold fluid ions in order to include more effects, a second

model for drift waves is set up. In this section, the ions are described, as the

electrons, by a drift kinetic equation.

To use the previously derived drift kinetic equation 3.26 for ions, the sign

of the charge has to be changed, since the negative charge of the electrons was

already included in the derivation:

e ! �e, !⇤,e ! !⇤,i = �✏
T

!⇤,e ,

where ✏
T

= T
i

/T
e

. All indices switch from e ! i, allowing different values for

electrons and ions for the following parameters: T0,e/i, ⌘e/i, !⇤,e, u0,e/i, ⌘u,e/i and
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m
e/i

. To ensure quasi neutrality, the density scaling factor is the same for both

electrons and ions, (�d
x

n/n)�1
= L

n,e

= L
n,i

.

As previously discussed, the inclusion of ion polarization effects is crucial for

the description of drift waves. Since the drift kinetic description of the perturbed

ion density, (3.26), does not consider polarization drifts, an additional term is

added to n
i

:

n
i

= n
i,0 + ñ

i

+ ñ
i,pol

.

In section 3.2.1, the ion polarization density, ñ
i,pol

, was derived to be

ñ
i,pol

= n
i0⇢

2
s

k2
?
e˜�

T0,e
.

To improve the model for finite ion temperature, finite Larmor radius effects will

be included, which requires an improved polarization density:

ñ
i,pol

= n
i0 (1� �0)

e˜�

T0,i
, (3.31)

where �0(b) = exp(�b)I0(b) and b = k2
?⇢

2
i

[9]. The factor I0(b) is the modified

Bessel function, which is defined as

I
n

(b) = i�nJ
n

(ib) ,

with the Bessel function J
n

. For small b, I
n

can be approximated to [2]

I
n

(b) ⇠ (b/2)n

�(n+ 1)

,

which gives I0 = 1 for n = 0. The exponential function will be approximated by

a Padè-approximation, and so �0 becomes

�0(k
2
?⇢

2
i

) ⇠ 1

1 + k2
?⇢

2
i

. (3.32)

Inserting (3.32) into (3.31), the ion polarization density that includes finite Lar-
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mor radius effects, is

ñ
i,pol

= n
i0

k2
?⇢

2
s

1 + k2
?⇢

2
i

e˜�

T0,e
.

Like the ion polarization density, all perturbed parts can be adjusted to include

finite Larmor radius effects by dividing the densities by 1 + k2
?⇢

2 as follows:

ñ
e/i

!
ñ
e/i

1 + k2
?⇢

2
e/i

.

For electrons, k2
?⇢

2
e

⌧ 1; however, for the sake of completeness, it is kept in

the denominator. The quasineutrality constraint, n
e

= n
i

, closes the equations,

which reads in terms of the response functions, ˜R
e/i

= ñ
e/i

T0,e/i/(n0|e|�),

˜R
e

1 + k2
?⇢

2
e

=

˜R
i

1 + k2
?⇢

2
i

T0,e

T0,i
+

k2
?⇢

2
s

1 + k2
?⇢

2
i

. (3.33)

Both electron and ion responses ˜R
e/i

contain the plasma dispersion function Z(⇣�

q). Since it has a pole at ⇣ � q, further examination requires an approximation.

To consistently preserve the required ordering at least a three-pole approximation

for Z is necessary.

For this purpose, the three- and four-pole approximations, developed by Gre-

gory Hammett and Francis Perkins [23], respectively:

Z3(⇣) =
�i+ i�+ 2i�1µ1 + 2�1⇣ + 2µ1⇣ � i2⇣2

�1 � i�⇣ � 2i�1µ1⇣ � 2�1⇣2 � 2µ1⇣2 + i2⇣3
, (3.34)

Z4(⇣) =
i4D1 + (10 + 4�1)⇣ � 4iD1⇣

2 � 4⇣3

3 + 2� � i6D1⇣ � (12 + 4�1)⇣2 + i4D1⇣3 + 4⇣4
, (3.35)

will be used in the numerical simulations in chapter 5. The parameters are chosen

according to [23] as µ1 = 0, �1 = 2/
p
⇡ and � = 3 for Z3, and D1 = 2

p
2/(3⇡�8)

and �1 = (32� 9⇡)/(6⇡ � 16) for Z4.

Expressing the plasma dispersion functions in terms of polynomials P, the

four-pole approximation becomes Z4 = P
Z,3(⇣)/PZ,4(⇣), and Z3 = P

Z,2(⇣)/PZ,3(⇣).
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The kinetic density response function, based on (3.26), can be written as R =

P
R,1(⇣)+P

R,2(⇣) Zu

. For kinetic electrons and kinetic ions, the adapted quasineu-

trality constraint, (3.33), gives, using the example of the four-pole approximation,

P
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e
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e
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e
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e
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2
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2
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.

To consider only the ordering of ⇣, one approximates k2
?⇢

2
e/i

⇡ 0 and T0,e ⇡

T0,i. After multiplication by the common denominator P
Z

e

,4 ·PZ

i

,4, the equation

becomes

P
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e

,1 ·PZ

e

,4 ·PZ
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e

,4 ·PZ
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,2PZ

i

,3 ·PZ

e

,4 .

The highest order of the polynomials appears to be nine, and thus, nine solutions

of the dispersion relation seem to be expected. The same reasoning applied to

the three-pole approximation gives a fifth order polynomial as the highest and,

therefore, five expected modes.

However, based on the fact that the coefficients of the respective highest order

polynomial in denominator and numerator of Z3/4 are the same absolute value

but opposite sign (“±2i” in the three-pole approximation and “±4” in the four-

pole approximation), the actual number of solutions is reduced by one, becoming

8 for the four-pole approximation and 4 for the three-pole approximation. This

fact is discussed and illustrated in section 5.1.2.

The model derived in this section contains drift kinetic electrons and drift

kinetic ions and is supplemented by an ion polarization term and modified to

include FLR effects. It forms the basis of the numerical analysis of drift waves in

chapter 5.



3.3 Drift Parameter 59

3.3 Drift Parameter

The aim of this thesis is to study current-driven drift waves in fusion energy

devices. To chose a realistic size of the parallel electron drift current, in this

section the dimension of the drift parameter vk0/cs is estimated for Alcator C-

Mod experiments. All drift wave models used in this work assume magnetostatics,

which is a standard approximation for plasma waves with phase velocity v ⌧ c.

Ampere’s Law for the magnetostatic case

r⇥B =

4⇡

c
j

is the starting point for this general discussion. First, the shape of the tokamak

(see section 2.5.1 fig. 2.6) is assumed to be a circle. After integration over the

cross section and using Stoke’s theorem,

I
B dl =

4⇡

c

r

0Z

0

2⇡r0j(r0) ,

the poloidal magnetic field can be written as

rB
p

=

4⇡

c

r

0Z

0

r0j(r0) . (3.36)

The safety factor indicates how many times a magnetic field line toroidally goes

around the torus for one time around poloidally:

q =
r

R

B
T

B
p

.

As an established quantity q is used to represent the poloidal field in (3.36).

Differentiating both sides of equation 3.36 with respect to r, the current becomes

j(r) =
c

2⇡

B
T

qR
(1� ŝ

2

) ,

where the magnetic shear is defined as ŝ =

r

q

@
r

q. Using uk0 = j/(ne), the drift
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parameter is

uk0

c
s

=

1

nec
s

c

2⇡

B
T

Rq
(1� ŝ

2

) . (3.37)

In the next step non-circularity is allowed in order to state the drift parameter

more precisely. Numerical studies showed [46] that for moderately shaped plasmas

the current enclosed inside a flux surface with width r can be modeled as

I(r) =
c

2

r2B
T

qR

1 + 2

2

, (3.38)

with the elongation . As a simple approximation,

I(r) ⇡
rZ

0

2⇡r0(r0)j(r0) (3.39)

will be used. Repeating the steps leading to (3.37), equation 3.38 is inserted in

(3.39), both sides are differentiated with respect to r and the drift parameter

becomes

uk0

c
s

=

1

nec
s

c

2⇡

B
T

qR


1� ŝ

2

+

2s


1 + 2

�
1 + 2

2
, (3.40)

where s


= (r/)@
r

.

n̄
e

(10

20
m

�3
) 0.34

R/a 3.115097
q 1.410419
ŝ 1.625332
 1.221334
s


0.164005
a/L

T i

3.612313
a/L

Te

3.451792
a/L

n

0.850856
T
i

/T
e

0.385030

Table 3.1: Alcator C-Mod parameters - for the specific experiment this work
is referring to (taken from Ref. [33]).



3.3 Drift Parameter 61

Using the Alcator C-Mod parameters for the specific experiment this work is

referring to, listed in table 3.1, a toroidal magnetic field of B = 5.2T, an electron

temperature of 1keV and a minor radius of a = 22cm [22], the drift parameter

(3.40) becomes

uk0

c
s

⇡ 2.09279 ,

predicting that the electron drift current can become about two times higher

than the ion sound speed. In the large aspect ratio circular limit (3.37), the drift

parameter is

uk0

c
s

⇡ 1.34612 ,

and in the non-circular limit (3.40), but neglecting the magnetic shearing, ŝ = 0,

it becomes

uk0

c
s

⇡ 8.04947 ,

which is about four times higher than the original value including the shear

parameter.

Due to uncertainties in the values of ŝ and other shaping effects, such as the

Shafranov shift, larger values of the drift parameter uk0/cs are possible. Also,

the drift parameter may be larger if one considers locations in the plasma closer

to the plasma center, where the magnetic shear is lower, or when considering

other experiments at lower density or in smaller tokamaks. Even if the parallel

electron drift current is not high enough in most parts of the plasma, magnetohy-

drodynamic (MHD) instabilities can possibly drive large local current densities at

resonant surfaces, which might generate current-driven drift waves as secondary

instabilities.

Thus in chapter 5 results for uk0/cs = 2.09279, as well as for uk0/cs = 8.04947
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will be shown in order to demonstrate the sensitivity to a range of values and

whether uk0 is possibly big enough to have a significant effect on growth rates.

3.4 Analytic Discussion of Drift Wave Instabilities

The model derived in section 3.2.2 for drift waves with kinetic electrons and fluid

ions will be analytically analyzed in detail. Landau’s method will be used to solve

the integral in the plasma dispersion function Z (3.25). Assuming ! ⇠ ⇣ has a

small positive imaginary part, the integral in Z is evaluated along an integration

path distorted around the pole as shown in figure 3.8.

0

Figure 3.8: Integration path - Integration of t along the real axis, except using
Landau’s method for integration around the pole at t = ⇣ � q.

For the analytic discussion

! ⌧ k
z

v
te

(3.41)

is assumed. As the classic drift wave ordering is

v
ti

⌧ !

kk
⌧ v

te

,

assumption (3.41) is reasonable. With this assumption, the contribution from

the pole exceeds the contribution from the real axis [18], allowing one to neglect

the principal value and solve the problem with residues. Calculating the pole

contribution with (3.41) and assuming that the parallel electron drift velocity
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u
e0 = uk0 is much smaller than the electron thermal velocity u

e0 ⌧ v
te

, gives

Res

0

@ 1p
⇡

1Z

�1

e�t

2

t� (⇣ � q)
dt

1

A
=i

p
⇡e�(⇣�q)2

⇡i
p
⇡ . (3.42)

That u
e0 ⌧ v

te

for real fusion devices is shown in section 3.3, where the drift

parameter is estimated for Alcator C-Mod parameters. Inserting (3.42) in (3.30),

the dispersion relation in this regime becomes

1� ⇣⇤ [⌘(⇣ � q) + 2⌘
u

q]�

⇣⇤
⇣
� ⇢2

s

k2
? +

1

2µ2⇣2

�
(3.43)

=� i
p
⇡


⇣ � q � ⇣⇤

✓
1� ⌘


1

2

� ⇣2 + 2q⇣ � q2
�
� ⌘

u

⇥
2q2 � 2q⇣

⇤◆�
.

