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An electrostatic gyrokinetic-based model is applied to simulate parallel plasma transport in the

scrape-off layer to a divertor plate. The authors focus on a test problem that has been studied previ-

ously, using parameters chosen to model a heat pulse driven by an edge-localized mode in JET.

Previous work has used direct particle-in-cell equations with full dynamics, or Vlasov or fluid

equations with only parallel dynamics. With the use of the gyrokinetic quasineutrality equation and

logical sheath boundary conditions, spatial and temporal resolution requirements are no longer set

by the electron Debye length and plasma frequency, respectively. This test problem also helps illus-

trate some of the physics contained in the Hamiltonian form of the gyrokinetic equations and some

of the numerical challenges in developing an edge gyrokinetic code. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4907160]

I. INTRODUCTION

One of the major issues for ITER and subsequent

higher-power tokamaks is the power load on plasma-facing

components (PFCs) from energy expelled into the scrape-off

layer (SOL) by edge-localized modes (ELMs). Excessive

total and peak power loads from ELM heat pulses can cause

the erosion or melting of divertor targets. Large Type I

ELMs can also result in erosion to the main chamber wall

and the release of impurities into the core plasma.1

Suppressing ELMs or mitigating the damage they cause to

PFCs is crucial for the viability of reactor-scale tokamaks.

An accurate prediction of heat fluxes on future devices is im-

portant for the development of mitigation concepts.

Numerical simulations of heat pulse propagation can pro-

vide useful information about the time dependence of the

power load on divertor targets. A test case involving the propa-

gation of a heat pulse from an ELM along a scrape-off layer to

a divertor target plate has been used as a benchmark in recent

literature. This problem was first studied using a particle-in-

cell (PIC) code and was demonstrated to have good agreement

with experiment.2 A Vlasov-Poisson model was later devel-

oped to study this problem.3 A benchmark of fluid, Vlasov,

and PIC approaches to this problem was recently described in

Ref. 4. An implementation of this test case in BOUTþþ was

used to compare non-local and diffusive heat flux models for

SOL modeling.5 With the exception of initial conditions, the

parameters we have adopted for our simulations are described

in Ref. 4. This test case involves just one spatial dimension

(along the field line), treating an ELM as an intense source

near the midplane without trying to directly calculate the

magnetohydrodynamic instability and reconnection processes

that drive the ELM. Nevertheless, this is a useful problem for

testing codes and understanding some of the physics involved

in parallel propagation and divertor heat fluxes.

Unlike previous approaches, we have developed and

studied gyrokinetic-based models with sheath boundary con-

ditions using fully kinetic electrons or by assuming a

Boltzmann response for the electrons. As is often done in

gyrokinetics (unless looking at very small electron-scale tur-

bulence where quasineutrality does not hold), a gyrokinetic

quasineutrality equation (which includes a polarization-

shielding term) is used, so the Debye length does not need to

be resolved. To handle the sheath, logical sheath boundary

conditions6 are used, which maintain zero net current to the

wall at each time step. Although our simulations are one-

dimensional, perpendicular effects can be incorporated by

assuming axisymmetry. In an axisymmetric system, poloidal

gradients have components that are both parallel and perpen-

dicular to the magnetic field. The perpendicular ion polariza-

tion dynamics then enter the field equation by accounting for

the finite pitch of the magnetic field.

An advantage of the models we have developed is their

low computational cost. Earlier kinetic models have been

described as computationally intensive2 due to restrictions in

the time step to �x�1
pe and in the spatial resolution to �kDe.

(A 1D Vlasov model using an asymptotic-preserving implicit

numerical scheme described in Ref. 3 was able to relax these

restrictions somewhat for this problem, using Dx� 2kDe and

Dt� 4/xpe, because their simulation still included the sheath

directly.) By using a gyrokinetic-based model and logical

sheath boundary conditions, our code can use grid sizes and

time steps that are several orders of magnitude larger than

this. It is fully explicit at present, though one could consider

extending it to use implicit methods (such as in Ref. 3) in the

future. While fluid models have their own merits, they miss

some kinetic effects, including the effect of hot tail electrons

on the heat flux on the divertor plate and the subsequent rise

of sheath potential.a)Electronic mail: eshi@princeton.edu
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We have implemented our models in Gkeyll, a code

employing discontinuous Galerkin (DG) methods that is

being developed for several applications, including solving

gyrokinetic equations in the edge region. Although Gkeyll is

currently being extended to have 5D capability, we focus on

1xþ 1v (vk) simulations in this paper for comparison with

the similar 1xþ 1v Vlasov code in Ref. 4.

An explicit third-order strong-stability-preserving Runge-

Kutta algorithm is used to advance the system in time.7 A

review of the Runge-Kutta DG algorithm is given by

Cockburn and Shu.8 Our modifications to the basic DG scheme

are applicable to a general class of Hamiltonian evolution

equations and conserve energy exactly even when upwind

fluxes are used (in addition to conserving particles exactly).