In the following the calculated dispersion relation (3.43) will be analyzed to give

predictions about the behavior of drift waves in presence of an electron current

drift and used to examine the influence of temperature gradients on drift waves.

Assuming a density gradient, but neither temperature gradient (⌘ = 0) nor

parallel electron drift (q = 0, ⌘
u

= 0), the dispersion relation (3.43) simplifies to

!(1 + ⇢2
s

k2
?)� !⇤ �

k2
z

c2
s

!
= �i

r
⇡

2

!(! � !⇤)

|k
z

|v
t

. (3.44)

Figures 3.10 and 3.11 illustrate equation 3.44 for Alcator C-Mod parameters (see

table 3.1). By ignoring the imaginary term and solving the quadratic equation

on the left hand side, two solutions exist, as illustrated in figure 3.9. In the

limit ⇢
s

k? ⌧ 1 and c
s

k
z

⌧ !⇤ the frequency of the drift wave is the electron

diamagnetic frequency ! ⇡ !⇤, as predicted in section 3.1. Since !⇤e is defined

to be positive, the branch in the upper half plane is called the “electron branch”,

while the mode with the opposite sign is the ion branch.

Including the other terms as small corrections, the solution corresponding to the
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Figure 3.9: Frequency versus parallel wave vector - The branches approach
the assymptotes ! = ±k

z

c
s

.
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electron branch in figure 3.9 is

!
r

= !⇤(1� ⇢2
s

k2
?) +

c2
s

k2
z

!⇤
.

To evaluate the growth rate of this drift wave, ! in (3.44) is replaced by ! !

!
r

+ i�. Taking the imaginary part and assuming the same approach as before

for the real part, the growth rate is in this range

� ⇡
r

⇡

2

!2
⇤

|k
z

|v
te

✓
k2
y

⇢2
s

� k2
z

c2
s

!2
⇤

◆
. (3.45)

Thus the stability threshold in this limit is

k2
y

⇢2
s

>
k2
z

c2
s

!2
⇤

.

Figure 3.10: Growth rate versus ak
z

according to (3.44) - Plot of the
simplified dispersion relation (3.44) with T0,e = 1keV, 

n

= �0.0386753 cm�1,

T

= 0, u0,e = 0 and k
y

⇢
s

= 0.6. This plot corresponds to figure 3.11, which shows
the mode with the same parameters in perpendicular direction. The purely growing
mode, depicted in green, is unphysical (i.e. it violates the assumptions used to get
this analytic dispersion relation) and will be ignored in further considerations.
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A more realistic treatment includes an electron temperature gradient. By ignoring

terms ⇠ !2!⇤, setting q = 0 and ⌘
u

= 0, equation 3.43 simplifies to

!(1 + ⇢2
s

k2
?)� !⇤ �

k2
z

c2
s

!
= �i

r
⇡

2

!(! � !⇤
[1� ⌘/2])

|k
z

|v
t,e

. (3.46)

After solving the dispersion relation 3.46 with nonzero ⌘ in the same limit as

above, the growth rate is

� =

r
⇡

2

!2
⇤

|k
z

|v
te

✓
k2
y

⇢2
s

� k2
z

c2
s

!2
⇤

� ⌘

◆
, (3.47)

which corresponds to (3.45) with an additional term ⇠ ⌘. Since in most cases

the gradients of density and temperature are of the same sign, ⌘ is assumed

to be positive. Thus the temperature gradient is stabilizing and the instability

threshold shifts to a higher value.

Figure 3.11: Growth rate versus k
y

⇢
s

according to (3.44) - Plot of the
simplified dispersion relation (3.44) with T0,e = 1 keV, T0,i/T0,e = 0.38503, 

n

=
�0.0386753 cm�1, 

T

= 0, u0,e = 0 and k
z

= 0.01 cm�1.

Using Alcator C-Mod parameters for the experiment this work is focussing on
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[33], T0,e = 1keV, k
y

⇢
s

= 0.6, and 1/L
n

= 
n

= 0.0386753, for ⌘ = 0 and

k
z

= 0.01cm�1 the mode is stable according to (3.47) within the range of |k
y

⇢
s

| <

0.51. Adding a temperature gradient, ⌘ = 4.06, the range of stability extends to

|k
y

⇢
s

| < 2.02.

The same approximation can be done for the case of an additional parallel electron

current u0. After evaluating the dispersion relation in the assumed limit, the

growth rate is

� =

r
⇡

2

!2
⇤

|k
z

|v
te

✓
�k2

z

c2
s

!2
⇤

� ⌘ +
k
z

u0

!⇤

◆
. (3.48)

Figure 3.12: Growth rate of the CDDW versus k
y

⇢
s

- Plot of the simplified
dispersion relation with T0,e = 1keV, 

n

= �0.0386753 cm�1, 
T

= 0, u0,e =
�1.31242108 cm s�1 = �6c

s

and k
z

= 0.01 cm�1. In order to plot positive k
y

⇢
s

-
values, the electron current was chosen to be negative. As predicted in (3.48), the
drift wave is driven more unstable by the electron current. The corresponding drift
wave without the current is shown in figure 3.11. This CDDW is depicted in the
parallel direction in figure 3.13.

If !⇤ and k
z

u0 have the same sign, a parallel electron current is destabilizing,
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which can be seen by comparing figures 3.12 with 3.11 and 3.13 with 3.10. Reca-

pitulating, this prediction is based on a model that includes fluid ions and kinetic

electrons and depends on the classic drift wave ordering !/kk ⌧ v
te

with the ad-

ditional limits ⇢
s

k? ⌧ 1 and an electron streaming speed u
e0 ⌧ v

te

. To calculate

(3.48), c
s

k
z

⌧ ! ⇡ !⇤ is assumed, keeping only terms to order k2
z

c2
s

/!2
⇤, while

k2
y

⇢2
s

corrections are neglected.

Figure 3.13: Growth rate of the CDDW versus ak
z

- Plot of the simplified
dispersion relation with T0,e = 1keV, 

n

= �0.0386753 cm�1, 
T

= 0, u0,e =
1.31242 · 108 cm s�1 and k

y

⇢
s

= �0.6. This plot corresponds to figure 3.12, where
the perpendicular direction is shown. Like in figure 3.10, the green line is unphysical.

Calculating the instability threshold � > 0 in this limit as a function of k
z

, two

conditions have to be met:

2c
s

p
⌘
e

< u0,e (3.49)

!⇤(u0,e �
q

u2
0,e � 4c2

s

⌘
e

)

2c2
s

< k
z

<
!⇤(u0,e +

q
u2
0,e � 4c2

s

⌘
e

)

2c2
s

.
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The first condition states that the electron temperature gradient ⌘
e

has to be

smaller than the quotient of electron streaming velocity and ion sound velocity

squared, ⌘
e

< (u0,e/2cs)
2, to allow the current-driven drift wave to be unstable.

Inserting the highest approximated drift parameter (see 3.3) u
ek/cs ⇡ 8, the

threshold for ⌘
e

is according to 3.49

⌘
e

< (u0,e/2cs)
2 ⇡ 16 . (3.50)

For the Alcator C-Mod parameters, used in the plots above, ⌘
e

= 4.05685 and

accordingly the condition (3.50) is met. The lowest drift parameter leading to

current-driven drift waves according to this simple model is u0,e/cs = 4.02832 for

the specific value of ⌘
e

= 4.05685.

The predictions about current-driven drift waves given in this chapter are

verified in a model containing drift kinetic electrons and drift kinetic ions in

section 5, where an additional temperature gradient for ions is added.
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4

Program for Drift Waves Properties

In this chapter a program is described that can be used to examine drift waves

numerically in more detail. It is written in “Wolfram Mathematica 7”, which

is further referred to as “Mathematica”. First, the drift wave models that are

provided in the program are recapitulated in the section “model”. The design of

the program is described in detail in the section of the same name, which covers

input parameters, the use and interaction of functions, as well as the mode of

operation of the program as a whole. The application of the program to the

study of drift waves is provided in chapter 5.

4.1 Model

Multiple models exist in the program for increased flexibility and ease when study-

ing drift waves in the plane plasma slab. The most advanced model used in this

thesis is based on kinetic electrons and kinetic ions. It is described in detail in

section 3.2.3. For standard use, the four pole approximation [23] for the plasma

dispersion function is provided with the possibility to switch to the three pole

approximation. The dispersion function for this model is called “disprel2”. In
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table 4.1 the dispersion function together with the expected number of solutions

are specified.

The second model uses kinetic ions and adiabatic electrons. Its dispersion

relation is called with “disprel1”. Instead of the 8 expected modes when describing

all species as kinetic, with adiabatic electrons 4 solutions exist.

In order to compare the numerical results with the analytic approximation,

the dispersion relation for fluid ions and simplified kinetic electrons, used in sec-

tion 3.4 for the analytic discussion, is “disprel0”. To allow the testing of concrete

analytic results, manually defined growth rates can be plotted together with “dis-

prel0”.

3-pole approx. 4-pole approx.
kinetic ions, disprel1 disprel1
adiabatic electrons dim=3 dim=4

kinetic ions, disprel2 disprel2
kinetic electrons dim=6 dim=8

fluid ions, disprel0
(simplified) kinetic electrons dim=3

Table 4.1: Drift wave models contained in the program - The program
provides three models for drift waves, which can be called with the listed internal
names. For example, “disprel2” calls the dispersion relation describing electrons and
ions kinetically. Besides the internal names, the corresponding number of solutions,
denoted as “dim”, is shown.

4.2 Design

The program is designed in six parts. The first part contains the functions needed

to calculate, plot, and save the results to the corresponding filesystem. The input

parameters, listed in table 4.2, are provided in the following section. The user
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is able to choose electron T0,e and ion temperature via the relation T0i = ✏
T

T0,e,

as well as the density, temperature and velocity gradient via the parameters 
n

,


T

and 
u

. Temperature- and velocity-gradients, and a parallel velocity u0 are

separately defined for both electrons and ions.

In the next section, analytically calculated � is provided for comparison with

the numerical results. The main calculation is done in part 4, where the electron

and ion response functions are calculated. In the following part these response

functions are combined into a dispersion relation. In the last section, the functions

are called to finally calculate growth rate, frequency or diffusivity, to plot the

solutions and save them into an externally saved file.

4.2.1 Input Parameter

All global variables, for example the minor radius a, are given the prefix “var”,

and every function has the prefix “fct”. Since some functions are called without

arguments, this convention clarifies their type in the program sequence.

The physical input parameters are defined in the program section “Input Pa-

rameter”. Non-constants are specified in the sections “Parameters I” and “Param-

eters II”. In the first parameter section, the minor radius a of the experimental

device, vara, which is only used for normalization, and the ions’ and electrons’

temperatures are defined. While the electron temperature is defined by its own

variable, “varTe”, the ion temperature is represented by “var✏
T

”, the ratio of the

ions’ to the electrons’ temperature, ✏
T

=

T

i0
T

e0
.

The second parameter block, “Parameters II”, specifies the most frequently

varied parameters. The gradients, bulk velocities and wave numbers can be chosen

in a list. All plots require a non-zero density gradient and k
z

. Every gradient

is represented by 
x

= 1/L
x

, which is defined as d
r

x/x. For example 
n

=
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d
r

n/n = 1/L
n

. Temperature- and velocity-gradients, as well as an additional

parallel velocity u0 are separately defined for both electrons and ions. Table 4.2

shows the provided input parameters with their definitions.

Parameter Global Variable Definition
a vara Inner radius
T0,e varT0e Electron temperature in eV


T i

1/L
T i

= d
r

T0,i/T0,i


u0i 1/L

ui

= d
r

u0,i/u0,i

u0,i Ion parallel velocity

Te

1/L
Te

= d
r

T0,e/T0,e


u0e 1/L

ue

= d
r

u0,e/u0,e

u0,e Electron parallel velocity

n

1/L
n

= d
r

n0/n0

k
z

Parallel wave vector
k
y

⇢
i

Normalized perpendicular wave vector
✏
T

var✏T T0i/T0,e

m
i

varmiD Mass deuterium
m

p

varmp Mass proton
m

e

varme Mass electron
µ varmu

p
m

i

/m
e

v
ti

varvti
p

T
i

/m
i

; Ion thermal velocity
v
te

varvte
p

T
e

/m
e

; Electron thermal velocity
c
s

varcs
p

T
e

/m
i

; Ion sound velocity

Table 4.2: Input parameters of the program - The input parameters are
defined in the section “Input Parameter”. The first column, “Parameter”, states
the name of the physical parameter, while the second one names the corresponding
internally used global variables.

4.2.2 Functions

In order to give the user the opportunity to plot growth rate, frequency and

diffusivity versus different parameters, while reducing lines of code and runtime,

the program is built modular. The variables, which are automatically used as

plotting variables, are depicted in table 4.3.
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Function �, f , D
mix

2D kk, k?, u0,e, T,e

, 
T,i

, 
ue

3D kk & k?

Table 4.3: Physical quantities to evaluate - By default, the growth rate, �,
frequency, f , and diffusivity D

mix

are calculated and plotted as a function of one
of the parameters of the second row. Three dimensional plots are provided versus
k? and kk.

The functions can be classified in four groups. The first group contains functions

that set parameters for the list of values and clean up after using variables. The

next group contains functions that logically determine the paths of directories in

which to save images. The most important functions are the ones that actually

calculate and store the values for plotting, which is done in the last group. In the

following sections an overview of the functionality of the program is given and

some important functions are described in detail.

Functions for setting parameters

The dispersion relation is first calculated with symbolic variables. Then, the vari-

ables are replaced with values to numerically solve the equation. To insert the

chosen parameters (see section 4.2.1), lists are constructed. Each list contains

the values or the variables in the following order:

1 valueList = {Ti, ui, u0,i, ky⇢s, cs, Te, ue, u0,e, T0,e, ✏T , n, µ, kz , !} .

Listing 4.1: valueList - The list “valueList” shows the ordering of the parameters.

The function “fctSetValueList” constructs these lists, which are later called by

other functions in order to replace the variables with values. Since it is useful to

allow later plotting of the calculated growth rate, frequency or diffusivity versus

different parameters, for every designated abscissa there is one list defined. The

list for plotting versus k
z

for example is constructed as follows, where both k
z
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and ! stays as variable and the others are replaced by their values:

1 fctSetValueList[var1_ , var2_ , var3_ , var4_ , var5_ , var6_ , var7_ , var8_ , var9_] :=

2 Module [{},

3 valueListkz =

4 {(*\[ Kappa]Ti*)var1 ,

5 (*\[ Kappa]ui*)var2 ,

6 (*u0i*)var3 ,

7 (* kyrhos *)var4/Sqrt[varepsT],

8 (*cs*) varvte/varmu ,

9 (*\[ Kappa]Te*) var5 ,

10 (*\[ Kappa]ue*)var6 ,

11 (*u0e*)var7 ,

12 (*T0e*)varT0e ,

13 (*\[ Epsilon]T*) varepsT ,

14 (*\[ Kappa]ni = \[Kappa]ne*) var8 ,

15 (*\[Mu]^2*) varmu ,

16 (*kz*) kz,

17 (*\[ Omega]*) !]}

18 ...

19 ...

20 ]

Listing 4.2: fctSetValueList - This function constructs the lists that provide the

values for insertion into the dispersion relations.

Each time that a value in the input parameter section is changed and the core-

spondent cell is evaluated, “fctSetValueList” is called to renew the list of values,

which are needed to calculate and plot the results.

Functions to determine the path

For further analysis, the plots are saved into files. To be able to easily find plots

of different parameters, there is a designated folder structure, in which the plots

are automatically sorted. An example is shown in figure 4.1.

The first layer, “0”, “e”, “i” or “ei”, sorts the plots, depending on which group of

parameters of the correspondent list of values are nonzero: if 
T,x

, 
u,x

and u0,x

are zero for both electrons and ions (x indicates the particle species), the folder

“0” is active. If the named parameter group is zero for ions, but at least one of
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Figure 4.1: Folder structure - The plots are automaticaly saved into folders
according to their parameters.

the parameters is nonzero for electrons, “e” is chosen, vice versa, “i”. For at least

one nonzero parameter for both, electrons and ions, the files are stored in “ei”.

The second layer distinguishes the single parameters for electrons and ions.

The folders are named after the nonzero variables, for example “kTe_kue” for

nonzero 
Te

and 
ue

.

The most interesting plots probably are the ones versus parallel and perpen-

dicular wave vectors, so in the last layer there are the two folders “ky” and “kz” for

plots versus perpendicular and parallel wave numbers. The described distribution

of the plots is done in the two functions “fctDirEI” and “fctdirmulti”, called by

the top function “fctDirPath”, as illustrated in figure 4.2.

The return value of “fctDirPath” is a String, composed of the structure of the

directories, where the file is to be saved, for example “e/ue/kz”. The first layer is

computed by “fctDirEI”, which is called with the list of values as argument, whose

construction was previously described. It returns the first layer, “0”, “e”, “i” or “ei”.
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Figure 4.2: Functions, indicating the path for saving - The output string
defines the path, where the output plot is saved.

The second function “fctdirmulti” returns layer two and three combined, such as

“ue/kz”.

Calculation of growth rate, frequency and diffusion

The calculation of the actual results for growth rate, frequency or diffusion is done

numerically. The starting point is the dispersion relation and the array of values

described in section 4.2.2. Figure 4.3 shows the interaction of the functions, which

provide together the designated results.

Figure 4.3: Functions for solving - The function “fctSolve” calls as master func-
tion the subfunctions “fctPlotVs”, “fctSolDim” and “fctCalc”, which in turn calls “fc-
tReplParam”. Together they calculate the growth rate �, frequency f and Diffusion
D out of a given dispersion relation.

The function “fctSolve” is the master function of the calculation. It provides

loops for the numerical calculation, one for two dimensional and two loops for

the three-dimensional case, as can be seen in the code-fragment 4.3. The in-

put parameters are: “actDisprel”, the name of the dispersion relation to be used;
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“actValueList”, the name of the list of values, which implicitly gives the abscissa;

“stepSize”, which is used in calculating numerical solutions; and a variable called

“gD”, which contains information about the designated result.

1 fctClearAll;

2 fctSolve[actDisprel_ , actValueList_ , stepSize__ , gD_] := Module[

3 {gdaAtemp1 , gdaAtemp2 , solArray , dispRelVal , ikz , iky , solArrayGes ,

4 p, solDim , plotDim , i1, absc , iboth},

5 dispRelVal = Apply[actDisprel , actValueList ];

6 solDim = fctSolDim[ToString[actDisprel ]];

7 absc = fctPlotVs[actValueList ];

8 solArray = {}; solArrayGes = {}; p = 1; plotDim = 2;

9 If[Dimensions[stepSize ][[1]] == 2, plotDim = 3];

10 If[plotDim == 2, (*2D*)

11 {For[i1 = stepSize [[1]], i1 < stepSize [[2]], i1 = i1 + stepSize [[3]],

12 gdaAtemp2 = fctCalc[dispRelVal , actValueList , absc , i1, solDim [[1]], solDim [[2]], gD];

13 solArray = Join[solArray , {gdaAtemp2 }]

14 ];

15 },

16 If[plotDim == 3,(*3D*)

17 {For[ikz = stepSize [[1,1]], ikz < stepSize [[1,2]], ikz = ikz + stepSize [[1,3]], {

18 For[iky = stepSize [[2,1]], iky < stepSize [[2,2]], iky = iky + stepSize [[2,3]], {

19 iboth = {ikz , iky};

20 gdaAtemp2 = fctCalc[dispRelVal ,actValueList ,absc ,iboth , solDim [[1]] , solDim [[2]], gD];

21 solArray = Join[solArray , {gdaAtemp2 }];

22 }

23 ];

24 }];

25 },

26 {Print["Error in Dimensions. Allowed: 2D and 3D"]; Abort [];}

27 ];];

29 While[p <= solDim [[1]] ,

30 solArrayGes = Join[solArrayGes , {solArray [[All , p]]}];

31 p++;

32 ];

33 solArrayGes

34 ];

Listing 4.3: fctSolve - The function “fctSolve” provides the loop for numerical

calculation of the growth rate gamma �, frequency f or Diffusion D. The result is

a multidimensional array of the calculated values.

The function “fctSolDim”, called in listing 4.3, line 6, is shown in the code frag-

ment 4.4. It provides the number of solutions according to the given dispersion

relation, as well as the type: “g = 0” are already given growth rates with one
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solution, “g = 1” the simplified dispersion relations with three solutions, and

“g = 2” the full dispersion relation with 4 or 8 solutions, depending on the use of

the three- or four-pole approximation for the plasma dispersion function.

1 fctSolDim[disprel_] := Module [{solDim , g},

2 If[disprel == "gammaan1", {solDim = 1; g = 0;}];

3 If[disprel == "gammaan2", {solDim = 1; g = 0;}];

4 If[disprel == "gammaan3", {solDim = 1; g = 0;}];

5 If[disprel == "gammaan4", {solDim = 1; g = 0;}];

7 If[disprel == "disprelan1", {solDim = 3; g = 1;}];

8 If[disprel == "disprelan2", {solDim = 3; g = 1;}];

9 If[disprel == "disprelan3", {solDim = 3; g = 1;}];

10 If[disprel == "disprelan4", {solDim = 3; g = 1;}];

11 If[disprel == "disprel0", {solDim = 3; g = 1;}];

13 If[disprel == "disprelnu1", {solDim = 4; g = 2;}];

14 If[disprel == "disprelnu2", {solDim = 8; g = 2;}];

15 {solDim , g}

16 ];

Listing 4.4: fctSolDim - The function “fctSolDim” provides the number of

solutions and the type of a specific dispersion relation.

The function “fctSolDim” returns an array containing the number and type of

solution. The number of the solutions is needed to optimize the array dimension

of the solution and to design the graphics.

The second function, which is called in “fctSolve”, listing 4.3, is “fctPlotVs”,

depicted in listing 4.5. It tests for every element of the actual list of values, if it

is a number (“NumberQ”). Each non-numeric element is a variable against which

the function will be plotted.

The generated information is used in “fctSolve” to calculate lists of solutions

to be plotted later. The variable “dispRelVal” contains the list of values applied

to the dispersion relation. The result is a function of only ! and the variables

against which it will be plotted. For a two dimensional plot versus k
z

for example,

! and k
z

are indefinite. For a three-dimensional plot, k
y

can also vary.
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1 fctPlotVs[actValueList_] := Module [{p, dim , printVar},

2 dim = Dimensions[actValueList ][[1]]; p = 1; printVar = {};

3 While[p < dim ,

4 If[! NumberQ[actValueList [[p]]], printVar = Join[printVar , {actValueList [[p]]}];];

5 p++];

6 printVar

7 ]

Listing 4.5: fctPlotsVs - The function “fctPlotVs” returns the non-numerical

parameters of the value list and so defines the variable for the numerical solution.