These details will be described in a future publication.

Gyrokinetic codes that are fairly comprehensive (includ-

ing general magnetic fluctuations to varying degrees) have

been developed9–17 for the main core region of fusion devices

and have been fairly successful in explaining core turbulence

in many parameter regimes. However, extensions are needed

to handle the additional complexities of the edge region

(r/a> 0.9), such as open and closed field lines, plasma-wall

interactions, large amplitude fluctuations, and electromagnetic

fluctuations near the beta limit. The test problem studied here

is a useful first step in testing gyrokinetic algorithms for the

edge region. Such a code could also be used to simulate linear

devices (such as LAPD18 and Vineta19) used for studying fun-

damental plasma physics phenomena.

Section II describes an electrostatic 1D gyrokinetic-

based model with a modification to the ion-polarization

term to set a minimum value for the wave number.

Numerical implementation details and the logical sheath

boundary condition are described in Sec. III. Results from

numerical simulations and specific initial conditions are

presented in Sec. IV.

II. ELECTROSTATIC 1D GYROKINETIC MODEL
WITH KINETIC ELECTRONS

In this paper, we focus on the long-wavelength-drift-ki-

netic limit of gyrokinetics and ignore finite-Larmor-radius

effects for simplicity. Polarization effects are kept in the

gyrokinetic Poisson equation, and the model has the general

form of gyrokinetics and can be extended to include full

gyroaveraging in the future.

The geometry used in the ELM SOL heat pulse test

problem is illustrated in Fig. 1. The Vlasov and fluid codes

used in Ref. 4 consider only the parallel dynamics, while the

1x þ 3v PIC code used in Ref. 4 includes full orbit (not

gyro-averaged) particle dynamics in an axisymmetric system

and so would automatically include polarization effects on

time scales longer than an ion gyroperiod.

The gyrokinetic equation can be written as a

Hamiltonian evolution equation for species s of a plasma

@fs

@t
¼ Hs; fsf g; (1)

where Hs ¼ p2
k=2ms þ qs/� msV

2
E=2 is the Hamiltonian

for the 1D electrostatic case considered here, pk¼msvk

is the parallel momentum, and ff ;gg¼ð@f=@zÞð@g=@pkÞ
�ð@f=@pkÞð@g=@zÞ is the Poisson bracket operator for any

two functions f and g. The potential is determined by a gyroki-

netic Poisson equation (in the long-wavelength quasineutral

limit)

�@? �?@?/ð Þ ¼ rg

�0

¼ 1

�0

X
s

qs

ð
dvk fs: (2)

Here, rg is the guiding-center charge density, while the

left-hand side is the negative of the polarization contribution

to the density, where the plasma perpendicular dielectric is

�? ¼
c2

v2
A

¼
X

s

nsms

�0B2
: (3)

The ion polarization dominates this term, but a sum over all

species has been included for generality.

In the Hamiltonian, VE ¼ �ð1=BÞ@?/ is the E�B drift

in the radial direction (out of the plane in Fig. 1(c)). Since

there is no variation in the radial direction, there is no

explicit VE �r term, and VE only enters through the second-

order contribution to the Hamiltonian, �mV2
E=2. References

20 and 21 provide some physical interpretations of this term,

and Ref. 20 gives a derivation of it in the cold-ion limit.

The conserved energy is given by

Wtot ¼
ð

dz
X

s

ð
dvk fsHs

¼ WK þ
ð

dz rg/�
1

2

ð
dz qV2

E; (4)

where WK ¼
Ð

dz
P

s

Ð
dvk fsmsv2

k=2 is the kinetic energy,

and q is the total mass density. Using the gyrokinetic

Poisson equation (2) to substitute for rg in this equation and

doing an integration by parts (with a global neutrality condi-

tion
Ð

dz rg ¼ 0 so boundary terms vanish), one finds that the

total conserved energy can be written as

Wtot ¼
1

2

ð
dz
X

s

ð
dvk fs msv

2
k þ msV

2
E

� �

¼ WK þ
1

2

ð
dz qV2

E: (5)

To verify energy conservation, first note thatÐ
dz
Ð

dvkHs@fs=@t ¼ 0 by multiplying the gyrokinetic equation

(1) by the Hamiltonian and integrating over all of phase-space.

(Here, periodic boundary conditions are used for simplicity;

there are of course losses to the wall in a bounded system.) The

rate of change of the total conserved energy is then written as

dWtot

dt
¼
ð

dz
X

s

ð
dvk fs qs

@/
@t
� ms

2

@V2
E

@t

� �

¼
ð

dz rg
@/
@t
� 1

2

X
s

nsms
@V2

E

@t

 !
: (6)

Using the gyrokinetic Poisson equation (2) to substitute for

rg and integrating by parts, one finds that these two terms
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cancel, so dWtot/dt¼ 0. Note that the small second-order

Hamiltonian term H2 ¼ �ðm=2ÞV2
E was needed to get exact

energy conservation. (In many circumstances, the E�B
energy mV2

E is only a very small correction to the parallel ki-

netic energy mv2
k=2, but it is still assuring to know that exact

energy conservation is possible.) This automatically occurs

in the Lagrangian field theory approach to full-F gyroki-

netics,21–23 in which the gyrokinetic Poisson equation results

from a functional derivative of the action with respect to the

potential /, so a term that is linear in / in the gyrokinetic

Poisson equation comes from a term that is quadratic in / in

the Hamiltonian.

A. Electrostatic model with a modified ion
polarization term

One can obtain a wave dispersion relation by linearizing

Eqs. (1) and (2) and Fourier transforming in time and space.

With the additional assumption that qe¼�qi and neglecting ion

perturbations (except for the ion polarization density), one has

k2
?q

2
s þ ½1þ nZðnÞ� ¼ 0: (7)

Here, q2
s ¼ Te=ðmiX

2
ciÞ; n ¼ x=ð

ffiffiffi
2
p

kkvteÞ; vte ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=me

p
,

and ZðnÞ ¼ p�1=2
Ð

dt expð�t2Þ=ðt� nÞ [or the analytic con-

tinuation of this for Im(n)� 0] is the plasma dispersion func-

tion. In the limit n � 1, the solution to the dispersion

relation is a wave with frequency

xH ¼
kkvte

jk?jqs

: (8)

For k?qs 	 1, this is a very high-frequency wave that must

be handled carefully to remain numerically stable. Note that

this wave does not affect parallel transport in the SOL

because the main heat pulse propagates at the ion sound

speed, and this wave is even faster than the electrons for

k?qs	 1.

This wave is the electrostatic limit of the shear Alfv�en

wave,24,25 which lies in the regime of inertial Alfv�en

waves.26,27 The difficulties introduced by such a wave could

be eased by including magnetic perturbations from Ak, in

which case the dispersion relation (in the fluid electron regime

n � 1) becomes25 x2 ¼ k2
kv

2
te=ðb̂e þ k2

?q
2
s Þ, where b̂e

¼ ðbe=2Þðmi=meÞ and be¼ 2l0neTe/B
2. In the electrostatic

limit b̂e ¼ 0, we recover Eq. (8), but retaining a finite b̂e

would set a maximum frequency at low k? of

x ¼ kkvte=b̂
1=2

e ¼ kkvA, where vA is the Alfv�en velocity,

avoiding the k?qs ! 0 singularity of the electrostatic case.

(We shall defer further discussion of magnetic fluctuations to

a future paper, as that brings up another set of interesting nu-

merical subtleties.)

For electrostatic simulations, a modified ion polarization

term can be introduced to effectively set a minimum value

for the perpendicular wave number k?. This modification

can be used to slow down the electrostatic shear Alfv�en

wave to make it more numerically tractable. (Even when

magnetic fluctuations are included, one still might want to

consider an option of introducing a long wavelength modifi-

cation for numerical convenience or efficiency.)

When choosing how to select the minimum value for

k?qs, it is useful to consider the set of k?’s represented on

the grid for particular simulation parameters. Consider an

axisymmetric system (as in Fig. 1(c)) with constant B/Bn,

where B is the total magnetic field, and Bn and Bf are the

components of B in the poloidal and toroidal directions. It

follows that @?¼ (Bf/Bn) @k, so

k?;max ¼
Bf

Bn
kk;max: (9)

The maximum parallel wavenumber can be estimated as

kk,maxDz� pNnc, where Dz is the width of a single cell in

position space, and Nnc is the total degrees of freedom per

cell used in the finite element DG representation of the posi-

tion coordinate.

Therefore, one has

k?;max ¼
Bf

Bn

pNnc

Dz
: (10)

In our simulations, Nnc¼ 3 and Dz¼ 10 m using 8 cells in the

spatial direction to represent an 80 m parallel length. Assuming

that Bn=B ¼ sinð6
Þ, one estimates that k?,maxqs� 2.5� 10�2

for 1.5 keV deuterium ions with B¼ 2 T. Thus, the perpendicu-

lar wave wavenumbers represented by a typical grid are fairly

small.

The general modified gyrokinetic Poisson equation we

consider is of the form

FIG. 1. Illustration of the geometry

used in the ELM SOL heat pulse test

problem. The scrape-off layer region

in the poloidal cross section (a) is

treated as straight (b) in this test, with

the ELM represented by an intense

source near the midplane region. The

time history of the resulting heat flux

to the target plate is calculated in the

simulation. The side view (c) illus-

trates that although there is no toroidal

variation in this axisymmetric prob-

lem, poloidal variations lead to both

parallel and perpendicular gradient

components.
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�@? C��?@?/ð Þ þ s? z; tð Þ /� h/ið Þ ¼ rg zð Þ
�0

; (11)

where s?ðz; tÞ ¼ k2
minðzÞ�?ðz; tÞ is a shielding factor (we

allow kmin to depend on position but not on time in order to

preserve energy conservation, as described later in this

section), and h/i is a dielectric-weighted flux-surface-aver-

aged potential defined as

h/i ¼

ð
dz s?/ð
dz s?