In the next step, the remaining variables, except for !, are in a loop replaced

by the values according to “stepSize”, a list containing start value, step size and

stop value. For every step the function “fctCalc” is called, which gives an array

of the solutions back. For three-dimensional case there are two loops, for each

perpendicular and parallel k “fctCalc” is called once.

The actual calculation is done in the function “fctCalc”. The sequence of this

function is shown in figure 4.4 and an example of the source code in listing 4.6.

The first determination is related to the dispersion equation: depending on the

value of g, which was discussed above in listing 4.4, different branches are chosen.

Subsequently, the value for the loop parameter is inserted and for the case of

the dispersion relation, the equation is numerically solved. For the analytically

calculated cases (g = 0 or g = 1) the next step is the evaluation of thresholds:

The analytic calculation of the growth rate of drift waves in section 3.4 was based

on the assumption ! ⌧ k
z

v
te

. For this reason, the constraint |!| < 0.05 k
z

v
te

is

tested. Only if ! = !
r

+ i� is small enough, the desired quantity is calculated

and added to the array of solutions. As illustrated in figure 4.4, the parameter

gD switches between the growth rate, frequency or diffusion and thus initializes

the calculation, shown in listing 4.6.
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Figure 4.4: Sequence of the function “fctCalc” - In this function, depending
on different parameters, the desired quantity (growth rate, frequency, or diffusion)
is calculated. The parameter g chooses the equation to be evaluated: g = 0 is an
already-calculated growth rate, g = 1 the analytically-calculated dispersion relation,
and g = 2 the numerically-calculated dispersion relation. After the evaluation of
the thresholds in the analytic cases, the parameter gD decides whether frequency,
growth rate, or diffusion is calculated (see listing 4.6).
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1 fctClearAll;

2 fctCalc[dispRelVal_ , actValueList_ , absc__ , i__ , dimSol_ , g_ , gD_] :=

3 Module[

4 {gdaAtemp1 , gdaAtemp2 , replParam , gdaAtemp3 , ii},

5 gdaAtemp1 = ConstantArray [0, dimSol ];

6 gdaAtemp2 = ConstantArray[Missing["NotAvailable"], dimSol ];

7 replParam = fctReplParam[actValueList , i, absc];

9 For[ii = 1, ii <= dimSol , ii++,

10 Switch[g,

11 0, {(*0: gamma*)

12 ...

13 };

14 1, {(*1: analytic *)

15 ...

16 };

17 2, {(*2: numeric *)

18 gdaAtemp1 := NSolve [( dispRelVal /. replParam [[1]]) == 0, \[ Omega]] ;

19 If[

20 gD == 0, {(* growth rate*)

21 gdaAtemp2 [[ii]] = Flatten [{i,Im[\[ Omega] /. gdaAtemp1 ][[ii]]/( varcs/vara)}]},

22 If[gD == 1, (* frequency *)

23 {

24 gdaAtemp2 [[ii]] = Flatten [{i,Re[\[ Omega] /. gdaAtemp1 ][[ii]]/( varcs/vara)}];

25 },

26 If[gD == 2, (* Subscript[D, mix]*)

27 {

28 gdaAtemp2 [[ii]] = Flatten [{i,Im[\[ Omega] /. gdaAtemp1 ][[ii]]

29 *(( varrhos *10^ -2)/replParam [[3]]) ^2}];

30 },

31 Print["Error in fctCalc!"]]]

32 ];

33 }

34 ];

35 ];

36 gdaAtemp2

37 ];

Listing 4.6: fctCalc - The actual calculation is done in the function “fctCalc.”

As shown in figure 4.4, depending on the desired quantity (frequency, growth rate,

or diffusion) different branches are chosen. The calculation is performed using the

Mathematica-built-in function “NSolve”.

The function “fctReplParam” returns the replacement rules, used in “fctCalc”

for solving the dispersion relation and scaling of the axes. In listing 4.7, “fc-

tReplParam” is shown for the example case of “valueListky”. The replacement
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parameter depends on the intended axis normalization.

1 fctReplParam[actValueList_ , i__ , absc__] :=

2 Module [{dim , replParam},

3 dim = Dimensions[absc ][[1]];

4 replParam = {};

5 If[dim == 1, (*2D plot*)

6 Switch[ToString[absc [[1]]] ,

7 ...

8 "kyrhos", replParam = {{ kyrhos -> i}, Abs[actValueList [[13]]] , i};,

9 ...

10 ];

11 ]

12 If[dim == 2,(*3D plot*)

13 {replParam = {{kz -> i[[1]]/ vara , kyrhos -> i[[2]]} , Abs[i[[1]]] , i[[2]]};}

14 ];

15 replParam (*{param -> i}, |kz|, kyrhos *)

16 ]

Listing 4.7: fctReplParam - The function “fctReplParam” returns the

replacement rule, k
y

⇢
s

and the absolute value of k
z

.

With the information from “fctReplParam”, �, f or D is calculated, stored in

a list and given back to “fctSolve”, which combines all results in one array and

returns it for use by plotting functions, which will be described next.

Functions for plotting

The master function for plotting of the just calculated list of results is “fctList-

Plot”. It calls the built-in function “ListPlot”, which plots a list of values. The

function “fctValuesString”, called in “fctListPlot”, prepares the parameters for use

as the figure label.

Information for plotting the different combinations of dispersion relations are

stored in “fctAnNu”. Listing 4.8 shows an extract for the case of one numeric

dispersion relation (“n”), while “a” depicts “disprel0”, “aa” the growth rate and

“disprel0”, and “nn” both numerical solved dispersion relations.
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1 fctAnNu[anNu_] := Module [{ PlotStyleArray , legendArray , actDisprel},

2 Switch[ToString[anNu],

3 "aa", {...};

4 "nn", {...},

5 "an", {...},

6 "a", {...},

7 "n", {

8 actDisprel := {disprelnu2 };

9 legendArray := {...};

10 PlotStyleArray := {...}

11 }

12 ];

13 {actDisprel , legendArray , PlotStyleArray}

14 ];

Listing 4.8: fctAnNu - The function “fctAnNu” provides information for the

plotting of the different dispersion relations.

Calculation of the maxima

The solutions (growth rate, frequency or diffusion) are stored in an array, as

discussed previously. The function “fctReturnMax” finds the maximum of each

mode and returns their coordinates in an array.

1 fctReturnMax[solutionsArray_] :=

2 Module [{jj, maxArray , dim},

3 maxArray = {};

4 dim = Dimensions[solutionsArray ][[1]];

5 For[jj = 1, jj < (dim + 1), jj++, maxArray = Join[maxArray ,

6 Pick[solutionsArray [[jj]], #, Max[#]] &[Last /@ solutionsArray [[jj]]] // N

7 ];];

8 maxArray

9 ];

Listing 4.9: fctReturnMax - The function “fctReturnMax” lists the maximum

of each mode and stores the coordinates in an array.

4.2.3 Analytic Dispersion Relation

The analytically calculated growth rates and dispersion relations, discussed in

detail in section 3.4, are provided in the program section with the name “Ana-
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lytic Dispersion Relation and Growth Rates”. The growth rates are defined as

approximated in section 3.4, for example in equation 3.48. The dispersion relation

consists of fluid ions and simplified kinetic electrons (3.46).

4.2.4 Electron and Ion Response

In this section the response of the particles via the drift kinetic equation is cal-

culated, and approximations are provided for the plasma dispersion function and

the additional ion polarization term. The theoretical concept of the model is

described in section 3.2.3.

First, the perturbed ion density is calculated as shown in listing 4.10. After

the declaration of local variables in line 3, physical variables like velocities and

distribution functions are defined. In line 4 the E ⇥ B - velocity is written in

Fourier space notation. The parallel and perpendicular velocities are defined sep-

arately to be able to upgrade the code to include other velocity components. The

equilibrium distribution function f0 is assumed to be Maxwellian. To simplify the

derivatives in line 11, f0 is defined as product of a prefactor with two probabil-

ity density functions (PDFs). The first PDF is a normal distribution with mean

0 and standard deviation v
t

(x), evaluated at v?. The second PDF is a normal

distribution with mean u0 and standard deviation v
t

(x), evaluated at vk.

The first step is the integration of the drift kinetic equation over v?, which

is done in “n1withoutIntvparallelF” in line 9, after replacing the gradients with

the scalings L
n

and ⌘. In order to simplify the calculation, terms that include

v
z

are separated from whose, that do not contain v
z

. Thus, v
z

is set zero in

“n1withoutIntvparallelnurZF”. Additionally the term is multiplied by �!, since

the denominator was (v
z

� !k
z

).
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1 n1kinetic[eV_ , mV_ , BV_ , cV_ , �V_, vtV_ , ⌘V_, ⌘uV_ , n0V_ , T0V_ , u0V_ , !sV_ , kzV_ , !V_, ZV_] =

2 Module[

3 {x, y, z, vperp , vparallel , ky , kx, q, ⇣, ⇣s, Ln, t, f1D , ue, uparal , f0, f1, n1withoutIntvparallelF ,

n1withoutIntvparallelnurZF , c, n1 , f10 , m, � , B, kz, e, vt, ⌘, ⌘u, n0, T0, u0 , !s, !, Z, phi ,

n1Value},

4 ue := -I (c* phi)/B {ky, -kx , 0};

5 uparal := {0, 0, vparallel };

6 f0 := n0[x]/( Sqrt[2 Pi] vt[x])* PDF[NormalDistribution [0, vt[x]], vperp]

7 *PDF[NormalDistribution[u0[x], vt[x]], vparallel ];

8 f1 := f10[x] E^(I (ky*y + kz*z - ! * t));

9

10 n1withoutIntvparallelF :=

11 ReplaceAll[ Integrate [( Solve[ReplaceAll[

12 (D[f1, t] + D[f1, z]*Part[ue + uparal , 3] + D[f0 , x]*Part[ue + uparal , 1] -

13 I e/m phi*kz* D[f0 , vparallel ]),

14 {E^(I (ky y + kz z - t !)) -> f1D/f10[x],

15 n0 ’[x] -> n0[x]/ Ln, vt ’[x] -> vt[x]*⌘/(Ln *2), u0 ’[x] -> u0[x]*⌘u/Ln ,

16 ky -> (e*B*Ln*!s)/(c*T0[x]),

17 m -> T0[x]/(vt[x])^2}] == 0, f1D][[1, 1, 2]]*2* Pi*vperp),

18 {vperp , 0, Infinity}, Assumptions -> (Re[vt[x]^2] > 0)],

19 {u0[x] -> u0, n0[x] -> n0 , vt[x] -> vt, T0[x] -> T0}];

20 n1withoutIntvparallelnurZF =

21 ReplaceAll [(E^(u0^2/(2 vt^2))*(-!)*n1withoutIntvparallelF), vparallel -> 0]*

22 E^(-((u0 - vparallel)^2/(2 vt^2)))/(kz vparallel - !);

23

24 n1 := Collect [( ReplaceAll [(E^(u0 ^2/(2 vt^2))*(-!)*n1withoutIntvparallelF), vparallel -> 0]

25 *Z*Sqrt[Pi]*kz^-1) +

26 (Simplify[ReplaceAll[Expand[Simplify[

27 n1withoutIntvparallelF - n1withoutIntvparallelnurZF ]],

28 {E^(-((u0 - vparallel)^2/(2 vt^2))) vparallel -> (kz vparallel - !)*Sqrt [2*Pi]*vt*

29 Abs[kz]^-1 + (kz vparallel - !)*Z*!*Pi ^(1/2)* Abs[kz]^-2,

30 E^(-((u0 - vparallel)^2/(2 vt^2))) vparallel ^2 -> (kz vparallel - !)*Sqrt [2*Pi]*vt*

31 u0*Abs[kz]^-1 + (kz vparallel - !)*Sqrt [2*Pi]*vt*!*kz^-2 + (kz vparallel - !)*

32 Z*!^2*Pi ^(1/2)*Abs[kz]^ -3}]]), Z];

33

34 n1Value :=

35 ReplaceAll[

36 Collect[n1 , {(e n0 �)/T0}], {e -> eV, m -> mV , B -> BV, c -> cV, phi -> �V,

37 vt -> vtV , ⌘ -> ⌘V, ⌘u -> ⌘uV , n0 -> n0V ,

38 T0 -> T0V , u0 -> u0V , !s -> !sV , kz -> kzV , ! -> !V, Z -> ZV}];

39 n1Value

40 ];

Listing 4.10: n1kinetic - The function “n1kinetic” provides the perturbed ion

density, which is calculated out of the drift kinetic equation in a plane plasma slab

geometry.