: (12)

The fixed coefficient C� is for generality, making it easier to

consider various limits later.

The sound gyroradius is chosen to be defined by

q2
s ðz; tÞ ¼ c2

s ðz; tÞ=X2
ci ¼ Teðz; tÞ=ðmiX

2
ciÞ, using the mass and

cyclotron frequency of a main ion species. A time-independent

sound gyroradius (using a typical or initial value for the elec-

tron temperature Te0) is defined by q2
s0ðzÞ ¼ c2

s0ðzÞ=X2
ci

¼ Te0ðzÞ=ðmiX
2
ciÞ. Note that the shielding factor can also be

written as s?ðz; tÞ ¼ ½kminðzÞqs0ðzÞ�2�? ðz; tÞ=q2
s0ðzÞ.

For simplicity, kminqs0 is chosen to be a constant inde-

pendent of position. Its value should be small enough that

the wave in Eq. (8) is high enough in frequency that it does

not interact with other dynamics of interest, but not so high

in frequency that it forces the explicit time step to be exces-

sively small. For some of our simulations, we use

kminqs¼ 0.2, which leads to only a 2% correction to the ion

acoustic wave frequency x ¼ kkcs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

?q
2
s

p
at long

wavelengths. Convergence can be checked by taking the

limit kminqs0! 0.

As a simple limit, one can even set C�¼ 0 and keep just

the s? term, which replaces the usual differential gyrokinetic

Poisson equation with a simpler algebraic model. This

approach should work fairly well for low frequency dynam-

ics. The basic idea is that for long-wavelength ion-acoustic

dynamics, the left-hand side of Eq. (11) is small, so the

potential is primarily determined by the requirement that it

adjust to keep the electron density on the right-hand side

almost equal to the ion guiding center density. (At low fre-

quencies, the electron density is close to a Boltzmann

response, which depends on the potential.) In future work,

one could consider using an implicit method, perhaps using

the method here as a preconditioner. Alternatively, electro-

magnetic effects will slow down the high-frequency wave so

that explicit methods may be sufficient.

The flux-surface-averaged potential h/i is subtracted off

in Eq. (11) so that the model polarization term is gauge invari-

ant like the usual polarization term. This choice is also related

to our form of the logical sheath boundary condition, which

assumes that the electron and ion guiding center fluxes to the

wall are the same so that the net guiding center charge van-

ishes,
Ð

dz rg ¼ 0. Just as the net guiding center charge van-

ishes, our model polarization charge density, s?ð/� h/iÞ,
also averages to zero. This approach neglects ion polarization

losses to the wall, which is consistent in this model because

integrating Eq. (2) over all space then gives @?/ ¼ 0 at the

plasma edge. (One could consider future modifications to

account for polarization drift losses to the wall, but the present

model is found to agree fairly well with full-orbit PIC results.)

With this approach, it is also necessary to modify the

Hamiltonian in order to preserve energy consistency with

this modified gyrokinetic Poisson equation. The modified

Hamiltonian is written in the form

Hs ¼
1

2
msv

2
k þ qs /� h/ið Þ � 1

2
msV̂

2

E; (13)

where V̂
2

E is a modified E�B velocity that is chosen to con-

serve energy. The constant h/i term in Hs has no effect on

the gyrokinetic equation because only gradients of / matter,

but it simplifies the energy conservation calculation. The

total energy is still Wtot ¼
Ð

dz
P

s

Ð
dvk fsHs, and its time de-

rivative (neglecting boundary terms that are straightforward

to evaluate) can be written as

dWtot

dt
¼
ð

dz
X

s

ð
dvk fs

@H

@t

¼
ð

dz rg
@

@t
/� h/ið Þ �

X
s

1

2
nsms

@

@t
V̂

2

E

 !
: (14)

Using the modified gyrokinetic Poisson equation (11) and

integrating the first term by parts gives

dWtot

dt
¼
ð

dz
X

s

1

2
nsmsC�

@

@t
V2

E þ
�0

2
s?
@

@t
/� h/ið Þ2

 

�
X

s

1

2
nsms

@

@t
V̂

2

E

!
; (15)

so energy is conserved if one chooses

V̂
2

E ¼ C�V
2
E þ

�0s?X
s
nsms

/� h/ið Þ2; (16)

and require that the coefficient �0s?=ð
P

s nsmsÞ be independ-

ent of time so that it comes outside of a time derivative.

Using Eq. (3) and the definition of s? after Eq. (11), one sees

that �0s?=ð
P

s nsmsÞ ¼ k2
minðzÞ=B2, which is indeed inde-

pendent of time because kmin was chosen not to have any

time dependence.