The perturbed density is calculated in “n1”. First, all terms without v
z

are mul-

tiplied by Z
p
⇡|kz|�1, where Z = Z(⇣ � q) is the plasma dispersion function.



88 4. PROGRAM FOR DRIFT WAVES PROPERTIES

In all other terms, v
z

and v2
z

are replaced, leading to an expression in terms of

Z(⇣ � q). In order to insert values, the local variables are replaced at the end

with the variables of the function called.

The resulting symbolic plasma response derived with Mathematica agrees with

the analytic derivation in equation 3.26. In chapter 3, a negative density gradi-

ent was needed to shift the electron drift wave to positive frequencies. This

minus sign is given in the parameters in the input section, where for example


n

= �0.0386753cm�1. The response function for electrons is called with:

1 n1kinetic[-e, m, B, c, �, vt, ⌘, ⌘i, n0, T0, u0 , -!s, kz, !, Z]

Listing 4.11: Call of “n1kinetic” - The perturbed density of electrons is achieved

by the call of “n1kinetic” with �e and �!
s

.

The perturbed densities for adiabatic particles and the ion polarization density are

defined after the perturbed density is calculated from the drift kinetic equation.

Since Z is still contained in the kinetic response, the three- (3.34) and four-pole

approximations (3.35) are declared to replace Z in the dispersion relation.

4.2.5 Dispersion Relation

As all terms are defined now, the dispersion relation is calculated. Two models

are prepared: adiabatic electrons and kinetic ions, leading to “disprel1”, and ki-

netic electrons and kinetic ions, called “disprel2”. The following listing 4.12 shows

the code fragment for “disprel2”.

1 disprel2[TiDRB1_ , uiDRB1_ , u0iDRB1_ , kyrhosDRB1_ , csDRB1_ , TeDRB1_ , ueDRB1_ , u0eDRB1_ ,

2 T0eDRB1_ , ✏TDRB1_ , nDRB1_ , µDRB1_ , kzDRB1_ , !DRB1_] :=

3 Module[

4 {mi , vti , ⌘i, ⌘ui, n0i , T0i , u0i , !si , kz , !, dispRel , kyrhoi , e, B, c, �, result , me , vte , ⌘e, ⌘ue ,

n0e , T0e , u0e , !se, kyrhoe},

5 dispRel :=

6 Together[Simplify[

7 (Together[
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8 n1kinetic[-e, me , B, c, �, vte , ⌘e, ⌘ue , n0e , T0e , u0e , -!se, kz , !, Z4PAu[vte , u0e , kz , !]] /(e

n0e �)/T0e ]*(1/(1 + (-kyrhoe)^2))

9 - (Together[

10 n1kinetic[e, mi, B, c, �, vti , ⌘i, ⌘ui , n0i , T0i , u0i , !si, kz , !,

11 Z4PAu[vti , u0i , kz, !]] /(e n0e �)/T0e ]*(1/(1 + kyrhoi ^2))

12 + Together[

13 IonPolT[kyrhoi , e, �, n0i , T0i ]/(e n0e �)/T0e]))

14 /.{⌘i -> TiDRB1/nDRB1 , ⌘ui -> uiDRB1/nDRB1 ,

15 u0i -> u0iDRB1 , !si -> kyrhosDRB1*csDRB1*✏TDRB1*nDRB1 ,

16 kyrhoi -> kyrhosDRB1*Sqrt[✏TDRB1],

17 T0i -> ✏TDRB1*T0eDRB1 ,

18 vti -> csDRB1*Sqrt[✏TDRB1], n0i -> n0e ,

19 ⌘e -> TeDRB1/nDRB1 , ⌘ue -> ueDRB1/nDRB1 ,

20 u0e -> u0eDRB1 , !se -> kyrhosDRB1*csDRB1*nDRB1 ,

21 kyrhoe -> kyrhosDRB1/µDRB1 , T0e -> T0eDRB1 ,

22 vte -> csDRB1*µDRB1 ,

23 kz -> kzDRB1 , ! -> !DRB1}

24 *Denominator[Z4PAu[vti ,u0i ,kz,!]]]

25 ];

26 result = Together[dispRel*Denominator[dispRel ]];

27 result

28 ];

Listing 4.12: disprel2 - The dispersion relation “disprel2” includes kinetic

electrons and kinetic ions.

4.3 Functionality

In the section of the program named “Plot Growth Rate, Frequency and Diffu-

sion” the calculation and plotting can be started. A typical example is shown in

listing 4.13.

1 fctClearAll;

2 anNu = fctAnNu[nn];

3 gD = 0; maxArray = {};

4 actValueList = valueListkz;

5 stepSize = {10^-15, 0.6, 1*10^ -3};

6 PlotRangeArray = {{0, 0.6}, {-0.3, 0.7}};

7 varNow = ToString[AbsoluteTime[DateString []]];

8 solutionsArray = Join[fctSolve[anNu[[1, 1]], actValueList , stepSize , gD],

9 fctSolve[anNu[[1, 2]], actValueList , stepSize , gD]];

10 solPlot = fctListPlot[solutionsArray , anNu [[2]] , PlotRangeArray , anNu [[3]], actValueList ,

11 "kz a", "�/ ( vti/ a)"];

12 Export[path0 <>"growthRate/"<>fctDirPath[actValueList]<>"/n_g_kz_"<>varNow <>’’.gif", solPlot ];

13 maxArray = fctReturnMax[solutionsArray ];
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14 Export[path0 <>"growthRate/"<>fctDirPath[actValueList]<>"/n_g_kz_"<>varNow <>’’.csv", maxArray ];

15 solPlot

16 maxArray

Listing 4.13: Use of the program - This is a typical example for the use of the

program. Both plot and the list that contains the maxima of the modes will be

saved and output.

To exclude variable definition problems, in line 1 some of the variables are cleared

via the function “fctClearAll”. The next line selects the underlying dispersion

relations, in this case both numerical ones are chosen, “disprel1” and “disprel2”,

via “anNu = fctAnNu[nn]”. Other options are shown in table 4.4.

aa gammaanX, disprel0
nn disprel1, disprel2
na disprel2, disprel0
n disprel2

Table 4.4: Options for “fctAnNu” - The X will be replaced by the number
1-4 in the section of the initial parameters. The variable “disprel1” denotes the
dispersion relation for kinetic ions and adiabatic electrons, “disprel2” kinetic ions
and kinetic electrons. Both “gammaanX” and “disprel0” are described in detail in
section 4.2.3.

The parameter “gD” in line 3 chooses between � (gD=0), !
r

(gD=1) or D (gD=2).

Since in the analytically calculated dispersion relation the ions are based on an

easy fluid model, plotting the analytic dispersion relation “disprel0” for nonzero

ion parameters like temperature gradient or a parallel ion flux is not meaningful.

Nevertheless, not to restrain the free choice of the user, it is allowed.

The abscissa-variable is chosen in “actValueList”, listing 4.13 line 4. For plots

versus k
z

, choose “actValueList = valueListkz”. The options for other variables

are shown in table 4.5.

In 4.13, line 5, the range and the step size for the calculation are defined:

the first value is the starting point, followed by the step size and the stopping
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Free variable actValueList
k
z

valueListkz
k
y

valueListky
k
z

, k
y

valueListkykz
u
e0 valueListue0


ue

valueListkappau0

Te

valueListkappaTe

T i

valueListkappaTi

Table 4.5: Options for “actValueList” - The choice of “actValueList” defines
the independent variable, which is as well the abscissa of the plots.

point. For numerical reasons, k
z

= 0 is not possible, so it is recommended to

start at an appropriate small, but nonzero value. In the next line, the plot range

is defined: the first value is for the horizontal and the second for the vertical axis.

Calculated solutions are stored in the variable “solutionsArray”. The plot itself is

written in “solPlot” and, via the export command, saved in the designated folder.

The function “fctReturnMax” returns a list, that contains the maximum of each

mode. This list is saved with the same name in the identical folder structure as

the corresponding plot in order to simplify later analysis of the results.

Especially for three-dimensional cases, it is useful to be able to interact with

the plot in Mathematica. With the output of “solPlot” in line 15 and “maxArray”

in line 16, both figure and list of maxima are directly available in the program

for further studies. In the next chapter this introduced program is used for the

simulation of drift waves.
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5

Numerical Study of Drift Waves

The previously discussed program provides a possibility to visualize the behavior

of drift waves. In the following, drift waves, driven by density and temperature

gradients and currents, are numerically analyzed. As in section 3.4, Alcator C-

Mod parameters [33], which are summarized in table 3.1, are used.

5.1 Study of Growth Rates and Frequencies

The basis for this consideration is the model containing kinetic ions and kinetic

electrons, discussed in section 3.2.3. First, a pure density gradient without any

temperature gradients or streaming velocities is considered. The resulting plots

are figures 5.1 for the growth rate versus the perpendicular wave number and 5.2

for � versus the parallel wave number. All growth rates � are normalized as �a/c
s

and the wave numbers as k
y

⇢
s

and k
z

a. Within the considered parameter regime,

one unstable mode, driven by the density gradient, exists with a maximum of

(k
y

⇢
s

, �a/c
s

) = (1.7, 0.0185) at k
z

a = 0.13, as depicted in figure 5.1.



94 5. NUMERICAL STUDY OF DRIFT WAVES

Figure 5.1: Growth rate versus k
y

⇢
s

with ⌘
i

= ⌘
e

= 0, u0,e = 0 - density
gradient 

n

= �0.0387cm�1 and k
z

a = 0.13. One unstable mode exists with a
maximum at (k

y

⇢
s

, �a/c
s

) = (1.7, 0.0185).
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Figure 5.2: Growth rate versus k
z

a with ⌘
i

= ⌘
e

= 0, u0,e = 0 - density gradi-
ent 

n

= �0.0387cm�1 and k
y

⇢
s

= 0.4. This plot corresponds to figure 5.1, which
shows the same mode, driven unstable by the density gradient, in perpendicular
wave number direction.
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Subsequently, temperature gradients of electrons and ions and positive and neg-

ative electron currents are added separately and together, to study the resulting

drift waves. With the next step, an ion temperature gradient with ⌘
i

= 4.2455 is

added. Figure 5.3 illustrates the arising of the ⌘
i

-mode, which appears to have

an about six times higher growth rate maximum than the purely density gradi-

ent driven mode. The growth rate versus parallel wave number, as well as an

extended range of k
y

⇢
s

, can be found in the appendix chapter A, figures A.1 and

A.2.

Figure 5.3: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

= 0, u0,e = 0. - The
ion temperature gradient lowers the maximum growth rate of the density gradient
driven mode to (1.49, 0.01), but additionally, a new mode arises with a six times
higher maximum growth rate of (1.07, 0.064) for k

z

a = 0.13.