In the limit that one uses only the algebraic model polar-

ization term with C�¼ 0, one finds that

V̂
2

E ¼ kminqs0ð Þ2 ed/
Te0

� �2

c2
s0; (17)

where d/ ¼ /� h/i. For kminqs0¼ 0.2 and ed/=Te0 � 1,

this E�B energy could be order 4% of the total energy.

III. NUMERICAL IMPLEMENTATION DETAILS

One detail of solving the modified gyrokinetic Poisson

equation (11) is how to determine the flux-surface-averaged

component, which is related to the boundary conditions.

Consider the case in which �?¼ 0, and expand / ¼ h/i þ d/.

Then d/ is determined by the algebraic equation
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s? zð Þ d/ zð Þ ¼
rg zð Þ
�0

: (18)

Imposing the boundary condition that the value of / at the

plasma edge be equal to the sheath potential gives /ðzRÞ
¼ /s ¼ h/i þ d/ðzRÞ (the left and right boundaries have

been assumed to be symmetric here), which gives an addi-

tional equation to determine h/i. The final expression is

/ðzÞ ¼ d/ðzÞ � d/ðzRÞ þ /s: (19)

In order to maintain energy conservation, it is important

that the algorithm preserve the numerical equivalent of cer-

tain steps in the analytic derivation. In our algorithm, based

on Liu and Shu’s28 algorithm for the incompressible Euler

equation, / must be obtained using continuous finite ele-

ments, although the charge density rg is discontinuous in our

Poisson equation.

To preserve the integrations involved in energy conser-

vation, it is important to ensure that one can multiply Eq.

(18) by the fluctuating potential, integrate over all space, and

preserve ð
dz d/ s? d/ ¼ 1

�0

ð
dz d/rg: (20)

This requirement ensures that a potential part of the energy

on the right-hand side is exactly related to a field-like-energy

on the left-hand side. This quantity will be preserved if one

projects the modified Poisson equation onto all of the contin-

uous basis functions wj that are used for / (i.e., /ðzÞ
¼
P

j /jwjðzÞ) to ensure that

hwjs?/i ¼ hwjrgi: (21)

For piecewise linear basis functions, this leads to a tri-

diagonal equation for /j that has to be inverted to determine

/. Because s? / n(z, t) varies in time, this will take a little

bit of work, but as one goes to higher dimensions in velocity

space, the Poisson solve (which is only in the lower-

dimensional configuration space) will be a negligible frac-

tion of the computational time.

A. Boundary conditions

Gyrokinetics does not need to resolve the restrictive

Debye length (�kDe) or plasma frequency time scales

(�x�1
pe ), so the sheath is usually not directly resolved.

Instead, the effects of the sheath can be incorporated through

the use of logical sheath boundary conditions.6 For a normal

positive sheath, all incident ions flow into the wall, but inci-

dent electrons with energies below the sheath potential are

reflected back into the domain such that there is zero net cur-

rent into the wall. (For biased endplates or higher dimen-

sional problems with non-insulating walls, one could

consider more general boundary conditions that involve cur-

rents in and out of the wall at various places.) At the right

boundary, for example, this condition is expressed asð1
0

dv vfiðzR; v; tÞ ¼
ð1

vc

dv vfeðzR; v; tÞ; (22)

where zR is the coordinate of the domain edge. The cutoff ve-

locity vc> 0 is determined numerically through a search

algorithm. The sheath potential is then determined using the

relation e/s ¼ mev2
c=2.

In order to reflect all electrons incident on the sheath

with velocity in the range 0< v< vc, the electron distribu-

tion function in this range is copied into ghost cells accord-

ing to

feðzR;�v; tÞ ¼ feðzR; v; tÞ; 0 < v < vc; (23)

and fe(zR, �v, t)¼ 0 for v> vc. This condition can also be

written as fe(zR, �v, t)¼ fe(zR, v, t)H(vc � v) for v> 0. This

condition results in the reflection of electrons with velocity

in the range 0< v< vc back into the domain with the oppo-

site velocity, while the electrons with energy sufficient to

overcome the sheath potential will flow out of the system to

the divertor plates.

The implementation of logical sheath boundary condi-

tions needs a slight modification for use in a continuum

code. Typically, the cutoff velocity will fall within a cell and

not exactly on a cell edge. A direct projection of the discon-

tinuous reflected distribution onto the basis functions used in

a cell could lead to negative values of the distribution func-

tion at some velocities in the cell. Future work could con-

sider methods of doing higher-order projections that

incorporate positivity constraints, but for now we have used

a simple scaling method, in which the entire distribution

function inside the “cutoff cell” is copied into the ghost cell

and then scaled by the fraction required to ensure that the

electron flux at the domain edge equals the ion flux. For scal-

ing the reflected distribution function in the cutoff cell on the

right boundary, this fraction is

c ¼

ðvc

vj�Dv=2

dv vfe zR; v; tð Þ
ðvjþDv=2

vj�Dv=2

dv vfe zR; v; tð Þ
; (24)

where Dv is the cell width in velocity space, and vj denotes

the center of the cell.