An electron temperature gradient with the scaling ⌘
e

⇡ 4.06, however, stabilizes

the drift wave (see figures 5.4 and A.4), consistent with the predictions of the
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analytic studies in section 3.4. The growth rate � is axially symmetric for ± k
y

⇢
s

,

as shown in figure A.3 in the appendix.

Figure 5.4: Growth rate versus k
y

⇢
s

with ⌘
i

= 0, ⌘
e

⇡ 4.06, u0,e = 0. -
The electron temperature gradient results in a damping; all modes are stable. The
growth rate versus k

z

is shown in figure A.4.

A combination of ion and electron temperature gradients results in a slightly

less growing ⌘
i

mode compared to figure 5.3, as illustrated in figure 5.5. The

maximum lowers marginally from (1.07, 0.064) for an ion temperature gradient

to (1, 0.06) for an additional electron temperature gradient. The axial symmetry

is preserved for � versus k
y

⇢
s

for both ⌘
e

6= 0 and ⌘
i

6= 0. Other figures with

these parameters can be found in the appendix, figures A.5 and A.6.
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Figure 5.5: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e = 0. -
The existence of an electron temperature gradient lowers the ⌘

i

-mode minimally;
the maximum is at (1, 0.06).
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Figure 5.6: Growth rate versus k
z

a and k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06,
u0,e = 0. - This plot shows the modes in three dimensions. A detail is shown in
figure A.7.
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Solving the dispersion relation for the standard parameters as previously, but with

a positive electron drift current u0,e, the drift wave can be driven unstable, de-

pending on the absolute value of u0,e. Using a drift parameter of u0,e/cs = 2.09279,

which was estimated in section 3.3 considering an elongation  = 1.221334 and a

magnetic shearing ŝ = 1.625332, the growth rate of the drift wave (illustrated in

purple in figure 5.7) is raised, but still negative. Illustrations of the growth rate

versus k
z

a as well as versus an extended range of k
y

⇢
s

are shown in figures A.8

and A.9.

Figure 5.7: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 2c
s

.
- Comparing with figure 5.5, the electron current raises the drift wave growth rate
(illustrated in purple), however, it is still stable. The ⌘

i

-mode, depicted in blue, is
barely influenced by uk0 ⇡ 2c

s

.

Concentrating on a drift parameter of u0,e/cs = 8.04947, which was motivated

in section 3.3 for a negligible magnetic shearing, the current-driven drift wave is
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driven unstable, as illustrated in figure 5.8 and A.10. The maximum growth rates

are at (0.96, 0.063) for the ⌘
i

-mode (depicted in blue) and at (0.33, 0.004) for the

electron-current-driven mode (purple).

Figure 5.8: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 8c
s

. -
Comparing with figure 5.7, the higher electron current drives an additional mode
unstable. The maxima are at (0.96, 0.063) for the ion-temperature-gradient driven
mode (blue) and at (0.33, 0.004) for the electron-current-driven mode (purple).

Considering an even higher parallel electron drift of u0,e = 12c
s

, the influence of

the current-driven drift wave becomes significant, as illustrated in figure 5.9. The

maximum growth rate of the current-driven drift wave is with (0.4, 0.021) only

by a factor of 0.33 smaller than the maximum of the ⌘
i

-mode, (0.94, 0.064).
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Figure 5.9: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 12c
s

. -
For this drift parameter, the influence of the current-driven drift wave is significant:
while the maximum of the ⌘

i

-mode is at (0.94, 0.064), the maximum of the CDDW
is with (0.4, 0.021) only by a factor of 0.33 smaller. Figure A.11 shows the same
plot with an extended range of k

y

⇢
s

, and A.12 versus k
z

a.
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To classify the modes, the dispersion relation “disprel2” was solved manually and

normalized by the following command:

1 (! /.Solve[ReplaceAll[Apply[disprel2 , valueListky], {kyrhos -> 0.6}] == 0, !])

2 *(vara/varcs) // ComplexExpand

Listing 5.1: Real- and imaginary part of ! - The dispersion relation is solved

manually in order to receive ! = !
r

+ i�.

The following solutions are found for the real and imaginary parts of the frequency

! = !
r

+ i�, normalized to a/c
s

⇡ 10

�6
s, with ak

z

= 0.13, k
y

⇢
s

= 0.4, u0,e = 8c
s

and the other parameters chosen according to figure 5.8:

�22.8873� 1.41669i, �7.64316� 13.2063i,

�0.147388� 0.148952i, �0.0655611 + 0.0520221i,

0.0942382� 0.176544i, 0.396842 + 0.00387484i,

12.3748� 12.2276i, 26.4433� 0.871923i

For ak
z

= 0.13, two modes are unstable, as illustrated in figure 5.10. The one with

the greater growth rate, � ⇡ 0.05, has a negative real frequency, !
r

⇡ �0.066.

The less growing mode with � ⇡ 0.0039 has a positive real frequency, !
r

⇡ 0.397.

Since the positivity of electron drift wave frequencies is chosen as convention in

this thesis, the mode with !
r

> 0, is a current-driven electron drift wave.
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Figure 5.10: Growth rate versus k
z

a with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 8c
s

. -
Corresponding to figure 5.8, this plot shows the modes in the parallel wave number
direction. Due to the electron drift current, a third growing mode arised. The
maxima of the three modes are (0.008, 0.529), (0.138, 0.00395) for the current-driven
drift wave and (0.163, 0.0539) for the ion-temperature-driven mode.
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Plotting the growth rate versus the normalized electron current, one finds for

|u
e0| < 4 · v

te

one maximum for the current-driven drift wave at (�a/c
s

, u
e0/vte) =

(1.51, 0.522), as illustrated in figure 5.11.

Figure 5.11: Growth rate versus u0,e/vte with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, k
z

a =
0.13, k

y

⇢
s

= 0.4. - A current of u0,e = 1.51 v
t,e

produces the maximum growth
rate in the considered parameter regime. For u0,e > 7.16 c

s

the current induce a
positive growth rate, as depicted in more detail in figure 5.12.

Comparing figure 5.11 with A.13, which shows the growth rate versus electron

current without electron- or ion-temperature gradient, it turns out that this peak

is the only mode with positive growth rate and corresponds to the current-driven

drift wave.

Since in section 3.3 the drift parameter was estimated to be in the range

of u0,e/cs ⇡ 2 or u0,e/cs ⇡ 8, the discussed maximum of u0,e = 1.51 v
te

⇡

91.5 c
s

is not in the range of this approximation. Scaling the horizontal axis as
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u0,e/cs would result in a scale from about �240 to +240. Plotting instead within

range of the considered approximation, the electron drift wave mode becomes

growing at u0,e ⇡ 7.16 c
s

and a further increase of the parallel electron velocity

leads to an increasing growth rate, as illustrated in figure 5.12. Accordingly, the

approximated value of u0,e = 8c
s

is big enough to drive an electron drift wave

unstable in the considered parameter regime.

Figure 5.12: Growth rate versus u0,e/cs with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, k
z

a = 0.13,
k
y

⇢
s

= 0.4. - This figure shows the zero crossing of the current-driven drift wave
(illustrated in purple): for the considered parameters the mode becomes growing
at u0,e ⇡ 7.16 c

s

.

Setting the ion temperature gradient to zero, ⌘
i

= 0, but the electron temperature

gradient remains ⌘
e

6= 0, one mode is stabilized, while the other, ! ⇡ 0.345 +

0.0111i, stays growing, as illustrated in figure 5.13 and calculated to:
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�22.8873� 1.41668i, �7.64315� 13.2063i,

�0.162041� 0.0597288i, �0.0381057� 0.119146i,

0.133063� 0.101867i, 0.345251 + 0.0111346i,

12.3748� 12.2276i, 26.4432� 0.871929i

Figure 5.13: Growth rate versus k
y

⇢
s

with ⌘
i

= 0, ⌘
e

⇡ 4.06, u0,e ⇡ 8c
s

. -
Without an ion temperature gradient, the ⌘

i

-mode disappears comparing to figure
5.8. The maximum growth rate of the current-driven drift wave is at (0.33, 0.012).

This behavior is expected: the ⌘
i

-mode vanishes when setting ⌘
i

to zero. The

growth rate versus parallel wave number is illustrated in figure A.15.

Conversely, with a vanishing electron temperature gradient, ⌘
e

= 0, but ⌘
i

6= 0,

both modes are still growing, as illustrated in figure 5.14. Real and imaginary
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parts of the frequency ! = !
r

+ i� are normalized as before to a/c
s

⇡ 10

�6
s,

with ak
z

= 0.13, k
y

⇢
s

= 0.4 and u0,e = 8c
s

. The other parameters are chosen

according to figure 5.14. The frequency ! = !
r

+ i� becomes:

�22.6067� 1.2882i, �8.23187� 12.8219i,

�0.145201� 0.149446i, �0.0679432 + 0.053627i,

0.0958183� 0.174517i, 0.396283 + 0.0275078i,

11.8045� 12.6989i, 27.4195� 0.94031i .

Figure 5.14: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

= 0, u0,e ⇡ 8c
s

.
- Without the strongly damping effects of the electron temperature gradient, the
current-driven drift wave becomes significant: with a maximum at (0.82, 0.038), it
is about half as high as the maximum growth rate of the ⌘

i

-mode, (1.04, 0.067).
The parallel wave number direction is shown in figure A.16.

Without the strongly damping effects of the electron temperature gradient, the
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current-driven drift wave becomes significant: with a maximum at (0.82, 0.038),

it is about half as high as the maximum growth rate of the ⌘
i

-mode, (1.04, 0.067).

Considering as before an even higher parallel electron drift of u0,e = 12c
s

, the

influence of the current-driven drift wave becomes even crucial, as illustrated

in figure 5.15. The maximum growth rate of the current-driven drift wave,

(0.72, 0.056), is only by a factor of 0.82 smaller than the maximum of the ⌘
i

-

mode, (1.02, 0.068).

Figure 5.15: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

= 0, u0,e ⇡ 12c
s

. -
For this drift parameter, the influence of the current-driven drift wave is significant:
while the maximum of the ⌘

i

-mode is at (1.02, 0.068), the maximum of the current-
driven drift wave, (0.72, 0.056), is only by a factor of 0.82 smaller.

Setting both ⌘
e

and ⌘
i

to zero, the current-driven mode, ! = 0.345 + 0.036i, is
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still unstable for k
z

a = 0.13 and k
y

⇢
s

= 0.4:

�22.6068�1.28819i, �8.23185�12.8218i,

�0.162084�0.0599788i, �0.0372164�0.118889i,

0.133131�0.100215i, 0.345164+0.0362462i,

11.8045�12.699i, 27.4195�0.940316i .

This purely current-driven mode, with only density gradient and electron current

as source of dissipation, is illustrated in figure 5.16 for the perpendicular direction,

as well as in A.17 for the parallel wave number direction.

Figure 5.16: Growth rate versus k
y

⇢
s

with ⌘
i

= 0, ⌘
e

= 0, u0,e ⇡ 8c
s

.
- Comparing with figure 5.1, the electron current u0,e raises the maximum to
(0.82, 0.0475), which is an increase by about a factor of 2.6.

With a negative electron current, there is no current-driven drift wave at this
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particular value of k
y

⇢
s

= 0.4 and k
z

a = 0.13:

�28.7618�0.917744i, �11.433�13.1268i,

�0.154541�0.149059i, �0.0579192+0.0493975i,

0.0907283�0.184652i, 0.397617�0.0671231i,

8.82291�12.4258i, 22.056�1.17043i .

Figure 5.17: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ �8c
s

.
- Comparing with figure A.10, the growth rate is symmetric regarding simultaneous
change of k

y

⇢
s

and u0,e.