IV. SIMULATION RESULTS

The main parameters used for our simulations were

described in Ref. 4 and were chosen to model an ELM on

the JET tokamak for a case in which the density and tem-

perature at the top of the pedestal were nped¼ 5� 1019 m�3

and Tped¼ 1.5 keV. The ELM is modelled as an intense

particle and heat source in the SOL that lasts for 200 ls,

spread over a poloidal length of 2.6 m around the midplane

and a radial width in the SOL of 10 cm. The model SOL

has a major radius of 3 m, and this source corresponds to a

total ELM energy of about 0.4 MJ. The simulation domain

has a length of 2Ljj ¼ 80 m, the length of a magnetic field

line in the SOL, with a field line pitch of 6
. The kinetic

equation with the source term on the right-hand side is
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@f

@t
� H; ff g ¼ g tð Þ S zð ÞFM vk; TS tð Þ

� �
; (25)

where FM(vk, TS(t)) is a unit Gaussian in variable vk with a

time-dependent temperature TS(t). The function S(z) is the

same for both particle species and is represented as

S zð Þ ¼
S0 cos

pz

Ls

� �
jzj < Ls

2

0 else;

8><
>: (26)

where Ls¼ 25 m is length of the source along the magnetic

field line. The value of S0 was computed using the scaling4

S0 ¼ A nped cs;ped=Ls; (27)

where the constant of proportionality A was chosen to be

1:2
ffiffiffi
2
p
� 1:7 for comparison with Ref. 4. In our simulations,

S0� 9.066� 1023 m�3 s�1.

The function g(t) in Eq. (25) is used to model the time-

dependence of the particle source

gðtÞ ¼ 1 0 < t < 200 ls

1=9 t > 200 ls:

	
(28)

The post-ELM source also has reduced electron and ion

temperature, represented by the TS(t) parameter in the

Maxwellian term FM in Eq. (25), which has the value 1.5 keV

from 0< t< 200 ls for both ions and electrons. The electron

temperature for t> 200 ls is 210 eV, and the ion temperature

is reduced to 260 eV. The end time for the simulation is

t¼ 350 ls. The functions g(t) and S(z) are shown in Fig. 2.

We performed our simulations using second-order ser-

endipity basis functions29 on a grid with 8 cells in the spatial

direction and 32 cells in the velocity direction. (In 1D,

second-order basis functions correspond to piecewise para-

bolic basis functions, or 3 degrees of freedom within each

cell.) The case with kinetic electrons and ions takes only

about 3 min to run on a standard laptop, although we have

not yet extensively optimized our code.

A. Initial conditions

In previous papers that looked at this problem, the codes

were typically run for a while with the same weak source

that would be used in the post-ELM phase to reach a quasi-

steady state before the intense ELM source was turned on.

The authors found that the final results were not very sensi-

tive to the duration of the pre-ELM phase or the initial condi-

tions used for it. However, there is formally no normal

steady state for this problem in the collisionless limit (low

energy particles build up over time without collisions). To

remove a possible source of ambiguity for future benchmark-

ing, here we specify more precise initial conditions chosen to

approximately match initial conditions at the beginning of

the ELM phase used in previous work.

We model the initial electron distribution function as

fe0ðz; vkÞ ¼ ne0ðzÞFMðvk; Te0Þ; (29)

with Te0¼ 75 eV. The electron density profile (in 1019 m�3)

is defined as

ne0 zð Þ ¼ 0:7þ 0:3 1� z

Lk












 !
þ 0:5 cos

pz

Ls

� �
H

Ls

2
� jzj

� �
:

(30)

The initial ion distribution function is modeled as

fi0 z;vkð Þ¼

FL z<�Ls

2
1

2
� z

Ls

� �
FL þ

1

2
þ z

Ls

� �
FR

� �
�Ls

2
<z<

Ls

2

FR z>
Ls

2
:

8>>>>>><
>>>>>>:

(31)

Here, FL and FR are left and right half-Maxwellians defined

as

FRðz; vk; Ti0Þ ¼ n̂ðzÞFMðvk; Ti0ÞHðvkÞ; (32)

FLðz; vk; Ti0Þ ¼ n̂ðzÞFMðvk; Ti0ÞHð�vkÞ; (33)

where n̂ðzÞ ¼ 2ni0ðzÞ, H is the Heaviside step function, and

the initial ion temperature profile (in eV) is defined as

Ti0 zð Þ ¼ 100þ 45 1� z

Lk












 !
þ 30 cos

pz

Ls

� �
H

Ls

2
� jzj

� �
:

(34)

The expressions for the ne0 and Ti0 profiles were chosen

to approximate those described in private communication

with the author of Ref. 4, which were originally obtained

from simulations that had run for a while with a weaker

source to achieve a quasi-steady state before the strong ELM

source was turned on, as described at the beginning of this

subsection.