Comparing figure 5.17 with figure A.10 shows the symmetry of the growth rate

regarding simultaneous sign change of k
y

⇢
s

and u0,e. Therefore, the current-

driven drift wave at negative u0,e is identical to that for positive u0,e, but it has a

reversed sign of k
y

. Since ! is invariant under simultaneous sign change of L
n

and
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k
y

, the same results for drift waves are reached with a positive density gradient


n

= d
x

n/n and negative values of k
y

⇢
s

, leading to a negative v
de

, but resulting

again in a positive !⇤e = k
y

v
de

.

5.1.1 Comparison between Fluid and Kinetic Ions

In section 3.2.2, the dispersion relation for drift waves, modeled with simplified

kinetic electrons and fluid ions, was calculated. As previously discussed, both

growth rate and frequency are only calculated automatically if ! = !
r

+ i� meets

the condition |!| < 0.05 k
z

v
te

, ensuring the adequacy of the fluid model. In section

3.4 the agreement of the dispersion relation, based on fluid ions and simplified

kinetic electrons, with analytic approximation of the growth rate was shown.

For fluid equations to be valid, the ions are assumed to be cold as compared to

the electrons T
i

⌧ T
e

. In the Alcator C-Mod parameter range, which is examined

in this thesis, the two models show partly related behavior, although the kinetic

ions show more details.

5.1.2 The “very fast” electron mode

When considering the kinetic ion response with the four pole approximation,

which is a third-order polynomial P3(⇣), divided by a fourth order polynomial

P4(⇣), one gets

R
s

=� ñ
i

T
i0

n0e˜�

=1 + ⌘
i

⇣⇤⇣ +
h
⇣ + ⇣⇤

⇣
1� ⌘

i

2

� ⌘
i

⇣2
⌘i P3(⇣)

P4(⇣)
.

For the case of adiabatic electrons, the dispersion relation becomes after multi-
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plication with the denominator of Z

�T
i0

T
e0
P4(⇣) = P4(⇣) + ⌘

i

⇣⇤⇣P4(⇣) +
h
⇣ + ⇣⇤

⇣
1� ⌘

i

2

� ⌘⇣2
⌘i

P3(⇣) .

This equation contains ⇣5, resulting in the expectation of 5 solutions. As discussed

in section 3.3, it turns out that there exist just 4 solutions, since the coefficients

of the highest order in each polynomial are the same (3.35), canceling out the

fifth solution.

However, we found when calling the corresponding function in Mathematica

for a density gradient 
n

⇡ 3.9 · 10�8
1/cm , an ion temperature gradient 

T i

⇡

0.16 1/cm , T0,e = 1000 eV , k
y

⇢
s

= 0.6 and k
z

= 0.01 1/cm , the following 5th

order equation:

0 =(2.57071 · 1022 + 7.93536 · 1022i) + (1.03103 · 1017 � 1.47297 · 1017i)!

�(4.60029 · 1011 � 390659.i)!2
+ (0.50758 + 769649.i)!3

+(1.+ 3.357562189496173 · 10�15i)!4
+ 5.123233321382795 · 10�20!5 .

By solving this equation, the very small coefficient of the !5-term results in a

very fast mode, ! ⇠ 10

19:

{! ! �1.95189 · 1019 + 704113. i}, {! ! �657601.� 79889.8 i},

{! ! �146772.� 491084. i}, {! ! 330202.+ 211204. i},

{! ! 474171.� 409879. i} .

Fortunately it was found that internal rounding issues resulting in 10

�20 instead

of 0, caused this non-physical additional mode. The code was modified in such a

way that an exact cancellation was preserved, thus yielding 0 ·!5 and eliminating

this additional mode.
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5.2 Diffusion Studies

To evaluate the particle transport, the calculated growth rates are used for dif-

fusion studies based on the mixing length approximation discussed in section

2.6.2,

D
mix

⇠ �

k2
y

.

Figure 5.18: Diffusivity versus k
z

a with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e = 0. - For
small k

z

, there is a high diffusion. However, this region can be neglected due to
magnetic shearing reasons.

As depicted in figure 5.18, there is a high mode for small values of k
z

. This mode

is assumed to be irrelevant due to magnetic shearing reasons. All calculations in

this thesis assumed a plane plasma slab model, which does not include magnetic



5.2 Diffusion Studies 115

shearing. However, in a more realistic geometry the direction of the magnetic

field changes, which in a simple sheared slab model can be represented by

ˆ

b =

B

B
=

ˆ

z+

ˆ

y

x

L
s

.

Until now, since ˆ

b =

ˆ

z, k
z

was the vector parallel to the magnetic field. In a

simple toroidal model however,

kk = ˆ

b ·k = k
z

+

x

L
s

k
y

.

Long wavelength modes with kk < 1/qR can extend into the good curvature region

of a tokamak, where they experience damping effects. Therefore, long wavelength

modes are not expected to be as important in full toroidal geometry. Furthermore,

modes with too small values of k
y

⇢
s

will be so extended radially as to be very

sensitive to stabilizing effects of profile variation and sheared flows. Therefore

the diffusion study will be restricted to modes in the range of k
y

⇢
s

2 (0.05, 2)

for the perpendicular wave number and k
z

a 2 (a/(2qR), 2) ⇡ (0.03531, 2) for the

parallel wave number.

Figure 5.19 shows the diffusivity D versus the normalized perpendicular wave

number k
y

⇢
s

for u0,e = 0. Three dimensional plots of D
mix

versus parallel and

perpendicular wave number are shown in figures 5.20 and B.1.

The experimental level of the thermal diffusivity of electrons is 1m2/s  �
e



2m

2/s and for the ions 0.3m2/s  �
i

 0.4m2/s, as pictured in figure 5.21 [33].

The diffusivities found in this thesis, for example in figure 5.20, are with D
mix

< 2

in approximately the right range.

An electron current of u0,e > 7.16c
s

gives rise to an additional growing mode,

as shown in section 5.1. For u0,e = 8.04947c
s

this extra mode results in a maxi-

mum diffusion of (0.25, 0.0415 m2
s

�1
), as depicted in figure 5.22. The maximum
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Figure 5.19: Diffusivity versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e = 0. -
The diffusivity for k

z

a = 0.13 has a maximum at (0.19, 0.486 m2s�1). Figure 5.18
shows the diffusivity for the same parameters in parallel wavelength direction and
5.20 in three dimensions.
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Figure 5.20: Diffusivity versus k
z

a and k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06,
u0,e = 0. - The three-dimensional plot clarifies the existence of one maximum
in the considered range. The smaller parallel and perpendicular wave numbers
become, the greater the diffusivity becomes.
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Figure 5.21: Thermal diffusivities - The shadowed regions correnspond to the
experimental level. This plots show the impact of the reduction factor of a/L

T i

, ✏.
The thermal diffusivities �

e

and �
i

are averaged over r/a 2 [0.4, 0.6] (taken from
Ref. [33]).

diffusion caused by the ⌘
i

-mode is (0.19, 0.4899 m2
s

�1
) for k

z

a = 0.13. The diffu-

sivity caused by the current-driven drift wave is visible in the three-dimensional

plots, figures B.2 and B.3, however, a higher electron current clarifies.

To illustrate the influence of a higher electron drift current on the diffusivity,

u0,e = 12c
s

is considered. The maximum diffusion caused by the current-driven

drift wave is (0.15, 0.2812 m2
s

�1
), which is only by a factor of 0.56 smaller than the

maximum diffusion caused by the ion temperature gradient, (0.19, 0.4994 m2
s

�1
),

as depicted in figure 5.23.

In the three-dimensional plots, figures 5.24 and B.4, the influence of the drift

wave driven by u0,e = 12c
s

is obvious.

Without the strongly damping effect of the electron temperature gradient, the

maximum diffusivity driven by the current-driven drift wave, (0.15, 0.4575 m2
s

�1
),

is even almost as high as the diffusivity caused by the ⌘
i

-mode, (0.20, 0.5067 m2
s

�1
),

as illustrated in figure 5.25.
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Figure 5.22: Diffusivity versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 8c
s

.
- The current-driven drift wave diffusion for a positive electron current of u0,e ⇡
8c

s

, depicted in purple, results in a maximum of (0.25, 0.0415 m2s�1), which is a
factor of 0.085 of the maximum resulting from the ion-temperature driven mode,
(0.19, 0.4899 m2s�1), which is depicted in blue.
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Figure 5.23: Diffusivity versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 12c
s

. -
The maximum diffusion caused by the current-driven drift wave with u0,e = 12c

s

is
(0.15, 0.2812 m2s�1), which is only by a factor of 0.56 smaller than the maximum
diffusion caused by the ion temperature gradient, (0.19, 0.4994 m2s�1).
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Figure 5.24: Diffusivity versus k
z

a and k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06,
u0,e ⇡ 12. - The three-dimensional view shows the two ridges, one resulting from
the ⌘

i

-mode and the other one driven by the electron drift current. Figure 5.20,
which has the same parameters but no electron current, shows the temperature-
gradient driven diffusion separately.
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Figure 5.25: Diffusivity versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

= 0, u0,e ⇡ 12c
s

.
- Without the damping effect of the electron temperature gradient the maximum
diffusivity driven by the current-driven drift wave, (0.15, 0.4575 m2s�1), is 0.9 times
as high as the maximum diffusion caused by the ⌘

i

-mode, (0.20, 0.5067 m2s�1).
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Summary and Conclusion

Following, the results of this work will be summarized, and new ideas for future

work will be given.

6.1 Summary

Within this thesis, the impact of current-driven drift waves (CDDWs) and micro-

turbulence in fusion energy devices was studied. After the derivation of two mod-

els, which describe drift waves and include electron currents, both were analyzed:

the first model was studied analytically and the second, after the development of

a program in Mathematica, numerically.

6.1.1 Models and analytic discussion

In chapter 3, different models for drift waves were developed and analyzed. First,

the mechanism of drift waves and the requirements for instability were discussed.

Subsequently, different models for describing drift waves were derived. Starting

with adiabatic electrons and fluid ions, the drift wave velocity was derived. The
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Hasegawa-Mima equation and the i�-model showed the inclusion of instabilities

as well as the importance of ion polarization effects.

In section 3.2.2, the response of kinetic electrons to a small density disturbance

was derived. For all considerations, a plane-plasma-slab geometry and electro-

statics were assumed. In the equilibrium Maxwellian distribution function, the

gradients of density and temperature in the ˆ

x-direction, as well as a parallel cur-

rent were considered. Finally, the electron response was achieved by applying the

drift kinetic equation to the slab model. This drift wave model was closed by the

quasi-neutrality condition and included fluid ions and kinetic electrons.

The second model describes both electrons and ions kinetically. Since in the

derivation of the kinetic response, terms of the order of the ion polarization drift

were neglected, an additional ion polarization density was provided. As finite-

temperature ions should be included in the model, FLR-effects were absorbed

by additional factors. By including these effects, the quasi-neutrality condition

became:

˜R
e

1 + k2
?⇢

2
e

=

˜R
i

1 + k2
?⇢

2
i

T0,e

T0,i
+

k2
?⇢

2
s

1 + k2
?⇢

2
i

.

The plasma dispersion function Z was approximated by a four-pole approxima-

tion, leading to 8 modes. In section 3.4, an analytic discussion on the basis of the

first model, containing cold fluid ions and simplified drift-kinetic electrons, was

provided. An influence of an electron current on the drift wave instability was

predicted consistent with previous theories: a higher electron current leads to a

higher growth rate, considered for positive k
y

⇢
s

and k
z

.
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6.1.2 Drift parameter

In standard gyrokinetic derivations, which are expansions in ⇢⇤ = ⇢/a, the drift

parameter

v
drift

c
s

⇠ ⇢⇤
�

8a

Rq
,

is very small and therefore negligible compared to other modes in most cases.

However, for larger ⇢⇤ and small �, this parameter could become > 1. For a low

density C-Mod case (table 3.1, B = 5.2T, T0,e = 1keV, a = 22cm) we showed in

section 3.3

uk0

c
s

⇡ 2.09279 .

This value is based on a model that contains magnetic shearing and non-circularity:

uk0

c
s

=

1

nec
s

c

2⇡

B
T

qR


1� ŝ

2

+

2s


1 + 2

�
1 + 2

2
.

In the large aspect ratio circular limit the drift parameter is uk0/cs ⇡ 1.34612, but

a neglect of the magnetic shear parameter ŝ = 0 while allowing non-circularity

leads to a drift parameter of

uk0

c
s

⇡ 8.05 ,

which is about four times higher than the original value including the shear

parameter.

While this shows some of the sensitivity of the approximation on the included

parameters, due to uncertainties in the values of ŝ and other shaping effects, such

as the Shafranov shift, even larger values of the drift parameter than uk0/cs ⇡ 8

are possible. The location in the plasma could be another factor: closer to the

plasma center, where the magnetic shear is much lower, the drift parameter may
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be larger. Also, in other experiments or considering lower densities, the CDDW

may become more important.

Even if the parallel electron drift current is not high enough in most parts of

the plasma, it is possible that MHD instabilities drive large local current densities

at resonant surfaces. These currents might generate CDDWs as secondary insta-

bilities. As shown in Ref. [26], even damped modes can contribute to nonlinear

turbulent flux. Therefore, a marginally damped CDDW could generate a relevant

diffusion.

6.1.3 Numeric discussion

To study CDDWs in more detail, a program based on Mathematica was devel-

oped, as described in chapter 4. The analytically derived response of kinetic ions

and electrons could be verified. The program includes different dispersion rela-

tions: the previously mentioned kinetic-electron-fluid-ion-model and the kinetic-

electron-kinetic-ion-model. Three- and four-pole approximations for Z are pro-

vided and growth rates can be entered manually, in order to compare an ap-

proximation with the provided models. The program includes the ability to plot

growth rates, frequencies and the mixing-length diffusion and exports the results

automatically in the filesystem, according to the chosen physical parameters.

While the programming was not strictly focused on minimizing runtime, au-

tomation of the application flow as well as the supply of interfaces for future

development were stressed. This program was used for the numerical study of

CDDWs, the results of which were provided in chapter 5. All studies were based

on Alcator C-Mod parameters (see table 3.1) and used kinetic electrons and ions.

The analytic prediction could be verified: a CDDW was found in the appropriate

parameter range.
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An ion-temperature driven mode could be identified and the influence of an

electron-temperature gradient determined. Independently from these tempera-

ture gradients, the electron current drives an additional mode unstable. Symme-

tries of the growth rate, depending on the sign of k
y

⇢
s

and the electron current,

were shown.

Based on the mixing length approximation, diffusion caused by the CDDW

was investigated and it was found that the diffusion can be in the order of magni-

tude of the experiments in some parameter regimes. For the baseline parameters

in the C-Mod experiment, where u0,e/cs ⇡ 2, the CDDW is slightly damped in

the local slab limit investigated in this thesis, and it is possible that the CDDW

is not very important. However, there are uncertainties in various experimental

parameters that could make the CDDW more important.

The CDDW diffusion was found to be more than ⇠ 10% of the mixing-length

diffusion caused by ITG modes, if the drift parameter is u0,e/cs ⇡ 8 and higher,

which could result for various reasons discussed in the previous section. Also,

the relative importance of the CDDW compared to the ITG mode could increase

if the actual ion temperature gradient is smaller than the present estimate. In

the experiments this thesis is referring to, the ion temperature gradient was not

directly measured and, as shown in figure 12 of Ref. [33], if the assumed ion tem-

perature gradient was reduced by 30%, ITG turbulence was significantly reduced.

The CDDW also depends on the electron temperature and density gradients, so

30% differences in those quantities from the apparent measurements could also

give rise to a significant enhancement of the CDDW. In any case, there are proba-

bly other experiments, particularly at lower density or in smaller tokamaks, where

the CDDW may be important. The inclusion of CDDWs in nonlinear gyrokinetic

simulation codes should be taken into consideration for these parameters.
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6.2 Future Work

In order to get more precise results, the developed Mathematica program could be

extended in future work. Instead of a plane slab-model, a local model describing

toroidally curved magnetic fields and trapped-electron effects could be considered.

This could lead to deeper insight into the behavior of the CDDW. Since the

program provides support for the additional consideration of a current gradient,

in future work ⌘
u

6= 0-cases can be studied.

Finally, it would be useful to add the parallel drift velocity from equilibrium

currents to nonlinear gyrokinetic codes, as fully nonlinear calculations are needed

to definitively investigate the importance of CDDWs. Although they might be

unimportant in many plasma regimes, particularly in future larger machines and

at higher plasma pressure, CDDWs could be important in understanding some

existing experiments in smaller machines at low density.

In addition to extending the program, other parameter regimes could be stud-

ied to more precisely determine the range in which CDDWs are not negligible.

This could be useful to exclude definitively the possibility of their impact on

ITER or other future magnetic confinement fusion devices.

The idea leading to this thesis was based on a work of Lin et al. [33], where a

study of CDDWs was proposed, as well as the examination of shorter wavelength

turbulence in the range of k
✓

⇢
s

> 4. While the study of CDDWs was clearly the

main focus of this thesis, the consideration of shorter wavelength turbulence in

the form of GYRO-simulations was started as well and will be continued in future

work.
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Appendix A

Growth Rates Studies

This section contains additional figures for the study of the influence of a current

on the growth rates of drift waves, provided in section 5.
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Figure A.1: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

= 0, u0,e = 0. -
Corresponding to figure 5.3, this plot shows the axial symmetry, which is preserved
for a density gradient and additional electron- and/or ion temperature gradients.
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Figure A.2: Growth rate versus k
z

a with ⌘
i

⇡ 4.25, ⌘
e

= 0, u0,e = 0. -
The ion temperature gradient gives rise to an additional unstable mode. This plot
shows corresponding to figure A.1 the parallel wave number direction.
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Figure A.3: Growth rate versus k
y

⇢
s

with ⌘
i

= 0, ⌘
e

⇡ 4.06, u0,e = 0. -
Corresponding to figure 5.4, the growth rate is axial symmetric for ±k

y

⇢
s

. In figure
A.4 the growth rate versus the parallel wavenumber is illustrated for this set of
parameters.
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Figure A.4: Growth rate versus k
z

a with ⌘
i

= 0, ⌘
e

⇡ 4.06, u0,e = 0. - The
electron temperature gradient with ⌘

e

= 4.05685 causes a damping of the mode.
This figure corresponds to figures 5.4 and A.3, that show the perpendicular wave
number direction.
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Figure A.5: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e = 0. -
The growth rate is axially symmetric for a gradient of ion and electron temperature.
The parallel wavenumber direction is shown in figure A.6 and three-dimensional
plots in figures A.7 and 5.6.
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Figure A.6: Growth rate versus k
z

a with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e = 0. -
Corresponding to figure 5.5 and A.5, this plot shows the behavior in the parallel
wavelength direction.
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Figure A.7: Growth rate versus k
z

a and k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06,
u0,e = 0. - This plot is a detail of figure 5.6.
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Figure A.8: Growth rate versus k
z

a with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 2c
s

. -
This plot corresponds to figure 5.7, showing the parallel wave number direction.
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Figure A.9: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 2c
s

. -
Comparing with for example figure A.5, the additional electron current, u0,e ⇡ 2c

s

,
illustrated in purple, breaks the symmetry in k

y

⇢
s

. This figure corresponds to figure
5.7, extended to negative k

y

⇢
s

.
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Figure A.10: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 8c
s

. -
An electron drift current of u0,e ⇡ 8c

s

drives the electron drift wave mode unstable.
The maxima are at (0.96, 0.063) for the ⌘

i

-mode (blue) and at (0.33, 0.0045) for
the electron-current-driven mode (purple). This figure corresponds to figure 5.8,
extended to negative k

y

⇢
s

.
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Figure A.11: Growth rate versus k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 12c
s

.
- An electron drift current of u0,e ⇡ 12c

s

raises the current-driven drift wave to
(0.4, 0.021), which is only by a factor of 0.33 smaller than the maximum of the
⌘
i

-mode, (0.94, 0.064). This figure corresponds to figure 5.9, extended to negative
k
y

⇢
s

.
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Figure A.12: Growth rate versus k
z

a with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06, u0,e ⇡ 12c
s

.
- This plot corresponds to figure A.11, showing the parallel wave number direction.
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Figure A.13: Growth rate versus u0,e/vte with ⌘
i

= 0, ⌘
e

= 0, k
z

a = 0.13,
k
y

⇢
s

= 0.4. - The only growing mode for this particular set of parameters belongs
to the current-driven drift wave.
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Figure A.14: Growth rate versus k
y

⇢
s

with ⌘
i

= 0, ⌘
e

⇡ 4.06, u0,e ⇡ 8c
s

. -
This figure corresponds to figure 5.13, extended to negative k

y

⇢
s

.
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Figure A.15: Growth rate versus k
z

a with ⌘
i

= 0, ⌘
e

⇡ 4.06, u0,e ⇡ 8c
s

. -
This figure illustrates the parallel wave number direction corresponding to figures
5.13 and A.14, that show the growth rate against the perpendicular wave number
direction.
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Figure A.16: Growth rate versus k
z

a with ⌘
i

⇡ 4.25, ⌘
e

= 0, u0,e ⇡ 8c
s

.
- Without the damping effects of the electron temperature gradient, the current-
driven drift wave becomes significant for a specific parameter regime. This figure
corresponds to figure 5.14 that illustrates the perpendicular wavenumber direction.
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Figure A.17: Growth rate versus k
z

a with ⌘
i

= 0, ⌘
e

= 0, u0,e ⇡ 8c
s

. - The
current-driven drift wave can be unstable at k

z

> 0 for k
y

⇢
s

= 0.4 and positive
electron currents. Figure 5.16 shows the the same mode in perpendicular wave
number direction.



Appendix B

Diffusion Studies

The following figures supplement the diffusion studies of chapter 4. Plots of the

mixing-length diffusivity versus other variables and in other ranges are provided.
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Figure B.1: Diffusivity versus k
z

a and k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06,
u0,e = 0. - Figure 5.19 shows a detail of this plot.
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Figure B.2: Diffusivity versus k
z

a and k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06,
u0,e ⇡ 8c

s

. - With an additional positive electron current of u0,e ⇡ 8c
s

, two ridges
are observable. The higher one is caused by the ion temperature gradient instability,
which is visible in figure B.1, and the other diffusivity ridge (visible at low k

z

) is
generated by the current-driven drift wave.
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Figure B.3: Diffusivity versus k
z

a and k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06,
u0,e ⇡ 8c

s

. - The higher maximum is caused by the ion temperature gradient
instability, which is visible in figure B.1, and the other diffusivity ridge (visible
at low k

z

) is generated by the current-driven drift wave. A detail of this plot is
depicted in figure B.2.
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Figure B.4: Diffusivity versus k
z

a and k
y

⇢
s

with ⌘
i

⇡ 4.25, ⌘
e

⇡ 4.06,
u0,e ⇡ 12c

s

. - The three-dimensional view shows the two ridges, one resulting from
the ⌘

i

-mode and the other one driven by the electron drift current. Figure B.1,
which has the same parameters but no electron current, shows the temperature-
gradient driven diffusion separately. A detail of this plot is illustrated in figure
5.24.
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