Given an initial electron density profile, we then calcu-

late an initial ion guiding center density profile to minimize

the excitation of high-frequency shear Alfv�en waves. We do

this by choosing the initial ion guiding-center density ni(z) so

that it gives a potential /ðzÞ that results in the electron den-

sity’s being consistent with a Boltzmann equilibrium, i.e.,

the electrons are initially in parallel force balance and do not
FIG. 2. Spatial and temporal profiles of the source term on the right-hand

side of Eq. (25).
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excite high-frequency shear Alfv�en waves. A Boltzmann

electron response is

ne zð Þ ¼ C exp
e/ zð Þ

Te

� �
: (35)

Taking the log of the above equation and then an ne-

weighted average, one has

h log neine
¼ log Cþ

eh/ine

Te0

; (36)

where Te has been assumed to be a constant Te0.

Note that one is free to add an arbitrary constant to /
since only gradients of / affect the dynamics. Choosing the

additional constraint that h/ine
¼ 0, one can express the con-

stant C in terms of ne. (This convention for h/ine
is only for

convenience, as any constant can be added to / in the plasma

interior without affecting the results. After the first time step,

the sheath boundary condition will be imposed, which will

give a non-zero value for the average potential.)

One then has the following equation for /:

e/
Te0

¼ log ne � h log neine
: (37)

This / can be used with the gyrokinetic Poisson equa-

tion to solve for ni(z) by iteration. With a small me/mi ratio,

the gyrokinetic Poisson equation can be written as

ni zð Þ 1� k2
?q

2
s0

e /� h/ini

� �
Te0

 !
¼ ne zð Þ; (38)

where with the small me/mi ratio approximation, the

dielectric-weighted average is equivalent to an ion density-

weighted average. The left-hand side of this equation is a

nonlinear function of ni (because it appears as a leading coef-

ficient and in the density-weighted average h/ini
), which is

solved for by using iteration:

njþ1
i zð Þ ¼ ne zð Þ

1� k2
?q

2
s0

e

Te0

/� h/inj
i

� � : (39)

Note that the averaged / on the right-hand side is

weighted by nj
i, the previous iteration’s ion density.

Convergence can be improved by adding a constant to ni(z)

each iteration to enforce global neutrality hnii ¼ hnei. In our

tests, the initial ion density profile was calculated to 10�15

relative error in five iterations.

B. Divertor heat flux with drift-kinetic electrons

Figure 3 shows the parallel heat flux on the target plate

vs. time using the 1D electrostatic model with a fixed

k?qs0¼ 0.2. A rapid response in the electron heat flux is

observed at early times, on the order of the electron transit

timescale se�Lk/vte, ped� 2.46 ls. This response is due to

fast electrons reaching the target plate, which initially cause

a modest rise in the electron heat flux from t� 1 ls to

t� 1.5 ls. This build-up of fast electrons results in a rise in

the sheath potential at t� 1.5 ls, which causes a modest rise

in the ion heat flux and a modest drop in the electron heat

flux until the arrival of the bulk ion heat flux at a later time.

We did a scan in k2
?q

2
s0 over a factor of 20 (from k2

?q
2
s0

¼ 0:04 to 0.1) and found only a few percent variation in the

resulting plot of heat flux vs. time, verifying that the results

are not sensitive to the exact value of this parameter (as long

as it is small).

As pointed out in a recent invited talk,30 one of the origi-

nal motivations for calculations of this kind (such as Ref. 2)

was a concern that the fast parallel thermal transport of elec-

trons would cause a very large heat flux to arrive at the diver-

tor plates on the electron transit time scale. Our results

confirm the previous calculations that found that although

there is a modest rise in the heat flux on the electron transit

time scale, the sheath potential (and the potential variation

along the field line) increases to confine most of the electrons

so that the bulk of the ELM energy arrives at the target plate

only on the slower ion time scale. (Nevertheless, even this

ELM power is so large that erosion of solid target plates is a

concern, and methods of mitigating or avoiding ELMs are

being studied.)

The bulk of the ELM energy is carried by the ions,

which arrive at the target plate on the order of the ion ther-

mal transit timescale, si�Lk/vti� 149 ls. The reduction of

source strength and temperature after 200 ls results in the

abrupt drop seen in the electron heat flux.

The parallel heat flux (parallel to the magnetic field) on

the right target plate for each species is calculated as

Qs ¼
1

2
ms

ð1
vc;s

dv fs v3 þ T? þ qs/sð Þ
ð1

vc;s

dv fs v; (40)

where vc;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð�2qs/s=ms; 0Þ

p
accounts for the reflec-

tion of electrons by the sheath. The qs/s term in the second

integral models the acceleration of ions and deceleration of

electrons as they pass through the sheath to the divertor

plate, a region that is not resolved in our models. We have

assumed that each species has a constant perpendicular

FIG. 3. Parallel heat flux at the divertor plate vs. time with drift-kinetic elec-

trons. The electron and ion thermal transit times se and si are indicated by

the vertical dashed lines.
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temperature T?¼ Tped for comparison with the 1D Vlasov

results in Ref. 4. Note that the pitch angle of the magnetic

field is not factored into this measure of heat flux on the tar-

get plate. The heat flux normal to the target plate is

Qs;n ¼ Qs sinðhÞ, where h is the (usually very small) angle

between the magnetic field and the surface.

Figure 3 agrees well with the 1xþ 1v Vlasov and full

1xþ 3v PIC results in Ref. 4, providing a useful benchmark

for these codes and supporting the accuracy of the sheath

boundary conditions and the gyrokinetic-based model used

here. (The small differences between our 1xþ 1v results, the

Vlasov results, and the PIC results are probably due to small

differences in initial conditions and the inclusion of colli-

sions in the PIC code.)

C. Divertor heat flux with Boltzmann electron model

We have also investigated a model that includes the

effect of kinetic ions but assumes a Boltzmann response for

the electrons. Specifically, the electron density takes the

form

ne zð Þ ¼ ne zRð Þexp
e /� /sð Þ

Te

� �
; (41)

where ne(zR) is the electron density evaluated at the domain

edge. This expression can be inverted to give another alge-

braic equation to determine the potential, similar to the

electrostatic gyrokinetic model with a fixed k?qs0. Since

the time step is set by the ions, these simulations have an

execution time a factor of �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
faster than the gyroki-

netic simulation. This property makes the Boltzmann elec-

tron model useful as a test case for code development and

debugging.

The sheath potential /s can be determined by assuming

that fe at the target plate is a Maxwellian with temperature

Te. By using logical sheath boundary conditions and quasi-

neutrality, one finds

/s ¼ �
Te

e
log

ffiffiffiffiffiffi
2p
p

Ci

nivte

 !
; (42)

where Ci is the outward ion flux, and all quantities are eval-

uated at the domain edge. For simplicity, we selected Te in

our simulations to be the field-line-averaged value of the ion

temperature Ti(z), but more accurate models for Te could be

used.

Figure 4 shows the parallel heat flux on the target plate

vs. time using Boltzmann electrons. As expected, kinetic

electron effects present in Fig. 3 are not resolved by this

model. When compared to a simulation using kinetic elec-

trons, the main heat flux at t� 100–200 ls is predicted fairly

well by the Boltzmann electron model.

The expression for the electron parallel heat flux on the

target plate is calculated as

Qe ¼
1

2
me

ð1
vc

dv fe v3 þ T? � e/sð Þ
ð1

vc

dv fe v

¼ Te þ T?ð Þ
ð1

0

dv fi v: (43)

V. CONCLUSIONS

We have used a gyrokinetic-based model to simulate the

propagation of a heat pulse along a scrape-off layer to a di-

vertor target plate. We have described a modification to the

ion polarization term to slow down the electrostatic shear

Alfv�en wave.

Our main results include the demonstration that this

gyrokinetic-based model with logical sheath boundary condi-

tions is able to agree well with Vlasov and full-orbit (non-

gyrokinetic) PIC simulations, without needing to resolve the

Debye length or plasma frequency. This simplification

allows the spatial resolution to be several orders of magni-

tude coarser than the electron Debye length (and the time

step several orders of magnitude larger than the plasma pe-

riod) and thus leads to a much faster calculation. Our results

also confirm previous work that the electrostatic potential in

this problem varies to confine most of the electrons on the

same time scale as the ions, so the main ELM heat deposition

occurs on the slower ion transit time scale.

Additionally, we have described a model using

Boltzmann electrons that is useful for code development and

debugging. This model does not include kinetic electron

effects but runs much faster than simulations with kinetic

electrons and ions.

Although this paper focuses on electrostatic simulations,

we have also extended our simulations to include magnetic

fluctuations. These extensions involve a number of interest-

ing and subtle physics and algorithm issues that will be

described in a future paper.

Since we have assumed only a single k? mode in our sim-

ulations to limit the high frequency of the electrostatic shear

Alfv�en wave, future work can include allowing a spectrum of

k? modes. For 1D electromagnetic simulations, this modifica-

tion requires inverting the r2
? operators that appear in the

gyrokinetic Poisson equation and Ampere’s law. We defer
FIG. 4. Parallel heat flux at the divertor plate vs. time from the Boltzmann

electron model.
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further discussion of this to a future paper because including a

magnetic component to the fluctuations will be important

when a spectrum of very low k? modes is kept in order to

limit the frequency of the shear Alfv�en wave at low k?.

Future work on these models can also include extensions

to higher spatial and velocity dimensions. An axisymmetric

2D model can use a specified diffusion coefficient to model

radial transport in the SOL. A full 3D gyrokinetic model

would include turbulence, so radial transport can be self-

consistently calculated. These models could eventually

include more detailed effects such as collisions, recycling,

secondary electron emission, charge-exchange, and radiation,

and could be used to study different types of divertor configu-

rations, including the possible usage of liquid metal coatings.
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